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This event is an opportunity to pay tribute to Professor Allal Guessab of the 

University of Pau and Pays de l'Adour, on the occasion of his 60th anniversary,  for his brilliant 

scientific career and for the services rendered to the Moroccan University in general, University 

Hassan 1st in particular Allal Guessab holds a first doctoral thesis (1983) and a Ph-D thesis in 

Mathematical Sciences at the University of Pau and the Pays de l'Adour (1987). He has been 

Professor of French Universities at UPPA since 1993. He has been a member of UPPA since 1983 

and has since acquired recognized experience in teaching, research and academia: former 

Director of the Research Department (1998-2006), Former Director of the Education Department 

(1992-1998) and former Director of the Institute of French Studies for Foreign Students (2008-

2011), Director of the Approximation Approximation Research Team for the period 1992-2000. 

For thirty-three years, Professor A. Guessab's teachings have focused on mathematics and their 

applications. They are taught at different levels, mainly in France and French-speaking Africa 

(Continuing Education, Post-Doctoral Training Seminars, Doctoral School, Master, etc.). His main 

field of research concerns the theory of approximation and its various applications. In addition to 

his scientific activities and as a trainer, Professor A. Guessab is also a consultant to major 

multinational companies and public and private sector decision-makers. He has created and 

chaired Ifed, his sector of activity being publishing Of scientific software. As part of its consulting 

and training activities for large multinational companies or public and private institutions, it has 

developed expertise in these areas. Professor A. Guessab is a confirmed Teacher-Researcher: 

more than 60 articles published in international journals. He is an associate editor of eight 

international peer-reviewed journals. 

The day also aims to present the state of progress of the research carried out in 

the framework of the UH1 project "Simulations and high-performance numerical methods for 

decision support: problems of the environment" which deals with the mathematical and 

numerical study Complex systems arising from problems related to natural resource 

management, particularly water management and pollution problems in the Casablanca-Settat 

region. 

To this end, we will focus on the modeling and simulation of flows in porous 

media modeling aquifers and the risks of pollution. Emphasis will be placed on the development 

of high-performing and reliable numerical methods, making available to decision-makers and 

managers a scientific simulation tool for decision-making support in natural resource 

management and for the fight against pollution, which has reached alarming levels in Morocco. 
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Generalized weighted Birkhoff–Young quadratures with the 

maximal degree of exactness✩

Gradimir V. Milovanović a,b,∗
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Several types of quadratures of Birkhoff–Young type, as well as a sequence of the weighted 
generalized quadrature rules and their connection with multiple orthogonal polynomials, 
are considered. Beside a short account on a recent result on the generalized (4n + 1)-point 
Birkhoff–Young quadrature, general weighted quadrature formulas of Birkhoff–Young type 
with the maximal degree of exactness are given. It includes a characterization and unique-
ness of such rules, as well as numerical construction of nodes and weight coefficients. 
An explicit form of the node polynomial of such kind of quadratures with respect to 
the generalized Gegenbauer weight function is obtained. Finally, a sequence of general-
ized quadrature formulas is studied and their node polynomials are interpreted in terms of 
multiple orthogonal polynomials.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

The well-known quadrature formula for numerical integration over the line segment [z0 −h, z0 +h] of analytic functions 
in the complex domain � = {z : |z − z0| ≤ r

}
, |h| ≤ r,

z0+h∫
z0−h

f (z)dz = h

15

{
24 f (z0) + 4

[
f (z0 + h) + f (z0 − h)

]− [ f (z0 + ih) + f (z0 − ih)
]}+RBY

5 ( f )

was obtained by Birkhoff and Young [5], and it is exact for all algebraic polynomials of degree at most five. Young [32]
proved that its error term can be estimated by

|RBY
5 ( f )| ≤ |h|7

1890
max
z∈S

| f (6)(z)|,

where S denotes the square with vertices z0 + ikh, k = 0, 1, 2, 3 (see also the monograph [6, p. 136]). Birkhoff–Young rule 
can be compared with the so-called extended Simpson rule (cf. [28, p. 124]) with the nodes z0, z0 ± h, z0 ± 2h, and

✩ This paper was supported by the Serbian Ministry of Education, Science and Technological Development (No. #OI174015).
* Correspondence to: Serbian Academy of Sciences and Arts, Beograd, Serbia.

E-mail address: gvm@mi.sanu.ac.rs.

http://dx.doi.org/10.1016/j.apnum.2016.06.012

0168-9274/© 2016 IMACS. Published by Elsevier B.V. All rights reserved.
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z0+h∫
z0−h

f (z)dz ≈ h

90

{
114 f (z0) + 34

[
f (z0 + h) + f (z0 − h)

]
−
[
f (z0 + 2h) + f (z0 − 2h)

]}
+RES

5 ( f ),

where

|RES
5 ( f )| ∼ |h|7

756
| f (6)(ζ )|, 0 <

ζ − (z0 − 2h)

4h
< 1.

Both formulas use N = 5 points and have the same algebraic degree of exactness d = 5, but |RBY
5 ( f )| ≈ 0.4 |RES

5 ( f )|.
In 1976 Lether [10] transformed Birkhoff–Young formula from [z0 − h, z0 + h] to [−1, 1] (of course, without loss of 

generality),

I( f ) =
1∫

−1

f (z)dz = 8

5
f (0) + 4

15

[
f (1) + f (−1)

]− 1

15

[
f (i) + f (−i)

]+R5( f ), (1.1)

and pointed out that the three point Gauss–Legendre quadrature which is also exact for all polynomials of degree at most 
five, is more precise than (1.1) and he recommended it for numerical integration. However, Tošić [29] improved the quadra-
ture (1.1) in a simple way taking its nodes at the points ±r and ±ir, with r ∈ (0, 1), instead of ±1 and ±i, respectively, and 
derived an one-parametric family of quadrature rules in the form

I( f ) = 2

(
1− 1

5r4

)
f (0) +

(
1

6r2
+ 1

10r4

)[
f (r) + f (−r)

]
+
(

− 1

6r2
+ 1

10r4

)[
f (ir) + f (−ir)

]+RT
5 ( f ; r). (1.2)

It is clear that for r = 1 it reduces to (1.1). However, for r = √
3/5, the coefficient of f (ir) + f (−ir) vanishes, and it reduces 

to the three point Gauss–Legendre formula,

I( f ) = 8

9
f (0) + 5

9

[
f

(√
3

5

)
+ f

(
−
√

3

5

)]
+ RG

3 ( f ), (1.3)

where RG
3 ( f ) = RT

5 ( f ; √3/5).

Expanding the error-term RT
5 ( f ; r) in (1.2) in the form

RT
5 ( f ; r) =

(
− 2

3 · 6! r
4 + 2

7!
)

f (6)(0) +
(

− 2

5 · 8! r
4 + 2

9!
)

f (8)(0) + · · · , (1.4)

and putting r = 4
√
3/7 in order to vanish the first term in (1.4), Tošić [29] obtained a five-point formula of algebraic degree 

of exactness seven,

I( f ) = 16

15
f (0) + 1

6

(
7

5
+
√

7

3

)[
f

(
4

√
3

7

)
+ f

(
− 4

√
3

7

)]

+ 1

6

(
7

5
−
√

7

3

)[
f

(
i

4

√
3

7

)
+ f

(
−i

4

√
3

7

)]
+ RMF

5 ( f ), (1.5)

with the error-term

RMF
5 ( f ) = RT

5 ( f ; 4
√
3/7) = 1

793800
f (8)(0) + 1

61122600
f (10)(0) + · · · ≈ 1.26 · 10−6 f (8)(0).

We note that the error term in the Gaussian formula (1.3) is given by

RG
3 ( f ) = RT

5 ( f ;√3/5) = 1

15750
f (6)(0) − 1

226800
f (8)(0) + · · · ≈ 6.35 · 10−5 f (6)(0).

Quadrature formulae of Birkhoff–Young type for analytic functions have been investigated in several papers in different 
directions (cf. [1,15,20,22]). These formulas can also be used to integrate real harmonic functions (see [5]). In addition, 
we mention also that Lyness and Delves [12] and Lyness and Moler [13], and later Lyness [11], developed formulae for 
numerical integration and numerical differentiation of complex functions.
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An extra motivation for a development of this kind of quadratures lies in the possible application of such rules in a 
construction of orthogonal polynomials on the radial rays in the complex plane (cf. [16,24,25,17,18]). In order to explain 
this fact we consider a case of these polynomials on the four rays, with the inner product defined by

( f , g) =
1∫

0

[
f (z)g(z) + f (iz)g(iz) + f (−z)g(−z) + f (−iz)g(−iz)

]
w(z)dz,

where w is a given weight function. Extending w to an even function on (−1, 1) (again denoted as w), this inner product 
can be expressed in the form

( f , g) =
1∫

−1

[
f (z)g(z) + f (iz)g(iz)

]
w(z)dz.

For the numerical construction of recursive coefficients for these orthogonal polynomials on the radial rays, by using the 
discretized Stieltjes–Gautschi procedure (see [18]), we need a quadrature rule for exactly computing integrals of the form 
( f , 1), when f is an algebraic polynomial (except for rounding errors). Weighted quadratures of Birkhoff–Young type (of 
sufficiently large degree of exactness) would be very appropriate for this kind of integration, since their nodes are on the 
real and the imaginary axis. As a simple illustration of this fact we can see that the rule (1.5), with w(x) = 1, gives the 
following formula

1∫
−1

[
f (z) + f (iz)

]
dz ≈ 32

15
f (0) + 7

15

[
f

(
4

√
3

7

)
+ f

(
− 4

√
3

7

)
+ f

(
i

4

√
3

7

)
+ f

(
−i

4

√
3

7

)]

of algebraic degree of exactness seven. On the other hand, the corresponding formula of the same complexity, obtained by 
the Gaussian rule (1.3),

1∫
−1

[
f (z) + f (iz)

]
dz ≈ 16

9
f (0) + 5

9

[
f

(√
3

5

)
+ f

(
−
√

3

5

)
+ f

(
i

√
3

5

)
+ f

(
−i

√
3

5

)]
,

has the algebraic degree of exactness five.
In this paper we consider several types of quadrature rules of Birkhoff–Young type, as well as a sequence of the weighted 

generalized quadratures and their connection with multiple orthogonal polynomials. The paper is organized as follows. In 
Section 2 we gave a short account of a recent result on a generalized (4n + 1)-point Birkhoff–Young quadrature. Section 3 is 
devoted to general weighted quadrature formulas of Birkhoff–Young type with the maximal degree of exactness, including a 
characterization and the uniqueness of such rules as well as the numerical construction of the nodes and the weights of the 
rule. In the case of the generalized Gegenbauer weight function, explicit form of the node polynomials is derived. Finally, 
a sequence of generalized quadrature formulas and their connection to multiple orthogonal polynomials are presented in 
Section 4.

2. Generalized (4n + 1)-point Birkhoff–Young quadrature

In 1982 Milovanović and D- ord-ević [23] extended Tošić’s formula (1.2) to the following nine-point quadrature rule of 
interpolatory type

I( f ) = A f (0) + B
[
f (x1) + f (−x1)

]+ C
[
f (ix1) + f (−ix1)

]
+ D

[
f (x2) + f (−x2)

]+ E
[
f (ix2) + f (−ix2)

]+R9( f ; x1, x2), (2.1)

with 0 < x1 < x2 < 1. Taking

x1 = x∗
1 = 4

√
63− 4

√
114

143
and x2 = x∗

2 = 4

√
63+ 4

√
114

143
, (2.2)

this formula has the algebraic degree of exactness d = 13, with the error-term

R9( f ; x∗
1, x

∗
2) ≈ 3.56 · 10−14 f (14)(0).

Recently, this result has been extended to the (4n + 1)-point interpolatory quadrature formula of the form [21]

I( f ) :=
1∫

−1

f (z)dz = Q 4n+1( f ) + R4n+1( f ), (2.3)
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where

Q 4n+1( f ) = A0 f (0) +
n∑

k=1

{
Ak

[
f (xk) + f (−xk)

]+ Bk

[
f (ixk) + f (−ixk)

]}
(2.4)

and R4n+1( f ) is the corresponding remainder term. The nodes in (2.4) are connected with the zeros of a monic polynomial 
of degree 4n + 1,

ω4n+1(z) = z

n∑
j=0

a j z
4 j = z

n∏
k=1

(z4 − rk), 0 < r1 < · · · < rn < 1, (2.5)

i.e., xk = 4
√
rk , k = 1, . . . , n. In [21] it has been proved that there exists a unique interpolatory quadrature formula of the 

form (2.4) with the maximal degree of exactness dmax = 6n + 1, and that the respective coefficients a j in (2.5) are given by

a j = (−1)n− j

(
n

j

) (
2 j + 3

2

)
2n−2 j(

n + 2 j + 3
2

)
2n−2 j

, j = 0,1, . . . ,n, (2.6)

where (s) j is the standard notation for Pochhammer’s symbol

(s) j = s(s + 1) · · · (s + j − 1) = �(s + j)

�(s)
(� is the gamma function).

The weight coefficients A0 and Ak , Bk , k = 1, . . . , n, in the interpolatory quadrature formula (2.4), can be expressed in 
the form

A0 = 1

p̂n(0)

1∫
−1

p̂n(z
4)dz,

Ak = 1

4rk p̂
′
n(rk)

1∫
−1

z2 p̂n(z
4)

z2 − √
rk

dz, Bk = 1

4rk p̂
′
n(rk)

1∫
−1

z2 p̂n(z
4)

z2 + √
rk

dz, k = 1, . . . ,n.

The corresponding node polynomials p̂n(z) are (see [21]):

p̂1(z) = z − 3

7
, p̂2(z) = z2 − 126z

143
+ 15

143
, p̂3(z) = z3 − 429z2

323
+ 693z

1615
− 7

323
,

p̂4(z) = z4 − 204z3

115
+ 14586z2

15295
− 1716z

10925
+ 9

2185
,

p̂5(z) = z5 − 1995z4

899
+ 4522z3

2697
− 92378z2

186093
+ 1001z

20677
− 77

103385
,

p̂6(z) = z6 − 690z5

259
+ 32775z4

12617
− 3714500z3

3293037
+ 20995z2

99789
− 442z

33263
+ 13

99789
.

For n = 1 and n = 2, the previous result reduces to (1.5) and (2.1), with parameters (2.2), respectively.

3. A general weighted quadrature rule of Birkhoff–Young type

We consider now a generalized weighted N-point quadrature formula of interpolatory type for the numerical integration 
of analytic function,

I(w; f ) :=
1∫

−1

f (z)w(z)dz = QN(w; f ) + RN(w; f ), (3.1)

with respect to an arbitrary even positive function w : (−1, 1) → R
+ , for which all moments μk = ∫ 1

−1 z
kw(z)dz, k =

0, 1, . . . , exist. Notice that μ2k+1 = 0 and μ2k > 0 for each k ∈ N0. The quadrature sum Q N(w; f ) has the form

QN(w; f ) =
ν−1∑
j=0

C
(ν)
j f ( j)(0) +

n∑
k=1

{
A

(ν)

k

[
f (xk) + f (−xk)

]+ B
(ν)

k

[
f (ixk) + f (−ixk)

]}
, (3.2)
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with nodes at the zeros of a monic polynomial with real coefficients of degree N ,

ωN(z) = zν pn,ν(z4) = zν
n∏

k=1

(z4 − rk), 0 < r1 < · · · < rn < 1, (3.3)

i.e., xk = 4
√
rk , k = 1, . . . , n, where N = 4n + ν , with

n =
[
N

4

]
, ν = N − 4

[
N

4

]
∈ {0,1,2,3},

and RN (w; f ) is the corresponding remainder term. Notice that rk ’s in the node polynomial (3.3) are also dependent on ν , 
but we write only rk instead of r(ν)

k
.

The N-point quadrature formula (3.1)–(3.2) of interpolatory type has degree of exactness at least N − 1 = 4n + ν − 1 for 
an arbitrary distribution of nodes rk , k = 1, . . . , n, in (3.3).

If ν = 0, the first sum in QN(w; f ) is empty. Also, in order to have QN(w; f ) = I(w; f ) = 0 for f (z) = z, it must be 
C

(ν)
1 = 0, so that Q 4n+1(w; f ) ≡ Q 4n+2(w; f ).
In the simplest case when 1 ≤ N ≤ 3 (n = 0, N = ν), the quadrature sum reduces only to QN(w; f ) = Q ν(w; f ) =

ν−1∑
j=0

C
(ν)
j f ( j)(0), i.e.,

Q 1(w; f ) = Q 2(w; f ) = μ0 f (0) and Q 3(w; f ) = μ0 f (0) + μ2

2
f ′′(0). (3.4)

Here, we are interested in weighted quadrature formulae of type (3.2), with a maximal degree of exactness for an 
arbitrary N ∈N. In that case, the corresponding quadrature sum will be denoted by Q̂ N(w; f ).

3.1. Characterization of Q̂ N(w; f ) and its numerical construction

Let P be the set of all algebraic polynomials with real coefficients (real polynomials) and let Pn be its subset of degree 
at most n.

Throughout this paper we assume that w : (−1, 1) → R
+ is a given even nonnegative function, for which all moments 

μk = ∫ 1
−1 z

kw(z)dz, k = 0, 1, . . . , exist and μ0 > 0. Then, the inner product, defined with this weight function as

(p,q) =
1∫

−1

p(z)q(z)w(z)dz (p,q ∈ P), (3.5)

gives rise to a unique system of monic real orthogonal polynomials πk( · ) = πk(w; · ), such that

πk(z) ≡ πk(w; z) = zk + terms of lower degree, k = 0,1, . . . ,

and

(πk,πn) = ||πn||2δkn =
{

0, n �= k,

||πn||2, n = k,

where ||πn||2 = ∫ 1
−1 πn(z)

2w(z)dz. Such monic polynomials (orthogonal with respect to an even weight function) satisfy the 
following three-term recurrence relation (cf. [14, p. 102])

πk+1(z) = zπk(z) − βkπk−1(z), k = 0,1, . . . , (3.6)

with π0(z) = 1 and π−1(z) = 0, where βk > 0, k = 1, 2, . . . . It is convenient to put β0 = μ0.

The following theorem gives a characterization of the quadrature formula (3.1)–(3.2) with a maximal degree of exactness.

Theorem 3.1. For a given weight function w : (−1, 1) → R
+ and each N ∈ N there exists a unique interpolatory quadrature 

Q̂ N(w; f ), with a maximal degree of exactness dmax = 6n + s, where N = 4n + ν , with n = [N/4], ν = N − 4[N/4] ∈ {0, 1, 2, 3}, 
and

s =
{

ν − 1, ν = 0,2,

ν, ν = 1,3.
(3.7)

The nodes of such a quadrature rule are zeros of the monic real polynomial ̂ωN(z) = zν p̂n,ν(z4) which is characterized by the following 
orthogonality relation
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(h(z2), zs+1 p̂n,ν(z4)) =
1∫

−1

h(z2)zs+1 p̂n,ν(z4)w(z)dz = 0, h ∈ Pn−1, (3.8)

or

(π2k, z
s+1 p̂n,ν(z4)) =

1∫
−1

π2k(z)z
s+1 p̂n,ν(z4)w(z)dz = 0, 0 ≤ k < n, (3.9)

where {πk} is the sequence of monic polynomials orthogonal with respect to the inner product (3.5).

Proof. The case N ≤ 3 is solved by (3.4). Therefore, we suppose that N ≥ 4 and that the node polynomial for the quadrature 
formula QN(w; f ) is given by (3.3).

Suppose that f ∈ Pd , where d ≥ N = 4n + ν (n = [N/4], ν = N − 4[N/4]). Then, this polynomial can be expressed in the 
form

f (z) = u(z)ωN(z) + v(z) = u(z)zν pn,ν(z4) + v(z), (3.10)

where u ∈ Pd−N and v ∈ PN−1. By integrating (3.10) we obtain

I(w; f ) =
1∫

−1

u(z)ωN(z)w(z)dz +
1∫

−1

v(z)w(z)dz. (3.11)

Since v ∈ PN−1, it is clear that the last integral on the right hand side in (3.11), i.e., I(w; v) can be exactly calculated by 
using the interpolatory quadrature formula (3.1) (of degree of exactness N − 1). Thus, I(w; v) = QN(w; v). However, since

ωN(iμxk) = iνμxνk pn,ν(x4k ) = iνμxνk pn,ν(rk) = 0, 1 ≤ k ≤ n; 0 ≤ μ ≤ 3,

where N = 4n + ν and ν = N − 4[N/4] ∈ {0, 1, 2, 3}, and

ω
( j)
4n+ν(0) = 0, 0 ≤ j ≤ ν − 1, ν = 1,2,3,

according to (3.10), we conclude that

f (iμxk) = v(iμxk), 1 ≤ k ≤ n, 0 ≤ μ ≤ 3,

and

f ( j)(0) = v( j)(0), 0 ≤ j ≤ ν − 1, ν = 1,2,3,

and therefore, I(w; v) = QN (w; v) = QN (w; f ). Thus, (3.11) reduces to I(w; f ) = (u, ωN ) + QN (w; f ), where the inner 
product is given by (3.5).

Now, we can see that the quadrature formula QN (w; f ) has a maximal degree of exactness if and only if (u, ωN ) = 0 for a 
maximal degree of the polynomial u ∈ Pd−N . Such QN (w; f ) and ωN (z) we denote by Q̂ N (w; f ) and ω̂N (z) (= zν p̂n,ν(z4)), 
respectively, and the previous “orthogonality conditions” can be considered with respect to the values of ν , i.e.,

(h(z2), zν p̂n,ν(z4)) = 0 and (zh(z2), zν p̂n,ν(z4)) = 0 (3.12)

for ν = 0, 2 and ν = 1, 3, respectively, where h ∈ Pn−1. These relations can be represented in a compact form (3.8), where s
is defined by (3.7). Notice that s + 1 ∈ {0, 2, 4}. Alternatively, (3.8) can be expressed in the form (3.9).

The maximal degree of exactness of the quadrature Q̂ N (w; f ) can be found as the maximal degree of a polynomial 
u ∈ Pd−N for which (u, ωN ) = 0, i.e., (3.12). Thus,

dmax − N =
{

2n − 1, ν = 0,2,

2n, ν = 1,3,

from which we conclude that dmax = 6n + s. �
In the sequel we use the “orthogonality conditions” (3.9) in order to construct our quadratures Q̂ N(w; f ).
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According to (3.3) and using the elementary symmetric functions, defined by

σ
(ν)
1 = r1 + r2 + · · · + rn,

σ
(ν)
2 = r1r2 + · · · + rn−1rn,

...

σ
(ν)
n = r1r2 · · · rn,

we can express the polynomial zs+1 p̂n,ν(z4) in the form

zs+1 p̂n,ν(z4) =
n∑
j=0

(−1) jσ
(ν)
j z4(n− j)+s+1, (3.13)

where, for the convenience, we put σ (ν)
0 = 1. Then, using (3.13), the “orthogonality conditions” (3.9) reduce to the following 

system of linear equations
n∑
j=0

(−1) jσ
(ν)
j (π2k, z

4(n− j)+s+1) = 0, k = 0,1, . . . ,n − 1,

i.e.,

n∑
j=1

(−1) j−1sk,2n−2 j+ησ
(ν)
j = sk,2n+η, k = 0,1, . . . ,n − 1, (3.14)

where sk, j are the inner products given by

sk, j = (π2k, z
2 j) =

1∫
−1

π2k(z)z
2 j w(z)dz, 0 ≤ k ≤ j, (3.15)

and 2η = s + 1. Notice that s + 1 is an even number (according to (3.7)) and η ∈ {0, 1, 2}.
The system of linear equations (3.14) can be done in the matrix form

A(ν)σ (ν) = b(ν), (3.16)

where

A(ν) =

⎡⎢⎢⎢⎢⎣
s0,2n−2+η −s0,2n−4+η . . . (−1)n−1s0,η

s1,2n−2+η −s1,2n−4+η (−1)n−1s1,η

...

sn−1,2n−2+η −sn−1,2n−4+η (−1)n−1sn−1,η

⎤⎥⎥⎥⎥⎦ (3.17)

and

b(ν) =

⎡⎢⎢⎢⎢⎣
s0,2n+η

s1,2n+η

...

sn−1,2n+η

⎤⎥⎥⎥⎥⎦ and σ (ν) =

⎡⎢⎢⎢⎢⎢⎣
σ

(ν)
1

σ
(ν)
2

...

σ
(ν)
n

⎤⎥⎥⎥⎥⎥⎦ . (3.18)

The inner products sk,2n−2 j+η , which appear as elements of A(ν) and b(ν) , should be calculated for 0 ≤ k ≤ n − 1 and 
0 ≤ 2n − 2 j + η ≤ 2n + η. In other words, for generating the system of equations (3.14), i.e., (3.16), we use only entries from 
the following matrix of the type n × (2n + η),

S(ν) =

⎡⎢⎢⎢⎣
s0,0 s0,1 . . . s0,n−1 . . . s0,2n+η

s1,1 . . . s1,n−1 . . . s1,2n+η

. . . sn−1,n−1 . . . sn−1,2n+η

sn,n−1 . . . sn,2n+η

⎤⎥⎥⎥⎦ , (3.19)

where η = η(ν) = 0, 1, and 2, depending on ν = 0, ν = 1 or ν = 2, and ν = 3, respectively.
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It is clear that s0, j are moments of the weight function,

s0, j = (1, z2 j) =
1∫

−1

z2 j w(z)dz = μ2 j, j = 0,1, . . . , (3.20)

as well as that sk, j = 0 for k > j. Using the recurrence relation (3.6) for orthogonal polynomials with respect to the weight 
function w : (−1, 1) → R

+ , it can be proved that the following two-dimensional recurrence relation

sk, j+1 = sk+1, j + (β2k + β2k+1)sk, j + β2kβ2k−1sk−1, j (3.21)

holds. The proof of this relation and an algorithm for calculating a matrix of the form (3.19) have been recently done in [20]. 
Notice that sk,k = β0β1 · · ·β2k , k ≥ 0.

Remark 1. Coefficients in the two-dimensional relation (3.21) appear also in the three-term recurrence relation for polyno-
mials {π2k(

√
t)}k∈N0

orthogonal with respect to the weight function w(
√
t)/

√
t on (0, 1) (cf. [14, pp. 101–103]). Otherwise,

π2k+2(z) = (z2 − β2k − β2k+1)π2k(z) − β2kβ2k−1π2k−2(z), k = 1,2, . . . .

Thus, using Theorem 3.1 and the previous facts we have the following result:

Theorem 3.2. Let N = 4n + ν (≥ 4), with

n =
[
N

4

]
, ν = N − 4

[
N

4

]
∈ {0,1,2,3},

the inner products sk, j be given by (3.15), and σ (ν) = [σ (ν)
1 σ

(ν)
2 . . . σ

(ν)
n ]T be the unique solution of the system of linear equations 

(3.16), where the matrix A(ν) and the vector b(ν) are given by (3.17) and (3.18), respectively.
Then, all zeros of the polynomial

p̂n,ν(z) =
n∑
j=0

(−1) jσ
(ν)
j zn− j =

n∏
k=1

(z − rk),

are real, simple and contained in (0, 1), and they determine the (nonzero) nodes of the quadrature formula Q̂ 4n+ν(w; f ), with maximal 
degree of exactness dmax = 6n + s, where s is given by (3.7).

Proof. According to (3.9) for k = 0, the equality

1∫
−1

zs+1 p̂n,ν(z4)w(z)dz = 0

holds. This is exactly the first equation in the system (3.16). Since s + 1 is an even number (= 2η ∈ {0, 2, 4}) and p̂n,ν(z4)

is an even polynomial (of degree 4n), we conclude that p̂n,ν (z) must change its sign at least at one point in (0, 1). Suppose 
that this polynomial changes its sign at m points in (0, 1), e.g. at r1, . . . , rm . It means that p̂n,ν (z4) changes its sign at the 
points ± 4

√
rk , k = 1, . . . , n.

Define now an even polynomial of degree 2m such that

�(z) = (z2 − √
r1) · · · (z2 − √

rm).

Then, we can conclude that the polynomial p̂n,ν (z4)�(z) does not change its sign on (−1, 1) and therefore

(�, zs+1 p̂n,ν(z4)) =
1∫

−1

�(z)zs+1 p̂n,ν(z4)w(z)dz �= 0. (3.22)

Since �(z) can be expressed as linear combination of even orthogonal polynomials {π2k}mk=0
(w.r.t. the weight function 

w on (−1, 1)), i.e.,

�(z) =
m∑

k=0

γkπ2k(z),

we get
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(�, zs+1 p̂n,ν(z4)) =
m∑

k=0

γk(π2k, z
s+1 p̂n,ν(z4)).

Using the “orthogonality conditions” (3.9) we conclude that

(�, zs+1 p̂n,ν(z4)) =
{

0, m < n,

γn(π2n, z
s+1 p̂n,ν(z4)), m = n.

Because of (3.22), it means that the case m < n is not possible, so it must be m = n. �
3.2. Weight coefficients in the quadrature formula Q̂ N(w; f )

Let QN(w; f ) be an N-point quadrature of interpolation type with simple (in general, complex) nodes z j ∈ Z ,

QN(w; f ) =
∑
z j∈Z

W j f (z j),

and with the corresponding weight coefficients W j . They can be obtained by an integration of the Lagrange polynomial 
constructed on the set Z , i.e.,

LN( f ; z) =
∑
z j∈Z

ωN(z)

(z − z j)ω
′
N(z j)

f (z j),

where ωN(z) is the node polynomial. Then, the weight coefficients can be expressed in the form

W j = 1

ω′
N(z j)

1∫
−1

ωN(z)

z − z j
w(z)dz. (3.23)

We separately consider cases ν = 0, ν = 1, and ν = 3.

3.2.1. Quadrature formula Q̂ 4n(w; f )
In this case (ν = 0), the quadrature nodes belong to Z = {±xk, ±ixk, k = 1, . . . , n}, so that

ω4n(z) = pn,0(z
4), ω′

4n(z) = 4z3p′
n,0(z

4).

Using (3.23) and notations for coefficients as in (3.2), we can formulate and prove the following result:

Theorem 3.3. The weight coefficients in the quadrature formula Q̂ 4n(w; f ) with the maximal degree of exactness d = 6n − 1 are 
given by

A
(0)
k

= 1

4
√
rk p̂

′
n,0(rk)

1∫
−1

p̂n,0(z
4)

z2 − √
rk

w(z)dz, k = 1, . . . ,n,

B
(0)
k

= −1

4
√
rk p̂

′
n,0(rk)

1∫
−1

p̂n,0(z
4)

z2 + √
rk

w(z)dz, k = 1, . . . ,n,

where

p̂n,0(z) =
n∏

k=1

(z − rk) =
n∑
j=0

(−1) jσ
(0)
j zn− j .

3.2.2. Quadrature formula Q̂ 4n+1(w; f )
In this case (ν = 1), the quadrature nodes belong to Z = {0, ±xk, ±ixk, k = 1, . . . , n}, so that

ω4n+1(z) = zpn,1(z
4), ω′

4n+1(z) = pn,1(z
4) + 4z4p′

n,1(z
4).

83
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Theorem 3.4. The weight coefficients in the quadrature formula Q̂ 4n+1(w; f ) with the maximal degree of exactness d = 6n + 1 are 
given by

C
(1)
0 = 1

pn,1(0)

1∫
−1

pn,1(z
4)w(z)dz,

A
(1)
k

= 1

4rk p
′
n,1(rk)

1∫
−1

z2pn,1(z
4)

z2 − √
rk

w(z)dz, k = 1, . . . ,n,

B
(1)
k

= 1

4rk p
′
n,1(rk)

1∫
−1

z2pn,1(z
4)

z2 + √
rk

w(z)dz, k = 1, . . . ,n,

where

p̂n,1(z) =
n∏
j=1

(z − r j) =
n∑
j=0

(−1) jσ
(1)
j zn− j .

3.2.3. Quadrature formula Q̂ 4n+3(w; f )
In the case ν = 3 we have the following result:

Theorem 3.5. Let ̃C (1)
0 , Ã(1)

k
, ̃B(1)

k
, k = 1, . . . , n, be the weight coefficients of the quadrature formula Q̂ 4n+1(w̃; f ), with the maxi-

mal degree of exactness d = 6n + 1, where w̃(z) = z2w(z). Then, the corresponding weight coefficients in the quadrature formula 
Q̂ 4n+3(w; f ), with the maximal degree of exactness d = 6n + 3, are given by

C
(3)
0 = μ0 − 2

n∑
k=1

Ã
(1)
k

− B̃
(1)
k

x2
k

, C
(3)
1 = μ1 = 0, C

(3)
2 = 1

2
C̃

(1)
0 ,

A
(3)
k

= Ã
(1)
k

x2
k

, B
(3)
k

= B̃
(1)
k

x2
k

, k = 1, . . . ,n,

where μk, k = 0, 1, . . . , are moments of the weight function w, and x4
k
= rk, k = 1, . . . , n, are zeros of the polynomial

p̂n,3(z) =
n∏
j=1

(z − r j) =
n∑
j=0

(−1) jσ
(3)
j zn− j .

Proof. Let x0 = √
r0 and xk = 4

√
rk , k = 1, . . . , n. According to

ω′
4n+3(z) = (3z2 − r0)

n∏
ν=1

(z4 − rν) + 4z4(z2 − r0)

n∑
j=1

∏
ν �= j

(z4 − rν),

we have

ω′
4n+3(0) = −r0

n∏
ν=1

(−rν) = −r0pn(0),

ω′
4n+3(±x0) = 2r0

n∏
ν=1

(r20 − rν) = 2r0pn(r
2
0),

ω′
4n+3(±xk) = 4rk(

√
rk + r0)

∏
ν �=k

(rk − rν) = 4rk(
√
rk − r0)p

′
n(rk),

ω′
4n+3(±ixk) = 4rk(−√

rk − r0)
∏
ν �=k

(rk − rν) = −4rk(
√
rk + r0)p

′
n(rk),

where k = 1, . . . , n. Now, applying (3.23) and using notations for coefficients as in (3.2), we get the desired results. �
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3.3. Explicit form of the node polynomial in Q̂ N (w; f ) for the generalized Gegenbauer weight

In this part we determined the expressions in a closed form of sk, j for the generalized Gegenbauer weight defined by

w(z) = |z|γ (1 − z2)α (α,γ > −1), (3.24)

on (−1, 1). The monic polynomials W (α,β)
ν (z), ν = 0, 1, . . . , orthogonal with respect to this weight function, where β =

(γ − 1)/2, were introduced by Laščenov [9] (cf. [14, pp. 147–148]). These polynomials can be expressed in terms of the 
Jacobi polynomials P (α,β)

ν (z), ν = 0, 1, . . . , which are orthogonal on (−1, 1) with respect to the weight function w(α,β (z) =
(1 − z)α(1 + z)β , α, β > −1. Namely,

W
(α,β)

2k
(z) = k!

(k + α + β + 1)k
P

(α,β)

k
(2z2 − 1), (3.25)

W
(α,β)

2k+1
(z) = k!

(k + α + β + 2)k
zP

(α,β+1)

k
(2z2 − 1).

Notice that W (α,β)

2k+1
(z) = zW

(α,β+1)

2k
(z). The polynomials W (α,β)

ν (z) satisfy the following three-term recurrence relation

W
(α,β)

ν+1 (z) = zW
(α,β)
ν (z) − βνW

(α,β)

ν−1 (z), ν = 0,1, . . . ,

W
(α,β)

−1 (z) = 0, W
(α,β)

0 (z) = 1,

where

β2k = k(k + α)

(2k + α + β)(2k + α + β + 1)
, β2k−1 = (k + β)(k + α + β)

(2k + α + β − 1)(2k + α + β)
,

for k = 1, 2, . . . , except when α + β = −1; then β1 = (β + 1)/(α + β + 2).

First, in our case, we need explicit expressions for the products

sk, j = (W
(α,β)

2k
, z2 j) =

1∫
−1

W
(α,β)

2k
(z)z2 j|z|2β+1(1 − z2)α dz, 0 ≤ k ≤ j. (3.26)

Let α, γ > −1 (i.e., β > −1). Then the products defined in (3.26) are (cf. [20, Lemma 5.1])

sk, j = k!
(k + α + β + 1)k

( j

k

)�(k + α + 1)�( j + β + 1)

�(k + j + α + β + 2)
, 0 ≤ k ≤ j. (3.27)

Otherwise, because of orthogonality, sk, j = 0 for k > j.

In the following theorem we give the explicit form of the node polynomial (3.3):

Theorem 3.6. For the generalized Gegenbauer weight function (3.24), the coefficients of the node polynomial

p̂n,ν(z) =
n∑
j=0

(−1) jσ
(ν)
j zn− j

in the quadrature formula Q̂ N(w; f ) are given by

σ
(ν)
j =

(
n

j

)
(β + η + 2(n − j) + 1)2 j

(α + β + η + 2(n − j) + n + 1)2 j
, j = 0,1, . . . ,n, (3.28)

where β = (γ − 1)/2 and η = (s + 1)/2.

Proof. Regarding Theorem 3.1 the node polynomial p̂n,ν (z) exists uniquely. Therefore, it is enough to prove that the coeffi-

cients (3.28) satisfy the system of equations (3.14), i.e.,

n∑
j=0

(−1) j sk,2n−2 j+ησ
(ν)
j =

n∑
j=0

(−1)n− j sk,2 j+ησ
(ν)
n− j = 0,

for each k = 0, 1, . . . , n − 1.
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Using (3.27) we see that

sk,2 j+η = k!
(k + α + β + 1)k

(2 j + η

k

)�(k + α + 1)�(2 j + β + η + 1)

�(k + 2 j + α + β + η + 2)
, j ≥ j

(ν)

k
,

where

j
(ν)

k
=
⌈k − η

2

⌉
and η = η(ν) =

⎧⎪⎨⎪⎩
0, ν = 0,

1, ν = 1 or ν = 2,

2, ν = 3.

For j < j
(ν)

k
the inner product sk,2 j+η = 0. Also, from (3.28) we conclude that

σ
(ν)
n− j =

(
n

j

)
(β + η + 2 j + 1)2n−2 j

(α + β + η + 2 j + n + 1)2n−2 j
=
(
n

j

)
�(α + β + η + 2 j + n + 1)

�(α + β + η + 3n + 1)
· �(β + η + 2n + 1)

�(β + η + 2 j + 1)
.

Therefore,

sk,2 j+ησ
(ν)
n− j = C

(ν)

k

(
n

j

)
(2 j + η − k + 1)k(k + 2 j + α + β + η + 2)n−k−1,

where C (ν)

k
is a coefficient which does not depend on j, i.e.,

C
(ν)

k
= 1

(k + α + β + 1)k
· �(k + α + 1)�(β + η + 2n + 1)

�(α + β + η + 3n + 1)
,

so that we should prove that the sums

S
(ν)

k
=

n∑
j= j

(ν)

k

(−1) j
(
n

j

)
(2 j + η − k + 1)k(k + 2 j + α + β + η + 2)n−k−1 (3.29)

are equal to zero for each k = 0, 1, . . . , n − 1.

Since (2 j + η − k + 1)k = 0 for j < j
(ν)

k
, the summation in (3.29) is equivalent to

S
(ν)

k
=

n∑
j=0

(−1) j
(
n

j

)
(2 j + η − k + 1)k(k + 2 j + α + β + η + 2)n−k−1. (3.30)

Expanding (2 j + η − k + 1)k(k + 2 j + α + β + η + 2)n−k−1 in powers of j, we conclude that it is a polynomial in j of 
degree n − 1 for each k = 0, 1, . . . , n − 1, i.e.,

(2 j + η − k + 1)k(k + 2 j + α + β + η + 2)n−k−1 =
n−1∑
i=0

γi j
i (0 ≤ k ≤ n − 1),

where the coefficients γi depend, in general, on n, k, ν , α, and β . In this way, we see that (3.30) becomes

S
(ν)

k
=

n∑
j=0

(−1) j
(
n

j

) n−1∑
i=0

γi j
i =

n−1∑
i=0

γi

n∑
j=0

(−1) j
(
n

j

)
ji (0 ≤ k ≤ n − 1).

Finally, using the identity (see Gould [8, p. 2, Formula (1.13)])

n∑
j=0

(−1) j
(
n

j

)
ji =

{
0, 0 ≤ i ≤ n − 1,

(−1)nn!, i = n,

we conclude that S(ν)

k
= 0 for each 0 ≤ k ≤ n − 1. �
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4. A sequence of generalized quadrature formulas

In this section we consider a sequence of quadrature rules {Q [m]
N ( f )}m ,

Q
[m]
N ( f ) =

ν−1∑
j=0

C
(ν)
j f ( j)(0) +

n∑
k=1

m∑
j=1

A
(ν)

k, j

[
f
(
xke

iθ j
)+ f

(−xke
iθ j
)]

, m = 1,2, . . . , (4.1)

for weighted numerical integration of an analytic function,

I(w; f ) :=
1∫

−1

f (z)w(z)dz = Q
[m]
N ( f ) + R

[m]
N (w; f ),

where

xk = 2m
√
rk, k = 1, . . . ,n; θ j = ( j − 1)π

m
, j = 1, . . . ,m,

and the node polynomial is defined by

ωN(z) = zν p
[m]
n,ν (z2m) = zν

n∏
k=1

(z2m − rk), 0 < r1 < · · · < rn < 1, (4.2)

with N = 2mn + ν , n = [N/2m], and ν ∈ {0, 1, . . . , 2m − 1}.
For ν = 0, the first sum in Q [m]

N ( f ) is empty. R[m]
N (w; f ) in (3.1) is the corresponding remainder.

As before in Section 3, the coefficients C (ν)
j for odd j must be zero, so we can conclude that Q [m]

2mn+ν( f ) ≡ Q
[m]
2mn+ν−1( f )

for ν = 2, 4, . . . , 2m − 2. In this set of quadrature rules there is a unique interpolatory quadrature Q̂ [m]
N ( f ) with a maximal 

degree of exactness, and we can prove the following result (see [19]):

Theorem 4.1. Let m be a fixed positive integer and w be a nonnegative even weight function on (−1, 1), for which all moments 
μk = ∫ 1

−1 z
kw(z)dz, k ≥ 0, exist and μ0 > 0. For any N ∈N there exists a unique interpolatory quadrature Q̂ [m]

N ( f ) with the maximal 
degree of exactness dmax = 2(m + 1)n + s, where

n =
[

N

2m

]
, ν = N − 2mn ∈ {0,1, . . . ,2m − 1}, s =

{
ν − 1, ν even,

ν, ν odd.

The node polynomial (4.2) is characterized by the following orthogonality relations

1∫
0

tk p̂
[m]
n,ν (tm)ts/2w(

√
t)dt = 0, k = 0,1 . . . ,n − 1. (4.3)

In the case m = 1 (see Fig. 1 (left)), the node polynomial ω̂2n+ν(z) = zν p̂
[1]
n,ν(z2), with ν = 0 or ν = 1, is a monic 

polynomial of degree 2n + ν , which is orthogonal to P2n+ν−1 with respect to the even weight function w on (−1, 1), 
so that the rule Q̂ [1]

N ( f ) is a standard Gaussian formula. Since s = −1 for ν = 0 and s = 1 for ν = 1, according to the 
orthogonality relations (4.3), the sequences of polynomials

p̂
[1]
n,0(t) = ω̂2n(

√
t) and p̂

[1]
n,1(t) = ω̂2n+1(

√
t)√

t

are orthogonal on (0, 1) with respect to the weight functions w(
√
t)/

√
t and w(

√
t)

√
t , respectively (see also [14, Theo-

rem 2.2.11]). Notice that the origin appears as a quadrature node only when ν = 1.

In the case m = 2, the nodes are symmetrically distributed on the real and imaginary axes (see Fig. 1 (right)), and the 
quadrature rules (4.1) reduce to the generalized quadrature of Birkhoff–Young type considered in Section 3. The orthog-
onality conditions (3.8) which characterize the interpolatory quadrature Q̂ N (w; f ), with a maximal degree of exactness 
dmax = 6n + s, can be expressed in the equivalent form (4.3) (for m = 2 and p̂n,ν = p̂

[2]
n,ν ). Indeed, (3.8), i.e.,

(z2k, zs+1 p̂n,ν(z4)) =
1∫

−1

z2kzs+1 p̂n,ν(z4)w(z)dz = 0, k = 0,1, . . . ,n − 1,
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Fig. 1. Distribution of nodes for m = 1 (left) and m = 2 (right).

Fig. 2. Distribution of nodes for m = 3 (left) and m = 6 (right).

can be written as

(z2k, zs+1 p̂n,ν(z4)) = 2

1∫
0

z2kzs+1 p̂n,ν(z4)w(z)dz =
1∫

0

tk p̂
[2]
n,ν(t2)ts/2w(

√
t)dt = 0 (0 ≤ k < n),

after changing variables z = √
t .

The characterization (4.3) shows that p̂[m]
n,ν (tm) must be orthogonal to Pn−1 with respect to the weight function wν (t) =

ts/2w(
√
t) on (0, 1). Precisely, these polynomials p̂[m]

n,0 , ̂p[m]
n,1 , . . . , ̂p[m]

n,2m−1 (each of degree n) are orthogonal to Pn−1 with 
respect to the weight functions w0(t) = t−1/2w(

√
t), w1(t) = t1/2w(

√
t), . . . , w2m−1(t) = tm−1/2w(

√
t), respectively. The 

distribution of the nodes for m = 3 and m = 6 and some ν ∈ {0, 1, . . . , 2m − 1} are presented in Fig. 2.
All results obtained in Section 3 for the rules Q̂ N (w; f ) can be directly extended to the generalized quadrature formulas 

Q̂
[m]
N ( f ). Here, we mention only the extension of Theorem 3.6.

Theorem 4.2. For the weight function (3.24), the coefficients of the node polynomial in (4.2),

p
[m]
n,ν (z) =

n∑
j=0

(−1) jσ
(ν)
j zn− j,

are given in explicit form by

σ
(ν)
j =

(
n

j

)
(β + η +m(n − j) + 1)mj

(α + η + β +m(n − j) + n + 1)mj
, j = 1, . . . ,n,

where β = (γ − 1)/2 and η = (s + 1)/2.
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In this section, however, we give another approach to this kind of quadrature rules. Namely, the orthogonality conditions 
(4.3) can be interpreted in terms of the so-called multiple orthogonal polynomials. Because of that, in the sequel we give 
some basic facts on this kind of orthogonality.

4.1. Multiple orthogonal polynomials

Multiple orthogonal polynomials are intimately related to Hermite–Padé approximants and, because of that, they are 
known as Hermite–Padé polynomials (for a nice survey see Aptekarev [2]). Multiple orthogonal polynomials are a general-
ization of the standard orthogonal polynomials in the sense that they satisfy m orthogonality conditions.

Let m ≥ 1 be an integer and let w j , j = 1, . . . , m, be weight functions on the real line so that the support of each w j

is a subset of an interval E j . Let n = (n1, n2, . . . , nm) be a vector of m nonnegative integers, which is called a multi-index

with the length |n| = n1 + n2 + · · · + nm . There are two types of multiple orthogonal polynomials, but here we consider 
only the so-called type II multiple orthogonal polynomials πn(t) of degree |n|. Such monic polynomials are defined by the m
orthogonality relations∫

E1

πn(t) t
�w1(t)dt = 0, � = 0,1, . . . ,n1 − 1,∫

E2

πn(t) t
�w2(t)dt = 0, � = 0,1, . . . ,n2 − 1,

...∫
Em

πn(t) t
�wm(t)dt = 0, � = 0,1, . . . ,nm − 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)

Evidently, for m = 1 they reduce to the ordinary orthogonal polynomials.

The conditions (4.4) give |n| linear equations for the |n| unknown coefficients ak,n of the polynomial πn (t) =
|n|∑
k=0

ak,n t
k , 

where a|n|,n = 1. However, the matrix of coefficients of this system of equations can be singular and we need some ad-
ditional conditions on the m weight functions to provide the uniqueness of the multiple orthogonal polynomials. If the 
polynomial πn (t) is unique, then we say that n is a normal multi-index and if all multi-indices are normal then we have a 
perfect system of weight functions.

One important perfect system is the AT system, in which all weight functions are supported on the same interval E
(= E1 = E2 = · · · = Em) and the |n| functions:

w1(t), tw1(t), . . . , tn1−1w1(t), w2(t), tw2(t), . . . , tn2−1w2(t), . . . , wm(t), twm(t), . . . , tnm−1wm(t)

form a Chebyshev system on E for each multi-index n. This means that every linear combination

m∑
j=1

Qn j−1(t)w j(t),

where Qn j−1 is a polynomial of degree at most n j − 1, has at most |n| − 1 zeros on E .
In 2001 Van Assche and Coussement [31] proved the following result:

Theorem 4.3. For an AT system the type II multiple orthogonal polynomial πn (x) has exactly |n| zeros on E.

In the last decade there is a growing interest in the study of multiple orthogonal polynomials, including recurrence 
relations, numerical constructions, special weight functions, etc. (cf. [3,4,7,26,27,30]).

4.2. Generalized quadrature formulae in terms of multiple orthogonal polynomials

Starting from Theorem 4.1 we can prove the following statement:

Theorem 4.4. Let m be a fixed positive integer and w be a nonnegative even weight function on (−1, 1), for which all moments 
μk = ∫ 1

−1 z
kw(z)dz, k ≥ 0, exist and μ0 > 0. For any N ∈ N there exists a unique interpolatory quadrature rule Q̂ [m]

N ( f ), with the 
maximal degree of exactness dmax = 2(m + 1)n + s, if and only if the polynomial ̂p[m]

n,ν(t) is the type II multiple orthogonal polynomial 
πn(t), with respect to the weight functions
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G.V. Milovanović / Applied Numerical Mathematics 116 (2017) 238–255 253

w j(t) = t(s+2 j)/(2m)−1w(t1/(2m)), j = 1, . . . ,m,

on (0, 1), with n j = 1 +
[
n− j
m

]
, j = 1, . . . , m.

Proof. At first, if we put t1/m instead of t in (4.3), it is easy to see that the orthogonality relations (4.3) are equivalent to

1∫
0

tk/m p̂
[m]
n,ν (t)t(s+2)/(2m)−1w(t1/(2m))dt = 0, k = 0,1, . . . ,n − 1.

Now, putting k =m� + j − 1, where � = [k/m] and j = 1, . . . , m, and defining

w j(t) := t(s+2 j)/(2m)−1w(t1/(2m)) and n j := 1+
[
n − j

m

]
, j = 1, . . . ,m,

we conclude that the polynomial p̂[m]
n,ν (t) satisfies m orthogonality relations like (4.4), i.e.,

1∫
0

t� p̂
[m]
n,ν (t)w1(t)dt = 0, � = 0,1 . . . ,n1 − 1,

1∫
0

t� p̂
[m]
n,ν (t)w2(t)dt = 0, � = 0,1 . . . ,n2 − 1,

...

1∫
0

t� p̂
[m]
n,ν (t)wm(t)dt = 0, � = 0,1 . . . ,nm − 1.

Notice that these weight functions w j , j = 1, 2, . . . , m, defined on the same interval E1 = E2 = · · · = Em = E = (0, 1), can 
be expressed in the form w j(t) = t( j−1)/mw1(t), j = 1, . . . , m, where w1(t) = t(s+2)/(2m)−1w(t1/(2m)). Since the Müntz system {
tk+( j−1)/m

}
, k = 0, 1, . . . , n j −1; j = 1, . . . , m, is a Chebyshev system on [0, ∞), and also on E = (0, 1), and w1(t) > 0 on E , 

we conclude that {w j, j = 1, . . . , m} is an AT system on E .
Therefore, according to Theorem 4.3, the unique type II multiple orthogonal polynomial p̂[m]

n,ν (t) = πn(t) has exactly

|n| :=
m∑
j=1

n j =
m∑
j=1

(
1 +

[
n − j

m

])
= n

zeros in (0, 1). �
Example 1. Let w(z) = 1/

√
1− z2 (Chebyshev weight of the first kind), n = 8, and m = 3. According to Theorem 4.2, the 

node polynomials for ν = 0, 1, . . . , 5 are

p̂
[3]
5,0(t) = t5 − 10875t4

5168
+ 50025t3

34816
− 250125t2

720896
+ 350175t

16777216
− 10005

268435456
,

p̂
[3]
5,1(t) = t5 − 2697t4

1216
+ 2171085t3

1323008
− 1550775t2

3407872
+ 310155t

8388608
− 310155

1073741824
,

p̂
[3]
5,3(t) = t5 − 9889t4

4256
+ 17058525t3

9261056
− 3411705t2

5963776
+ 3411705t

58720256
− 3411705

3758096384
,

p̂
[3]
5,5(t) = t5 − 155t4

64
+ 337125t3

165376
− 1550775t2

2228224
+ 7753875t

92274688
− 2171085

1073741824
,

as well as p̂[3]
5,2(t) = p̂

[3]
5,1(t) and p̂[3]

5,4(t) = p̂
[3]
5,3(t).

90
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On the other side, regarding Theorem 4.4, we have that n = (2, 2, 1), |n| = 5, and

{w1(t), w2(t), w3(t)} =
{

1
6
√
t5
√
1− 3

√
t
,

1√
t
√
1− 3

√
t
,

1

6
√
t
√
1− 3

√
t

}
(for ν = 0),

=
{

1√
t
√
1− 3

√
t
,

1

6
√
t
√
1− 3

√
t
,

6
√
t√

1− 3
√
t

}
(for ν = 1 and ν = 2),

=
{

1

6
√
t
√
1− 3

√
t
,

6
√
t√

1− 3
√
t
,

√
t√

1− 3
√
t

}
(for ν = 3 and ν = 4),

=
{

6
√
t√

1− 3
√
t
,

√
t√

1− 3
√
t
,

6
√
t5√

1− 3
√
t

}
(for ν = 5),

so that it is easy to check the equalities

1∫
0

t� p̂
[3]
5,ν(t)w1(t)dt = 0, � = 0,1,

1∫
0

t� p̂
[3]
5,ν(t)w2(t)dt = 0, � = 0,1,

1∫
0

t� p̂
[3]
5,ν(t)w3(t)dt = 0, � = 0,

for each ν = 0, 1, . . . , 5.
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Complex Integration Methods and Gaussian Quadratures
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Abstract

An account on computation of integrals of highly oscillatory functions based on the so-called complex
integration methods is presented. Beside the basic idea of this approach some applications in computation
of Fourier and Bessel transformations are given. Also, Gaussian quadrature formulas with a modified
Hermite weight are considered, including some numerical examples.

1 Introduction and Preliminaries
In this paper we give an account on computing integrals of highly oscillatory functions based on the so-called complex integration
methods and using quadrature processes in general, as well as some new results and numerical examples. Some of these results
have been recently presented during author’s lecture at the 4th Dolomites Workshop on Constructive Approximation and Applications,
Session: Numerical integration, integral equations and transforms (September 8–13, 2016, Alba di Canazei, Italy).

We deal here with integration of functions of the form

I( f , K) = I( f (·), K(·; x)) =

∫ b

a

w(t) f (t)K(t; x)dt, (1)

where (a, b) is an interval on the real line, which may be finite or infinite, w(t) is a given weight function, and the kernel K(t; x)
is a function depending on a parameter x and such that it is highly oscillatory or/and has singularities on the interval (a, b) or in
its nearness. Typical examples of such kernels are:

(a) Oscillatory kernel K(t; x) = eix t , where x =ω is a large positive parameter. Then we have Fourier integrals over (0,+∞)
(Fourier transforms)

F( f ;ω) =

∫ +∞
0

tμ f (t)eiωt dt (μ > −1)

or Fourier coefficients (on a finite interval)

ck( f ) = ak( f ) + ibk( f ) =
1
π

∫ π
−π

f (t)eikt dt, (2)

where ω= k ∈ �.
(b) Oscillatory kernels K(t; x) = H (m)

ν
(x t), where x = ω is also a large positive parameter. These integral transforms are

known as Hankel (or Bessel) transforms (see Wong [51]),

Hm(x) =

∫ +∞
0

tμ f (t)H (m)
ν
(ωt)dt (m= 1,2), (3)

where H (m)
ν
(t), m= 1,2, are the Hankel functions of first and second type and order ν,

H(1)
ν
(z) = Jν(z) + iYν(z) and H (2)

ν
(z) = Jν(z)− iYν(z),

where Jν is the Bessel function of the first kind and order (index) ν, defined by

Jν(z) =
+∞∑
k=0

(−1)k

k!Γ (k+ ν+ 1)

� z
2

�2k+ν
, J−n(z) = (−1)nJn(z).

Otherwise, Jν is a particular solution of the so-called Bessel differential equation

z2 y ′′ + z y ′ + (z2 − ν2)y = 0.
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The second linearly independent solution of this equation is the Bessel function of the second kind Yν (sometimes known as Weber
or Neumann function),

Yν(z) =
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)
.

(c) Logarithmic singular kernel K(t; x) = log |t − x |, where a ≤ x ≤ b.
(d) Algebraic singular kernel K(t; x) = |t − x |α, where α > −1 and a < x < b.
Also, we mention here an important case when K(t; x) = 1/(t − x), where a < x < b and the integral (1) is taken to be a

Cauchy principal value integral.
Integrals of rapidly oscillating functions appear mainly in the theory of special functions and Fourier analysis, but also in other

applied and computational sciences and engineering, e.g., in theoretical physics (in particular, theory of scattering), acoustic
scattering, quantum chemistry, theory of transport processes, electromagnetics, telecommunication, fluid mechanics, etc. For
example, in the last time, a very attractive problem is the numerical solution of Volterra integral equation of the second (or first)
kind with highly oscillatory kernel

y(x) +

∫ x

0

Jν(ω(x − t))
(x − t)α

y(t)dt = ϕ(x),

or

λy(x) +

∫ x

0

eiωg(x−t)

(x − t)α
y(t)dt = ϕ(x),

where x ∈ [0, 1], 0≤ α < 1, ω� 1, ϕ(x) and g(x) are given functions, and y(x) is unknown function.
We mention also a type of integrals involving Bessel functions

Iν( f ;ω) =

∫ +∞
0

e−t2
Jν(ωt) f (t2)tν+1 dt, ν > −1,

with a large positive parameter ω. Such integrals appear in some problems of high energy nuclear physics (cf. [14]).
In Fig. 1 we present the graphics of J3(ωx) and Y3(ωx) on [1,10] for some values of the parameter ω

Figure 1: The graphics of J3(100x) (left) and Y3(1000x) (right) on [1,10]

Conventional techniques for computing values of special functions are power series, Chebyshev expansions, asymptotic
expansions, recurrence relations, sequence transformations, continued fractions and best rational approximations, differential
and difference equations, quadrature methods, etc. A nice survey on these methods, including a list of recent software for special
functions as well as a list of new publications on computational aspects of special functions is given recently by Gil, Segura
and Temme [18]. An application of standard quadrature formulas to I( f ; K) usually requires a large number of nodes and too
much computation work in order to achieve a modest degree of accuracy. In a recent joint survey paper with M. Stanić [40] we
discussed some specific nonstandard methods for numerical integration of highly oscillating functions, mainly based on some
contour integration methods and applications of some kinds of Gaussian quadratures, including complex oscillatory weights. In
particular, Filon-type quadratures for weighted Fourier integrals, exponential-fitting quadrature rules, Gaussian-type quadratures
with respect to some complex oscillatory weights, methods for irregular oscillators, as well as two methods for integrals involving
highly oscillating Bessel functions have been considered, including some numerical examples. In addition, we mention also the
so-called integrals with irregular oscillators

I[ f ; g] =

∫ b

a

f (x)eiωg(x) dx , (4)

where −∞ < a < b < +∞, |ω| is large, and both f and g are sufficiently smooth functions. In a special case when g(x) = x , we
have the so-called regular oscillators. Numerical calculation of the integrals 4 has been treated in a large number of papers (cf.
[10, 11, 12], [22], [24], [26, 27, 28, 29], [31], [43, 44, 45, 46], etc.). The most important are asymptotic methods, Filon–type
methods, and Levin–type methods. Asymptotic method was presented by Iserles and Nørsett [29].
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Using suitable integral representations of special functions, in this paper, we show how existing or specially developed quadrature
rules can be successfully applied to effectively calculation of highly oscillatory integrals (Fourier type integrals, oscillatory Bessel
transformation, Bessel-Hilbert transformation, etc.). The procedure is based on an idea from our paper [35] from 1998, where,
beside an account on some special – fast and efficient – quadrature methods for weighted integrals of strongly oscillatory functions,
we introduced the so-called Complex Integration Methods for some classes of oscillatory integrals (1).

This paper is organized as follows. In Section 2 we give some basic facts on the Complex Integration Methods. Applications
of these methods to integrals of highly oscillatory special functions are treated in Section 3. Finally, in Section 4 we consider
Gaussian quadrature formuals with respect to a modified Hermite weight on �.

2 Complex Integration Methods – Basic Idea
The basic idea of the Complex Integration Methods is to transform the integral of an oscillatory function to a weighed integral with
respect to the exponentially decreasing weight function on (0,+∞).

First we illustrate this idea to calculation of the Fourier integrals on the finite interval [−1,1],

I( f ;ω) =

∫ 1

−1

f (x)eiωx dx , (5)

assuming that f is an analytic real-valued function in the half-strip of the complex plane, −1≤ Re z ≤ 1, Im z ≥ 0, with possible
singularities at the points zν (ν= 1, . . . , m) inside the region

Gδ =
�

z ∈ � �� −1≤ Re z ≤ 1, 0≤ Im z ≤ δ�,
where δ is sufficiently large.

Now we suppose that the corresponding residues of these singularities give

2πi
m∑
ν=1

Res
z=zν

�
f (z)eiωz

�
= P + iQ, (6)

as well as that there exist the constants M > 0, δ0 > 0 and ξ < ω such that∫ 1

−1

| f (x + iδ)|dx ≤ Meξδ (δ > δ0 > 0). (7)

Figure 2: The contours of integration Γδ (left) and CR (right)

By integrating the function z �→ f (z)eiωz over the contour Γδ = ∂ Gδ (see Fig. 2 (left)), we have∮
Γδ

f (z)eiωz dz =

∫ δ
0

f (1+ iy)eiω(1+iy)i dy +

∫ −1

1

f (x + iδ)eiω(x+iδ) dx +

∫ 0

δ

f (−1+ iy)eiω(−1+iy)i dy + I( f ;ω)

= 2πi
m∑
ν=1

Res
z=zν

�
f (z)eiωz

�
= P + iQ,

i.e.,

I( f ;ω) = P + iQ+ i

∫ δ
0



e−iω f (−1+ iy)− eiω f (1+ iy)

�
e−ωy dy +

∫ 1

−1

(x + iδ)eiω f (x + iδ)dx .
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Because of (7) we conclude that

|Iδ| =
����
∫ 1

−1

f (x + iδ)eiω(x+iδ) dx

����= e−ωδ
����
∫ 1

−1

f (x + iδ)eiωx dx

����
≤ e−ωδ

∫ 1

−1

| f (x + iδ)|dx ≤ Me(ξ−ω)δ.

Thus, Iδ → 0 when δ→ +∞, and

I( f ;ω) = P + iQ+
1

iω

∫ +∞
0

�
eiω f
�
1+ i

t
ω

�− e−iω f
�−1+ i

t
ω

�
e−t dt. (8)

In this way we proved the following result:

Theorem 2.1 ([35]). Let f be an analytic real-valued function in the half-strip of the complex plane, −1≤ Re z ≤ 1, Im z ≥ 0, with
possible singularities zν (ν = 1, . . . , m) in the region Gδ = int Γδ, such that (6) holds. Supposing that there exist the constants M > 0
and ξ < ω such that the condition (7) holds for sufficiently large δ, we have (8).

The obtained integral (8) in Theorem 2.1 can be solved by using the Gauss-Laguerre rule.
In order to illustrate the efficiency of this method we consider a simple example – Fourier coefficients (2), with f (t) =

1/(t2 + ε2)m (m ∈ �, ε > 0). Thus, we are interested in the integrals

ck( f ) =

∫ 1

−1

f (x)eikπx dx , ω= kπ.

According to (8), for 1≤ m≤ 3, we have

ck( f ) = P + iQ+
(−1)k

ikπ

∫ +∞
0

�
f
�
1+ i

t
kπ

�− f
�−1+ i

t
kπ

�
e−t dt,

where, in our case, we have

f (z) =
1

(z2 + ε2)m
, P + iQ = 2πi Res

z=iε

�
f (z)eikπz

�
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π

ε
e−kπε , m= 1,

π(1+ kπε)
2ε3

e−kπε , m= 2,

π(3+ 3kπε + k2π2ε2)
8ε5

e−kπε , m= 3.

For calculating c5( f ), c10( f ) and c40( f ), when ε = 1 and ε = 10−2, we apply the n-point Gauss-Laguerre rule for n= 1, . . . , 7
nodes. The corresponding relative errors in quadrature approximations are given in Table 1. Numbers in parentheses indicate
decimal exponents. As we can see the convergence is faster for larger k (and smaler ε).

Table 1: Relative errors in n-point Gauss-Laguerre approximations of ck( f ) for k = 5,10, 40 and ε = 1 and 10−2

k = 5 k = 10 k = 40
n ε = 1 ε = 10−2 ε = 1 ε = 10−2 ε = 1 ε = 10−2

1 1.11(−2) 1.69(−9) 2.60(−3) 1.28(−10) 1.59(−4) 7.91(−13)
2 3.48(−4) 1.38(−10) 2.56(−5) 3.40(−12) 1.04(−7) 1.45(−15)
3 2.12(−5) 8.83(−12) 2.71(−7) 1.02(−13) 5.78(−11) 3.35(−18)
4 3.84(−7) 1.03(−13) 3.25(−9) 3.21(−15) 5.45(−14) 9.92(−21)
5 3.49(−8) 7.80(−14) 1.29(−10) 8.69(−17) 8.20(−13) 4.48(−22)
6 8.46(−9) 9.35(−15) 4.06(−12) 2.94(−19) 4.77(−12) 2.39(−21)
7 1.61(−9) 6.62(−16) 1.65(−13) 2.21(−19) 5.40(−14) 2.75(−23)

Table 2: Gaussian approximation of the integral ck( f )

k ε = 1 ε = 10−2

5 4.0039258346130827412 (−3) 1.553332097827282899812027 (+6)
10 −1.0100710270520897087 (−3) 1.507753137017524820873537 (+6)
40 −6.3313694112094129150 (−5) 1.008860345037773704075638 (+6)

Approximative values obtained by 7-point Gauss-Laguerre rule are presented in Table 2. Digits in error are underlined.
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Now we consider the Fourier integral on (0,+∞),

F( f ;ω) =

∫ +∞
0

f (x)eiωx dx ,

which can be transformed to

F( f ;ω) =
1
ω

∫ +∞
0

f
� x
ω

�
eix dx =

1
ω

F
�

f
� ·
ω

�
; 1
�

,

which means that is enough to consider only the case ω= 1.
In order to calculate F( f ; 1) we select a positive number a and divide the integral over (0,+∞) into two integrals,

F( f ; 1) =

∫ a

0

f (x)eix dx +

∫ +∞
a

f (x)eix dx = L1( f ) + L2( f ),

where

L1( f ) = a

∫ 1

0

f (at)eiat dt and L2( f ) =

∫ +∞
a

f (x)eix dx .

For calculating the second integral L2( f ) we use the complex integration method over the closed circular contour CR presented in
Fig. 2 (right).

Theorem 2.2 ([35]). Suppose that the function z �→ f (z) is defined and holomorphic in the region D = {z ∈ � |Re z ≥ a > 0, Im z ≥
0}, and such that

| f (z)| ≤ A
|z| , when |z| → +∞, (9)

for some positive constant A. Then

L2( f ) = ieia

∫ +∞
0

f (a+ iy)e−y dy (a > 0). (10)

In this case, by Cauchy’s residue theorem, we have∫ a+R

a

f (x)eix dx +

∫ π/2
0



f (z)eiz

�
z=a+Reiθ Rieiθ dθ +

∫ 0

R

f (a+ iy)ei(a+iy)i dy = 0. (11)

Let z = a+ Reiθ , 0≤ θ ≤ π/2. Because of (9), we have that

| f (z)| ≤ A
|a+ R cosθ + i sinθ | =

A

a2 + 2aR cosθ + R2

≤ A

a2 + R2

(0≤ θ ≤ π/2).
Using Jordan’s inequality sinθ ≥ 2θ/π, when 0≤ θ ≤ π/2, we obtain the following estimate for the integral over the arc����

∫ π/2
0



f (z)eiz

�
z=a+Reiθ Rieiθ dθ

����≤
∫ π/2

0

�� f (a+ Reiθ )
�� e−R sinθ R dθ ≤ π

2
· A


a2 + R2
· π

2

�
1− e−R

�→ 0,

when R→ +∞, and then (10) follows directly from (11).
In the numerical implementation we use the Gauss-Legendre rule on (0, 1) and Gauss-Laguerre rule for calculating L1( f ) and

L2( f ), respectively.

3 Computing Integrals of Highly Oscillatory Special Functions
The idea on complex integration methods has been exploited in many papers, which are dealing with integrals of special functions,
in particular with a highly oscillatory Bessel kernels (cf. Chen [4, 5, 6, 7, 8], Kang and Xiang [30], Xu, Milovanović and Xiang [53],
Xu and Milovanović [52], Xu and Xiang [54], etc.). For example, Chen [4] considered the numerical evaluation of the integrals
on (a, b), 0< a < b, involving highly oscillatory Bessel kernel Jν(ωx), where Jν(ωx) is the Bessel function of the first kind and
of order ν (> 0) and ω is a large positive parameter. Using the integral form of Bessel function and its analytic continuation, he
applied the complex integration methods to transform these integrals into the forms on [0,+∞) that the integrand does not
oscillate and decays exponentially fast, and which can be efficiently computed by using Gauss-Laguerre quadrature rule.

Evaluation of Cauchy principal value integrals of oscillatory functions was also considered in such a way by Wang and
Xiang [50], as well as applications to the computation of highly oscillatory Bessel Hilbert transforms [52]. We mention also the
corresponding applications in solving Volterra and Fredholm integral equations with highly oscillatory kernels (cf. [13], [23],
[32]).

Recently, Xu, Milovanović and Xiang [53] developed a method for efficient computation of highly oscillatory integrals with
Hankel kernel,

I1[ f ] =

∫ b

a

f (x)H (1)
ν
(ωx)dx and I2[ f ] =

∫ +∞
a

f (x)H (1)
ν
(ωx)dx , (12)
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for ω� 1 and b > a > 0. Using the integral form of the Hankel function for x > 0 (see [20, p. 915])

H (1)
ν
(ωx) =

√√ 2
πωx

ei(ωx− π2 ν− π4 )

Γ (ν+ 1
2 )

∫ +∞
0

�
1+

it
2ωx

�ν− 1
2

tν− 1
2 e−t dt,

they obtained the following integral representations for the previous integrals:

I1[ f ] =

√√ 2
πω

e−iπ(2ν+1)/4

Γ (ν+ 1
2 )

∫ b

a

f (x)x−1/2 g(x)eiωx dx and I2[ f ] =

√√ 2
πω

e−iπ(2ν+1)/4

Γ (ν+ 1
2 )

∫ +∞
a

f (x)x−1/2 g(x)eiωx dx ,

where

g(x) =

∫ +∞
0

�
1+

it
2ωx

�ν− 1
2

tν− 1
2 e−t dt. (13)

Supposing that f be a holomorphic function in the half-strip of the complex plane, a ≤ Re (z) ≤ b, Im (z) ≥ 0, as well as
that there exist two constants C and ω0, such that | f (x + iR)| ≤ Ceω0R, a ≤ x ≤ b, with 0<ω0 <ω, the integral I1[ f ] can be
reduced to (see [53])

I1[ f ] =
i
ω

√√ 2
πω

e−iπ(2ν+1)/4

Γ
�
ν+ 1

2

� (G(a)− G(b)), (14)

where

G(c) = eiωc

∫ +∞
0

F
�
c +

i
ω

t
�
e−t dt. (15)

Really, (14) follows after an application of the complex integration method over the contour Γ = ∂ D = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 (see Fig. 3
(left)), where D is the region

D =
�

z ∈ � �� a ≤ Re (z)≤ b, 0≤ Im (z)≤ R
�

.

In this case, the integrand F(z) = f (z)z−1/2 g(z) is a holomorphic function in D, such that
∫
Γ1∪Γ2∪Γ3∪Γ4 F(z)eiωz dz = 0.

Figure 3: The contours of integration Γ = ∂ D (left) and Γ = ∂ (G \ G′) (right)

Regarding the assumptions we can see that����
∫
Γ3

F(z)eiωz dz

����≤
∫
Γ3

|F(z)eiωz ||dz| ≤ C Me−(ω−ω0)R(b− a)→ 0 as R→ +∞,
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i.e.,
∫
Γ3

F(z)eiωz dz→ 0 as R→ +∞, so that∫
Γ1

F(z)eiωz dz = − lim
R→+∞

∫
Γ2∪Γ3∪Γ4

F(z)eiωz dz

= lim
R→+∞

�
i

∫ R

0

F(a+ iy)eiω(a+iy) dy − i

∫ R

0

F(b+ iy)eiω(b+iy) dy

�

=
i
ω

∫ +∞
0

eiωa F
�
a+ i

t
ω

�
e−t dt − i

ω

∫ +∞
0

eiωb F
�

b+ i
t
ω

�
e−t dt

=
i
ω
(G(a)− G(b)),

where

G(c) = eiωc

∫ +∞
0

F
�
c +

i
ω

t
�
e−t dt.

Thus, we have

I1[ f ] =

∫ b

a

f (x)H (1)
ν
(ωx)dx =

√√ 2
πω

e−iπ(2ν+1)/4

Γ
�
ν+ 1

2

� ∫
Γ1

F(z)eiωz dz,

i.e., (14).
Similarly, using a circular contour like one in Fig. 2 (right), the second integral in (12) can be reduced to

I2[ f ] =

∫ +∞
a

f (x)H (1)
ν
(ωx)dx =

i
ω

√√ 2
πω

e−iπ(2ν+1)/4

Γ
�
ν+ 1

2

� G(a).

Since F(z) = f (z)z−1/2 g(z) and g(x) defined in (13), after certain transformations, G(c) can be transformed to (see [53])

G(c) = eiωc

+∞∫
0

+∞∫
0

f
�
c + i

ω t
�

�
c + i

ω t
�ν �c +

i
ω

t +
i

2ω
s
�ν−1/2

e−t sν−1/2e−s dt ds.

For computing this double integral, in [53] we used two classical Gaussian quadrature rules∫ +∞
0

h(x)w(x)dx =
n∑

k=1

A()n,kh(x ()n,k) + R()n [h], = 1,2; (16)

one with respect to the Laguerre weight w1(t) = e−t and the second one to the generalized Laguerre weight w2(s) = sν−1/2e−s.
The coefficients in the three-term recurrence relations for the corresponding orthogonal polynomials,

π
()
k+1(x) = (x −α()k )π

()
k (x)− β ()k π

()
k−1(x), k = 0,1, . . . ,

with π()0 (x) = 1, π()−1(x) = 0, are given by

α
(1)
k = 2k+ 1, β

(1)
0 = 1, β (1)k = k2;

α
(2)
k = 2k+ ν+

1
2

, β
(2)
0 = Γ

�
ν+

1
2

�
, β (2)k = k

�
k+ ν− 1

2

�
,

respectively. With these recursive coefficients, it is easy to compute quadrature parameters in (16), the nodes x ()n,k and the weights

(Christoffel numbers) A()n,k, using the well-known Golub-Welsch algorithm [19] (see also [33, p. 100]), with the Jacobi matrices

Jn(w) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
()
0

 
β
()
1 O 

β
()
1 α

()
1

 
β
()
2 

β
()
2 α

()
2

. . .

. . .
. . .

 
β
()
n−1

O
 
β
()
n−1 α

()
n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(= 1,2).

This algorithm is implemented in our MATHEMATICA package OrthogonalPolynomials (see [9], [38]), which is freely down-
loadable from the web site: http://www.mi.sanu.ac.rs/˜gvm/.
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Now, an application of quadrature formulas (16) to (14) gives

I1[ f ] =Qn1,n2
[ f ] + Rn1,n2

[ f ],

where the cubature sum Qn1,n2
[ f ] (with n1 nodes in the first quadrature and n2 nodes in the second one) is given by

Qn1,n2
[ f ] =

i
ω

√√ 2
πω

e−iπ(2ν+1)/4

Γ
�
ν+ 1

2

� n1∑
k=1

n2∑
j=1

A(1)n1,kA(2)n2, j

�
ϕ(x (1)n1,k, x (2)n2, j; a)−ϕ(x (1)n1,k, x (2)n2, j; b)


,

where

ϕ(t, s; c) = eiωc
f
�
c + i

ω t
�

�
c + i

ω t
�ν �c +

i
ω

t +
i

2ω
s
�ν−1/2

.

Theorem 3.1 ([53]). Suppose that f is a holomorphic function in the half-strip of the complex plane, a ≤ Re (z)≤ b, Im (z)≥ 0,
and there exist two constants C and ω0, such that | f (x + iR)| ≤ Ceω0R, a ≤ x ≤ b, with 0<ω0 <ω. Then the error bound of the
method for the integral I1[ f ] is given by

I1[ f ]−Qn1,n2
[ f ] = O

�
ω− 3

2−2τ
�
, ω� 1,

where τ=min{n1, n2}.
A similar result has been proved for the quadrature method

Qn1,n2
[ f ] =

i
ω

√√ 2
πω

e−iπ(2ν+1)/4

Γ
�
ν+ 1

2

� n1∑
k=1

n2∑
j=1

A(1)n1,kA(2)n2, jϕ
�
x (1)n1,k, x (2)n2, j; a

�
for calculating I2[ f ].

Theorem 3.2 ([53]). Suppose that f is a holomorphic function in the complex plane
$
0 ≤ arg(z) ≤ π/2%, and there exists some

constant C1, such that | f (z)| ≤ C1 as |z| → +∞. Then the error bound of the method for the integral I2[ f ] is given by

I2[ f ]−Qn1,n2
[ f ] = O

�
ω− 3

2−2τ
�
, ω� 1,

where τ=min{n1, n2}.
As we can see the convergence of quadrature sums Qn1,n2

[ f ] and Qn1,n2
[ f ] to I1[ f ] and I2[ f ], respectively, is very fast,

especially for larger ω.
In the sequel we mention another approach for computing the Bessel transformations

I1[ f ] =

∫ a

0

f (x)Jν(ωx)dx and I2[ f ] =

∫ +∞
0

f (x)Jν(ωx)dx ,

where a > 0 and ν is an arbitrary nonnegative number. The method has been recently developed in a joint paper by Xu [52] and
it is based on the use of the following important identity

Jν(z) =
1

(2πz)1/2

&
e

1
2 (ν+

1
2 )πiW0,ν(2iz) + e− 1

2 (ν+
1
2 )πiW0,ν(−2iz)

'
, (17)

where Wκ,μ(z) is the Whittaker W function, as well as its asymptotic property as z→ 0,

W0,ν(z)∼
�

z1/2 log z, ν= 0,

z1/2−ν, ν > 0.
(18)

Based on an idea of Chen [8], we rewrite the integral I1[ f ] as a sum I1[ f ] = I ′1[ f ] + I ′′1 [ f ], where

I ′1[ f ] =
∫ a

0

F(x)Jν(ωx)dx and I ′′1 [ f ] =
2n−1+n1∑

k=0

f (k)(0)
k!

∫ a

0

xkJν(ωx)dx , (19)

where n1 = ν� is the smallest integer not less than ν, and

F(x) = f (x)−
2n−1+n1∑

k=0

f (k)(0)
k!

xk. (20)

The integral in I ′′1 [ f ] can be expressed in the explicit form [20, p. 676]∫ a

0

xkJν(ωx)dx =
2kΓ ( k+ν+1

2 )

ωk+1Γ ( ν−k+1
2 )

+
a
ωk

�
(k+ ν− 1)Jν(ωa)s(2)k−1,ν−1(ωa)− Jν−1(ωa)s(2)k,ν(ωa)

�
,

where s(2)k,ν(z) denotes the second kind of Lommel function.
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For the integral I ′1[ f ] we put

F1(x) = F(x)x−1/2e−iωx W0,ν(−2iωx) and F2(x) = F(x)x−1/2eiωx W0,ν(2iωx), (21)

where F is defined in (20). Now, according to the identity (17), we can see that

F(z)Jν(ωz) =
1


2πω

&
e

1
2 (ν+

1
2 )πiF(z)z−1/2W0,ν(2iωz) + e− 1

2 (ν+
1
2 )πiF(z)z−1/2W0,ν(−2iωz)

'
=

1

2πω

&
e− 1

2 (ν+
1
2 )πiF1(z)e

iωz + e
1
2 (ν+

1
2 )πiF2(z)e

−iωz
'

.

In order to calculate the integral I ′1[ f ] defined in (19) we suppose that f is a holomorphic function in the half-strip of

the complex plane 0 ≤ Re (z) ≤ a and define we define the regions G =
�

z ∈ � �� 0 ≤ Re (z) ≤ a, 0 ≤ Im (z) ≤ R
�

and

G′ =
�

z ∈ � �� |z| ≤ ε, 0 ≤ arg(z) ≤ π/2�, such that G contains G′, i.e., 0 < ε < min{a,R} (see Fig. 3 (right)). Then, we

note that z �→ F1(z)eiωz is holomorphic in G \ G′ (see (18) for behaviour at z = 0), as well as the function z �→ F2(z)e−iωz

in a symmetric region with respect to the real axis. Therefore, by the Cauchy Residue Theorem,
∫
Γ

F1(z)eiωz dz = 0, where
Γ = ∂ (G \ G′) = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ Γ5 (displayed in Fig. 3 (right)), as well as

∫
Γ ∗ F2(z)e−iωz dz = 0 over the symmetric contour Γ ∗

(w.r.t. the real axis).
Applying the complex integration method Xu and Milovanović proved the following result:

Theorem 3.3 ([53]). Assume that f is a holomorphic function in the half-strip of the complex plane, 0≤ Re (z)≤ a, and there exist
two constants C and ω0, such that for 0<ω0 <ω, the inequalities∫ a

0

|F1(x + iR)|dx ≤ Ceω0R and

∫ a

0

|F2(x + iR)|dx ≤ Ceω0R

hold, where F1 and F2 are defined in (21). Then the integral I ′1[ f ] can be rewritten in the following form∫ a

0

F(x)Jν(ωx)dx =
1


2πω

&
e

1
2 (ν+

1
2 )πi
�
I[F2, a]− I[F2, 0]


+ e− 1

2 (ν+
1
2 )πi
�
I[F1, 0]− I[F1, a]

'
,

where

I[F1, y] =
ieiωy

ω

∫ +∞
0

F1

�
y +

ip
ω

�
e−p dp and I[F2, y] =

ie−iωy

ω

∫ +∞
0

F2

�
y − ip
ω

�
e−p dp, (22)

and F1 and F2 are defined in (21).

A similar result has been obtained for the integral I2[ f ] over (0,+∞) [53]. Also, numerical quadrature rules of Gaussian
type for computing the line integrals I[Fj , a] and I[Fj , 0] ( j = 1,2) have been analyzed in detail in [53].

In the case a > 0 these integrals can be evaluated by the n-point Gauss-Laguerre quadrature rule as

I[F1, a]≈Qn
I[F1,a] =

ieiωa

ω

n∑
k=1

wk F1

�
a+

ixk

ω

�
and I[F2, a]≈Qn

I[F2,a] =
ie−iωa

ω

n∑
k=1

wk F2

�
a− ixk

ω

�
.

However, when a = 0 the behavior of the functions F1 and F2 at z = 0 should be taken into account. According to (18) we
have introduced the functions

L j(x) =

⎧⎪⎪⎨
⎪⎪⎩

Fj(x)

log x
, ν= 0,

Fj(x)

xα
, ν > 0,

for j = 1, 2, where α = ν� − ν, and then we concluded that for ν > 0 the previous integrals can be evaluated by the generalized
Gauss-Laguerre quadrature rule (with the parameter α), e.g.,

I[F1, 0] =
i
ω

∫ +∞
0

F1

� ip
ω

�
e−p dp =

�
i
ω

�1+α ∫ +∞
0

L1

� ip
ω

�
pαe−p dp ≈Qn

I[F1,0] =
�

i
ω

�1+α n∑
k=1

wαk L1

(
ixαk
ω

)
.

Finally, the most complicated case is when a = 0 and ν= 0. Then for the integral I[F1, 0] we have

I[F1, 0] =
i
ω

∫ +∞
0

F1

� ip
ω

�
e−p dp =

i
ω

∫ +∞
0

L1

� ip
ω

�
log
� ip
ω

�
e−p dp. (23)

Evidently, the Gauss-Laguerre (GL) quadrature rule is not feasible, because of logarithmic singularity. However, if we rewrite the
integral I[F1, 0] as a linear combination of two integrals,

I[F1, 0] =
i
ω

&∫ +∞
0

L1

� ip
ω

��
log
� i
ω

�− 1+ p

e−p dp−

∫ +∞
0

L1

� ip
ω

��
p− 1− log p

�
e−p dp

'
,
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then, we can apply the ordinary Gauss-Laguerre rule to the first integral and the so-called logarithmic Gauss-Laguerre (logGL)
rule to the second one. Thus, the application of such two n-point rules leads to the following approximate formula

I[F1, 0]≈Qn
I[F1,0] =

i
ω

& n∑
k=1

wk L1

� ixk

ω

��
log
� i
ω

�− 1+ xk

− n∑
k=1

wG
k

� ixG
k

ω

�'
,

where xG
k and wG

k , k = 1, . . . , n, are the nodes and weights of the n-point logGL-rule. A similar formula can be done for I[F2, 0]
(see [53]).

The last quadrature rule on (0,+∞) with respect to the weight function

wG
α
(x) = xα(x − 1− log x)e−x on (0,+∞),

has been constructed recently by Gautschi [16], using his MATLAB package SOPQ for symbolic/variable-precision calculations
(see Appendix B in [17]). Graphics of this weight for α = −1/2,0,1/2 are presented in Fig. 4. Following Gautschi [16], the

Figure 4: Gautschi’s logGL weight function for α= −1/2 (red line), α= 0 (black line), and α= 1/2 (blue line)

moments with of the weight function x �→ wG
α
(x) on �+ are

μk =

∫ +∞
0

xk+α(x − 1− log x)e−x dx = Γ (α+ k+ 1)[α+ k−ψ(α+ k+ 1)], k ≥ 0,

where ψ(x) = Γ ′(x)/Γ (x) is the logarithmic derivative of the gamma function, as well as the modified moments relative to the
system of monic generalized monic Laguerre polynomials *L(α)k (x),

mk =

∫ +∞
0

xα(x − 1− log x)*L(α)k (x)e
−x dx

⎧⎪⎨
⎪⎩
[α−ψ(α+ 1)]Γ (α+ 1), k = 0,

α Γ (α+ 1), k = 1,

(−1)k(k− 1)!Γ (α+ 1), k ≥ 2.

Using these moments and the previous mentioned MATHEMATICA package OrthogonalPolynomials we can obtain the
recursive coefficients αG

k and βG
k . For example for α= 0, we have

αG
0 = 1, αG

1 =
3γ+ 5
γ+ 1

, αG
2 =

20γ4 + 106γ3 + 111γ2 + 32γ− 1
(γ+ 1) (4γ3 + 14γ2 + 5γ− 1)

,

αG
3 =

4032γ7 + 48480γ6 + 176768γ5 + 237320γ4 + 72624γ3 − 31006γ2 − 8839γ+ 2489
(4γ3 + 14γ2 + 5γ− 1) (144γ4 + 1104γ3 + 1652γ2 + 184γ− 237)

;

βG
0 = γ, β1 =

γ+ 1
γ

, βG
2 =

4γ3 + 14γ2 + 5γ− 1
γ(γ+ 1)2

, βG
3 =

γ(γ+ 1)
�
144γ4 + 1104γ3 + 1652γ2 + 184γ− 237

�
(4γ3 + 14γ2 + 5γ− 1)2

, etc.,

where γ is the well-known Euler’s constant (see [53]).

Theorem 3.4 ([53]). If the functions F1(x) and F2(x) defined by (21) satisfy the condition of Theorem 3.3, the error bound of the
method for the integral I1[ f ] can be estimated as

��Qn
I1[ f ]
− I1[ f ]

��= �O
�
ω−2n−3/2(1+ logω)

�
, ν= 0,

O
�
ω−2n−3/2

�
, ν > 0.
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An alternative approach for computing the integral (23) has been also developed in [53]. Namely, we constructed the
so-called universal (direct) quadrature formulas of Gaussian type∫ +∞

0

g(t)e−t dt =
n∑

k=1

Ak g(τk) + Rn(g), (24)

which are exact for each g(t) = p(t) + q(t) log t, where p(t) and q(t) are algebraic polynomials of degree at most n− 1. These
quadrature rules can calculate integrals with a sufficient accuracy, regardless of whether their integrands contain a logarithmic
singularity, or they do not. Thus, an application of such rules avoids the separation into singular and non-singular parts in
integrands, as well as an additional integration of such a singular part using some special logarithmically weighted quadrature
formula like one w.r.t. the weight function wG

α
(t). Thus, with the universal quadrature formula (24) we can directly calculate the

integrals I[F1, y] and I[F2, y] given by (22) in Theorem 3.3; for example,

I[F1, y]≈ ieiωy

ω

n∑
k=1

Ak F1

�
y +

iτk

ω

�
.

Unfortunately, the construction of such universal quadrature formulas is not simple. Namely, there are not elegant tools
for their construction like Golub-Welsch procedure in the case of construction quadrature rules with a polynomial degree of
precision. In this non-polynomial case, in order to construct the quadrature formula (24), we must solve the following system of
2n nonlinear equations

n∑
k=1

Akϕ j(τk) =

∫ +∞
0

ϕ j(t)e
−t dt, j = 1,2, . . . , 2n, (25)

in τk and Ak, k = 1, . . . , n, taking an orthonormal system {ϕ1,ϕ2, . . . ,ϕ2n} obtained from the system of 2n linearly independent
functions U = {1, t, . . . , tn−1, log t, t log t, . . . , tn−1 log t} by an orthogonalization process (cf. [33, pp. 75–77]). Since ϕ1(t) = 1,
the right-hand side in the previous system of Eqs. becomes∫ +∞

0

ϕ j(t)ϕ1(t)e
−t dt =

�
1, j = 0,

0, j �= 0.

Otherwise, a direct use of the non-orthogonal system of the basis functions U leads to a very ill-conditioned iterative process.
The orthonormal system of functions {ϕ1,ϕ2, . . . ,ϕ2n} can be considered as a Müntz system {tλ0 , tλ1 , . . . , tλ2n−1} on (0,+∞),

with λ j = λn+ j = j, j = 0,1, . . . , n− 1. Then, we can see that ϕ j(t) = L j−1(t), j = 1, . . . , n, are normalized classical Laguerre
polynomials. So, for different n ∈ �, we obtain the following orthogonal functions:

1◦ n= 1 :

ϕ1(t) = 1, ϕ2(t) =



6
π
(γ+ log t);

2◦ n= 2 :

ϕ1(t) = 1, ϕ2(t) = t − 1, ϕ3(t) =

√√ 6
π2 − 6

�
γ+ 1− t + log t

�
,

ϕ4(t) =

√√ 6
216− 12π4 +π6

&
6− γ(π2 − 12)− 
π2 + γ(6−π2)

�
t +


12−π2 + (π2 − 6)t

�
log t
'

;

3◦ n= 3 :

ϕ1(t) = 1, ϕ2(t) = t − 1, ϕ3(t) =
1
2

�
t2 − 4t + 2

�
, ϕ4(t) =

1
2

√√ 3
2π2 − 15

�
6+ 4γ− 8t + t2 + 4 log t

�
,

ϕ5(t) = C5

&
24− 2π2 + γ(21− 2π2) +



2π2 − 27+ γ(2π2 − 15)

�
t + (9−π2)t2 +



(2π2 − 15)t − 2π2 + 21

�
log t
'

,

ϕ6(t) = C6

&
504− 51π2 + 2γ

�
279− 48π2 + 2π4

�
+ 2


4π4 − 24π2 − 153− γ(4π4 − 66π2 + 261)

�
t

+


54+ 24π2 − 3π4 + γ(72− 27π2 + 2π4)

�
t2

+

�

72− 27π2 + 2π4
�

t2 − 2
�
261− 66π2 + 4π4

�
t + 2(2π4 − 48π2 + 279)

�
log t
'

,

where

C5 =

√√ 6
−1080+ 549π2 − 84π4 + 4π6

and C6 =

√√ 3
159408− 65610π2 + 2727π4 + 1584π6 − 216π8 + 8π10

,

etc.
For solving the system of equations (25) we use the well-known Newton-Kantorovich method, with quadratic convergence,

but the main problem which then arises is how to provide sufficiently good starting values. Our strategy in the construction is
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based on the method of continuation, starting from the corresponding standard Gauss-Laguerre formula (with a polynomial
degree of exactness). Numerical values of parameters τk and Ak, k = 1, . . . , n, for 1 ≤ n ≤ 6 was presented in [53]. For some
additional details on the generalized Gaussian quadratures on a finite interval and for Müntz systems of functions see [36], [39]
and [37].

4 Gaussian Quadrature Formulas with a Modified Hermite Weight

I this section we consider the Gaussian quadrature formula on � with respect to a modified Hermite weight x �→ e−x2
by the

square root term x �→+1+αx + β x2, i.e.,

w(α,β)(x) =
e−x2+

1+αx + β x2
, (26)

with the real parameters α and β such that α2 < 4β .

Remark 1. The weight function w(α,β)(x) has the quasi-singularities near to the real axis if α2→ 4β . In the limit case, w(α,α2/4)(x)
has a singularity, i.e., a pole of the first order at the point −α/(2β) on the real line.

Several methods for modified weights (measures) by the rational terms (linear and quadratic factors and divisors) can be
found in [15, Subsection 2.4], as well as the corresponding MATLAB software in [17, pp. 19–27].

Thus, we are interested here in constructing Gaussian quadrature rules of the form∫ +∞
−∞

f (x)+
1+αx + β x2

e−x2
dx =

N∑
ν=1

Aν f (xν) + RN ( f ), (27)

where Aν = A(α,β)
ν

are weight coefficients (Christoffel numbers), and Rn( f ) is the corresponding remainder term, such that
RN ( f ) = 0 for each f ∈ P2N−1.
Remark 2. In 1997 Bandrauk [3] stated a problem how to evaluate the integral

Iα,β
m,n =

∫ +∞
−∞

Hm(x)Hn(x)+
1+αx + β x2

e−x2
dx , (28)

where Hm(x) is the Hermite polynomial of degree m, defined by

Hn(x) = (−1)nex2 dn

dxn

�
e−x2�

, n≥ 0.

Alternatively, the question was how to find computationally effective approximations for the integral (28). The function
x �→ Hm(x)e−x2/2 is the quantum-mechanical wave function of m photons, the quanta of the electromagnetic field. The integral
(28) expresses the modification of atomic Coulomb potentials by electromagnetic fields. In the case m= n= 0, the integral Iα,β

0,0
represents the vacuum or zero-field correction (for details see [2, Chaps. 1 and 3]).

Evidently, for α= β = 0, the integral I0,0
m,n expresses the orthogonality of the Hermite polynomials, i.e, I0,0

m,n = 2mm!


πδm,n,

where δm,n is the Kronecker delta.
A solution for Iα,β

0,0 was derived by Grosjean [21] in the following form

Iα,β
0,0 =

1
β

+∞∑
j=0


�
4β −α2

�
/4β2

� j

22 j( j!)2

+∞∑
r=0

(−1)r
(2r + 2 j)!
(2r)!(r + j)!

�
α

2β

�2r

cr, j ,

where

cr, j = −γ+ log4− log

(
4β −α2

4β2

)
+ 2Hj + Hr+ j − 2H2r+2 j ,

γ (= 0.57721566490 . . . ) is Euler’s constant, and Hj is the j-th harmonic number,

Hj = 1+
1
2
+ · · ·+ 1

j
.

Also, he gave a study of Iα,β
m,0 , m= 1,2, . . ., as well as a five-term recurrence relation for these integrals.

The problem from Remark 2 was also considered in [35], with the monic Hermite polynomials ,Hk(x) = 2−kHk(x) in (28).
For constructing the coefficients αk and βk, k = 0, 1, . . . , in the three-term recurrence relation

πk+1(x) = (x −αk)πk(x)− βkπk−1(x), k ≥ 0 (π0(x) = 1, p−1(x) = 0) (29)

for polynomials πk(x) orthogonal on (−∞,∞) with respect to the modified Hermite weight function (26), it was used the
discretized Stieltjes-Gautschi procedure with the discretization based on the standard Gauss-Hermite quadratures,∫ +∞

−∞
P(t)w(α,β)(x)dx =

∫ +∞
−∞

P(x)+
1+αx + β x2

e−x2
dx

∼=
N∑

k=1

λH
k P(τH

k )-
1+ατH

k + β(τ
H
k )2

,
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where P is an arbitrary algebraic polynomial, and τH
k = τk are nodes (zeros of HN (x)) and

λH
k =

2N−1(N − 1)!


π

NHN−1(τk)2

are the weights (Christoffel numbers) of the N -point Gauss-Hermite quadrature formula (cf. [33, p. 325]). Such a procedure
is needed for each of selected pairs (α,β). The recurrence coefficients for k < 20 and α= β = 1 were presented in [35]. The
corresponding Gaussian approximations were tested in double precision arithmetic in two cases: m = 3, n = 6, and m = 10,
n= 15.

In this section we give a simple way for constructing the coefficients in the three-term recurrence relation (29), using the
modified method of moments, realized in the MATHEMATICA package OrthogonalPolynomials ([9], [38]) in variable-precision
arithmetic in order to overcome the numerical instability. All that is required is a procedure for numerical calculation of the
modified moments in variable-precision arithmetic. In the same time, we give answer to the problem stated in Remark 2.

In our case we use the first 2N modified moments with respect to the sequence of the monic Hermite polynomials, i.e.,

mk = m(α,β)
k =

∫ +∞
−∞

,Hk(x)+
1+αx + β x2

e−x2
dx , k = 0,1, . . . , 2N − 1, (30)

in order to get quadrature rules of Gaussian type (27) for each n≤ N , using the Golub-Welsch algorithm [19]. For the sequence
{,Hk(x)}k∈�0

the following recurrence relation ,Hk+1(x) = x,Hk(x)− (k/2),Hk−1(x) holds, with ,H0(x) = 1 and ,H1(x) = x .
First we transform the trinomial in the integral (30) to a canonical form

1+αx + β x2 = β


(x − p)2 + q2

�
, p = − α

2β
, q =

4β −α2

2β
(p2 + q2 = β),

and then we apply the so-called double-exponential (DE) transformation

x = u(t) = p+ q sinh
�π

2
sinh t

�
,

in order to reduce the modified moments (30) to

mk = m(α,β)
k =

π

2

+
p2 + q2

∫ +∞
−∞
,Hk(u(t))e

−u(t)2 cosh t dt, k = 0,1, . . . , 2N − 1. (31)

The crucial point in this DE transformation is the decay of the integrand be at least double exponential (≈ exp(−C exp |t|) as
|t| → +∞, where C is some positive constant. For integrals of such form of an analytic function on �, it is known that the
trapezoidal formula with an equal mesh size gives an optimal formula (cf. [25, 34, 41, 42, 47, 48, 49]).

For calculating the modified moments (31) we apply the trapezoidal formula with an equal mesh size h, i.e.,

mk[h] =
πh
2

+
p2 + q2

+∞∑
j=−∞

,Hk(u( jh))e
−u( jh)2 cosh jh, k = 0, 1, . . . , 2N − 1.

Since the integrand decays double exponentially, in actual computation of these sums we can truncate the infinite summation at
k = −M and k = M , so that

mk ≈ mk[h; M] =
πh
2

+
p2 + q2

M∑
j=−M

,Hk(u( jh))e
−u( jh)2 cosh jh, k = 0,1, . . . , 2N − 1. (32)

Because of some symmetry in the expression for mk[h; M], (32) can be implemented in the following way. Namely, if we put

t j = jh, ξ j = q sinh
�π

2
sinh t j

�
, cj = 2 cosh(2pξ j), s j = 2 sinh(2pξ j),

we have u(t j) = p+ ξ, u(−t j) = p− ξ, u(0) = p, and therefore

mk[h; M] =
πh
2

+
p2 + q2 e−p2

�,Hk(p) +
M∑

j=1

e−ξ
2
j cosh(t j)


,Hk(p+ ξ j)e
−2pξ j + ,Hk(p− ξ j)e

2pξ j
��

, k = 0,1, . . . , 2N − 1.

Lemma 4.1. Let

ϕk(p,ξ) = ,Hk(p+ ξ)e
−2pξ + ,Hk(p− ξ)e2pξ, ψk(p,ξ) = ,Hk(p+ ξ)e

−2pξ − ,Hk(p− ξ)e2pξ, k = 0,1, . . . .

Then, the following recurrence relations

ϕk+1(p,ξ) = pϕk(p,ξ)− k
2
ϕk−1(p,ξ)− ξψk(p,ξ), k = 0,1, . . . , (33)

ψk+1(p,ξ) = pψk(p,ξ)− k
2
ψk−1(p,ξ)− ξϕk(p,ξ), k = 0,1, . . . , (34)

hold, where ϕ0(p,ξ) = 2cosh(2pξ), ψ0((p,ξ) = 2sinh(2pξ), and ϕ−1(p,ξ) =ψ−1(p,ξ) = 0.
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A proof of this lemma can be done using the three-term recurrence relation of the monic Hermite polynomials.
According to Lemma 4.1 we see that

mk[h; M] =
πh
2

+
p2 + q2 e−p2

�,Hk(p) +
M∑

j=1

e−ξ
2
j cosh(t j)ϕk(p,ξ)

�
, k = 0,1, . . . , 2N − 1. (35)

In the sequel, as an example, we take α = β = 50/13 in the weight function (26) and N = 40. Then we have p = −1/2 and
q = 1/10, which means that the integrands in (30) have quasi-singularites at p± iq in the complex plane.

In order to illustrate the effect of the before mentioned double-exponential decay of integrands, we present the graphics of
integrands for k = 0, 1, 2, 3 (left) and k = 65 (right) in Figure 5. The values of all integrands in (31), k = 0, 1, . . . , 79, at t = 2.1,
are: $

1.× 10−321, 3.× 10−320, 7.× 10−319, 2.× 10−317, 5.× 10−316, 1.× 10−314, 4.× 10−313, 1.× 10−311, 3.× 10−310, 8.× 10−309,

2.× 10−307, 6.× 10−306, 2.× 10−304, 4.× 10−303, 1.× 10−301, 3.× 10−300, 8.× 10−299, 2.× 10−297, 6.× 10−296, 2.× 10−294,

4.× 10−293, 1.× 10−291, 3.× 10−290, 8.× 10−289, 2.× 10−287, 6.× 10−286, 2.× 10−284, 4.× 10−283, 1.× 10−281, 3.× 10−280,

8.× 10−279, 2.× 10−277, 6.× 10−276, 1.× 10−274, 4.× 10−273, 1.× 10−271, 3.× 10−270, 7.× 10−269, 2.× 10−267, 5.× 10−266,

1.× 10−264, 4.× 10−263, 1.× 10−261, 3.× 10−260, 7.× 10−259, 2.× 10−257, 5.× 10−256, 1.× 10−254, 3.× 10−253, 8.× 10−252,

2.× 10−250, 6.× 10−249, 2.× 10−247, 4.× 10−246, 1.× 10−244, 3.× 10−243, 7.× 10−242, 2.× 10−240, 5.× 10−239, 1.× 10−237,

3.× 10−236, 9.× 10−235, 2.× 10−233, 6.× 10−232, 2.× 10−230, 4.× 10−229, 1.× 10−227, 3.× 10−226, 7.× 10−225, 2.× 10−223,

5.× 10−222, 1.× 10−220, 3.× 10−219, 8.× 10−218, 2.× 10−216, 5.× 10−215, 1.× 10−213, 4.× 10−212, 9.× 10−211, 2.× 10−209
%
,

and their maximal value is 2.× 10−209. Similarly, the maximal absolute value of all values at t = −2.1 is 4.× 10−232.

Figure 5: (Left) The integrands in m(α,β)
k for k = 0 (red line), k = 1 (blue line), k = 2 (brown line), and k = 3 (black line) for α = β = 50/13;

(Right) The integrand in m(α,β)
65 × 10−35 for α= β = 50/13

The corresponding MATHEMATICA code, which includes our package OrthogonalPolynomials, can be done in the following
form:

<< orthogonalPolynomials‘
(* Input of parameters alpha, beta, and Nmax *)
alpha = 50/13; beta = 50/13; Nmax = 40;
alphaH = Table[0,{k,0,2 Nmax}]; betaH = Prepend[Table[k/2,{k,1,2 Nmax}],Sqrt[Pi]];
HerM[x_] := aMakePolynomial[2 Nmax,alphaH,betaH,x,ReturnList -> True];
p=-alpha/(2 beta); q= Sqrt[4 beta-alpha^2]/(2 beta);
u[t_] := p + q Sinh[Pi/2 Sinh[t]];
fMH[t_,k_] := Pi/2 Sqrt[p^2+q^2] HerM[u[t]][[k+1]]Exp[-u[t]^2]Cosh[t];
(* Print values of integrands of all moments at t=2.1 *)
Tp = Table[N[fMH[21/10, k], 1], {k, 0, 2 Nmax-1}]; Print[Tp]; Max[Abs[Tp]]

The following code represents a procedure (DExpT) for calculating all moments (35), using the recurrence relations (33) and
(34), as well as a command for calculating the recursive coefficients in (29), αk and βk, k = 0,1, . . . , N − 1 (lists alphaM and
betaM), by the Chebyshev methods of modified moments (aChebyshevAlgorithmModified):

Options[DExpT] = {WorkingPrecision -> $MachinePrecision};
DExpT[Pol_,b_,M_,p_,q_,Nmax_,Ops___] :=
Module[{wp,h,fac,momM,vt,j,xi,cvt,ec,c,s,phi0,phi1,phi2,psi0,psi1,psi2,k},
{wp} = {WorkingPrecision} /. {Ops} /. Options[DExpT];
Block[{$MinPrecision = wp}, h = b/M; fac = N[Pi/2 Sqrt[p^2+q^2]Exp[-p^2],wp];
momM = N[Pol[p], wp]; vt = N[Table[j h, {j,1,M}], wp];
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xi = q Sinh[Pi/2 Sinh[vt]]; cvt = Cosh[vt]; ec = Exp[-xi^2] cvt;
c = 2 Cosh[2 p xi]; s = 2 Sinh[2 p xi]; phi0 = c;
phi1 = p c - xi s; psi0 = s; psi1 = p s - xi c;
momM[[1]] = momM[[1]] + Total[ec phi0];
momM[[2]] = momM[[2]] + Total[ec phi1];
For[k = 1, k <= 2 Nmax - 2, k++,
phi2 = p phi1 - k/2 phi0 - xi psi1;
psi2 = p psi1 - k/2 psi0 - xi phi1;
momM[[k + 2]] = momM[[k + 2]] + Total[ec phi2];
phi0 = phi1; psi0 = psi1; phi1 = phi2; psi1 = psi2;]; momM = h fac momM;

Return[momM];];];

momM = DExpT[Function[x,HerM[x]], 21/10, 800, p, q, Nmax, WorkingPrecision -> 52];
{alphaM, betaM} = aChebyshevAlgorithmModified[momM, alphaH, betaH, WorkingPrecision -> 52];

As we can see, in this case, the moment integrals are calculated by the trapezoidal rule, taking M = 800 (positive)
equidistant nodes on the finite interval [0, b] = [0, 21/10]. In in order to overcome the numerical instability and obtain the first
N = 40 recursion coefficients αk and βk with 40 exact decimal digits, we had used the working precision of 52 decimal digits
(WorkingPrecision -> 52). These recursion coefficients for α= β = 50/13 are shown in Table 3.

Table 3: Recursion coefficients for the polynomials {πk( · ; w(α,β))}, α= β = 50/13

k alpha(k) beta(k)

0 -3.056007650989553610006858836445558057864E-01 2.372619381077149609357146735045269999374E+00
1 1.091135901172070725048795730904031636823E-01 2.245468863371941107162002605406537898164E-01
2 -6.393650751044613184510213541531714004955E-02 7.464045492492715756061806875559370152332E-01
3 2.896093622914383390462496451022656640930E-02 1.302942897121644523552877231408192507139E+00
4 -1.209308423360305534840259415165592137550E-02 1.709113932903603587555654516890103590942E+00
5 -1.718837754000391722650945735332100058077E-03 2.309675711077846031637617355708075984524E+00
6 7.750720489169099233811949642062773337494E-03 2.711933128251153801071850610620211255924E+00
7 -1.298438968330839486761114881503272529107E-02 3.295423910768401255759852684415586881992E+00
8 1.412241831101624089616484008974666521998E-02 3.727067165030535190750968123128118634984E+00
9 -1.536929634325645177722701317932091457588E-02 4.276650074098969245628776026578674761372E+00
10 1.429372116400763580863048010758003995197E-02 4.743791732695879570081833190100403204112E+00
11 -1.371654702276508069074812825473119164151E-02 5.259693049405470172104203173535811336196E+00
12 1.176798222770504655068245919798468067142E-02 5.757791419391763379586773316034897076418E+00
13 -1.047335910809081780000034574295255003176E-02 6.246792977846921565057499044107858314470E+00
14 8.340981954066187739248307612282341319947E-03 6.767670276167376192729000834886725961325E+00
15 -6.902153058283111921150338986783630810628E-03 7.238344308003691658560233194861394606057E+00
16 4.929945437819196532285480021173326789508E-03 7.773406567159667299886098793924001808522E+00
17 -3.631375626543328827099446310229842010077E-03 8.233910000676667222653908148429153190199E+00
18 1.972847873088252308562475996047991553534E-03 8.775587423340927445076726663037241731381E+00
19 -9.382315978354561145269552590737997646937E-04 9.232721978517029915230829146365560298491E+00
20 -3.590681123674328669455571404324200078543E-04 9.775014853263387106715308533241278438528E+00
21 1.095358678598460476718502577077385730842E-03 1.023393662540638845246860030635602508313E+01
22 -2.041461679283772492661795151991013174894E-03 1.077250428073515075650921973182315999394E+01
23 2.493038018253023527313131199875957019916E-03 1.123676305795445168215946077180108462115E+01
24 -3.127157761850318637784558126478989924399E-03 1.176878719309650540780247278527980428697E+01
25 3.331307697373371667460005653852087490994E-03 1.224052203413264299811344867071655763280E+01
26 -3.705066401755012230703476782449637934130E-03 1.276447094822281468910882302771173682594E+01
27 3.708472613355638464086302889208344266282E-03 1.324466634505785425765285743005522902919E+01
28 -3.876118282811593232978939167314294489251E-03 1.376002971186171368411809734326371916264E+01
29 3.726629521970398538846032669091781797121E-03 1.424878006310961035489193536070686057143E+01
30 -3.739541281204642760970291432757018722020E-03 1.475581173402593548748610073608230163091E+01
31 3.481647957368403622687805428236969037966E-03 1.525256676562352665482501057345643055499E+01
32 -3.385493240656504254144846089209709418270E-03 1.575205446688666048604769866201807323007E+01
33 3.058077360327979878387310350953018114909E-03 1.625583271515342584196983999075092016028E+01
34 -2.891602583824989303750000660963506068601E-03 1.674890265429714582600860755968340910384E+01
35 2.527072773248249037028648170239124387933E-03 1.725846851667865695915038035877920062809E+01
36 -2.321882218704978824348409214597430203417E-03 1.774642665450064142184409594060804319341E+01
37 1.946133267460015383516991475529693281566E-03 1.826043126925382043488200028053223782116E+01
38 -1.727043261257568539548073321379504740500E-03 1.874463952401863690524176781475423384354E+01
39 1.359884433345210740624392306660577854045E-03 1.926172829906529820447076427312396940827E+01

These recursive coefficients enable us to construct the Gaussian formulas (27) for each N ≤ 40.
We return now to the problem (28) given in Remark 2. Note that the integrand x �→ Hm(x)Hn(x)w(α,β)(x) in (28) has m+ n

zeros on � and very large oscillations (see graphics in Fig. 6).
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Figure 6: The integrand x �→ H30(x)H25(x)w(α,β)(x) for α= β = 1 (left) and α= β = 50/13 (right)

Using the well-known Feldheim’s linearization formula for Hermite polynomials (cf. Askey [1, p. 42])

Hm(x)Hn(x) =
min(m,n)∑
ν=0

�
m
ν

��
n
ν

�
2νν!Hm+n−2ν(x),

we can transform (28) to

Iα,β
m,n = 2m+n

min(m,n)∑
ν=0

�
m
ν

��
n
ν

�
ν!
2ν

∫ +∞
−∞

,Hm+n−2ν(x)+
1+αx + β x2

e−x2
dx = 2m+n

min(m,n)∑
ν=0

�
m
ν

��
n
ν

�
ν!
2ν

m(α,β)
m+n−2ν,

i.e., Iα,β
m,n can be expressed in terms of the modified moments (30) or approximatively by mk[h; M], i.e.,

Iα,β
m,n ≈ 2m+n

min(m,n)∑
ν=0

�
m
ν

��
n
ν

�
ν!
2ν

mm+n−2ν[h; M],

with some appropriate h and M .

Table 4: Gaussian approximations Q(N)30,25 of the integral Iα,β
30,25 for α= β = 50/13 and N = 25(1)30

N Q(N)30,25

25 3.898244052558028200823864546757694876758 (+35)
26 −1.427237521561725565254536466961946087101 (+36)
27 −3.385708554339398400919137631484156473271 (+35)
28 −6.866138084691156226517445794601480146019 (+35)
29 −6.866138084691156226517445794601480146019 (+35)
30 −6.866138084691156226517445794601480146019 (+35)

Alternatively, Iα,β
m,n can be exactly calculated (up to rounding errors) by applying the N -point Gaussian formula (27), for a

given parameters α and β , taking the number of nodes N to be such that m+ n≤ 2N − 1. Thus,

Iα,β
m,n ≈Q(N)m,n =

N∑
ν=1

AνHm(xν)Hn(xν). (36)

For example, to calculate Iα,β
30,25 we need N ≥ 28.

Taking recursion coefficients from Table 3 we can evaluate nodes and weights (xν and Aν) in the quadrature formula (27)
by the function aGaussianNodesWeights from our MATHEMATICA package OrthogonalPolynomials, in this case, up to
N ≤ 40. The corresponding Gaussian approximations of the integral I50/13,50/13

30,25 are presented in Table 4 for N = 25(1)30. As we
can see, the obtained results for N ≥ 28 are exact (up to rounding errors). Results in error are displayed in red.
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[36] G. V. Milovanović. Generalized Gaussian quadratures for integrals with logarithmic singularity. FILOMAT, 30:1111–1126, 2016.
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Abstract The first 60 coefficients in the three-term recurrence relation for monic
polynomials orthogonal with respect to cardinal B-splines ϕm as the weight functions
on [0, m] (m ∈ N) are obtained in a symbolic form. They enable calculation of
parameters, nodes, and weights, in the corresponding Gaussian quadrature up to 60
nodes. The efficiency of these Gaussian quadratures is shown in some numerical
examples. Finally, two interesting conjectures are stated.
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1 Introduction

In this paper, we consider quadrature formulae of Gaussian type,∫
R

f (x)ϕm(x) dx =
n∑

ν=1

A[m]
n,νf

(
x[m]
n,ν

)+ R(m)
n (f ), (1)
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as well as the corresponding system of orthogonal polynomials
{
π

[m]
k

}+∞
k=0 with

respect to cardinal B-splines as the weight functions on [0, m] (m ∈ N).
Cardinal B-splines play an important role in many problems in approximation

(e.g., spline interpolation, multiresolution approximation, different methods for solv-
ing initial and boundary value problems, etc.). They can be defined recursively
starting from the cardinal spline of the first order ϕ1(·), which is the characteristic
function of the interval [0, 1), i.e.,

ϕ1(x) =
{

1, x ∈ [0, 1),

0, otherwise

Then, the cardinal B-spline ϕm(·) of order m is defined as the convolution

ϕm(x) = (ϕm−1 ∗ ϕ1) (x) =
∫
R

ϕm−1(x − t)ϕ1(t) dt =
∫ 1

0
ϕm−1(x − t) dt.

It is supported and symmetric on [0, m], i.e., for each x ∈ [0, m], ϕm(x) = ϕm(m−x).
On each interval [k, k + 1], 0 ≤ k ≤ m − 1, the cardinal B-spline of order m is a
polynomial of degree m − 1 and ϕm(·) ∈ Cm−2[0, m].

The (monic) orthogonal polynomials
{
π

[m]
k

}+∞
k=0 (with respect to the weight

function ϕm(·) on [0, m]) satisfy a three-term recurrence relation

π
[m]
k+1(x) = (x − α

[m]
k )π

[m]
k (x) − β

[m]
k π

[m]
k−1(x), k = 0, 1, . . . , (2)

with π
[m]
0 (x) = 1, π

[m]
−1 (x) = 0, where α

[m]
k and β

[m]
k are real resp. positive numbers.

The coefficient β
[m]
0 may be arbitrary, but usually, it is appropriate to take β

[m]
0 =∫

R
ϕm(x) dx.

It is known that the nodes x
[m]
n,k in the Gaussian quadrature rule (1) are eigenvalues

of the symmetric tridiagonal Jacobi matrix (cf. [17, pp. 325–328])

Jn(ϕm) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
[m]
0

√
β

[m]
1 O√

β
[m]
1 α

[m]
1

√
β

[m]
2√

β
[m]
2 α

[m]
2

. . .

. . .
. . .

√
β

[m]
n−1

O
√

β
[m]
n−1 α

[m]
n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3)

and the weight coefficients A
[m]
n,k are given by A

[m]
n,k = β

[m]
0 v2

k,1, k = 1, . . . , n, where

vk,1 is the first component of the eigenvector vk (= [vk,1 . . . vk,n]T) corresponding
to the eigenvalue x

[m]
n,k and normalized such that vT

k vk = 1. The most popular method
for solving this eigenvalue problem is the Golub–Welsch procedure, obtained by a
simplification of the QR algorithm [15].

Therefore, if we know the recurrence coefficients α
[m]
k and β

[m]
k in the fundamental

three-term recurrence relation (2), the problem of constructing Gaussian rules can
be easily solved by the Golub–Welsch procedure. This procedure is implemented
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in several packages including the best known, ORTHPOL, given by Gautschi [11].
According to (3), for constructing Gauss–Christoffel quadratures (1) for any number
of nodes less than or equal to n, we need the first n recursion coefficients α

[m]
k and

β
[m]
k , k = 0, 1, . . . , n − 1.

In general, the recursion coefficients are known explicitly only for some narrow
classes of orthogonal polynomials, e.g., for the so-called very classical orthogonal
polynomials (Jacobi, the generalized Laguerre, and Hermite polynomials). How-
ever, in the case of the so-called strongly non-classical polynomials, for which their
weight function is given explicitly, or implicitly via moment information, the recur-
sion coefficients must be constructed numerically. Such a problem is very sensitive
with respect to small perturbations in the input data. In the eighties on the last century,
Walter Gautschi developed the so-called constructive theory of orthogonal poly-
nomials on R, including effective algorithms for numerically generating recursion
coefficients (the method of (modified) moments, the discretized Stieltjes–Gautschi
procedure, and the Lanczos algorithm), a detailed stability analysis of such algo-
rithms as well as several new applications of orthogonal polynomials. The basic
references are [10, 12, 18]. An interesting stable recursive technique for the determi-
nation of Jacobi matrices associated with multi-fractal measures via iterated functions
systems was given by Mantica [16].

Some particular cases of the Gaussian quadratures for B-splines of degree 1 or 3
were constructed numerically by Phillips and Hanson [22], who obtained the first 17
coefficients in the three-term recurrence formula for orthonormal polynomials
(rounded to 14 decimal digits). In connection with these results, we mention also that
Gaussian quadrature and orthogonal polynomials for refinable weight functions were
considered by Gautschi, Gori, and Pitolli [9] and Laurie and de Villiers [14]. For
related quadratures with assigned nodes, see a recent work by Calabrò, Manni, and
Pitolli [3]. Also, Calabrò and Corbo Esposito [2] considered numerical methods for
integration with respect to binomial measures and gave several numerical tests to
verify the efficiency and accuracy of their methods. A connection between refinable
functions, functionals, and iterated function systems has been described recently in [4].

Recent progress in symbolic computation and variable-precision arithmetic now
makes it possible to generate the recursion coefficients in the three-term recur-
rence relation (2) directly by using the original Chebyshev method of moments.
Respective symbolic/variable-precision software for orthogonal polynomials is avail-
able: Gautschi’s package SOPQ in MATLAB (see Appendix B in [13]) and our
MATHEMATICA package OrthogonalPolynomials (see [7] and [19]), which is
downloadable from the web site http://www.mi.sanu.ac.rs/∼gvm/.

In this paper, we construct the recursion coefficients α
[m]
k and β

[m]
k , using the

Chebyshev method (implemented in the package OrthogonalPolynomials)
with the moments

μ
(m)
k =

∫ m

0
xkϕm(x) dx, k = 0, 1, . . . , (4)

represented in an appropriate (polynomial) form for each m ∈ N, which is enough
to obtain these coefficients in a symbolic form. Namely, the Chebyshev method can
be represented as the mapping of the sequence of moments into the coefficients of
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the three-term recurrence relation. The algorithm is rational and nonlinear and it can
be realized using the recurrence relation which uses only two basic operations – the
addition and the multiplication (cf. [7]).

The paper is organized as follows. A procedure for calculating the moments (4)
as polynomials in m is given in Section 2, and the symbolic generation of recursion
coefficients α

[m]
k and β

[m]
k and a discussion of the corresponding Gaussian quadra-

tures (1) are given in Section 3. Some applications of these Gaussian quadratures are
illustrated in Section 4. Finally, in Section 5, two interesting conjectures are stated
relating to the recurrence coefficients obtained.

2 Moments

Using the relations for the cardinal B-spline (cf. [5, p. 86], [6, p. 56])

ϕm(x) = x

m − 1
ϕm−1(x) + m − x

m − 1
ϕm−1(x − 1), m ≥ 2, (5)

and
ϕ′

m(x) = ϕm−1(x) − ϕm−1(x − 1), m ≥ 2, (6)
after some simplification, Milovanović and Udovičić [20] have recently obtained the
following differential equation

(m − x)ϕ′
m(x) + (m − 1)ϕm(x) = mϕm−1(x), (7)

and then proposed an effective method for calculating the coefficients of polynomials
defining a cardinal B-spline.

For example,

ϕ2(x) =

⎧⎪⎪⎨⎪⎪⎩
x, 0 ≤ x < 1,

2 − x, 1 ≤ x < 2,

0, otherwise,

ϕ3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

2
x2, 0 ≤ x < 1,

−x2 + 3x − 3

2
, 1 ≤ x < 2,

1

2
x2 − 3x + 9

2
, 2 ≤ x < 3,

0, otherwise,

Fig. 1 Cardinal B-spline ϕm(t) for m = 1 (solid line), m = 2 (dotted), m = 3 (dashed), and m = 4
(dot-dashed)
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etc. In Fig. 1 we display ϕm(t) for m = 1, 2, 3, 4.
Now, we want to calculate the moments (4) for each m ∈ N.
Using (7), after multiplying by xk and integrating over [0, m], we get∫ m

0
(m − x)xkϕ′

m(x) dx + (m − 1)

∫ m

0
xkϕm(x) dx = m

∫ m

0
xkϕm−1(x) dx.

Since, by integration by parts,∫ m

0
(m − x)xkϕ′

m(x) dx = (m − x)xkϕm(x)

∣∣∣m
0

−
∫ m

0

[
kmxk−1 − (k + 1)xk

]
ϕm(x) dx

= (k + 1)μ
(m)
k − kmμ

(m)
k−1,

because ϕm(0) = ϕm(m) = 0, we conclude that the moments (4) satisfy the following
recurrence relation

(k + m)μ
(m)
k − kmμ

(m)
k−1 = mμ

(m−1)
k , m ≥ 2. (8)

It is not difficult to calculate directly

μ
(1)
k =

∫ 1

0
xkϕ1(x) dx = 1

k + 1
(Legendre case shifted to [0, 1])

μ
(2)
k =

∫ 2

0
xkϕ2(x) dx = 2(2k+1 − 1)

(k + 1)(k + 2)
,

μ
(3)
k =

∫ 3

0
xkϕ3(x) dx = 3(3k+2 − 2 · 2k+2 + 1)

(k + 1)(k + 2)(k + 3)
,

μ
(4)
k =

∫ 4

0
xkϕ4(x) dx = 4(4k+3 − 3 · 3k+3 + 3 · 2k+3 − 1)

(k + 1)(k + 2)(k + 3)(k + 4)
,

etc. These formulae suggest a general formula for an arbitrary m ∈ N,

μ
(m)
k =

∫ m

0
xkϕm(x) dx

= m(−1)m

(k + 1)m

m∑
ν=1

(−1)ν
(

m − 1

ν − 1

)
νk+m−1, k = 0, 1, . . . , (9)

where (p)m is the standard notation for Pochhammer’s symbol

(p)m = p(p + 1) · · · (p + m − 1) = �(p + m)

�(p)
(� is the gamma function).

Indeed, (9) can be proved very easily by induction, using the recurrence relation (8).
These moments can also be expressed in terms of the Stirling numbers of the

second kind S(n, m), which are the coefficients in the expansion

xn =
n∑

m=0

S(n, m)(x)(m),
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where the so-called falling factorial is defined by (x)(m) = x(x − 1) · · · (x − m + 1)

and (x)(0) = 1. Precisely, S(n, m) gives the number of ways of partitioning a set of
n elements into m non-empty subsets. These numbers obey the following recurrence
relation

S(n + 1, m) = mS(n, m) + S(n, m − 1). (10)

Note that S(n, 1) = S(n, n) = 1 and S(n, m) = 0 for m > n, as well as S(n, 2) =
2n−1 − 1 and S(n, n − 1) = 1

2n(n − 1) (cf. [23]). In general, there is the following
explicit formula (cf. [8, p. 69])

S(n, m) = 1

m!
m−1∑
j=0

(−1)j
(

m

j

)
(m − j)n = 1

m!
m∑

ν=1

(−1)m−ν

(
m

ν

)
νn,

which can be related to (9) by Theorem 1 below. Namely, taking n = m + k, the
above equality becomes

S(m + k, m) = 1

m!
m∑

ν=1

(−1)m−ν m

ν

(
m − 1

ν − 1

)
νm+k,

i.e.,

S(m + k, m) = (−1)mm

m!
m∑

ν=1

(−1)ν
(

m − 1

ν − 1

)
νm+k−1. (11)

In the sequel, we need the following representation of the moments:

Theorem 1 The moments of the weight function x �→ ϕm(x) on [0, m] can be
expressed in terms of Stirling numbers of the second kind,

μ
(m)
k =

∫ m

0
xkϕm(x) dx = S(m + k, m)(

m + k

m

) , k = 0, 1, . . . , (12)

and their exponential generating function is given by

+∞∑
k=0

μ
(m)
k

xk

k! =
(

ex − 1

x

)m

(m ∈ N). (13)

Proof According to (9) and (11), we obtain

μ
(m)
k = m!S(m + k, m)

(k + 1)m
.

Since (k + 1)m = (k + m)!/k!, this reduces to (12).
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In order to prove (13), we start with the exponential generating function for
Stirling polynomials of the second kind (cf. [1, p. 30])

(ex − 1)m

m! =
+∞∑
n=m

S(n, m)
xn

n! . (14)

Since the equality (14) can be written in the form

(ex − 1)m

m! =
+∞∑
k=0

S(m + k, m)
xm+k

(m + k)! ,

we conclude that

+∞∑
k=0

μ
(m)
k

xk

k! =
+∞∑
k=0

S(m + k, m)(
m + k

m

) xk

k! =
(

ex − 1

x

)m

,

i.e., the m-th power of the Bose–Einsten function x �→ (ex − 1)/x is the exponential
generating function for the moments μ

(m)
k .

Remark 1 The generating function (13) can be found also in [21].

In order to determine the first n recurrence coefficients α
[m]
k and β

[m]
k , k =

0, 1, . . . , n − 1, in the recurrence relation (2), using our MATHEMATICA package
OrthogonalPolynomials (see [7] and [19]), we only need a procedure for
symbolic calculation of the first 2n moments.

Expanding the exponential generating function (13) in a power series in x, we can
find the moments μ

(m)
k , k ≥ 0, for a fixed m ∈ N. For example, for n = 50 (in our

case this is reasonable), the first 100 moments can be obtained in a symbolic form by
simple commands in MATHEMATICA 11.0.1.0:
ser = Series[((Exp[x] - 1)/x)ˆm, {x, 0, 99}] // Simplify;

mommu = Table[k! Coefficient[ser, x, k], {k, 0, 99}];

In this way, we obtain μ
(m)
k as polynomials in m of degree k,

μ
(m)
0 = 1, μ

(m)
1 = m

2
, μ

(m)
2 = m

12
(3m + 1), μ

(m)
3 = m2

8
(m + 1),

μ
(m)
4 = m

240

(
15m3 + 30m2 + 5m − 2

)
, μ

(m)
5 = m2

96

(
3m3 + 10m2 + 5m − 2

)
,

μ
(m)
6 = m

4032

(
63m5 + 315m4 + 315m3 − 91m2 − 42m + 16

)
,

μ
(m)
7 = m2

1152

(
9m5 + 63m4 + 105m3 − 7m2 − 42m + 16

)
,

μ
(m)
8 = m

34560

(
135m7 +1260m6 +3150m5 +840m4 − 2345m3 + 540m2 + 404m − 144

)
,

μ
(m)
9 = m2

7680

(
15m7 + 180m6 + 630m5 + 448m4 − 665m3 − 100m2 + 404m − 144

)
,
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μ
(m)
10 = m

101376

(
99m9 + 1485m8 + 6930m7 + 8778m6 − 8085m5 − 8195m4 + 11792m3

−2068m2 − 2288m + 768
)

,

μ
(m)
11 = m2

18432

(
9m9 + 165m8 + 990m7 + 1914m6 − 847m5 − 3179m4 + 2904m3

+1100m2 − 2288m + 768
)

,

μ
(m)
12 = m

50319360

(
12285m11 + 270270m10 + 2027025m9 + 5495490m8 + 315315m7

−12882870m6 + 5760755m5 + 14444430m4 − 15875860m3

+2037672m2 + 3327584m − 1061376
)

,

μ
(m)
13 = m2

7741440

(
945m11 + 24570m10 + 225225m9 + 810810m8 + 495495m7

−2320890m6 −389389m5 + 4978974m4 − 3383380m3 − 2155608m2

+3327584m − 1061376) ,

μ
(m)
14 = m

6635520

(
405m13 + 12285m12 + 135135m11 + 621621m10 + 765765m9

−1898325m8 −2141139m7 + 6565559m6 − 990990m5 − 8790964m4

+8132904m3 − 712672m2 − 1810176m + 552960
)

,

μ
(m)
15 = m2

884736

(
27m13 + 945m12 + 12285m11 + 70161m10 + 135135m9 − 190905m8

−566137m7 + 986843m6 + 778778m5 − 2802436m4 + 1477736m3

+1410080m2 − 1810176m + 552960
)

,

etc.

Remark 2 It could be of some interest to investigate properties of the polynomials Pk(m) :=
μ

(m)
k .

3 Recurrence coefficients and Gaussian quadratures

Using our MATHEMATICA package OrthogonalPolynomials, with the obtained
moments mommu, and executing only the following commands:
<< orthogonalPolynomials‘

{alpha,beta}=aChebyshevAlgorithm[mommu,Algorithm->Symbolic];

we obtain the first 50 recurrence coefficients for monic orthogonal polynomials{
π

[m]
k

}+∞
k=0 in (2) in a symbolic form,

α
(m)
k = m

2
(k = 0, 1, 2, . . .);

β
(m)
0 = 1, β

(m)
1 = m

12
, β

(m)
2 = 5m − 3

30
, β

(m)
3 = 175m2 − 315m + 158

140(5m − 3)
,

β
(m)
4 = 6125m4 − 25725m3 + 41965m2 − 29547m + 7230

21(5m − 3)
(
175m2 − 315m + 158

) ,

β
(m)
5 = 25(5m − 3)S6(m)

132
(
175m2 − 315m + 158

)
S4(m)

,
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where

S4(x) = 6125m4 − 25725m3 + 41965m2 − 29547m + 7230,

S6(x) = 471625m6 − 3678675m5 + 12324235m4 − 22096305m3

+22009540m2 − 11549748m + 2519472,

etc. It is clear that the coefficients α
(m)
k are equal to m/2 for each k, because of the

property ϕm(t) = ϕm(m − t), 0 ≤ t ≤ m. For higher k, the corresponding β
(m)
k

coefficients become quite complicated. Specific values of these coefficients for a
given m (e.g., m = 10 and k ≤ 9) can be obtained directly by the command:

{
1,

5

6
,

47

30
,

3627

1645
,

3286105

1193283
,

168899331365

52442292474
,

187763661474877107

51959406895719290
,

28601715426755929240411636

7255355039522066602115205
,

417693338105676571738301453065819850

99070749556201898603801123009129259
,

35496155392982599374674499183256849442993490627

7984952991477905847393360690681588386530757842

}

TraditionalForm[Table[beta[[k + 1]], {k, 0, 9}] /. {m -> 10}]

Also, numerical values of the first thirty recursion coefficients β
(m)
k , 0 ≤ k < 30,

m = 10, e.g., rounded to 20 decimal digits, can be obtained by

N[Table[beta[[k + 1]], k, 0, 29] /. m -> 10, 20]

{1.0000000000000000000, 0.83333333333333333333,1.5666666666666666667,

2.2048632218844984802, 2.7538354271367311861, 3.2206702529020337274,

3.6136605995467230798, 3.9421524199648285636, 4.2161116169684685200,

4.4453806341585920021, 4.6387745713978611295, 4.8033973772389131640,

4.9445758344946528460, 5.0663654173861162855, 5.1720546573331317560,

5.2643250282396780468, 5.3453418145822515729, 5.4168480119278469826,

5.4802573999449810555, 5.5367328963993764315, 5.5872424476189429104,

5.6325949837650829666, 5.6734665363296058787, 5.7104246096440169106,

5.7439503253769660554, 5.7744545047515811131, 5.8022886980934010953,

5.8277547166249649692, 5.8511129345858539784, 5.8725889108639372690}

All computations were performed in MATHEMATICA, Ver. 11.0.1, on MacBook
Pro Retina, OS X 10.11.6, using the package OrthogonalPolynomials (see
[7] and [19]). The running time for calculating the first 2n moments and the cor-
responding first n recursive coefficients depends on n, and, expressed in minutes
and seconds are given in Table 1. The running time is evaluated by the function
Timing in MATHEMATICA and includes only CPU time spent in the MATHE-
MATICA kernel. This may give different results on different occasions within a
session, because of the use of internal system caches. In order to generate worst-case
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Table 1 Running time for calculating the first 2n moments and n recursive coefficients

Calculations n = 30 n = 40 n = 50

Calculation of the first 2n moments 4′′ 9′′ 18′′

Calculation of the first n recursive coefficients 19′′ 2′ 14′′ 13′ 47′′

timing results independent of previous computations, we used the command
ClearSystemCache[].

Remark 3 As we can see from Table 1, the running time for calculating the first n

recursive coefficients increases exponentially with respect to n. We also calculated
the first n = 60 coefficients in a symbolic form and it lasted about 1 h and 7 min.

Finally, we can now calculate Gaussian parameters (nodes and weights) in (1)
very easily for each n ≤ 60 and each m ∈ N, with an arbitrary precision
(prec), because the Golub–Welsch algorithm is fast and well-conditioned. In the
package OrthogonalPolynomials, this algorithm is realized by the function
aGaussianNodesWeights, with obligatory arguments n, alpha, beta, and
two optional arguments for WorkingPrecision and Precision. Usually, we
put WorkingPrecision -> prec+5 and Precision -> prec. Defining
PQ[n_,mm_,prec_]:=N[aGaussianNodesWeights[n,alpha/.{m->mm},

beta/.{m->mm},WorkingPrecision->prec+5,

Precision->prec],prec];

we can calculate nodes and weights in n-point quadrature with precision prec
for each m (= mm). For example, for n = 12, m = 5, and a precision of 20 decimal
digits (prec = 20), we obtain
{node,weights}=PQ[12,5,20]

{{0.28615439012499870599, 0.59173541249019933863, 0.96214478860900355154,

1.3767311734123912366, 1.8167168862233427683, 2.2707179213614517070,

2.7292820786385482930, 3.1832831137766572317, 3.6232688265876087634,

4.0378552113909964485, 4.4082645875098006614, 4.7138456098750012940},
{0.000075225476023619541079, 0.0017396925219340034584, 0.014170925759385921532,

0.062426717943609193267, 0.16216672426261319389, 0.25942071403643406831,

0.25942071403643406831, 0.16216672426261319389, 0.062426717943609193267,

0.014170925759385921532, 0.0017396925219340034584, 0.000075225476023619541079}}}

The first list of 12 elements represents nodes and the second one the weight
coefficients (Christoffel numbers).
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4 Numerical examples

In order to illustrate the efficiency of the Gaussian quadrature formulae (1), we
consider the behavior of quadrature sums

Q[m]
n (f ) =

n∑
ν=1

A[m]
n,νf

(
x[m]
n,ν

)
,

more precisely their relative errors

e[m]
n ≡ e[m]

n (f ) :=
∣∣∣Q[m]

n (f ) − Im(f )

Im(f )

∣∣∣ (
Im(f ) =

∫ m

0
f (x)ϕm(x) dx

)
, (15)

for some selected values of m ∈ N and n = 5(5)50. In the following examples,
we take m = 3, 4, 5, 6 and m = 10. For calculating true solutions Im(f ), we use
the piecewise polynomial representation of the B-spline functions (see [20]) and
integration in sufficient precision using MATHEMATICA, Ver. 11.0.1.

Example 1 In this example, we consider two functions

f1(x) = 10 sin x and f2(x) =
(

1 − 2 sin
19x

3

)3

sinh
(

1 − x

2

)
,

the graphics of which are presented in Fig. 2 (left). In the same figure (right),0 we
display graphics of ϕ5(x)fk(x), k = 1, 2.

The relative errors (15) in Gaussian approximations for these functions f1 and f2
are presented in Fig. 3 for n = 5(5)50 and some selected values of m. As expected,
the sequence of quadrature sums {Q[m]

n (f1)}n converges very fast! On the other hand,
convergence for f2 is slower. We see also that the rate of convergence is smaller for
larger m.

Fig. 2 (left) Graphics of functions f1(x) (dotted line) and f2(x) (solid line) on [0, 6]; (right) Graphics of
functions ϕ5(x)f1(x) (dotted line) and ϕ5(x)f2(x) (solid line) on [0, 5]
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Fig. 3 Relative errors in Gaussian approximations Q
[m]
n (f1) (top) and Q

[m]
n (f2) (bottom) for m =

3, 4, 5, 6, 10 and n = 5(5)50

Fig. 4 Graphics of functions ϕm(x)fm(x) on [0,m] for m = 3, 4, 5, 6
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Fig. 5 (left) Graphics of functions ϕm(x)fm(x) for m = 3, 4, 5, 6 on [0,m]; (right) Relative errors in
Gaussian approximations Q

[m]
n (fm), n = 5(5)50, for m = 3, 4, 5, 6, 10

Example 2 Now, we consider Runge’s function (translated from [−1, 1] to [0, m])

fm(x) = 10

1 + 16

(
2x

m
− 1

)2
,

with singularities at (4 ± i)m/8. Graphics of this function multiplied by ϕm(x), for
m = 3, 4, 5, 6, are presented in Fig. 4. (for details on Runge’s function, as well as
the corresponding interpolation process see [17, p. 60].)

As we expect, the convergence of Gaussian quadrature sums {Q[m]
n (fm)}k in

this case is relatively slow. The relative errors e
[m]
n (fm) in log-scale, for m =

3, 4, 5, 6, 10, when n = 5(5)50 are presented in Fig. 5.

5 Two conjectures

On the basis of the results obtained (for the first 60 recursive coefficients), we can
state the following conjectures:

Conjecture 1 For k ≥ 3, the recurrence coefficients β
(m)
k can be expressed in the

form

β
(m)
k = Ck

qsk−3(m)qsk (m)

qsk−2(m)qsk−1(m)
, k ≥ 3,

where {qsk }+∞
k=0 is a system of algebraic polynomials in m, with integer coefficients,

of degrees sk = (2k2 − 1 + (−1)k)/8, and Ck are rational constants.
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In our computations, we obtained

qs0(m) = qs1(m) = 1, qs2(m) = 5m − 3, qs3(m) = 175m2 − 315m + 158,

qs4(m) = 6125m4 − 25725m3 + 41965m2 − 29547m + 7230,

qs5(m) = 471625m6 − 3678675m5 + 12324235m4 − 22096305m3

+22009540m2 − 11549748m + 2519472,

qs6(m) = 11802415625m9 − 155791886250m8 + 931311756375m7

−3260380223100m6 + 7287484078875m5 − 10710163424730m4

+10297166185537m3 − 6207823757520m2 + 2111356988868m

−304962099120,

qs7(m) = 8438727171875m12 − 172150034306250m11 + 1635521768505625m10

−9486710999766000m9 + 37170226215247125m8

−103140503000384850m7 + 207092542088006575m6

−302311914052408260m5 + 317690740984945328m4

−233988179502757680m3 + 114592266201395664m2

−33539482979925120m + 4449204584379648,

qs8(m) = 718009101418984375m16 − 21540273042569531250m15

+306466799031377359375m14 − 2729829574503468937500m13

+16961867348957379598750m12 − 77671409630345446815900m11

+270334750775463299675750m10 − 727653744705777548699040m9

+1527372133343317471965755m8 − 2503317024698062132145586m7

+3186852942000043203666779m6 − 3112364522558715589144980m5

+2281592249060977336852368m4 − 1210999506716643802020720m3

+437667158101790582119440m2 − 95869567107365446403712m

+9538859825773941438720,

etc. The corresponding coefficients Ck are

C3 = 1

140
, C4 = 1

21
, C5 = 25

132
, C6 = 1

1430
, C7 = 49

780
, C8 = 10

51
,

C9 = 3

9044
, C10 = 1

3990
, C11 = 121

1380
, C12 = 7

23
, C13 = 169

12
, C14 = 1

870
,

etc.
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Conjecture 2 For the recurrence coefficients β
(m)
k (k ≥ 1), the following asymptotic

formula

β
[m]
k � k

12
m − k(k − 1)

20
+ 4k(k − 1)(k − 2)

525m
+ 2k(k − 1)(k − 2)(5k − 9)

2625m2

+2k(k − 1)(k − 2)
(
552k2 − 1279k + 255

)
1010625m3

+ · · ·
holds as m → ∞.
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CONSTRUCTION OF GAUSSIAN QUADRATURE

FORMULAS FOR EVEN WEIGHT FUNCTIONS

Mohammad Masjed-Jamei, Gradimir V. Milovanović∗

Instead of a quadrature rule of Gaussian type with respect to an even weight

function on (−a, a) with n nodes, we construct the corresponding Gaussian

formula on (0, a2) with only [(n+1)/2] nodes. Especially, such a procedure is

important in the cases of nonclassical weight functions, when the elements of

the corresponding three-diagonal Jacobi matrix must be constructed numeri-

cally. In this manner, the influence of numerical instabilities in the process of

construction can be significantly reduced, because the dimension of the Jacobi

matrix is halved. We apply this approach to Pollaczek’s type weight func-

tions on (−1, 1), to the weight functions on R which appear in the Abel-Plana

summation processes, as well as to a class of weight functions with four free

parameters, which covers the generalized ultraspherical and Hermite weights.

Some numerical examples are also included.

1. INTRODUCTION

Let P be the set of all algebraic polynomials and Pn be its subset of degree
at most n. In this paper, we consider the Gauss-Christoffel quadrature rules with
respect to the even weight function x �→ w(x) = w(−x) on a symmetric interval
(−a, a) for a > 0,

(1)

∫ a

−a

f(x)w(x) dx =

n∑
k=1

wkf(xk) +Rn(f ;w),

where Rn(f ;w) = 0 for each f ∈ P2n−1 and they are automatically exact for all
odd functions.

∗Corresponding author. Gradimir V. Milovanović
2010 Mathematics Subject Classification. 41A55, 65D30, 65D32.
Keywords and Phrases. Symmetric Gaussian quadrature rules, Symmetric weight functions,
Orthogonal polynomials, Jacobi matrix, Pollaczek type weight functions.
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Suppose that the moments μk =
∫ a

−a
xkw(x) dx, exist and are finite for any

k = 0, 1, . . . , and also μ0 =
∫ a

−a
w(x) dx > 0. Then the quadrature rules (1) exist

for each n ∈ N as well as the corresponding orthogonal polynomials. It is well
known that μ2k+1 = 0 for any k = 0, 1, . . ., and the monic symmetric polynomials
πk(x) orthogonal with respect to the even weight w on (−a, a) satisfy the three-term
recurrence relation (cf. [12, p. 102])

(2) πk+1(x) = xπk(x)− βkπk−1(x), k = 0, 1, . . . ,

with π−1(x) = 0, π0(x) = 1 and π1(x) = x.

The recurrence coefficients βk in (2) can be computed from the moments in
terms of Hankel determinants

Δk =

∣∣∣∣∣∣∣∣∣
μ0 μ1 · · · μk−1

μ1 μ2 μk

...
μk−1 μk μ2k−2

∣∣∣∣∣∣∣∣∣
,

by

βk =
Δk−1Δk+1

Δ2
k

(k ≥ 1) with Δ0 = 1.

Although β0 in (2) may be arbitrary, it is sometimes convenient to define it as
β0 = μ0 =

∫ a

−a w(x) dx. By noting the definition

(p, q) =

∫ a

−a

p(x)q(x)w(x) dx and ‖p‖ =
√

(p, p),

one can prove that the norm of πn equals to

‖πn‖ =
√
β0β1 · · ·βn =

√
Δn+1

Δn
.

For instance, the first few monic symmetric polynomials πk in terms of mo-
ments are as follows

π2(x) = x2 − μ2

μ0
,

π3(x) = x3 − μ4

μ2
x,

π4(x) = x4 − μ6μ0 − μ4μ2

μ4μ0 − μ2
2

x2 +
μ6μ2 − μ2

4

μ4μ0 − μ2
2

,

π5(x) = x5 − μ8μ2 − μ6μ4

μ6μ2 − μ2
4

x3 +
μ8μ4 − μ2

6

μ6μ2 − μ2
4

x .

A standard method for calculating the nodes xk and the weight coefficients
(Christoffel numbers) wk in the quadrature (1) is based on their characterization
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via an eigenvalue problem for the Jacobi matrix of order n associated with the even
weight function x �→ w(x). Thus, the nodes xk are the eigenvalues of the symmetric
tridiagonal Jacobi matrix (cf. [12, pp. 325–328])

(3) Jn(w) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
√
β1 O

√
β1 0

√
β2

√
β2 0

. . .

. . .
. . .

√
βn−1

O
√
βn−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the weight coefficients wk are given by wk = β0v
2
k,1 (k = 1, . . . , n), where vk,1

is the first component of the eigenvector vk (= [vk,1 . . . vk,n]
T) corresponding to

the eigenvalue xk, normalized such that vT
k vk = 1. This popular method is called

the Golub-Welsch procedure [8].

Unfortunately, for many weight functions the coefficients βk in (2) are not
explicitly known. In such cases, the corresponding polynomials πk are known as
strong non–classical orthogonal polynomials, and their recursion coefficients must
be constructed numerically from the moment information. Such problems are very
sensitive with respect to small perturbations in the input data. Fortunately, in the
eighties of the last century, Walter Gautschi developed the so-called constructive

theory of orthogonal polynomials on R, with effective algorithms for numerically
generating the first n recursion coefficients (the method of (modified) moments,
the discretized Stieltjes–Gautschi procedure, and the Lanczos algorithm), which
allow us to compute all orthogonal polynomials of degree ≤ n by a straightforward
application of the three-term recurrence relation. A detailed stability analysis of
these algorithms as well as several new applications of orthogonal polynomials are
also included in the previously mentioned theory. The basic references are [6, 7, 15].

Because of w(−x) = w(x) on (−a, a), the nodes in the quadrature sum

Qn(f ;w) :=

n∑
k=1

wkf(xk)

in (1) are symmetrically distributed with respect to the origin, and their weight
coefficients are mutually equal for symmetric nodes. Taking only positive nodes, de-

noted by x
(n)
k and the corresponding weight coefficients by A

(n)
k for k = 1, . . . ,m (=

[n/2]), the quadrature sum can be expressed as

(4) Qn(f ;w) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m∑
k=1

A
(n)
k

(
f(x

(n)
k ) + f(−x

(n)
k )
)
, n = 2m,

A
(n)
0 f(0) +

m∑
k=1

A
(n)
k

(
f(x

(n)
k ) + f(−x

(n)
k )
)
, n = 2m+ 1,
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where, in the case of odd n, A
(n)
0 (> 0) is the weight coefficient for the node 0.

Here,

0 < x
(n)
1 < · · · < x(n)

m < a and A
(n)
k > 0, k = 1, . . . ,m.

This paper is organized as follows. In Section 2, we shortly describe a simple
transformation from (−a, a) to (0, a2) and give recurrence coefficients for the corre-
sponding orthogonal polynomials. Section 3 is devoted to the construction of two
quadratures on (0, a2) and their connection with symmetric Gaussian quadratures
on (−a, a). These sections are introductory and record material that is essentially
known (cf. [12], [13]), but needed in subsequent sections. The numerical construc-
tion of Gaussian rules related to the Pollaczek-type weight functions on (−1, 1) is
presented in Section 4, together with some numerical examples. Symmetric Gaus-
sian quadrature rules on R, which appear in the Abel-Plana summation formulas,
are considered in Section 5. Finally, a class of symmetric weight functions with
four free parameters that covers many well-known weights on (−1, 1) and R are
considered in Section 6.

2. TRANSFORMATION AND PRESERVATION OF

ORTHOGONALITY

Suppose in (1) that x �→ f(x) is an even function, so that

(5)

∫ a

−a

f(x)w(x) dx = 2

∫ a

0

f(x)w(x) dx =

∫ a2

0

f(
√
t)

w(
√
t)√
t

dt.

On the other hand, according to (1), (4) and (5) we have

(6) I(ϕ1;w1) =

∫ a2

0

f(
√
t)

w(
√
t)√
t

dt = Qn(f ;w) +Rn(f ;w),

where two new functions are defined on (0, a2) as

(7) w1(t) :=
w(

√
t)√
t

and ϕ1(t) := f(
√
t).

Similarly, we need to define

(8) w2(t) :=
√
t w(

√
t) and ϕ2(t) :=

f(
√
t)− f(0)

t
.

The orthogonal polynomials with respect to the weight functions w1(t) and
w2(t) defined on (0, a2) can be directly expressed in terms of the polynomials πk(x)
which are orthogonal with respect to the symmetric weight w on (−a, a). In fact,
according to Theorem 2.2.11 of [12, p. 102] we have:

(i) pν(t) := π2ν(
√
t) are orthogonal with respect to the weight function w1(t) =

w(
√
t)/

√
t on (0, a2), and
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(ii) qn(t) := π2n+1(
√
t)/

√
t are orthogonal with respect to the weight function

w2(t) =
√
t w(

√
t) on (0, a2).

Also, these (monic) polynomials satisfy the three-term recurrence relations
(Theorem 2.2.12 in [12, p. 102]),

(9) pν+1(t) = (t− aν)pν(t)− bνpν−1(t), ν = 0, 1, . . . ,

and

(10) qν+1(t) = (t− cν)qν(t)− dνqν−1(t), ν = 0, 1, . . . ,

with p0(t) = 1, p−1(t) = 0 and q0(t) = 1, q−1(t) = 0, respectively, where the
coefficients in (9) and (10) are given by

a0 = β1, aν = β2ν + β2ν+1, bν = β2ν−1β2ν ,

and
c0 = β1 + β2, cν = β2ν+1 + β2ν+2, dν = β2νβ2ν+1,

in which βk are the same values as in (2). In addition, we can define

b0 :=

∫ a2

0

w1(t) dt =

∫ a

−a

w(x) dx = μ0

and

d0 :=

∫ a2

0

w2(t) dt =

∫ a2

0

t w1(t) dt =

∫ a

−a

x2w(x) dx = μ2,

i.e., b0 := β0 and d0 := β0β1.

In the case of strong nonclassical weights, the coefficients aν and bν in (9), as
well as cν and dν in (10), must be constructed numerically (cf. [6], [12, pp. 160–
166]).

The orthogonal polynomials pν(t) and their recurrence relation (9) are applied
in constructing Gaussian quadratures with respect to the weight function w1(t) =
w(

√
t)/

√
t on (0, a2), while the polynomials qν(t) and their recurrence relation (10)

are appropriate for constructing Gauss-Radau rules (cf. [12, p. 329]).

By noting these comments and (4), the construction of quadratures (1) will
be significantly simplified. Namely, instead of constructing a quadrature formula
on (−a, a) with n nodes, we construct a quadrature formula on (0, a2) with only
[(n + 1)/2] nodes. In particular, it is very important in the cases of nonclassical
weight functions, when the recurrence coefficients in the three-term relations for the
corresponding orthogonal polynomials must be constructed numerically, before the
procedure for constructing nodes and Christoffel numbers (by the Golub-Welsch
procedure from the Jacobi matrices). In this manner, the influence of numerical
instabilities in the process of construction can be significantly reduced. Also, in
this way, the dimensions of the corresponding Jacobi matrices are halved.
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3. CONSTRUCTION OF TWO RULES OF GAUSSIAN TYPE

We consider now two quadrature formulas for computing the integral I(ϕ1;w1)
given in (6).

3.1. Gauss-Christoffel quadrature formula with the weight w1(t)

The first formula is a m-point Gauss-Christoffel quadrature formula with
respect to the weight function t �→ w1(t) = w(

√
t)/

√
t on (0, a2),

(11) I(g;w1) =

∫ a2

0

g(t)w1(t) dt =

m∑
k=1

B
(m)
k g(τ

(m)
k ) +RGC

m (g;w1),

with the nodes 0 < τ
(m)
1 < · · · < τ

(m)
m < a2 and the corresponding weight co-

efficients B
(m)
k (k = 1, . . . ,m). The remainder term RGC

m (g;w1) = 0 for each
g ∈ P2m−1.

Proposition 3.1. The nodes τ
(m)
k (k = 1, . . . ,m) in the formula (11), that is, the

zeros of the polynomial pm(t) in (9), are the eigenvalues of the Jacobi matrix

Jm(w1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1

√
β1β2 O

√
β1β2 β2 + β3

√
β3β4

√
β3β4 β4 + β5

. . .

. . .
. . .

√
β2m−3β2m−2

O
√
β2m−3β2m−2 β2m−2 + β2m−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where βk are the same values as in (2). Also, the weight coefficients B
(m)
k are

given by B
(m)
k = β0v

2
k,1, where vk,1 is the first component of the eigenvector vk (=

[vk,1 . . . vk,m]T) corresponding to the eigenvalue τ
(m)
k and normalized such that

vT
k vk = 1.

3.2. Gauss-Radau quadrature formula with the weight w1(t)

The (m+1)-point Gauss-Radau quadrature formula with respect to the same

weight function w1(t) as before and the new nodes 0 = θ
(m)
0 < θ

(m)
1 < · · · < θ

(m)
m <

a2 and weight coefficients C
(m)
k are given by

(12) I(g;w1) =

∫ a2

0

g(t)w1(t) dt = C
(m)
0 g(0) +

m∑
k=1

C
(m)
k g(θ

(m)
k ) +RGR

m+1(g;w1).

It is clear that RGR
m+1(g;w1) = 0 for each g ∈ P2m.
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In order to construct the formula (12), we need to introduce a function h,
g(t) = g(0) + th(t), to get

I(g;w1) = g(0)

∫ a2

0

w1(t) dt+

∫ a2

0

h(t) t w1(t) dt.

This means that

(13) I(g;w1) = β0g(0) +

∫ a2

0

h(t)w2(t) dt = β0g(0) + I(h;w2),

because w2(t) = tw1(t) according to (7) and (8). To compute the integral I(h;w2)
we can directly construct the Gauss-Christoffel rule with respect to the second
weight function w2(t) =

√
t w(

√
t) on (0, a2) as

(14) I(h;w2) =

∫ a2

0

h(t)w2(t) dt =

m∑
k=1

D
(m)
k h(θ

(m)
k ) +RGC

m (h;w2),

where 0 < θ
(m)
1 < · · · < θ

(m)
m < a2 and D

(m)
k are the corresponding weight coeffi-

cients. Note in (14) that the remainder term RGC
m (h;w2) = 0 for each h ∈ P2m−1.

Thus, by noting (13) and (14) we first get

I(g;w1) = β0g(0) +
m∑

k=1

D
(m)
k h(θ

(m)
k ) +RGC

m (h;w2)

= β0g(0) +

m∑
k=1

D
(m)
k

g(θ
(m)
k )− g(0)

θ
(m)
k

+RGC
m (h;w2)

=

(
β0 −

m∑
k=1

D
(m)
k

θ
(m)
k

)
g(0) +

m∑
k=1

D
(m)
k

θ
(m)
k

g(θ
(m)
k ) +RGC

m (h;w2),

and then comparing this with (12), the weight coefficients of the Gauss-Radau
quadrature (12) are

(15) C
(m)
0 = β0 −

m∑
k=1

D
(m)
k

θ
(m)
k

, C
(m)
k =

D
(m)
k

θ
(m)
k

(k = 1, . . . ,m),

and RGR
m+1(g;w1) = RGC

m (h;w2) for h(t) = (g(t) − g(0))/t. This means that the
nodes of the Gauss-Radau quadrature rule with respect to the weight function
w1(t) are in fact the nodes of the Gauss-Christoffel formula with respect to the
weight function w2(t) = t w1(t) on (0, a2).

Proposition 3.2. The nodes θ
(m)
k (k = 1, . . . ,m) in the formula (12), that is, the
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zeros of the polynomial qm(t) in (10), are the eigenvalues of the Jacobi matrix

Jm(w2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1 + β2

√
β2β3 O

√
β2β3 β3 + β4

√
β4β5

√
β4β5 β5 + β6

. . .

. . .
. . .

√
β2m−2β2m−1

O
√
β2m−2β2m−1 β2m−1 + β2m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

where βk are the same values as in (2) and the weight coefficients C
(m)
k are given

by (15), where D
(m)
k is determined by the first component vk,1 of the normalized

eigenvector vk (= [vk,1 . . . vk,m]T) of the Jacobi matrix Jm(w2) corresponding to

the eigenvalue θ
(m)
k , i.e., D

(m)
k = β0β1v

2
k,1, k = 1, . . . ,m.

Remark 3.3. The quadratures (11) and (12) can be related to the basic quadrature
(1), which allows a much simpler construction of these symmetric quadratures given
in form

(16)

∫ a

−a

f(x)w(x) dx = Qn(f ;w) +Rn(f ;w),

where Qn(f ;w) is defined by (4). If we have the recursion coefficients βk in the
explicit form, in our construction we use Proposition 3.1 for even n and Proposi-
tion 3.2 for odd n. However, in the case of strong nonclassical weights, we first
numerically construct the recursion coefficients aν and bν in (9), and cν and dν in
(10), and then the Jacobi matrices Jm(w1) and Jm(w2) are given by

Jm(w1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
√
b1 O

√
b1 a1

√
b2

√
b2 a2

. . .

. . .
. . .

√
bm−1

O
√
bm−1 am−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

Jm(w2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0
√
d1 O

√
d1 c1

√
d2

√
d2 c2

. . .

. . .
. . .

√
dm−1

O
√
dm−1 cm−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Corollary 3.4. The positive nodes x
(n)
k of the symmetric quadrature rule (16)

are given by x
(n)
k =

√
τ
(m)
k (n = 2m) and x

(n)
k =

√
θ
(m)
k (n = 2m + 1), and the

corresponding weight coefficients by

1◦ A
(n)
k =

1

2
B

(m)
k (k = 1, . . . ,m) for even n = 2m,

and

2◦ A
(n)
0 = C

(m)
0 , A

(n)
k =

1

2
C

(m)
k (k = 1, . . . ,m) for odd n = 2m+ 1,

where τ
(m)
k and B

(m)
k and θ

(m)
k and C

(m)
k are defined in Propositions 3.1 and 3.2,

respectively.

Corollary 3.5. Let f : (−a, a) → R be an even function and ϕ1 : (0, a2) → R and

ϕ2 : (0, a2) → R be defined by (7) and (8) respectively. The remainder term in (16)
is given by

Rn(f ;w) =

{
RGC

m (ϕ1;w1) n = 2m,

RGC
m (ϕ2;w2) n = 2m+ 1,

where RGC
m ( · ;wν) is the remainder term of the Gauss-Christoffel rule with respect

to the weight function wν (ν = 1, 2) on (0, a2).

Remark 3.4. Some fast variants of the Golub-Welsch algorithm for symmetric
weight functions in Matlab have been considered in [13], including numerical
experiments with Gegenbauer and Hermite weight functions.

4. GAUSSIAN RULES RELATED TO THE POLLACZEK WEIGHT

Recently De Bonis, Mastroianni, and Notarangelo [5] have considered Gaus-

sian quadrature rules with respect to the Pollaczek-type weightw(x;λ) = e−(1−x2)−λ

,
λ > 0, on (−1, 1) in order to evaluate integrals of the form

(17) I(f ;λ) =

∫ 1

−1

f(x)e−(1−x2)−λ

dx,

where f is a Riemann integrable function, in particular, f can increase exponen-
tially at the endpoints ±1. Also, their rule is useful for approximating integrals of
functions that decay exponentially at ±1 (e.g., when f is bounded or has a slower
growth than exponential at the endpoints).

In [5], the authors use the first 2n moments

μk =

∫ 1

−1

xkw(x;λ) dx, k = 0, 1, . . . , 2n− 1,

in order to construct the first n recursive coefficients and the corresponding Gaus-
sian quadratures with ≤ n nodes, by the package OrthogonalPolynomials ([1]),
which is downloadable from the web site http://www.mi.sanu.ac.rs/~gvm/.

141



186 Mohammad Masjed-Jamei, Gradimir V. Milovanović

Since w(x;λ) is even on (−1, 1), in our construction, we can use the following
weight functions on (0, 1)

(18) w1(t;λ) =
e−(1−t)−λ

√
t

and w2(t;λ) =
√
t e−(1−t)−λ

.

The weight functions x �→ w(x;λ) on (−1, 1) and x �→ w1(x;λ) on (0, 1) for λ =
1/10, λ = 1/2 and λ = 10 are displayed in Fig. 1, left and right, respectively. Note

Figure 1: The weight functions w(x;λ) = e−(1−x2)−λ

(left) and w1(x;λ) (right) for
three parameters λ = 1/10, λ = 1/2 and λ = 10.

that for a very small value of λ, the weight x �→ w(x;λ) is very close to a constant
value (Legendre weight) in (−1, 1) and tends exponentially to zero at the endponts
±1.

According to results of Section 3, to construct Gaussian quadrature rules with
respect to the weight w on (−1, 1), for n (or less) nodes, we need the corresponding
Gaussian quadrature rules with respect to the weight function w1 (and w2) on
(0, 1), but only for [n/2] nodes. Thus, if we want to construct the quadrature sum
Qn(f ;w) for even number of nodes ≤ n (= 2m), we should first compute the first
m coefficients aν and bν for ν = 0, 1, . . . ,m− 1 (see Remark 3.3), starting with the
first 2m moments with respect to the weight function w1, i.e.,

μ
(1)
k (λ) =

∫ 1

0

tk−1/2e−(1−t)−λ

dt, k = 0, 1, . . . , 2m− 1.

As an illustration, we take m = 25 (i.e., n = 50) and λ = 10. In this case,

with the moments μ
(1)
k (10), k = 0, 1, . . . , 49, calculated with WorkingPrecision ->

80, using Mathematica package OrthogonalPolynomials (see [1, 17]), we get
the first 25 recursive coefficients aν and bν with maximal relative error less than
3.30× 10−60.

These coefficients enable us to establish the Gaussian quadrature rules (11)
for each m ≤ 25, i.e., the symmetric quadratures (16) on (−1, 1) for each even
n = 2m ≤ 50, according to Corollary 3.4.
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Example 4.1. For a given function f , defined on (−1, 1) by

(19) f(x) =
3e

− 1√
1−x2 − 2 sin(3x)− x2

(1− x2)
2 ,

we consider the integral I(f ;λ) (with respect to the Pollaczek weight function),
given by (17). For λ = 1/2 and λ = 10, the corresponding values are

I
(
f ; 1

2

)
= −0.1008535784477012537049661323701106088715102790788130235270 . . .

I(f ; 10) = 0.18289521923348319938801221433094240150942326723262931505276 . . . ,

obtained in Mathematica with WorkingPrecision -> 60. Graphics of the func-
tion (19) and the corresponding integrands in (17) are presented in Fig. 2 and
Fig. 3, respectively.

Figure 2: Graphic of the function x �→ f(x) given by (19)

Figure 3: Integrand in I(f ;λ) for λ = 1/2 (left) and λ = 10 (right)

Now, let us apply Gauss-Pollaczek quadrature rule with n = 10(10)50 nodes
to the integral I(f ;λ) and compare the results by ones obtained by the standard
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Gauss-Legendre rules. Here, Qn(f ;w) denotes the Gauss-Pollaczek quadrature sum
defined by (4), and rPn (f ;λ) shows their relative errors,

rPn (f ;λ) =

∣∣∣∣Qn(f ;w) − I(f ;λ)

I(f ;λ)

∣∣∣∣.
Relative errors for λ = 1/2 and λ = 10 are given in Table 1. Numbers in paren-

Table 1: Relative errors in quadrature sums when n = 10(10)50
n rPn (f ; 1/2) rLn (f ; 1/2) rPn (f ; 10) rLn (f ; 10)
10 1.66 1.01 4.32(−13) 3.52(−2)
20 2.38(−1) 1.43(−1) 2.94(−24) 1.21(−3)
30 4.54(−2) 1.12(−2) 5.27(−35) 1.57(−5)
40 1.04(−2) 4.87(−3) 1.86(−45) 2.93(−6)
50 2.71(−3) 7.09(−4) 1.09(−55) 1.82(−7)

theses indicate decimal exponents. The corresponding relative errors in Gauss-
Legendre sums are denoted by rLn (f ;λ). As we can see, for λ = 1/2 both quadra-
tures are slow and have similar behaviour, while for a larger λ (= 10) the advantage
of the Gauss-Pollaczek quadrature is clearly evident.

5. A CLASS OF SYMMETRIC WEIGHTS ON R

In this section, we consider symmetric quadrature rules on R which play an
important role in summation formulas of Abel-Plana type, which were intensively
studied by Germund Dahlquist [2, 3, 4] (also see Milovanović [14, 16]). Such rules
can be constructed in a simpler way if the corresponding formulas on R

+ are first
constructed. By noting the results of Sections 2 and 3, instead of the polynomials
πn orthogonal with respect to x �→ w(x) on R, we need the polynomials pν and
qν , given by the recurrence relations (9) and (10), respectively. In other words, the
recursive coefficients {aν} and {bν} for polynomials orthogonal with respect to the
weight function t �→ w(

√
t)/

√
t on R+, as well as the coefficients {cν} and {dν} for

polynomials orthogonal with respect to the weight function t �→ √
t w(

√
t) on R+

must be computed.

In the sequel, let us mention some important cases of the symmetric weight
x �→ w(x) on R.

1◦ In [12, p. 159] three interesting even weight functions on R are given, for
which the recurrence coefficients βk in (2) are known explicitly. They are respec-
tively known as the Abel weight

w(x) = wA(x) =
x

eπx − e−πx
=

x

2 sinh(πx)
,

the Lindelöf weight

w(x) = wL(x) =
1

eπx + e−πx
=

1

2 cosh(πx)
,
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and the logistic weight

w(x) = wlog(x) =
e−πx

(1 + e−πx)2
.

The corresponding recurrence coefficients are

βA
k =

k(k + 1)

4
, βL

k =
k2

4
and βlog

k =
k4

4k2 − 1
(k = 1, 2, . . .),

with βA
0 = 1/4, βL

0 = 1/2 and βlog
0 = 1/π.

We mention also that wlog(x) = [wL(x/2)]2.

For these weight functions, in the sequel we give the recurrence coefficients in
(9) and (10) for polynomials orthogonal on (0,∞) with respect to t �→ w(

√
t)/

√
t

and t �→ w(
√
t)
√
t, respectively.

(i) In the Abel case we compute these coefficients as

aAν =
(2ν + 1)2

2
(ν ∈ N0), bA0 =

1

4
, bAν =

ν2(4ν2 − 1)

4
(ν ∈ N);

cAν = 2(ν + 1)2 (ν ∈ N0), dA0 =
1

8
, dAν =

ν(ν + 1)(2ν + 1)2

4
(ν ∈ N).

(ii) Similarly in the Lindelöf case the corresponding coefficients are

aLν =
8ν2 + 4ν + 1

4
(ν ∈ N0), bL0 =

1

2
, bAν =

ν2(4ν2 − 1)

4
(ν ∈ N);

cLν =
8ν2 + 12ν + 5

4
(ν ∈ N0), dL0 =

1

8
, dLν =

ν2(2ν + 1)2

4
(ν ∈ N).

(iii) Finally, in the case of the logistic weight the recurrence coefficients in (9)
are

alogν =
32ν4 + 32ν3 + 8ν2 − 1

(4ν − 1)(4ν + 3)
(ν ∈ N0),

blog0 =
1

π
, blogν =

16ν4(2ν − 1)4

(4ν − 3)(4ν − 1)2(4ν + 1)
(ν ∈ N),

and in (10) they are

clogν =
32ν4 + 96ν3 + 104ν2 + 48ν + 7

16ν2 + 24ν + 5
(ν ∈ N0),

dlog0 =
1

3π
, dlogν =

16ν4(2ν + 1)4

(4ν − 1)(4ν + 1)2(4ν + 3)
(ν ∈ N).

The first two weight functions appear in the so-called Abel-Plana summation
formulas (cf. [16]). For example, under certain conditions for an analytic function
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f in the complex plane, the finite sum Sn,m(f) =
n∑

k=m

(−1)kf(k) can be obtained

from the Abel summation formula

Sn,m(f) =
1

2

(
(−1)mf(m) + (−1)nf(n+ 1)

)− ∫
R

h(x;m,n)wA(x) dx,

where

h(x;m,n) = (−1)m
f(m+ ix)− f(m− ix)

2ix
+ (−1)n

f(n+ 1 + ix)− f(n+ 1− ix)

2ix
.

2◦ For other weight functions which also appear in summation formulas, since
the explicit expressions of the coefficients βk are not known, using the Mathe-

matica package OrthogonalPolynomials (see [1, 17]) enables us to obtain βk in
rational forms.

For instance, consider the Plana weight function

w(x) = wP (x) =
|x|

e|2πx| − 1
,

which appears in the so-called Plana summation formula (cf. [19], [14])

Tm,n(f)−
∫ n

m

f(x) dx =

∫
R

g(x;m,n)wP (x) dx

for the composite trapezoidal sum

Tm,n(f) =

n∑
k=m

′′

f(k) =
1

2
f(m) +

n−1∑
k=m+1

f(k) +
1

2
f(n),

where

(20) g(x;m,n) =
f(n+ ix)− f(n− ix)

2ix
− f(m+ ix) − f(m− ix)

2ix
.

This formula holds for analytic functions in the strip Ωm,n =
{
z ∈ C : m ≤

Re z ≤ n
}
, such that ∫ +∞

0

|f(x+ iy)− f(x− iy)|e−|2πy| dy

exists, and lim
|y|→+∞

e−|2πy||f(x ± iy)| = 0 uniformly in x, for every m ≤ x ≤ n

(m,n ∈ N, m < n).
Using the package OrthogonalPolynomials, we can obtain the sequence of

coefficients {βP
k }k≥0 in rational forms as

βP

0
=

1

12
, βP

1
=

1

10
, βP

2
=

79

210
, βP

3
=

1205

1659
, βP

4
=

262445

209429
, βP

5
=

33461119209

18089284070
,

βP

6
=

361969913862291

137627660760070
, βP

7
=

85170013927511392430

24523312685049374477
, etc.
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When k increases, these values are becoming more complicated (see [16]).

The corresponding weights for polynomials pν and qν on R+ are

(21) w1(t) = wP
1 (t) =

1

e2π
√
t − 1

and w2(t) = wP
2 (t) =

t

e2π
√
t − 1

,

respectively. It is interesting to mention that at the Helsinki International Congress
of Mathematicians (1978), Nikishin [18] pointed out the importance of some classes
of orthogonal polynomials different from classical ones. In particular, he proposed
obtaining explicit forms of polynomials (if possible) orthogonal with respect to the
weight function wP

1 .

Taking the moments

μP
1,ν =

∫ +∞

0

tνwP
1 (t) dt =

(2ν + 1)!ζ(2ν + 2)

22ν+1π2ν+2
, ν = 0, 1, . . . , 2m− 1,

and

μP
2,ν =

∫ +∞

0

tνwP
2 (t) dt = μP

1,ν+1

(2ν + 3)!ζ(2ν + 4)

22ν+3π2ν+4
, ν = 0, 1, . . . , 2m− 1,

we can obtain the corresponding coefficients in (9) as

aP

0
=

1

10
, aP

1
=

871

790
, aP

2
=

1672667011

539062030
, aP

3
=

50634486717810987107

8296534235776787390
,

aP

4
=

3241115879498605269828015564949609681

320801324751624360801327631933415050
, etc.;

bP
0

=
1

12
, bP

1
=

79

2100
, bP

2
=

1312225

1441671
, bP

3
=

2491734801234609

512172182993900
,

bP
4

=
27698062380526543547153670700

1769555822315229089057426013
, etc.,

as well as in (10),

c
P

0
=

10

21
, c

P

1
=

110200

55671
, c

P

2
=

239533652610

53469214601
, c

P

3
=

31261160632702992474327200

3917478728549923835709789
,

cP
4

=
20322996172719322878237864291826792460487499568690

1628454245165190286597605307125063916376617814289
, etc.;

dP

0
=

1

120
, dP

1
=

241

882
, dP

2
=

423558471

182722826
, dP

3
=

821210997517832607

89904292554749621
,

dP

4
=

80876419660630210535853917968583415257

3206594662841751899714894730399285285
, etc.,

but their explicit expressions (for each index) remains a mystery!

Another interesting summation formula is

n∑
k=m

f(k)−
∫ n+1/2

m−1/2

f(x) dx =

∫
R

g
(
x;m− 1

2 , n+ 1
2

)
wM (x) dx,
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where the so-called midpoint weight function is defined by

w(x) = wM (x) =
|x|

e|2πx| + 1
,

and g
(
x;m− 1

2 , n+
1
2

)
by (20). As before, one can consider the polynomials pν and

qν orthogonal on R+ with respect to the weight functions

(22) w1(t) = wM
1 (t) =

1

e2π
√
t + 1

and w2(t) = wM
2 (t) =

t

e2π
√
t + 1

,

and in a similar way, one can obtain the corresponding coefficients in (9) and (10)
in the following the rational forms

aM

0
=

7

40
, aM

1
=

97153

82840
, aM

2
=

2143300949275717

675664735216120
, aM

3
=

220953557093736349691768417054261

35800501215823265013355797106040
,

a
M

4
=

13086134692539302585317174640117515705018056399360242497207

1286538803151559855777866179684631498656991773534847212200
, etc.;

bM
0

=
1

24
, bM

1
=

2071

33600
, bM

2
=

15685119025

15852295536
, bM

3
=

5895324568676150049511881

1170833101982789404702400
,

bM
4

=
919480999258696959661346213448241024976800075

57654080259790880043758405109730039860100212
, etc.;

cM
0

=
155

294
, cM

1
=

654837850

323155833
, cM

2
=

49647154589257771035

10966854047350313398
,

cM
3

=
54308858122280742671267557574002767329800

6765310743275018623908418926036774608781
,

c
M

4
=

23838072108838598641060574731766928201727321108514773479969006343251318055

1902789007849170506061772395575191790930210358707162334205873293472321134
, etc.;

dM

0
=

7

960
, dM

1
=

199849

691488
, dM

2
=

366669459296427

154646219485472
,

dM

3
=

2644652549156041551189819109731

286002885915941819991126155408
,

dM

4
=

70719511061081626527366043397565453286193455371009119954911

2782343550785232136311735142019287634629029202932721468080
, etc..

Unfortunately, we were unable to discover their explicit forms!

6. A CLASS OF SYMMETRIC WEIGHTS WITH FOUR FREE

PARAMETERS

In this section, we consider a special case of symmetric weight functions on
(−a, a) with four free parameters that covers many well-known classical weights
such as Legendre, first and second kind Chebyshev, ultraspherical, generalized ul-
traspherical, Hermite and generalized Hermite weight, i.e.,

w(x) = exp

(∫ x

c

rt2 + s

t(pt2 + q)
dt

)
= w(−x),
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where p, q, r, s are real parameters and c is a constant in (−a, a).

It is shown in [11] that a special solution of the differential equation

x2(px2+q)Φ′′
n(x)+x(rx2+s)Φ′

n(x)−
(
n(r+(n−1)p)x2+

1− (−1)n

2
s

)
Φn(x) = 0,

is the symmetric polynomial in the form

Φn(x) = Sn

(
r s
p q

∣∣∣∣ x)(23)

=

[n/2]∑
k=0

(
[n/2]

k

)⎛⎝[n/2]−(k+1)∏
i=0

(2i− (−1)n + 2 [n/2]) p+ r

(2i− (−1)n + 2) q + s

⎞⎠xn−2k,

whose monic form is given by

Ŝn(x) = Ŝn

(
r s
p q

∣∣∣∣ x) =

[n/2]−1∏
i=0

(
2i− (−1)n + 2

)
q + s(

2i− (−1)n + 2[n/2]
)
p+ r

Sn

(
r s
p q

∣∣∣∣ x).
For instance, we have

Ŝ2

(
r s
p q

∣∣∣∣ x) = x2 +
q + s

p+ r
,

Ŝ3

(
r s
p q

∣∣∣∣ x) = x3 +
3q + s

3p+ r
x ,

Ŝ4

(
r s
p q

∣∣∣∣ x) = x4 + 2
3q + s

5p+ r
x2 +

(3q + s)(q + s)

(5p+ r)(3p+ r)
,

Ŝ5

(
r s
p q

∣∣∣∣ x) = x5 + 2
5q + s

7p+ r
x3 +

(5q + s)(3q + s)

(7p+ r)(5p+ r)
x .

According to [11], the monic form of these polynomials satisfies the three-
term recurrence relation

(24) Ŝk+1(x) = xŜk(x)− βk

(
r s
p q

)
Ŝk−1(x) (k ≥ 1),

where Ŝ0(x) = 1, Ŝ1(x) = x, and

βk

(
r s
p q

)
= −pq k2 +

(
(r − 2p)q − (−1)kps

)
k + (r − 2p)s(1− (−1)k)/2

(2pk + r − p)(2pk + r − 3p)
.

This means that for the monic polynomials πk(x) = Ŝk(x), the coefficients

(25) βk = βk(p, q, r, s) = βk

(
r s
p q

)
(k ≥ 1),
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depend on four parameters p, q, r, s. Moreover, if βk(p, q, r, s) > 0, the generic form
of the orthogonality relation is as

(26)

∫ a

−a

W

(
r s
p q

∣∣∣∣ x) Ŝn

(
r s
p q

∣∣∣∣ x) Ŝk

(
r s
p q

∣∣∣∣ x) dx =
(
β0β1 · · ·βn

)
δn,k,

where

(27) W

(
r s
p q

∣∣∣∣ x) = exp

(∫ x

c

(r − 2p)t2 + s

t(pt2 + q)
dt

)
and

β0 =

∫ a

−a

W

(
r s
p q

∣∣∣∣ x) dx.

Without loss of generality, we can assume only a = 1 for finite intervals and
a = ∞ for the infinite interval.

Regarding [11], the function (px2 + q)W

(
r s
p q

∣∣∣∣ x) must vanish at x = a

in order to hold the orthogonality relation (26).

In general, there are four main sub-classes of distribution families (27) whose
probability density functions are as follows (see [11])

(28) K1W

(−2α− 2β − 2 2α
−1 1

∣∣∣∣ x) =
Γ
(
α+ β + 3

2

)
Γ
(
α+ 1

2

)
Γ(β + 1)

|x|2α(1− x2)β

for −1 ≤ x ≤ 1, and

K2W

(−2 2α
0 1

∣∣∣∣ x) =
1

Γ
(
α+ 1

2

) |x|2αe−x2

,(29)

K3W

(−2α− 2β + 2 −2α
1 1

∣∣∣∣ x) =
Γ(β)

Γ
(
β + α− 1

2

)
Γ
(−α+ 1

2

) |x|−2α

(1 + x2)
β
,(30)

K4W

(−2α+ 2 2
1 0

∣∣∣∣ x) =
1

Γ
(
α− 1

2

) |x|−2αe−1/x2

(31)

for −∞ < x < ∞, where the values {Ki}4i=1 play the normalizing constant role
in relations (28) to (31). Consequently, there are four sub-sequences of symmetric
orthogonal polynomials (23).

According to (28), if (p, q, r, s) = (−1, 1,−2α− 2β− 2, 2α) is substituted into
(23), then

Sn

(−2α− 2β − 2 2α
−1 1

∣∣∣∣ x)

=

[n/2]∑
k=0

(
[n/2]

k

) [n/2]−(k+1)∏
i=0

−2i− (2β + 2α+ 2− (−1)n + 2[n/2])

2i+ 2α+ 2− (−1)n
xn−2k,
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represents the explicit form of generalized ultraspherical polynomials (GUP). By
noting (24) and (25), the recurrence relation of monic GUP takes the form

Ŝk+1(x) = x Ŝk(x) − βk

(−2α− 2β − 2 2α
−1 1

)
Ŝk−1(x),

in which

(32) βk

(−2α− 2β − 2 2α
−1 1

)
=

(
k + (1 − (−1)k)α

) (
k + (1− (−1)k)α+ 2β

)
(2k + 2α+ 2β − 1)(2k + 2α+ 2β + 1)

.

Hence, its orthogonality relation reads as∫ 1

−1

|x|2α(1− x2)β Ŝn

(−2α− 2β − 2 2α
−1 1

∣∣∣∣ x)Ŝm

(−2α− 2β − 2 2α
−1 1

∣∣∣∣ x)dx
=

∫ 1

−1

|x|2α(1− x2)
β
dx

n∏
i=1

βi

(−2α− 2β − 2 2α
−1 1

)
δn,m,

where ∫ 1

−1

|x|2α(1− x2)
β
dx = B

(
α+

1

2
, β + 1

)
=

Γ
(
α+ 1

2

)
Γ(β + 1)

Γ
(
α+ β + 3

2

) .

The above relation shows that the constraints on the parameters α and β should
be α+ 1/2 > 0 and β + 1 > 0.

The second sub-class is the generalized Hermite polynomials

Sn

(−2 2α
0 1

∣∣∣∣ x) =

[n/2]∑
k=0

(
[n/2]

k

) [n/2]−(k+1)∏
i=0

−2

2i+ (−1)n+1 + 2 + 2α
xn−2k,

satisfying the monic recurrence relation

Ŝk+1(x) = x Ŝk(x)− βk

(−2 2α
0 1

)
Ŝk−1(x),

with

(33) βk

(−2 2α
0 1

)
=

k

2
+

1− (−1)
k

2
α,

and the orthogonality relation∫ ∞

−∞
|x|2αe−x2

Ŝn

(−2 2α
0 1

∣∣∣∣ x) Ŝm

(−2 2α
0 1

∣∣∣∣ x) dx

=

(
1

2n

n∏
i=1

(
(1− (−1)i)α + i

))
Γ
(
α+

1

2

)
δn,m,
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provided that α+1/2 > 0. According to Favard’s theorem [7, 12], if βn(p, q, r, s) >
0 holds only for a finite number of positive integers, i.e., n = 1, . . . , N , then the
related polynomials are finitely orthogonal. In this sense, there are two kinds of
classical symmetric finite orthogonal polynomials.

The first finite class is orthogonal with respect to the weight function x �→
|x|−2α(1 + x2)−β on (−∞,∞) with the initial vector (p, q, r, s) = (1, 1,−2α− 2β+
2,−2α), whose explicit form is as

Ŝn

(−2α− 2β + 2 −2α
1 1

∣∣∣∣ x)

=

[n/2]∑
k=0

(
[n/2]

k

) [n/2]−(k+1)∏
i=0

2i+ 2[n/2] + (−1)n+1 + 2− 2α− 2b

2i+ (−1)n+1 + 2− 2α
xn−2k,

and satisfies the recurrence relation (24) with

(34) βk

(−2α− 2β + 2 −2α
1 1

)
= −

[
k − α+ (−1)kα

] (
k − (1− (−1)k)α− 2β

)
(2k − 2α− 2β + 1)(2k − 2α− 2β − 1)

.

Hence, its orthogonality relation takes the form∫ ∞

−∞

|x|−2α

(1 + x2)β
Ŝn

(−2α− 2β + 2 −2α
1 1

∣∣∣∣ x) Ŝm

(−2α− 2β + 2 −2α
1 1

∣∣∣∣ x) dx

=
n∏

i=1

βi

(−2α− 2β + 2 −2α
1 1

)
Γ
(
β + α− 1

2

)
Γ
(−α+ 1

2

)
Γ(β)

δn,m,

if and only if

βn

(−2α− 2β + 2 −2α
1 1

)
> 0; β + α >

1

2
, α <

1

2
and β > 0.

In other words, the finite polynomial set {Sn(1, 1,−2α− 2β + 2,−2α ;x)}n=N
n=0 is

orthogonal with respect to the weight function |x|−2α(1 + x2)−β on (−∞,∞) if
and only if N ≤ α+ β − 1/2, α < 1/2 and β > 0.

Similarly, the second finite class is orthogonal with respect to the weight
x �→ |x|−2αe−1/x2

on (−∞,∞) with the initial vector (p, q, r, s) = (1, 0,−2α+2, 2),
whose explicit form is as

Ŝn

(−2α+ 2 2
1 0

∣∣∣∣ x) =

[n/2]∑
k=0

(
[n/2]

k

) [n/2]−(k+1)∏
i=0

(
i+
[n
2

]
− (−1)n

2
+ 1− α

)
xn−2k,

and satisfies the recurrence relation (24) with

(35) βk

(−2α+ 2 2
1 0

)
=

2(−1)
k
(k − α) + 2α

(2k − 2α+ 1)(2k − 2α− 1)
,
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and finally has the orthogonality relation∫ ∞

−∞
|x|−2αe−1/x2

Ŝn

(−2α+ 2 2
1 0

∣∣∣∣ x) Ŝm

(−2α+ 2 2
1 0

∣∣∣∣ x) dx

=

n∏
i=1

βi

(−2α+ 2 2
1 0

)
Γ
(
α− 1

2

)
δn,m,

if and only if N = max{m,n} ≤ α − 1/2. This means that the finite polynomial

set {Sn(1, 0,−2α+ 2, 2 ;x)}n=N
n=0 is orthogonal with respect to the weight function

|x|−2αe−1/x2

on (−∞,∞) if N ≤ α−1/2. The following table summarizes the main
characteristics of the four introduced sub-classes. For other symmetric orthogonal
polynomials see e.g. [9, 10].

Table 2: Four special cases of Sn(p, q, r, s;x)

Definition Weight βk

Sn

(
−2α− 2β − 2 2α

−1 1

∣∣∣∣ x
)

|x|2α(1− x2)β
(k+α−(−1)kα)(k+(1−(−1)k)α+2β)

(2k+2α+2β−1)(2k+2α+2β+1)

Sn

(
−2 2α
0 1

∣∣∣∣ x
)

|x|2αe−x2 k
2
+ 1−(−1)k

2
α

Sn

(
−2α− 2β + 2 −2α

1 1

∣∣∣∣ x
)

|x|−2α

(1 + x2)β
−
(k−α+(−1)kα)(k−(1−(−1)k)α−2β)

(2k−2α−2β+1)(2k−2α−2β−1)

Sn

(
−2α+ 2 2

1 0

∣∣∣∣ x
)

|x|−2αe−1/x2 2(−1)k(k−α)+2α
(2k−2α+1)(2k−2α−1)

In the last column of this table we give the explicit expressions for the re-
cursion coefficients βk in the three-term recurrence relation. We use them in the
construction of the corresponding Jacobi matrices.
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Summation Formulas of Euler–Maclaurin
and Abel–Plana: Old and New Results
and Applications

Gradimir V. Milovanović

Abstract Summation formulas of the Euler–Maclaurin and Abel–Plana and their
connections with several kinds of quadrature rules are studied. Besides the history
of these formulas, several of their modifications and generalizations are consid-
ered. Connections between the Euler–Maclaurin formula and basic quadrature
rules of Newton–Cotes type, as well as the composite Gauss–Legendre rule
and its Lobatto modification are presented. Besides the basic Plana summa-
tion formula a few integral modifications (the midpoint summation formula, the
Binet formula, Lindelöf formula) are introduced and analysed. Starting from the
moments of their weight functions and applying the recent MATHEMATICA package
OrthogonalPolynomials, recursive coefficients in the three-term recurrence
relation for the corresponding orthogonal polynomials are constructed, as well as
the parameters (nodes and Christoffel numbers) of the corresponding Gaussian
quadrature formula.

Keywords Summation • Euler–Maclaurin formula • Abel–Plana formula •
Gaussian quadrature formula • Orthogonal polynomial • Three-term recurrence
relation

Mathematics Subject Classification (2010): 33C45, 33C47, 41A55, 65B15,
65D30, 65D32

1 Introduction and Preliminaries

A summation formula was discovered independently by Leonhard Euler [18, 19] and
Colin Maclaurin [35] plays an important role in the broad area of numerical analysis,
analytic number theory, approximation theory, as well as in many applications in

G.V. Milovanović (�)
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other fields. This formula, today known as the Euler–Maclaurin summation formula,

nX
kD0

f .k/ D
Z n

0

f .x/ dx C 1

2
.f .0/C f .n//

C
rX

�D1

B2�
.2�/Š

�
f .2��1/.n/ � f .2��1/.0/

� C Er.f /; (1)

was published first time by Euler in 1732 (without proof) in connection with the
problem of determining the sum of the reciprocal squares,

1C 1

22
C 1

32
C � � � ; (2)

which is known as the Basel problem. The brothers Johann and Jakob Bernoulli,
Leibnitz, Stirling, etc. also dealt intensively by such a kind of problems. In modern
terminology, the sum (2) represents the zeta function of 2, where more generally

�.s/ D 1C 1

2s
C 1

3s
C � � � .s > 1/:

Although at that time the theory of infinite series was not exactly based, it was
observed a very slow convergence of this series, e.g. in order to compute directly
the sum with an accuracy of six decimal places it requires taking into account at
least a million first terms, because

1

n C 1
<

C1X
kDnC1

1

k2
<
1

n
:

Euler discovered the remarkable formula with much faster convergence

�.2/ D log2 2C
C1X
kD1

1

2k�1k2
;

and obtained the value �.2/ D 1:644944 : : : (with seven decimal digits). But the
discovery of a general summation procedure (1) enabled Euler to calculate �.2/ to
20 decimal places. For details see Gautschi [25, 26] and Varadarajan [61].

Using a generalized Newton identity for polynomials (when their degree tends to
infinity), Euler [19] proved the exact result �.2/ D �2=6. Using the same method
he determined �.s/ for even s D 2m up to 12,

�.4/ D �4

90
; �.6/ D �6

945
; �.8/ D �8

9450
; �.10/ D �10

93555
; �.12/ D 691�12

638512875
:
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Sometime later, using his own partial fraction expansion of the cotangent function,
Euler obtained the general formula

�.2�/ D .�1/��1 22��1B2�
.2�/Š

�2�;

where B2� are the Bernoulli numbers, which appear in the general Euler–Maclaurin
summation formula (1). Detailed information about Euler’s complete works can be
found in The Euler Archive ( http://eulerarchive.maa.org).

We return now to the general Euler–Maclaurin summation formula (1) which
holds for any n; r 2 N and f 2 C2rŒ0; n�. As we mentioned before this formula
was found independently by Maclaurin. While in Euler’s case the formula (1) was
applied for computing slowly converging infinite series, in the second one Maclaurin
used it to calculate integrals. A history of this formula was given by Barnes [5], and
some details can be found in [3, 8, 25, 26, 38, 61].

Bernoulli numbers Bk .B0 D 1, B1 D �1=2, B2 D 1=6, B3 D 0, B4 D �1=30,
: : :) can be expressed as values at zero of the corresponding Bernoulli polynomials,
which are defined by the generating function

text

et � 1 D
C1X
kD0

Bk.x/
tk

kŠ
:

Similarly, Euler polynomials can be introduced by

2ext

et C 1
D

C1X
kD0

Ek.x/
tk

kŠ
:

Bernoulli and Euler polynomials play a similar role in numerical analysis and
approximation theory like orthogonal polynomials. First few Bernoulli polynomi-
als are

B0.x/ D 1; B1.x/ D x � 1

2
; B2.x/ D x2 � x C 1

6
; B3.x/ D x3 � 3x2

2
C x

2
;

B4.x/ D x4 � 2x3 C x2 � 1

30
; B5.x/ D x5 � 5x4

2
C 5x3

3
� x

6
; etc.

Some interesting properties of these polynomials are

B0
n.x/ D nBn�1.x/; Bn.1 � x/ D .�1/nBn.x/;

Z 1

0

Bn.x/ dx D 0 .n 2 N/:

The error term Er.f / in (1) can be expressed in the form (cf. [8])

Er.f / D .�1/r
C1X
kD1

Z n

0

ei2�kt C e�i2�kt

.2�k/2r
f .2r/.x/ dx;
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or in the form

Er.f / D �
Z n

0

B2r.x � bxc/
.2r/Š

f .2r/.x/ dx; (3)

where bxc denotes the largest integer that is not greater than x. Supposing f 2
C2rC1Œ0; n�, after an integration by parts in (3) and recalling that the odd Bernoulli
numbers are zero, we get (cf. [28, p. 455])

Er.f / D
Z n

0

B2rC1.x � bxc/
.2r C 1/Š

f .2rC1/.x/ dx: (4)

If f 2 C2rC2Œ0; n�, using Darboux’s formula one can obtain (1), with

Er.f / D 1

.2r C 2/Š

Z 1

0

ŒB2rC2 � B2rC2.x/�
�n�1X

kD0
f .2rC2/.k C x/

�
dx (5)

(cf. Whittaker and Watson [65, p. 128]). This expression for Er.f / can be also
derived from (4), writting it in the form

Er.f / D
Z 1

0

B2rC1.x/
.2r C 1/Š

�n�1X
kD0

f .2rC1/.k C x/

�
dx

D
Z 1

0

B0
2rC2.x/

.2r C 2/Š

�n�1X
kD0

f .2rC1/.k C x/

�
dx;

and then by an integration by parts,

Er.f / D
"

B2rC2.x/
.2r C 2/Š

�n�1X
kD0

f .2rC1/.k C x/

�#1
0

�
Z 1

0

B2rC2.x/
.2r C 2/Š

�n�1X
kD0

f .2rC2/.k C x/

�
dx:

Because of B2rC2.1/ D B2rC2.0/ D B2rC2, the last expression can be represented
in the form (5).

Since

.�1/r ŒB2rC2 � B2rC2.x/� � 0; x 2 Œ0; 1�;

and Z 1

0

ŒB2rC2 � B2rC2.x/� dt D B2rC2;
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according to the Second Mean Value Theorem for Integrals, there exists � 2 .0; 1/

such that

Er.f / D B2rC2
.2r C 2/Š

�n�1X
kD0

f .2rC2/.k C �/

�
D nB2rC2
.2r C 2/Š

f .2rC2/.�/; 0 < � < n:

(6)

The Euler–Maclaurin summation formula can be considered on an arbitrary
interval .a; b/ instead of .0; n/. Namely, taking h D .b � a/=n, t D a C xh, and
f .x/ D f ..t � a/=h/ D '.t/, formula (1) reduces to

h
nX

kD0
'.a C kh/ D

Z b

a
'.t/ dt C h

2
Œ'.a/C '.b/�

C
rX

�D1

B2�h2�

.2�/Š

�
'.2��1/.b/ � '.2��1/.a/

� C Er.'/; (7)

where, according to (6),

Er.'/ D .b � a/
B2rC2h2rC2

.2r C 2/Š
'.2rC2/.�/; a < � < b: (8)

Remark 1. An approach in the estimate of the remainder term of the Euler–
Maclaurin formula was given by Ostrowski [47].

Remark 2. The Euler–Maclaurin summation formula is implemented in MATHE-
MATICA as the function NSum with option Method -> Integrate.

2 Connections Between Euler–Maclaurin Summation
Formula and Some Basic Quadrature Rules
of Newton–Cotes Type

In this section we first show a direct connection between the Euler–Maclaurin
summation formula (1) and the well-known composite trapezoidal rule,

Tnf WD
nX

kD0
00f .k/ D 1

2
f .0/C

n�1X
kD1

f .k/C 1

2
f .n/; (9)

for calculating the integral

Inf WD
Z n

0

f .x/ dx: (10)
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This rule for integrals over an arbitrary interval Œa; b� can be presented in the form

h
nX

kD0
00'.a C kh/ D

Z b

a
'.t/ dt C ET.'/; (11)

where, as before, the sign
P00 denotes summation with the first and last terms

halved, h D .b � a/=n, and ET.'/ is the remainder term.

Remark 3. In general, the sequence of the composite trapezoidal sums converges
very slowly with respect to step refinement, because of jET.'/j D O.h2/. However,
the trapezoidal rule is very attractive in numerical integration of analytic and
periodic functions, for which '.t C b � a/ D '.t/. In that case, the sequence of
trapezoidal sums

Tn.'I h/ WD h
nX

kD0
00'.a C kh/ D h

nX
kD1

'.a C kh/ (12)

converges geometrically when applied to analytic functions on periodic intervals or
the real line. A nice survey on this subject, including history of this phenomenon, has
been recently given by Trefethen and Weideman [59] (see also [64]). For example,
when ' is a .b � a/-periodic and analytic function, such that j'.z/j � M in the
half-plane Im z > �c for some c > 0, then for each n � 1, the following estimate

jET.'/j D
ˇ̌̌
Tn.'I h/ �

Z b

a
'.t/ dt

ˇ̌̌
� .b � a/M

e2�cn=.b�a/ � 1
holds. A similar result holds for integrals over R.

It is well known that there are certain types of integrals which can be transformed
(by changing the variable of integration) to a form suitable for the trapezoidal
rule. Such transformations are known as Exponential and Double Exponential
Quadrature Rules (cf. [44–46, 57, 58]). However, the use of these transformations
could introduce new singularities in the integrand and the analyticity strip may be
lost. A nice discussion concerning the error theory of the trapezoidal rule, including
several examples, has been recently given by Waldvogel [63].

Remark 4. In 1990 Rahman and Schmeisser [51] gave a specification of spaces
of functions for which the trapezoidal rule converges at a prescribed rate as n !
C1, where a correspondence is established between the speed of convergence and
regularity properties of integrands. Some examples for these spaces were provided
in [64].

In a general case, according to (1), it is clear that

Tnf � Inf D
rX

�D1

B2�
.2�/Š

�
f .2��1/.n/ � f .2��1/.0/

� C ET
r .f /; (13)

where Tnf and Inf are given by (9) and (10), respectively, and the remainder term
ET

r .f / is given by (6) for functions f 2 C2rC2Œ0; n�.
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Similarly, because of (7), the corresponding formula on the interval Œa; b� is

h
nX

kD0
00'.a C kh/ �

Z b

a
'.t/ dt D

rX
�D1

B2�h2�

.2�/Š

�
'.2��1/.b/ � '.2��1/.a/

� C ET
r .'/;

where ET
r .'/ is the corresponding remainder given by (8). Comparing this with (11)

we see that ET.'/ D ET
0 .'/.

Notice that if '.2rC2/.x/ does not change its sign on .a; b/, then ET
r .'/ has the

same sign as the first neglected term. Otherwise, when '.2rC2/.x/ is not of constant
sign on .a; b/, then it can be proved that (cf. [14, p. 299])

jET
r .'/j � h2rC2 j2B2rC2j

.2r C 2/Š

Z b

a
j'.2rC2/.t/j dt � 2

� h

2�

�2rC2 Z b

a
j'.2rC2/.t/j dt;

i.e., jET
r .'/j D O.h2rC2/. Supposing that

R C1
a j'.2rC2/.x/j dx < C1, this holds

also in the limit case as b ! C1. This limit case enables applications of the
Euler–Maclaurin formula in summation of infinite series, as well as for obtaining
asymptotic formulas for a large b.

A standard application of the Euler–Maclaurin formula is in numerical inte-
gration. Namely, for a small constant h, the trapezoidal sum can be dramatically
improved by subtracting appropriate terms with the values of derivatives at the
endpoints a and b. In such a way, the corresponding approximations of the integral
can be improved to O.h4/, O.h6/, etc.

Remark 5. Rahman and Schmeisser [52] obtained generalizations of the trapezoidal
rule and the Euler–Maclaurin formula and used them for constructing quadrature
formulas for functions of exponential type over infinite intervals using holomorphic
functions of exponential type in the right half-plane, or in a vertical strip, or in the
whole plane. They also determined conditions which equate the existence of the
improper integral to the convergence of its approximating series.

Remark 6. In this connection an interesting question can be asked. Namely, what
happens if the function ' 2 C1.R/ and its derivatives are .b � a/-periodic, i.e.,
'.2��1/.a/ D '.2��1/.b/, � D 1; 2; : : : ? The conclusion that Tn.'I h/, in this case,
must be exactly equal to

R b
a '.t/ dt is wrong, but the correct conclusion is that ET.'/

decreases faster than any finite power of h as n tends to infinity.

Remark 7. Also, the Euler–Maclaurin formula was used in getting an extrapolating
method well-known as Romberg’s integration (cf. [14, pp. 302–308 and 546–523]
and [39, pp. 158–164]).

In the sequel, we consider a quadrature sum with values of the function f at the
points x D k C 1

2
, k D 0; 1; : : : ; n � 1, i.e., the so-called midpoint rule

Mnf WD
n�1X
kD0

f
�

k C 1

2

�
:
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Also, for this rule there exists the so-called second Euler–Maclaurin summation
formula

Mnf � Inf D
rX

�D1

.21�2� � 1/B2�
.2�/Š

�
f .2��1/.n/ � f .2��1/.0/

� C EM
r .f /; (14)

for which

EM
r .f / D n

.2�1�2r � 1/B2rC2
.2r C 2/Š

f .2rC2/.�/; 0 < � < n;

when f 2 C2rC2Œ0; n� (cf. [39, p. 157]). As before, Inf is given by (10).
The both formulas, (13) and (14), can be unified as

Qnf � Inf D
rX

�D1

B2�.�/

.2�/Š

�
f .2��1/.n/ � f .2��1/.0/

� C EQ
r .f /;

where � D 0 for Qn � Tn and � D 1=2 for Qn � Mn. It is true, because of the fact
that [50, p. 765] (see also [10])

B�.0/ D B� and B�
�1
2

�
D .21�� � 1/B�:

If we take a combination of Tnf and Mnf as

Qnf D Snf D 1

3
.Tnf C 2Mnf /;

which is, in fact, the well-known classical composite Simpson rule,

Snf WD 1

3

"
1

2
f .0/C

n�1X
kD1

f .k/C 2

n�1X
kD0

f
�

k C 1

2

�
C 1

2
f .n/

#
;

we obtain

Snf � Inf D
rX

�D2

.41�� � 1/B2�
3.2�/Š

�
f .2��1/.n/ � f .2��1/.0/

� C ES
r .f /: (15)

Notice that the summation on the right-hand side in the previous equality starts with
� D 2, because the term for � D 1 vanishes. For f 2 C2rC2Œ0; n� it can be proved
that there exists � 2 .0; n/, such that

ES
r .f / D n

.4�r � 1/B2rC2
3.2r C 2/Š

f .2rC2/.�/:
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For some modification and generalizations of the Euler–Maclaurin formula, see
[2, 7, 20–22, 37, 55, 60]. In 1965 Kalinin [29] derived an analogue of the Euler–
Maclaurin formula for C1 functions, for which there is Taylor series at each positive
integer x D �,

Z b

a
f .x/ dx D

C1X
kD0

	 kC1 � .	 � 1/kC1

.k C 1/Š
hkC1

nX
�D1

f .k/.a C .� � 	/h/;

where h D .b � a/=n, and used it to find some new expansions for the gamma
function, the  function, as well as the Riemann zeta function.

Using Bernoulli and Euler polynomials, Bn.x/ and En.x/, in 1960 Keda [30]
established a quadrature formula similar to the Euler–Maclaurin,

Z 1

0

f .x/ dx D Tn C
n�1X
kD0

Ak
�
f .2kC2/.0/C f .2kC2/.1/

� C Rn;

where

Tn D 1

n

nX
kD0

00f
� k

n

�
; Ak D

2kC2X
�D1

B�E2kC3��
�Š.2k C 3 � �/Šn� .k D 0; 1; : : : ; n � 1/;

and

Rn D f .2nC2/.�/
nC1X
mD1

2B2mE2n�2mC3
.2m/Š.2n � 2m C 3/Šn2m

.0 � � � 1/

for f 2 C2nC2Œ0; 1�, where Bn D Bn.0/ and En D En.0/. The convergence of Euler–
Maclaurin quadrature formulas on a class of smooth functions was considered by
Vaskevič [62].

Some periodic analogues of the Euler–Maclaurin formula with applications to
number theory have been developed by Berndt and Schoenfeld [6]. In the last
section of [6], they showed how the composite Newton–Cotes quadrature formulas
(Simpson’s parabolic and Simpson’s three-eighths rules), as well as various other
quadratures (e.g., Weddle’s composite rule), can be derived from special cases
of their periodic Euler–Maclaurin formula, including explicit formulas for the
remainder term.
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3 Euler–Maclaurin Formula Based on the Composite
Gauss–Legendre Rule and Its Lobatto Modification

In the papers [15, 48, 56], the authors considered generalizations of the Euler–
Maclaurin formula for some particular Newton–Cotes rules, as well as for 2- and
3-point Gauss–Legendre and Lobatto formulas (see also [4, 17, 33, 34]).

Recently, we have done [40] the extensions of Euler–Maclaurin formulas by
replacing the quadrature sum Qn by the composite Gauss–Legendre shifted formula,
as well as by its Lobatto modification. In these cases, several special rules have been
obtained by using the MATHEMATICA package OrthogonalPolynomials (cf.
[9, 43]). Some details on construction of orthogonal polynomials and quadratures of
Gaussian type will be given in Sect. 5.

We denote the space of all algebraic polynomials defined on R (or some its
subset) by P, and by Pm � P the space of polynomials of degree at most m .m 2 N/.

Let w� D wG
� and �� D �G

� , � D 1; : : : ;m, be weights (Christoffel numbers) and
nodes of the Gauss–Legendre quadrature formula on Œ0; 1�,Z 1

0

f .x/ dx D
mX
�D1

wG
� f .�G

� /C RG
m.f /: (16)

Note that the nodes �� are zeros of the shifted (monic) Legendre polynomial

�m.x/ D
�2m

m

��1
Pm.2x � 1/:

Degree of its algebraic precision is d D 2m � 1, i.e., RG
m.f / D 0 for each f 2

P2m�1. The quadrature sum in (16) we denote by QG
mf , i.e.,

QG
mf D

mX
�D1

wG
� f .�G

� /:

The corresponding composite Gauss–Legendre sum for approximating the inte-
gral Inf , given by (10), can be expressed in the form

G.n/
m f D

n�1X
kD0

QG
mf .k C �/ D

mX
�D1

wG
�

n�1X
kD0

f .k C �G
� /: (17)

In the sequel we use the following expansion of a function f 2 CsŒ0; 1� in
Bernoulli polynomials for any x 2 Œ0; 1� (see Krylov [31, p. 15])

f .x/ D
Z 1

0

f .t/ dt C
s�1X
jD1

Bj.x/

jŠ

�
f .j�1/.1/ � f .j�1/.0/

� � 1

sŠ

Z 1

0

f .s/.t/Ls.x; t/ dt;

(18)
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where Ls.x; t/ D B�
s .x � t/� B�

s .x/ and B�
s .x/ is a function of period one, defined by

B�
s .x/ D Bs.x/; 0 � x < 1; B�

s .x C 1/ D B�
s .x/: (19)

Notice that B�
0 .x/ D 1, B�

1 .x/ is a discontinuous function with a jump of �1 at each
integer, and B�

s .x/, s > 1, is a continuous function.
Suppose now that f 2 C2rŒ0; n�, where r � m. Since the all nodes �� D �G

� ,
� D 1; : : : ;m, of the Gaussian rule (16) belong to .0; 1/, using the expansion (18),
with x D �� and s D 2r C 1, we have

f .��/ D I1f C
2rX

jD1

Bj.��/

jŠ

�
f .j�1/.1/ � f .j�1/.0/

�
� 1

.2r C 1/Š

Z 1

0

f .2rC1/.t/L2rC1.��; t/ dt;

where I1f D R 1
0

f .t/ dt.
Now, if we multiply it by w� D wG

� and then sum in � from 1 to m, we obtain

mX
�D1

w� f .��/ D
� mX
�D1

w�

�
I1f C

2rX
jD1

1

jŠ

� mX
�D1

w�Bj.��/

� �
f .j�1/.1/ � f .j�1/.0/

�
� 1

.2r C 1/Š

Z 1

0

f .2rC1/.t/
� mX
�D1

w�L2rC1.��; t/
�

dt;

i.e.,

QG
mf D QG

m.1/

Z 1

0

f .t/ dt C
2rX

jD1

QG
m.Bj/

jŠ

�
f .j�1/.1/ � f .j�1/.0/

� C EG
m;r.f /;

where

EG
m;r.f / D � 1

.2r C 1/Š

Z 1

0

f .2rC1/.t/QG
m .L2rC1. �; t// dt:

Since Z 1

0

Bj.x/ dx D
(
1; j D 0;

0; j � 1;

and

QG
m.Bj/ D

mX
�D1

w�Bj.��/ D
(
1; j D 0;

0; 1 � j � 2m � 1;
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because the Gauss–Legendre formula is exact for all algebraic polynomials of
degree at most 2m � 1, the previous formula becomes

QG
mf �

Z 1

0

f .t/ dt D
2rX

jD2m

QG
m.Bj/

jŠ

�
f .j�1/.1/ � f .j�1/.0/

� C EG
m;r.f /: (20)

Notice that for Gauss–Legendre nodes and the corresponding weights the
following equalities

�� C �m��C1 D 1; w� D wm��C1 > 0; � D 1; : : : ;m;

hold, as well as

w�Bj.��/C wm��C1Bj.�m��C1/ D w�Bj.��/.1C .�1/j/;

which is equal to zero for odd j. Also, if m is odd, then �.mC1/=2 D 1=2 and
Bj.1=2/ D 0 for each odd j. Thus, the quadrature sum

QG
m.Bj/ D

mX
�D1

w�Bj.��/ D 0

for odd j, so that (20) becomes

QG
mf �

Z 1

0

f .t/ dt D
rX

jDm

QG
m.B2j/

.2j/Š

�
f .2j�1/.1/ � f .2j�1/.0/

� C EG
m;r.f /: (21)

Consider now the error of the (shifted) composite Gauss–Legendre formula (17).
It is easy to see that

G.n/
m f � Inf D

n�1X
kD0

�
QG

mf .k C � / �
Z kC1

k
f .t/ dt

	

D
n�1X
kD0

�
QG

mf .k C � / �
Z 1

0

f .k C x/ dx

	
:

Then, using (21) we obtain

G.n/
m f � Inf D

n�1X
kD0

8<:
rX

jDm

QG
m.B2j/

.2j/Š

�
f .2j�1/.k C 1/ � f .2j�1/.k/

� C EG
m;r.f .k C � //

9=;
D

rX
jDm

QG
m.B2j/

.2j/Š

�
f .2j�1/.n/ � f .2j�1/.0/

� C EG
n;m;r.f /;
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where EG
n;m;r.f / is given by

EG
n;m;r.f / D � 1

.2r C 1/Š

Z 1

0

�n�1X
kD0

f .2rC1/.k C t/

�
QG

m .L2rC1. �; t// dt: (22)

Since L2rC1.x; t/ D B�
2rC1.x � t/ � B�

2rC1.x/ and

B�
2rC1.��/ D B2rC1.��/; B�

2rC1.�� � t/ D � 1

2r C 2

d

dt
B�
2rC2.�� � t/;

we have

QG
m .L2rC1. �; t// D QG

m



B�
2rC1. � � t/

� � QG
m



B�
2rC1. � /�

D � 1

2r C 2
QG

m

�
d

dt
B�
2rC2. � � t/

�
;

because QG
m .B2rC1. � // D 0. Then for (22) we get

.2r C 2/ŠEG
n;m;r.f / D

Z 1

0

�n�1X
kD0

f .2rC1/.k C t/

�
QG

m

�
d

dt
B�
2rC2. � � t/

�
dt:

By using an integration by parts, it reduces to

.2r C 2/ŠEG
n;m;r.f / D F.t/QG

m



B�
2rC2. � � t/

� ˇ̌̌1
0

�
Z 1

0

QG
m



B�
2rC2. � � t/

�
F0.t/ dt;

where F.t/ is introduced in the following way

F.t/ D
n�1X
kD0

f .2rC1/.k C t/:

Since B�
2rC2.�� � 1/ D B�

2rC2.��/ D B2rC2.��/, we have

F.t/QG
m



B�
2rC2. � � t/

� ˇ̌̌1
0

D 

F.1/ � F.0/

�
QG

m



B�
2rC2. � /�

D QG
m .B2rC2. � //

Z 1

0

F0.t/ dt;

so that

.2r C 2/ŠEG
n;m;r.f / D

Z 1

0

�
QG

m .B2rC2. � // � QG
m



B�
2rC2. � � t/

��
F0.t/ dt:
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Fig. 1 Graphs of t 7! gG
m;r.t/, r D m (solid line), r D m C1 (dashed line), and r D m C2 (dotted

line), when m D 1, m D 2 (top), and m D 3, m D 4 (bottom)

Since

gG
m;r.t/ WD .�1/r�mQG

m

�
B2rC2. � / � B�

2rC2. � � t/
�
> 0; 0 < t < 1; (23)

there exists an � 2 .0; 1/ such that

.2r C 2/ŠEG
n;m;r.f / D F0.�/

Z 1

0

QG
m

�
B2rC2. � / � B�

2rC2. � � t/
�

dt:

Typical graphs of functions t 7! gG
m;r.t/ for some selected values of r � m � 1 are

presented in Fig. 1.
Because of continuity of f .2rC2/ on Œ0; n� we conclude that there exists also � 2

.0; n/ such that F0.�/ D nf .2rC2/.�/.
Finally, because of

R 1
0

QG
m

�
B�
2rC2. � � t/

�
dt D 0, we obtain that

.2r C 2/ŠEG
n;m;r.f / D nf .2rC2/.�/

Z 1

0

QG
m ŒB2rC2. � /� dt:

In this way, we have just proved the Euler–Maclaurin formula for the com-
posite Gauss–Legendre rule (17) for approximating the integral Inf , given by (10)
(see [40]):
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Theorem 1. For n;m; r 2 N .m � r/ and f 2 C2rŒ0; n� we have

G.n/
m f � Inf D

rX
jDm

QG
m.B2j/

.2j/Š

�
f .2j�1/.n/ � f .2j�1/.0/

� C EG
n;m;r.f /; (24)

where G.n/
m f is given by (17), and QG

mB2j denotes the basic Gauss–Legendre
quadrature sum applied to the Bernoulli polynomial x 7! B2j.x/, i.e.,

QG
m.B2j/ D

mX
�D1

wG
� B2j.�

G
� / D �RG

m.B2j/; (25)

where RG
m.f / is the remainder term in (16).

If f 2 C2rC2Œ0; n�, then there exists � 2 .0; n/, such that the error term in (24)
can be expressed in the form

EG
n;m;r.f / D n

QG
m.B2rC2/
.2r C 2/Š

f .2rC2/.�/: (26)

We consider now special cases of the formula (24) for some typical values of m.
For a given m, by G.m/ we denote the sequence of coefficients which appear in the
sum on the right-hand side in (24), i.e.,

G.m/ D ˚
QG

m.B2j/
�1

jDm D ˚
QG

m.B2m/;Q
G
m.B2mC2/;QG

m.B2mC4/; : : :
�
:

These Gaussian sums we can calculate very easily by using MATHEMATICA

Package OrthogonalPolynomials (cf. [9, 43]). In the sequel we mention
cases when 1 � m � 6.

Case m D 1. Here �G
1 D 1=2 and wG

1 D 1, so that, according to (25),

QG
1 .B2j/ D B2j.1=2/ D .21�2j � 1/B2j;

and (24) reduces to (14). Thus,

G.1/ D


� 1

12
;
7

240
;� 31

1344
;
127

3840
;� 2555

33792
;
1414477

5591040
;�57337
49152

;
118518239

16711680
; : : :

�
:

Case m D 2. Here we have

�G
1 D 1

2

�
1 � 1p

3

�
; �G

2 D 1

2

�
1C 1p

3

�
and wG

1 D wG
2 D 1

2
;

so that QG
2 .B2j/ D 1

2



B2j.�

G
1 /C B2j.�

G
2 /

� D B2j.�
G
1 /. In this case, the sequence of

coefficients is

G.2/ D


� 1

180
;
1

189
;� 17

2160
;
97

5346
;� 1291411

21228480
;
16367

58320
;�243615707
142767360

; : : :

�
:
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Case m D 3. In this case

�G
1 D 1

10

�
5 � p

15
�
; �G

2 D 1

2
; �G

3 D 1

10

�
5C p

15
�

and

wG
1 D 5

18
; wG

2 D 4

9
; wG

3 D 5

18
;

so that

QG
3 .B2j/ D 5

9
B2j.�

G
1 /C 4

9
B2j.�

G
2 /

and

G.3/ D


� 1

2800
;

49

72000
;� 8771

5280000
;
4935557

873600000
;� 15066667

576000000
;
3463953717

21760000000
; : : :

�
:

Cases m D 4; 5; 6. The corresponding sequences of coefficients are

G.4/ D


� 1

44100
;

41

565950
;� 3076

11704875
;
93553

75631500
;� 453586781

60000990000
;
6885642443

117354877500
; : : :

�
;

G.5/ D

� 1

698544
;

205

29719872
;� 100297

2880541440
;

76404959

352578272256
;� 839025422533

496513166929920
; : : :

�
;

G.6/ D

� 1

11099088
;

43

70436520
;� 86221

21074606784
;

147502043

4534139665440
;� 1323863797

4200045163776
; : : :

�
:

The Euler–Maclaurin formula based on the composite Lobatto formula can be
considered in a similar way. The corresponding Gauss-Lobatto quadrature formula

Z 1

0

f .x/ dx D
mC1X
�D0

wL
� f .�L

� /C RL
m.f /; (27)

with the endnodes �0 D �L
0 D 0, �mC1 D �L

mC1 D 1, has internal nodes �� D �L
� ,

� D 1; : : : ;m, which are zeros of the shifted (monic) Jacobi polynomial,

�m.x/ D
�2m C 2

m

��1
P.1;1/m .2x � 1/;

orthogonal on the interval .0; 1/ with respect to the weight function x 7! x.1 � x/.
The algebraic degree of precision of this formula is d D 2m C 1, i.e., RL

m.f / D 0 for
each f 2 P2mC1.
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For constructing the Gauss-Lobatto formula

QL
m.f / D

mC1X
�D0

wL
� f .�L

� /; (28)

we use parameters of the corresponding Gaussian formula with respect to the weight
function x 7! x.1 � x/, i.e.,Z 1

0

g.x/x.1 � x/ dx D
mX
�D1

bwG
� g.b�G

� /C bRG
m.g/:

The nodes and weights of the Gauss-Lobatto quadrature formula (27) are (cf. [36,
pp. 330–331])

�L
0 D 0; �L

� D b�G
� .� D 1; : : : ;m/; �L

mC1 D 1;

and

wL
0 D 1

2
�

mX
�D1

bwG
�b�G
�

; wL
� D bwG

�b�G
� .1 �b�G

� /
.� D 1; : : : ;m/; wL

mC1 D 1

2
�

mX
�D1

bwG
�

1 �b�G
�

;

respectively. The corresponding composite rule is

L.n/m f D
n�1X
kD0

QL
mf .k C �/ D

mC1X
�D0

wL
�

n�1X
kD0

f .k C �L
� /;

D .wL
0 C wL

mC1/
n00X

kD0
f .k/C

mX
�D1

wL
�

n�1X
kD0

f .k C �L
� /: (29)

As in the Gauss–Legendre case, there exists a symmetry of nodes and
weights, i.e.,

�L
� C �L

mC1�� D 1; wL
� D wL

mC1�� > 0 � D 0; 1; : : : ;m C 1;

so that the Gauss-Lobatto quadrature sum

QL
m.Bj/ D

mC1X
�D0

wL
�Bj.�

L
� / D 0

for each odd j.
By the similar arguments as before, we can state and prove the following result.
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Theorem 2. For n;m; r 2 N .m � r/ and f 2 C2rŒ0; n� we have

L.n/m f � Inf D
rX

jDmC1

QL
m.B2j/

.2j/Š

�
f .2j�1/.n/ � f .2j�1/.0/

� C EL
n;m;r.f /; (30)

where L.n/m f is given by (29), and QL
mB2j denotes the basic Gauss-Lobatto quadrature

sum (28) applied to the Bernoulli polynomial x 7! B2j.x/, i.e.,

QL
m.B2j/ D

mC1X
�D0

wL
�B2j.�

L
� / D �RL

m.B2j/;

where RL
m.f / is the remainder term in (27).

If f 2 C2rC2Œ0; n�, then there exists � 2 .0; n/, such that the error term in (30)
can be expressed in the form

EL
n;m;r.f / D n

QL
m.B2rC2/
.2r C 2/Š

f .2rC2/.�/:

In the sequel we give the sequence of coefficients L.m/ which appear in the sum
on the right-hand side in (30), i.e.,

L.m/ D ˚
QL

m.B2j/
�1

jDmC1 D ˚
QL

m.B2mC2/;QL
m.B2mC4/;QL

m.B2mC6/; : : :
�
;

obtained by the Package OrthogonalPolynomials, for some values of m.
Case m D 0. This is a case of the standard Euler–Maclaurin formula (1), for

which �L
0 D 0 and �L

1 D 1, with wL
0 D wL

1 D 1=2. The sequence of coefficients is

L.0/ D

1

6
;� 1

30
;
1

42
;� 1

30
;
5

66
;� 691

2730
;
7

6
;�3617

510
;
43867

798
;�174611

330
;
854513

138
; : : :

�
;

which is, in fact, the sequence of Bernoulli numbers fB2jg1
jD1.

Case m D 1. In this case �L
0 D 0, �L

1 D 1=2, and �2 D 1, with the corresponding
weights wL

0 D 1=6, wL
1 D 2=3, and wL

2 D 1=6, which is, in fact, the Simpson formula
(15). The sequence of coefficients is

L.1/ D

1

120
;� 5

672
;
7

640
;� 425

16896
;
235631

2795520
;�3185
8192

;
19752437

8355840
;�958274615

52297728
; : : :

�
:

Case m D 2. Here we have

�L
0 D 0; �L

1 D 1

10
.5 � p

5/; �L
2 D 1

10
.5C p

5/; �L
3 D 1

and wL
0 D wL

3 D 1=12, wL
1 D wL

2 D 5=12, and the sequence of coefficients is

L.2/ D


1

2100
;� 1

1125
;
89

41250
;� 25003

3412500
;
3179

93750
;� 2466467

11953125
;
997365619

623437500
; : : :

�
:
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Case m D 3. Here the nodes and the weight coefficients are

�L
0 D 0; �L

1 D 1

14
.7 � p

31/; �L
2 D 1

2
; �L

3 D 1

14
.7C p

31/; �L
4 D 1

and

wL
0 D 1

20
; wL

1 D 49

180
; wL

2 D 16

45
; wL

3 D 49

180
; wL

4 D 1

20
;

respectively, and the sequence of coefficients is

L.3/ D


1

35280
;� 65

724416
;

38903

119857920
;� 236449

154893312
;
1146165227

122882027520
; : : :

�
:

Cases m D 4; 5. The corresponding sequences of coefficients are

L.4/ D


1

582120
;� 17

2063880
;

173

4167450
;� 43909

170031960
;
160705183

79815002400
;� 76876739

3960744480
; : : :

�
;

L.5/ D


1

9513504
;� 49

68999040
;

5453

1146917376
;� 671463061

17766424811520
;
1291291631

3526568534016
; : : :

�
:

Remark 8. Recently Dubeau [16] has shown that an Euler–Maclaurin like formula
can be associated with any interpolatory quadrature rule.

4 Abel–Plana Summation Formula and Some Modifications

Another important summation formula is the so-called Abel–Plana formula, but it
is not so well known like the Euler–Maclaurin formula. In 1820 Giovanni (Antonio
Amedea) Plana [49] obtained the summation formula

C1X
kD0

f .k/ �
Z C1

0

f .x/ dx D 1

2
f .0/C i

Z C1

0

f .iy/ � f .�iy/

e2�y � 1 dy; (31)

which holds for analytic functions f in ˝ D ˚
z 2 C W Re z � 0

�
which satisfy the

conditions:

1ı lim
jyj!C1

e�j2�yjjf .x ˙ iy/j D 0 uniformly in x on every finite interval,

2ı
Z C1

0

jf .x C iy/ � f .x � iy/je�j2�yj dy exists for every x � 0 and tends to zero

when x ! C1.
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This formula was also proved in 1823 by Niels Henrik Abel [1]. In addition, Abel
also proved an interesting “alternating series version”, under the same conditions,

C1X
kD0
.�1/kf .k/ D 1

2
f .0/C i

Z C1

0

f .iy/ � f .�iy/

2 sinh�y
dy: (32)

Otherwise, this formula can be obtained only from (31). Note that, by subtracting
(31) from the same formula written for the function z 7! 2f .2z/, we get (32).

For the finite sum Sn;mf D
nX

kDm

.�1/kf .k/, (32) the Abel summation formula

becomes

Sn;mf D 1

2

�
.�1/mf .m/C .�1/nf .n C 1/

�
�

Z C1

�1
�
.�1/m m.y/C .�1/n nC1.y/

�
wA.y/ dy; (33)

where the Abel weight on R and the function 
m.y/ are given by

wA.x/ D x

2 sinh�x
and 
m.y/ D f .m C iy/ � f .m � iy/

2iy
: (34)

The moments for the Abel weight can be expressed in terms of Bernoulli numbers as

�k D
8<:
0; k odd;

2kC2 � 1� .�1/k=2BkC2

k C 2
; k even:

(35)

A general Abel–Plana formula can be obtained by a contour integration in the
complex plane. Let m; n 2 N, m < n, and C."/ be a closed rectangular contour with
vertices at m ˙ ib, n ˙ ib, b > 0 (see Fig. 2), and with semicircular indentations of
radius " round m and n. Let f be an analytic function in the strip ˝m;n D ˚

z 2 C W
m � Re z � n

�
and suppose that for every m � x � n,

lim
jyj!C1

e�j2�yjjf .x ˙ iy/j D 0 uniformly in x;

and that Z C1

0

jf .x C iy/ � f .x � iy/je�j2�yj dy

exists.

176



Summation Formulas of Euler–Maclaurin and Abel–Plana 449

Fig. 2 Rectangular contour C."/

The integration Z
C."/

f .z/

e�i2�z � 1 dz;

with " ! 0 and b ! C1, leads to the Plana formula in the following form
(cf. [42])

Tm;nf �
Z n

m
f .x/ dx D

Z C1

�1



n.y/ � 
m.y/

�
wP.y/ dy; (36)

where


m.y/ D f .m C iy/ � f .m � iy/

2iy
and wP.y/ D jyj

ej2�yj � 1 : (37)

Practically, the Plana formula (36) gives the error of the composite trapezoidal
formula (like the Euler–Maclaurin formula). As we can see the formula (36) is
similar to the Euler–Maclaurin formula, with the difference that the sum of terms

B2j

.2j/Š



f .2j�1/.n/ � f .2j�1/.m/

�
replaced by an integral. Therefore, in applications this integral must be calculated
by some quadrature rule. It is natural to construct the Gaussian formula with respect
to the Plana weight function x 7! wP.x/ on R (see the next section for such a
construction).

In order to find the moments of this weight function, we note first that if k is odd,
the moments are zero, i.e.,

�k.w
P/ D

Z
R

xkwP.x/ dx D
Z
R

xk jxj
ej2�xj � 1 dx D 0:
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For even k, we have

�k.w
P/ D 2

Z C1

0

xkC1

e2�x � 1 dx D 2

.2�/kC2

Z C1

0

tkC1

et � 1 dt;

which can be exactly expressed in terms of the Riemann zeta function �.s/,

�k.w
P/ D 2.k C 1/Š�.k C 2/

.2�/kC2 D .�1/k=2 BkC2
k C 2

;

because the number k C 2 is even. Thus, in terms of Bernoulli numbers, the
moments are

�k.w
P/ D

8<: 0; k is odd;

.�1/k=2 BkC2
k C 2

; k is even:
(38)

Remark 9. By the Taylor expansion for 
m.y/ (and 
n.y/) on the right-hand side
in (36),


m.y/ D f .m C iy/ � f .m � iy/

2iy
D

C1X
jD1

.�1/j�1y2j�2

.2j � 1/Š f .2j�1/.m/;

and using the moments (38), the Plana formula (36) reduces to the Euler–Maclaurin
formula,

Tm;nf �
Z n

m
f .x/ dx D

C1X
jD1

.�1/j�1
.2j � 1/Š�2j�2.wP/



f .2j�1/.n/ � f .2j�1/.m/

�

D
C1X
jD1

B2j

.2j/Š



f .2j�1/.n/ � f .2j�1/.m/

�
;

because of �2j�2.wP/ D .�1/j�1B2j=.2j/. Note that Tm;nf is the notation for the
composite trapezoidal sum

Tm;nf WD
nX

kDm

00f .k/ D 1

2
f .m/C

n�1X
kDmC1

f .k/C 1

2
f .n/: (39)

For more details see Rahman and Schmeisser [53, 54], Dahlquist [11–13], as well
as a recent paper by Butzer, Ferreira, Schmeisser, and Stens [8].

A similar summation formula is the so-called midpoint summation formula. It
can be obtained by combining two Plana formulas for the functions z 7! f .z � 1=2/
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and z 7! f ..z C m � 1/=2/. Namely,

Tm;2n�mC2f
� z C m � 1

2

�
� Tm;nC1f

�
z � 1

2

�
D

nX
kDm

f .k/;

i.e.,

nX
kDm

f .k/ �
Z nC1=2

m�1=2
f .x/ dx D

Z C1

�1
�

m�1=2.y/ � 
nC1=2.y/

�
wM.y/ dy; (40)

where the midpoint weight function is given by

wM.x/ D wP.x/ � wP.2x/ D jxj
ej2�xj C 1

; (41)

and 
m�1=2 and 
nC1=2 are defined in (37), taking m WD m � 1=2 and m WD n C 1=2,
respectively. The moments for the midpoint weight function can be expressed also
in terms of Bernoulli numbers as

�k.w
M/ D

Z
R

xk jxj
ej2�xj C 1

dx D
8<: 0; k is odd;

.�1/k=2.1 � 2�.kC1// BkC2
k C 2

; k is even:
(42)

An interesting weight function and the corresponding summation formula can be
obtained from the Plana formula, if we integrate by parts the right side in (36) (cf.
[13]). Introducing the so-called Binet weight function y 7! wB.y/ and the function
y 7!  m.y/ by

wB.y/ D � 1

2�
log



1� e�2�jyj� and  m.y/ D f 0.m C iy/C f 0.m � iy/

2
; (43)

respectively, we see that dwB.y/= dy D �wP.y/=y and

d

dy

n�

n.y/ � 
m.y/

�
y
o

D 1

2i

d

dy

n�
f .n C iy/ � f .n � iy/

���
f .m C iy/ � f .m � iy/

�o
D  n.y/ �  m.y/;

so that Z C1

�1
�

n.y/ � 
m.y/

�
wP.y/ dy D

Z C1

�1
�

n.y/ � 
m.y/

�
.�y/ dwB.y/

D
Z C1

�1
�
 n.y/ �  m.y/

�
wB.y/ dy;
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because wB.y/ D O.e�2�jyj/ as jyj ! C1. Thus, the Binet summation formula
becomes

Tm;nf �
Z n

m
f .x/ dx D

Z C1

�1
�
 n.y/ �  m.y/

�
wB.y/ dy: (44)

Such a formula can be useful when f 0.z/ is easier to compute than f .z/.
The moments for the Binet weight can be obtained from ones for wP. Since

�k.w
P/ D

Z
R

ykwP.y/ dy D
Z
R

yk.�y/ dwB.y/ D .k C 1/�k.w
B/;

according to (38),

�k.w
B/ D

8<:
0; k is odd;

.�1/k=2 BkC2
.k C 1/.k C 2/

; k is even:
(45)

There are also several other summation formulas. For example, the Lindelöf
formula [32] for alternating series is

C1X
kDm

.�1/kf .k/ D .�1/m
Z C1

�1
f .m � 1=2C iy/

dy

2 cosh�y
; (46)

where the Lindelöf weight function is given by

wL.x/ D 1

2 cosh�y
D 1

e�x C e��x
: (47)

Here, the moments

�k.w
L/ D

Z
R

xk

e�x C e��x
dx

can be expressed in terms of the generalized Riemann zeta function z 7! �.z; a/,
defined by

�.z; a/ D
C1X
�D0
.� C a/�z:

Namely,

�k.w
L/ D

(
0; k odd;

2.4�/�k�1kŠ
�
�



k C 1; 1

4

� � � 

k C 1; 3

4

��
; k even:

(48)
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5 Construction of Orthogonal Polynomials and Gaussian
Quadratures for Weights of Abel–Plana Type

The weight functions w .2 fwP;wM;wB;wA;wLg/ which appear in the summation
formulas considered in the previous section are even functions on R. In this section
we consider the construction of (monic) orthogonal polynomials �k .� �k.wI � /
and corresponding Gaussian formulasZ

R

f .x/w.x/ dx D
nX

�D1
A� f .x�/C Rn.wI f /; (49)

with respect to the inner product .p; q/ D R
R

p.x/q.x/w.x/ dx .p; q 2 P/. We note
that Rn.wI f / � 0 for each f 2 P2n�1.

Such orthogonal polynomials f�kgk2N0 and Gaussian quadratures (49) exist
uniquely, because all the moments for these weights �k .� �k.w//, k D 0; 1; : : : ,
exist, are finite, and �0 > 0.

Because of the property .xp; q/ D .p; xq/, these (monic) orthogonal polynomials
�k satisfy the fundamental three–term recurrence relation

�kC1.x/ D x�k.x/ � ˇk�k�1.x/; k D 0; 1; : : : ; (50)

with �0.x/ D 1 and ��1.x/ D 0, where fˇkgk2N0 .D fˇk.w/gk2N0 / is a sequence
of recursion coefficients which depend on the weight w. The coefficient ˇ0 may be
arbitrary, but it is conveniently defined by ˇ0 D �0 D R

R
w.x/ dx. Note that the

coefficients ˛k in (50) are equal to zero, because the weight function w is an even
function! Therefore, the nodes in (49) are symmetrically distributed with respect to
the origin, and the weights for symmetrical nodes are equal. For odd n one node is
at zero.

A characterization of the Gaussian quadrature (49) can be done via an eigenvalue
problem for the symmetric tridiagonal Jacobi matrix (cf. [36, p. 326]),

Jn D Jn.w/ D

266666664

˛0
p
ˇ1 Op

ˇ1 ˛1
p
ˇ2p

ˇ2 ˛2
: : :

: : :
: : :

p
ˇn�1

O
p
ˇn�1 ˛n�1

377777775
;

constructed with the coefficients from the three-term recurrence relation (50) (in our
case, ˛k D 0, k D 0; 1; : : : ; n � 1).

The nodes x� are the eigenvalues of Jn and the weights A� are given by A� D
ˇ0v

2
�;1, � D 1; : : : ; n, where ˇ0 is the moment �0 D R

R
w.x/ dx, and v�;1 is the first

component of the normalized eigenvector v D Œv�;1 � � � v�;n�T (with vT
�v� D 1)
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corresponding to the eigenvalue x� ,

Jnv� D x�v�; � D 1; : : : ; n:

An efficient procedure for constructing the Gaussian quadrature rules was given
by Golub and Welsch [27], by simplifying the well-known QR algorithm, so that
only the first components of the eigenvectors are computed.

The problems are very sensitive with respect to small perturbations in the data.
Unfortunately, the recursion coefficients are known explicitly only for some

narrow classes of orthogonal polynomials, as e.g. for the classical orthogonal
polynomials (Jacobi, the generalized Laguerre, and Hermite polynomials). How-
ever, for a large class of the so-called strongly non-classical polynomials these
coefficients can be constructed numerically, but procedures are very sensitive with
respect to small perturbations in the data. Basic procedures for generating these
coefficients were developed by Walter Gautschi in the eighties of the last century
(cf. [23, 24, 36, 41]).

However, because of progress in symbolic computations and variable-precision
arithmetic, recursion coefficients can be today directly generated by using the
original Chebyshev method of moments (cf. [36, pp. 159–166]) in symbolic form
or numerically in sufficiently high precision. In this way, instability problems can
be eliminated. Respectively symbolic/variable-precision software for orthogonal
polynomials and Gaussian and similar type quadratures is available. In this regard,
the MATHEMATICA package OrthogonalPolynomials (see [9] and [43]) is
downloadable from the web site http://www.mi.sanu.ac.rs/~gvm/. Also, there is
Gautschi’s software in MATLAB (packages OPQ and SOPQ). Thus, all that is
required is a procedure for the symbolic calculation of moments or their calculation
in variable-precision arithmetic.

In our case we calculate the first 2N moments in a symbolic form (list mom),
using corresponding formulas (for example, (38) in the case of the Plana weight
wP), so that we can construct the Gaussian formula (49) for each n � N. Now,
in order to get the first N recurrence coefficients {al,be} in a symbolic form,
we apply the implemented function aChebyshevAlgorithm from the Package
OrthogonalPolynomials, which performs construction of these coefficients
using Chebyshev algorithm, with the option Algorithm->Symbolic. Thus, it
can be implemented in the MATHEMATICA package OrthogonalPolynomials
in a very simple way as

<<orthogonalPolynomials‘
mom=Table[<expression for moments>,{k,0,199}];
{al,be}=aChebyshevAlgorithm[mom,Algorithm->Symbolic]
pq[n_]:=aGaussianNodesWeights[n,al,be,

WorkingPrecision->65,Precision -> 60]
xA = Table[pq[n],{n,5,40,5}];
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where we put N D 100 and the WorkingPrecision->65 in order to obtain
very precisely quadrature parameters (nodes and weights) with Precision->60.
These parameters are calculated for n D 5.5/40, so that xA[[k]][[1]] and
xA[[k]][[2]] give lists of nodes and weights for five-point formula when k=1,
for ten-point formula when k=2, etc. Otherwise, here we can calculate the n-point
Gaussian quadrature formula for each n � N D 100.

All computations were performed in MATHEMATICA, Ver. 10.3.0, on MacBook
Pro (Retina, Mid 2012) OS X 10.11.2. The calculations are very fast. The running
time is evaluated by the function Timing in MATHEMATICA and it includes only
CPU time spent in the MATHEMATICA kernel. Such a way may give different
results on different occasions within a session, because of the use of internal system
caches. In order to generate worst-case timing results independent of previous
computations, we used also the command ClearSystemCache[], and in that
case the running time for the Plana weight function wP has been 4:2ms (calculation
of moments), 0:75 s (calculation of recursive coefficients), and 8 s (calculation
quadrature parameters for n D 5.5/40).

In the sequel we mention results for different weight functions, whose graphs are
presented in Fig. 3.

1. Abel and Lindelöf Weight Functions wA and wL These weight functions are
given by (34) and (47), and their moments by (35) and (48), respectively. It is
interesting that their corresponding coefficients in the three-term recurrence relation
(50) are known explicitly (see [36, p. 159])

ˇA
0 D �A

0 D 1

4
; ˇA

k D k.k C 1/

4
; k D 1; 2; : : : ;

and

ˇL
0 D �L

0 D 1

2
; ˇL

k D k2

4
; k D 1; 2; : : : :

Fig. 3 Graphs of the weight functions: (left) wA (solid line) and wL (dashed line); (right) wP (solid
line), wB (dashed line) and wM (dotted line)
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Thus, for these two weight functions we have recursive coefficients in the explicit
form, so that we go directly to construction quadrature parameters.

2. Plana Weight Function wP This weight function is given by (37), and the
corresponding moments by (38). Using the Package OrthogonalPolynomials
we obtain the sequence of recurrence coefficients fˇP

k gk�0 in the rational form:

ˇP
0 D 1

12
; ˇP

1 D 1

10
; ˇP

2 D 79

210
; ˇP

3 D 1205

1659
; ˇP

4 D 262445

209429
; ˇP

5 D 33461119209

18089284070
;

ˇP
6 D 361969913862291

137627660760070
; ˇP

7 D 85170013927511392430

24523312685049374477
;

ˇP
8 D 1064327215185988443814288995130

236155262756390921151239121153
;

ˇP
9 D 286789982254764757195675003870137955697117

51246435664921031688705695412342990647850
;

ˇP
10 D 15227625889136643989610717434803027240375634452808081047

2212147521291103911193549528920437912200375980011300650
;

ˇP
11 D 587943441754746283972138649821948554273878447469233852697401814148410885

71529318090286333175985287358122471724664434392542372273400541405857921
;

etc.
As we can see, the fractions are becoming more complicated, so that already ˇP

11

has the “form of complexity” f72=71g, i.e., it has 72 decimal digits in the numerator
and 71 digits in the denominator. Further terms of this sequence have the “form of
complexity” f88=87g, f106=05g, f129=128g, f152=151g, : : :, f13451=13448g.

Thus, the last term ˇP
99 has more than 13 thousand digits in its numerator and

denominator. Otherwise, its value, e.g. rounded to 60 decimal digits, is

ˇP
99 D 618:668116294139071216871819412846078447729830182674784697227:

3. Midpoint Weight Function wM This weight function is given by (41), and the
corresponding moments by (42). As in the previous case, we obtain the sequence of
recurrence coefficients fˇM

k gk�0 in the rational form:

ˇM
0 D 1

24
; ˇM

1 D 7

40
; ˇM

2 D 2071

5880
; ˇM

3 D 999245

1217748
; ˇM

4 D 21959166635

18211040276
;

ˇM
5 D 108481778600414331

55169934195679160
; ˇM

6 D 2083852396915648173441543

813782894744588335008520
;

ˇM
7 D 25698543837390957571411809266308135

7116536885169433586426285918882662
;

ˇM
8 D 202221739836050724659312728605015618097349555485

45788344599633183797631374444694817538967629598
;

ˇM
9 D 14077564493254853375144075652878384268409784777236869234539068357

2446087170499983327141705915330961521888001335934900402777402200
;
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etc. In this case, the last term ˇM
99 has slightly complicated the “form of complexity”

f16401=16398g than one in the previous case, precisely. Otherwise, its value
(rounded to 60 decimal digits) is

ˇM
99 D 619:562819405146668677971154899553589896235540274133472854031:

4. Binet Weight Function wB The moments for this weight function are given
in (38), and our Package OrthogonalPolynomials gives the sequence of
recurrence coefficients fˇB

k gk�0 in the rational form:

ˇB
0 D 1

12
; ˇB

1 D 1

30
; ˇB

2 D 53

210
; ˇB

3 D 195

371
; ˇB

4 D 22999

22737
; ˇB

5 D 29944523

19733142
;

ˇB
6 D 109535241009

48264275462
; ˇB

7 D 29404527905795295658

9769214287853155785
;

ˇB
8 D 455377030420113432210116914702

113084128923675014537885725485
;

ˇB
9 D 26370812569397719001931992945645578779849

5271244267917980801966553649147604697542
;

ˇB
10 D 152537496709054809881638897472985990866753853122697839

24274291553105128438297398108902195365373879212227726
;

ˇB
11 D 100043420063777451042472529806266909090824649341814868347109676190691

13346384670164266280033479022693768890138348905413621178450736182873
;

etc. Numerical values of coefficients ˇB
k for k D 12; : : : ; 39, rounded to 60 decimal

digits, are presented in Table 1.
For this case we give also quadrature parameters xB

� and AB
� , � D 1; : : : ; n, for n D

10 (rounded to 30 digits in order to save space). Numbers in parenthesis indicate the
decimal exponents (Table 2).
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Table 1 Numerical values of the coefficients ˇB
k , k D 12; : : : ; 39

k ˇB
k

12 9.04066023436772669953113936026048174933621963537072222675357

13 10.4893036545094822771883713045926295220972379893834049993209

14 12.2971936103862058639894371400919176597365509004516453610177

15 13.9828769539924301882597606512787300859080333154700506431789

16 16.0535514167049354697156163650062601783515764970917711361702

17 17.9766073998702775925694723076715543993147838556500117187847

18 20.3097620274416537438054147204948968937016485345196881526453

19 22.4704716399331324955179415715079221089953862901823520893038

20 25.0658465489459720291634003225063053682385176354570207084270

21 27.4644518250291336091755589826462226732286473857913864921713

22 30.3218212316730471268825993064057869944873787313809977426698

23 32.9585339299729872199940664514120882069601000999724796349878

24 36.0776989312992426451533209008554523367760033115543468301504

25 38.9527066823115557345443904104810462991593233805616588397077

26 42.3334900435769572113818539488560973399147861411953446717663

27 45.4469608500616210144241757375414510828484368311407665782656

28 49.0892031290125977081648833502750872924491998898068036677541

29 52.4412887514153373125698560469961084271478607455930155529787

30 56.3448453453418435384203659474761135421333046623523607025848

31 59.9356839071658582078525834927521121101345464090376940621335

32 64.1004227559203545279066118922379177529092202107679570943670

33 67.9301407880182211863677027451985358165225510069351193013587

34 72.3559405552117019696800529632362179107517585345562462880100

35 76.4246546268296897525850904222875264035700459112308348153069

36 81.1114032372479654848142309856834609745026942246296395824649

37 85.4192212764109726145856387173486827269888223681684704599999

38 90.3668147238641085955135745816833777807870911939721581625005

39 94.9138371000098879530762312919869274587678241868936940165561

Table 2 Gaussian quadrature parameters xB
� and AB

� , � D 1; : : : ; n, for ten-point rule

� xB
�C5 .D �xB

6��/ AB
�C5 .D AB

6��/

1 1:19026134410869931041299717296.�1/ 3:95107541334705577733788440045.�2/
2 5:98589257742219693357956162107.�1/ 2:10956883221363967243739596594.�3/
3 1:25058028819024934653033542222 4:60799503427397559669146065886.�5/
4 2:12020925569172605355904853247 2:63574272352001106479781030329.�7/
5 3:34927819645835833349223106504 1:76367377463777032308587486531.�10/
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42. Milovanović, G.V.: Methods for computation of slowly convergent series and finite sums based
on Gauss-Christoffel quadratures. Jaen J. Approx. 6, 37–68 (2014)
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Abstract A class of Fredholm integral equations of the second kind, with respect
to the exponential weight function w(x) = exp(−(x−α + xβ)), α > 0, β > 1, on
(0,+∞), is considered. The kernel k(x, y) and the function g(x) in such kind of
equations,

f (x) − μ

∫ +∞

0
k(x, y) f (y)w(y)dy = g(x), x ∈ (0,+∞),

can grow exponentially with respect to their arguments, when they approach to 0+
and/or +∞. We propose a simple and suitable Nyström-type method for solving
these equations. The study of the stability and the convergence of this numerical
method in based on our results on weighted polynomial approximation and “truncated”
Gaussian rules, recently published in Mastroianni and Notarangelo (Acta Math Hung,
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142:167–198, 2014), and Mastroianni, Milovanović and Notarangelo (IMA J Numer
Anal 34:1654–1685, 2014) respectively. Moreover, we prove a priori error estimates
and give some numerical examples. A comparison with other Nyström methods is also
included.

Keywords Fredholm integral equation · Nyström method · Weighted polynomial
approximation · Gaussian quadrature formula · Orthogonal polynomials · Truncation ·
Error estimate
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1 Introduction

The aim of this paper is to approximate the solution of integral equations of the form

f (x) − μ

∫ +∞

0
k(x, y) f (y)w(y)dy = g(x) , x ∈ (0,+∞), (1)

with the exponential weight function

w(x) = exp
[
−
( 1

xα
+ xβ

)]
, α > 0, β > 1, (2)

and the parameter μ ∈ R. The kernel (x, y) �→ k(x, y) and the function x �→ g(x)

can grow exponentially with respect to their arguments, when they approach to 0+
and/or +∞.

The weight functions similar to (2) have been considered in statistics. Following
Stoyanov [20, §7.1] we mention here a simple example with the inverse Gaussian
distribution (IG) with “easy” parameters, say (1, 1), i.e., a random variable θ ∼ IG,
with density function

w(x) =
⎧⎨
⎩

e√
2π

x−3/2 exp
[
−1

2

(
x + 1

x

)]
, if x > 0,

0, if x ≤ 0.

In terms of the modified Bessel function of the second kind, its moments can be
expressed in the form (cf. [17])

∫ +∞

0
xkw(x) dx = e

√
2

π
Kk−1/2(1), k ∈ N0.

Also, this kind of weights on (0,+∞) were appeared in a consideration on expansions
of confluent hypergeometric functions in terms of Bessel functions by Temme [21],
as well as in the so-called Laurent–Hermite–Gauss quadrature rules investigated by
Gustafson and Hagler [5] and Hagler [6].
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Fredholm integral equations on the real semiaxis 569

Integral equations of the form (1), with proper assumptions on the kernel k and the
function g, can occur in mathematical finance in computing distributions of geomet-
rical brownian motion (see [3,7,8]).

However, as far as we know, the numerical treatment of this kind of integral equa-
tions does not appear in the literature. In this paper we are going to study integral
equations of the form (1) in some suitable function space with weighted uniform met-
ric and to approximate the solution by means of a Nyström interpolant. We will prove
that this method is stable and convergent in the metric of the considered space. In order
to prove the convergence of the method we will use some recent results on polynomial
approximation with the weight w and related Gaussian quadrature rule, obtained by
the authors in [13–16].

Therefore, the results in this paper are new.
For the sake of completeness, we observe that in the weight w, given by (2), the

C∞−function exp
[−x−α

]
appears. Therefore one could think to introduce a new

kernel function k(x, y) exp
[−y−α

]
and, provided the function g fulfills some proper

assumptions, to approximate the solution of equation (1) by using a Nyström inter-
polant based on Laguerre zeros, as in [10] (see also [4,9,11]). In Sect. 4 we will show
that this procedure is in general more expensive and less precise. This fact is also one
of the motivations of this paper.

The paper is structured as follows. In Sect. 2 we recall some basic facts and give
some preliminary results. In Sect. 3 we introduce our numerical method and prove the
main results. In Sect. 4 we will compare our method with the one based on Laguerre
zeros. Finally, in Sect. 5 we show some numerical examples.

2 Basic facts and preliminary results

In the sequel c, C will stand for positive constants which can assume different values in
each formula and we shall write C �= C(a, b, . . .) when C is independent of a, b, . . ..
Furthermore A ∼ B will mean that if A and B are positive quantities depending
on some parameters, then there exists a positive constant C independent of these
parameters such that (A/B)±1 ≤ C.

Moreover, the symbols ‖·‖I and ‖·‖ will denote the uniform norm in some interval
I and in (0,+∞), respectively.

Finally, we will denote by Pm the set of all algebraic polynomials of degree at most
m. As usual N, Z, R, will stand for the sets of all natural, integer, real numbers, while
Z

+ and R
+ denote the sets of positive integer and positive real numbers, respectively.

2.1 Function spaces with weighted uniform metric

Letting

u(x) = (1 + x)δ
√

w(x) , δ >
1

2
, (3)
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where

w(x) = e−(x−α+xβ
)
, α > 0, β > 1 ,

x ∈ (0,+∞), we introduce the function space

Cu :=
{

f ∈ C0(0,+∞) : lim
x→0+ f (x)u(x) = 0 = lim

x→+∞ f (x)u(x)

}
, (4)

with the norm

‖ f ‖Cu := ‖ f u‖ = sup
x∈(0,+∞)

| f (x)u(x)| .

We emphasize that the space Cu contains functions, defined on the real semiaxis
(0,+∞), which can grow exponentially both for x → 0+ and for x → +∞. More-
over, Cu is a Banach space.

For 1 ≤ r ∈ Z, we define the Sobolev-type spaces

Wr = W ∞
r (u) =

{
f ∈ Cu : f (r−1) ∈ AC(0,+∞), ‖ f (r)ϕr u‖ < ∞

}
,

with the norm

‖ f ‖Wr = ‖ f u‖ + ‖ f (r)ϕr u‖ ,

ϕ(x) = √
x .

In order to define further function spaces, we introduce the following moduli of
smoothness. For each f ∈ Cu r ≥ 1 and 0 < t < t0, we set

Ωr
ϕ( f, t)u = sup

0<h≤t

∥∥∥Δr
hϕ ( f ) u

∥∥∥Ih(c)
,

where

Ih(c) =
[
h1/(α+1/2),

c

h1/(β−1/2)

]
,

c > 1 is a fixed constant, and

Δr
hϕ f (x) =

r∑
i=0

(−1)i
(

r

i

)
f (x + (r − i)hϕ(x)) , ϕ(x) = √

x .

We remark that the behavior of this modulus of smoothness is independent on the
constant c (see [14]).
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Then we define the complete r th modulus of smoothness by

ωr
ϕ( f, t)u = Ωr

ϕ( f, t)u + inf
q∈Pr−1

‖( f − q) u‖(0,t2/(2α+1)]

+ inf
q∈Pr−1

‖( f − q) u‖[c t−2/(2β−1),+∞),

with c > 1 a fixed constant.
For any f ∈ Wr , r ≥ 1 and t < t0, we have (see [14])

Ωr
ϕ( f, t)u ≤ C inf

0<h≤t
hr‖ f (r)ϕr u‖Ih(c) , (5)

where C is independent of f and t .
By means of the main part of the modulus of smoothness, we can define the

Zygmund-type spaces

Zs := Z∞
s,r (u) = { f ∈ Cu : Ms( f ) < ∞} ,

where

Ms( f ) := sup
t>0

Ωr
ϕ( f, t)u

ts
, r > s , s ∈ R

+ ,

with the norm

‖ f ‖Zs = ‖ f ‖L p
u

+ Ms( f ) .

We remark that, in the definition of Zs , the main part of the r th modulus of smoothness
Ωr

ϕ( f, t)u can be replaced by the complete modulus ωr
ϕ( f, t)u , as shown in [14].

2.2 Weighted polynomial approximation

Let us denote by

Em( f )u = inf
P∈Pm

‖( f − P) u‖p

the error of best weighted polynomial approximation of a function f ∈ Cu .
The following Jackson, weak Jackson and Stechkin inequalities have been proved

in [14].

Theorem 1 For any f ∈ Cu and m > r ≥ 1, we have

Em( f )u ≤ C ωr
ϕ

(
f,

√
am

m

)
u

,
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where am ∼ m1/β . Moreover, assuming Ωr
ϕ( f, t)u t−1 ∈ L1[0, 1],

Em( f )u ≤ C
∫ √

am/m

0

Ωr
ϕ( f, t)u

t
dt , r < m .

Finally, for any f ∈ Cu we get

ωr
ϕ

(
f,

√
am

m

)
u

≤ C
(√

am

m

)r m∑
i=0

(
i√
ai

)r Ei ( f )u

i + 1
.

In any case C is independent of m and f .

In particular, by Theorem 1 and (5), for any f ∈ Wr we get

Em( f )u ≤ C
(√

am

m

)r

‖ f (r)ϕr u‖ (6)

and, for any f ∈ Zs , we have

Em( f )u ≤ C
(√

am

m

)s

Ms( f ) . (7)

Moreover, the following equivalences (see [14])

f ∈ Cu ⇔ lim
t→0

ωϕ( f, t)u = 0 ⇔ lim
m→∞ Em( f )u = 0 (8)

will be useful in the sequel.

2.3 Gaussian rules

Let {pm(w)}m be the sequence of orthonormal polynomials related to w(x) =
e−x−α−xβ

. The zeros of pm(w) are located as follows

εm < x1 < x2 < · · · < xm < am ,

where the Mhaskar–Rahmanov–Saff numbers am and εm fulfill am ∼ m1/β and εm ∼(√
am/m

)2/(2α+1).
For any continuous function f the Gaussian rule related to the weight w is given

by

∫ +∞

0
f (x)w(x) dx =

m∑
k=1

λk(w) f (xk) + em ( f ) , (9)

where xk are the zeros of pm(w) and λk(w) are the Christoffel numbers.
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In order to introduce our numerical method for solving Eq. (1), we are going to
consider a “truncated” gaussian rule. Fixed θ ∈ (0, 1), we define two indexes j1 =
j1(m) and j2 = j2(m) as

εm < εθm ≤ x j1 < · · · < x j2 ≤ aθm < am .

To be more precise, with θ ∈ (0, 1), j1 and j2 are such that

x j1 = max
1≤k≤m

{xk : xk ≤ εθm} , x j2 = min
1≤k≤m

{xk : xk ≥ aθm} , (10)

and, if {xk : xk ≤ εθm} or {xk : xk ≥ aθm} is empty, we set x j1 = x1 or x j2 = xm ,
respectively.

Then we consider the following “truncated” Gaussian rule

∫ +∞

0
f (x)w(x) dx =

j2∑
i= j1

λi (w) f (xi ) + e∗
m( f ) (11)

and for any f ∈ Cu2 we have (see [15])

∣∣e∗
m( f )

∣∣ ≤ C
{

EM ( f )u2 + e−cmν
∥∥∥ f u2

∥∥∥} , (12)

where

M =
⌊(

θ

θ + 1

)
m

⌋
, ν =

(
1 − 1

2β

)
2α

2α + 1
, C �= C(m, f ), and c �= c(m, f ).

In particular, recalling the results in Sect. 2.2, for any f ∈ Wr (u2), we get

∣∣e∗
m( f )

∣∣ ≤ C
(√

am

m

)r

‖ f ‖Wr (u2)

and, for any f ∈ Zs(u2), we have

∣∣e∗
m( f )

∣∣ ≤ C
(√

am

m

)s

‖ f ‖Zs (u2) .

2.4 Compactness of linear operators in Cu

Let A : Cu → Cu be a linear operator. Then, following the Hausdorff definition, A is
compact in Cu if and only if the limit condition

lim
m→∞ sup

‖ f ‖Cu =1
Em(A f )u = 0 (13)
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holds. Taking into account (8), condition (13) can be rewritten in terms of moduli of
smoothness (see [22, pp. 44, 93–94]) as follows

lim
t→0

sup
‖ f ‖Cu =1

ωϕ(A f, t)u = 0 .

Coming back to Eq. (1), let us consider the operator K defined by

(K f )(x) = μ

∫ +∞

0
k(x, y) f (y)w(y)dy , x ∈ (0,+∞) . (14)

Then, letting k(x, y) = ky(x) = kx (y), since

ωϕ(K f, t)u ≤ |μ|‖ f u‖ sup
y∈(0,+∞)

ωϕ(ky, t)uu(y)

∫ +∞

0

dy

(1 + y)2δ
,

if

u(y)ky ∈ Cu uniformly w.r.t. y, (15)

then the operator K in Cu .
In an analogous way, the sequence of operators {Am}m in Cu is collectively compact,

i.e., the set

S = {Am f ∈ Cu : m ≥ 1 and ‖ f u‖ ≤ 1}

is relatively compact in Cu , if and only if the limit condition

lim
N→∞ sup

‖ f ‖Cu =1
sup
m∈N

EN (Am f )u = 0

holds, namely if and only if

lim
t→0

sup
‖ f ‖Cu =1

sup
m∈N

ωϕ(Am f, t)u = 0 .

In particular, for the sequence of operators

(Km f ) (x) = μ

j2∑
i= j1

λi (w)k(x, xi ) f (xi ) , (16)

obtained by applying the “truncated” Gaussian rule (11) to (K f )(x) given by (14), it
is not difficult to show that the collective compactness follows from the assumption

u(x)kx ∈ Cu uniformly w.r.t. x . (17)
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3 The numerical method

Let us now introduce our numerical method for solving Eq. (1), i.e.,

f (x) − μ

∫ +∞

0
k(x, y) f (y)w(y)dy = g(x) , x ∈ (0,+∞),

where μ ∈ R,

w(y) = e−y−α−yβ

, α > 0, β > 1 ,

the given functions k and g can grow exponentially (w.r.t. x, y) when x → 0+ and/or
x → +∞. Denoting the identity operator by I and the integral operator by K , we can
rewrite this equation as

(I − K ) f = g .

With u given by (3), we are going to study the Eq. (1) in the space Cu defined
in Sect. 2.1. Under the assumptions (15), the Fredholm alternative holds true. So, if
ker(I − K ) = {0}, Eq. (1) admits unique solution f ∗ ∈ Cu for any fixed g ∈ Cu .

In order to approximate the solution of (1), we are going to use a Nyström method
based on the “truncated” Gaussian rule defined in Sect. 2.3. To this end, we introduce
the sequence of operators {Km}m ,

(Km f ) (x) = μ

j2∑
i= j1

λi (w)k(x, xi ) f (xi ) (18)

which is obtained by applying the “truncated” Gaussian rule (11) to (K f )(x) given
by (14). Then we are going to solve in Cu the equations

fm(x) − (Km fm)(x) = g(x) , m = 1, 2, . . . . (19)

Multiplying both sides of (19) by u(x), collocating at the quadrature knots and letting
ai = ( fmu)(xi ), bi = (gu)(xi ), i = j1, . . . , j2, for m = 1, 2, . . ., we obtain the linear
systems of equations

ah − μ

j2∑
i= j1

λi (w)k(xh, xi )
u(xh)

u(xi )
ai = bh, h = j1, . . . , j2,

in the unknowns ah , i.e.,

j2∑
i= j1

[
δih − μλi (w)k(xh, xi )

u(xh)

u(xi )

]
ai = bh , h = j1, . . . , j2 . (20)
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If (20) is unisolvent and (a∗
j1
, . . . , a∗

j2
)T is its solution, then, by (18) and (19) , we can

define the Nyström interpolant

f ∗
m(x) = μ

j2∑
i= j1

λi (w)

u(xi )
k(x, xi )a

∗
i + g(x) (21)

which we will be an approximation of the solution f ∗ of equation (1) in Cu-metric.
Notice that, due to the choice of the “truncated” Gaussian rule in place of the

ordinary Gaussian rule (9), the matrix of coefficients of the system of equations (20),
in notation V ( j1, j2)

m , has dimension j2 − j1 + 1 instead of m and this produces a
reduction of the computational cost.

Let us prove the stability and convergence of our method.

Theorem 2 Let u be the weight in (3). Assume

(i) u(y)ky ∈ Cu uniformly w.r.t. y;
(ii) u(x)kx ∈ Cu uniformly w.r.t. x;

(iii) g ∈ Cu.

If ker(I−K ) = {0}, the system of equations (20) is unisolvent and well-conditioned.
Moreover, f ∗

m converges to f ∗ in Cu and

∥∥( f ∗
m − f ∗) u

∥∥ ≤ C sup
x∈(0,+∞)

u(x)
{

EM
(

f ∗kx
)

u2 + e−cmν
∥∥∥ f ∗kx u2

∥∥∥} (22)

where

M =
⌊(

θ

θ + 1

)
m

⌋
, ν =

(
1 − 1

2β

)
2α

2α + 1
, C �= C(m, f ∗), c �= c(m, f ∗).

Proof As already mentioned in Sect. 2.4, from the assumption (i), i.e., (15), the
compactness of the operator K : Cu → Cu follows. So the Fredholm alternative holds
for Eq. (1) and, if ker(I − K ) = {0}, Eq. (1) admits unique solution f ∗ ∈ Cu .

Now, using (12), we have

‖(K f − Km f ) u‖ ≤ C sup
x∈(0,+∞)

{
EM ( f kx )u2 + e−cmν

∥∥∥ f kx u2
∥∥∥} , (23)

i.e., the sequence {Km}m strongly converges to the operator K .
Moreover, since {Km}m is collectively compact by (ii), i.e., (17), it follows that

lim
m

‖(K − Km)Km‖Cu→Cu = 0
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and, using [1, Theorem 4.1.1] or [19, Theorem 2.1], for m ≥ m0, the operators
(I − Km)−1 exist and

‖(I − Km)−1‖Cu→Cu ≤ 1 + ‖(I − K )−1‖Cu→Cu ‖Km‖Cu→Cu

1 − ‖(I − K )−1‖Cu→Cu ‖(K − Km)Km‖Cu→Cu

≤ C < +∞.

Then, proceeding as in [1, pp. 112–113], we deduce that the matrix V ( j1, j2)
m of the

coefficients of system (20) is well conditioned, i.e.,

cond
(

V ( j1, j2)
m

)
≤ cond(I − Km) ≤ C < ∞ , C �= C(m) .

Finally, the error estimate (22) immediately follows by (23). ��
From (22) we deduce that the order of convergence of our method depends on the

smoothness of the kernel k and the solution f ∗ of Eq. (1). Now, we want to show a
more explicit error estimate, depending on the smoothness of the known functions k
and g. In particular, from Theorem 2 we deduce the following corollary.

Corollary 1 Let the assumptions of Theorem 2 be replaced by

(a) u(y)ky ∈ Wr (u) uniformly w.r.t. y;
(b) u(x)kx ∈ Wr (u) uniformly w.r.t. x;
(c) g ∈ Wr (u).

Then, for m sufficiently large, we have

∥∥( f ∗
m − f ∗) u

∥∥ = O

((√
am

m

)r)
,

where the constants in “O” are independent of m and f ∗.

Proof We note that the assumptions on the given functions imply f ∗ ∈ Wr (u) and
then f ∗kx ∈ Wr (u2). Hence, by (22) and (6), we get (see for instance [12, Theorem
3.2])

∥∥( f ∗
m − f ∗) u

∥∥ ≤ C sup
x∈(0,+∞)

u(x)
{

EM
(

f ∗kx
)

u2 + e−cmν
∥∥∥ f ∗kx u2

∥∥∥}

≤ C sup
x∈(0,+∞)

u(x)
{∥∥ f ∗u

∥∥ En (kx )u + ‖kx u‖ En
(

f ∗)
u

+ e−cmν ∥∥ f ∗u
∥∥ ‖kx u‖

}
,

with n = �M/2� and the corollary follows from (6). ��
We note that, by (7), an analogous corollary holds if we replace the Sobolev spaces

Wr by the Zygmund spaces Zs .
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4 Comparison with the Nyström method based on Laguerre zeros

The following observation is crucial. The integral

∫ +∞

0
f (x)w(x) dx =

∫ ∞

0
f (x)e−x−α−xβ

dx (24)

can be evaluated by means of the Gaussian rule related to the weight w(x) = e−x−α−xβ
,

i.e.,

Gm(w, f ) =
m∑

k=1

λk(w) f (xk) ,

as described in Sect. 2.3. On the other hand, this integral can be rewritten as

∫ ∞

0

[
f (x)e−x−α

]
e−xβ

dx =
∫ ∞

0

[
f (x)e−x−α

]
σ(x) dx

and evaluated by using the Gaussian rule related to the Laguerre-type weight σ(x) =
e−xβ

, i.e.,

Gm(σ, g) =
m∑

k=1

λk(σ )g(tk) =
m∑

k=1

λk(σ ) f (tk)e
−t−α

k ,

where g(x) = f (x)e−x−α
, tk = tm,k(σ ) are the zeros of the mth Laguerre-type

polynomial pm(σ ), satisfying

C
m2−1/β

≤ t1 < · · · < tm < Cm1/β ,

and λk(σ ) are the corresponding Christoffel numbers (see, e.g., [9,11]).
Now, considering the coefficients of the two Gaussian rules, we observe that for

the first term of Gm(w, f ) we have

λ1(w) ∼ w(x1)Δx1 ∼ e−x−α
1 Δx1 ∼ e−m

α(2β−1)
β(2α+1)

,

whereas the first term of Ḡm(σ, g) fulfills

λ1(σ )e−t−α
1 ∼ σ(t1)Δt1e−t−α

1 ∼ Δt1e−t−α
1 ∼ e−m

α(2β−1)
β

.

This last quantity is much smaller than λ1(w) for large values of m and also smaller
than the ordinary tolerance usually adopted in computation. Therefore a certain number
η = η(m) of summands of Gm(σ, g) do not give any contribution. So, if Gm(w, f )

computes the integral with a certain error, one could obtain the same precision using
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Table 1 Relative errors

m Relative error of Gm (σ, g) Relative error of Gm (w, f )

2 3.077 × 10−1 5.891 × 10−6

7 1.222 × 10−2 1.256 × 10−16

30 9.005 × 10−7 –

60 1.584 × 10−11 –

110 6.984 × 10−16 –

the Laguerre-type rule for larger values of m and with more evaluations of the function
f . The following example confirms this fact.

Example 1 We apply the Gaussian quadrature rules w.r.t. the exponential weight
w(x) = e−1/x3−x3

and the Laguerre weight σ(x) = e−x3
for calculating

∫ +∞

0
arctan

(
1 + x

4

)
e−1/x3−x3

dx ,

with f (x) = arctan
( 1+x

4

)
and g(x) = arctan

( 1+x
4

)
e−1/x3

. This integral can be
evaluated with a high precision using the Mathematica function NIntegrate.

In Table 1 we compare the relative errors obtained applying the two rules for
increasing values m, working in double arithmetic precision. We note that underflow
phenomena occurred in the case of Laguerre weights, while in the case of w the symbol
“–” means that the required precision has already been obtained and the relative error
is of the order of the machine epsilon.

We also want to observe that a similar argument applies a fortiori if we compare
the two truncated Gaussian rule related to w and σ . In fact, in Gm(w, f ) we can drop
some terms related to the zeros close to ε(w) and some other terms related to the zeros
close to am(w), but in Gm(σ, g) we can drop only some terms related to the largest
zeros without loss of accuracy (see [11]).

Let us now compare the convergence of the two Gaussian rules. To this aim, letting

v(x) = (1 + x)δw(x) = (1 + x)δe−x−α−xβ

, δ > 1 ,

x ∈ (0,+∞), we introduce the function space

Cv :=
{

f ∈ C0(0,+∞) : lim
x→0+ f (x)v(x) = 0 = lim

x→+∞ f (x)v(x)

}
,

with the norm

‖ f ‖Cv := ‖ f v‖ = sup
x∈(0,+∞)

| f (x)v(x)| .
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For more regular functions, we define the Sobolev-type spaces

W ∞
r (v) =

{
f ∈ Cv : f (r−1) ∈ AC(0,+∞), ‖ f (r)ϕrv‖ < ∞

}
,

with the norm ‖ f ‖W∞
r (v) = ‖ f v‖ + ‖ f (r)ϕrv‖, where ϕ(x) = √

x .
Then it is known that for any f ∈ Cv , the Gaussian rule Gm(w, f ) converges to

the integral (24). Moreover, if f ∈ W ∞
r (v), r ≥ 1, we have (see [14,15])

∣∣∣∣Gm(w, f ) −
∫ ∞

0
f (x)w(x) dx

∣∣∣∣ ≤ C(
m1−1/(2β)

)r ‖ f ‖W∞
r (v).

The Laguerre–Gaussian rule deals with functions belonging to the space

Cv̄ :=
{

g ∈ C0[0,+∞) : lim
x→+∞ g(x)v̄(x) = 0

}
,

with v̄(x) = (1 + x)δe−xβ
, δ > 1,

‖g‖Cv̄
:= ‖ f v̄‖ = sup

x∈(0,+∞)

| f (x)v̄(x)| ,

and/or to the Sobolev-type space

W ∞
r (v̄) =

{
g ∈ Cv̄ : g(r−1) ∈ AC(0,+∞), ‖g(r)ϕr v̄‖ < ∞

}
,

with

‖g‖W∞
r (v̄) = ‖gv‖ + ‖g(r)ϕr v̄‖ ,

ϕ(x) = √
x and r ≥ 1. In analogy with the first Gaussian rule one has (see [9,11])

(∀g ∈ Cv̄) Gm(σ, g) →
∫ +∞

0
g(x)e−xβ

dx , m → ∞ , (25)

and ∣∣∣∣Gm(σ, g) −
∫ +∞

0
g(x)e−xβ

dx

∣∣∣∣ ≤ C(
m1−1/(2β)

)r ‖g‖W∞
r (v) . (26)

Nevertheless, if g(x) = f (x)e−x−α
with f ∈ Cv (i.e., in the case under consid-

eration), the convergence relation (25) is true while the error estimate (26) is false in
general. In fact, f ∈ Cv implies g ∈ Cv̄ , but the norm ‖g‖W∞

r (v̄) can be unbounded for
f ∈ W ∞

r (v) (so, although inequality (26) holds). Therefore, the order of convergence
of the Laguerre-Gaussian rule Gm(σ, g) is lower than the one of the rule Gm(w, f ).
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From the previous observations we deduce that the Nyström interpolant obtained
by approximating the integral

∫ +∞

0

[
k(x, y) f (y)e−y−α

]
e−yβ

dy

by means of the Laguerre–Gaussian rule Gm(σ ) will have a much larger number of
summands with respect to the method proposed in this paper. This fact implies that
the corresponding linear system will have a much larger order than the one in (20). We
also want to emphasize that considering a “truncated” version of Gm(σ ) would not
solve this problem, since it is due to the exponential behaviour of the integrand close
to 0 and the “truncated” rule wold drop only the terms related to the largest zeros.

In conclusion, solving integral equations of the form (1) by using a Nyström method
based on the Laguerre–Gaussian rule would require a larger computational cost (with
possible underflow/overflow phenomena) and a lower order of convergence, as shown
in the next section.

5 Numerical examples

In the following examples the exact solutions are unknown and the correspond-
ing tables show only the behaviour of the Nyström interpolants. As in Sect. 4, all
computations were performed in Mathematica, Ver. 8.0. In particular, for construct-
ing the corresponding Gaussian rules (9) we use a procedure given in [15] and the
Mathematica package OrthogonalPolynomials (cf. [2,18]), which is freely
downloadable from the Web Site:

http://www.mi.sanu.ac.rs/~gvm/.
For the sake of brevity we omit the description of the numerical procedures for

the computation of the zeros of pm(w), the Christoffel numbers and the Mhaskar–
Rahmanov–Saff numbers εm and am . The interested reader can find all the details
about these procedures in [15, pp. 1676–1680].

Example 2 We consider the Fredholm integral equation of the second kind

f (x) − 1

10

∫ +∞

0
cosh

(
y + 1

x + 1

)
f (y)e−y−3−y3

dy = sinh(x + 3), x ∈ (0,+∞),

with k(x, y) = cosh((y + 1)/(x + 1)), w(x) = e−x−3−x3
, and g(x) = sinh(x + 3).

By (3) we choose the weight u(x) = (1 + x) e−(x−3+x3)/2 and consider the equation
in the space Cu given by (4). Since ‖K‖Cu→Cu < 1 this equation admits a unique
solution in Cu .

On the other hand, if we consider the weight the Laguerre-type weight ũ(x) =
(1 + x) e−x3/2 and the associated function space Cũ , this equation admits a unique
solution also in Cũ . In Table 2 we compare the two associated Nyström methods,
showing the correct decimal digits obtained in the Nyström interpolants at given points
for the same values of m.
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Table 2 Values of Nyström interpolants at x = 0.5, x = 1 and x = 5, for m = 5(5)20

m f ∗
m (0.5) – exponential weight u f̃m(0.5) – Laguerre weight ũ

5 17.067206691704378 17.060042557600486

10 17.067206693043214 17.06792305565905

15 17.067206693043214 17.06715565208371

20 17.067206693043214 17.067200301955914

m f ∗
m (1) – exponential weight u f̃m(1) – Laguerre weight ũ

5 27.676749186738305735 27.6713848546487190

10 27.676749187388134070 27.6773392594205800

15 27.676749187388135357 27.6767086020279940

20 27.676749187388135357 27.6767435168185499

m f ∗
m (5) – exponential weight u f̃m(5) – Laguerre weight ũ

5 1490.731036304753920402 1490.7275135882654744

10 1490.731036305188948542 1490.731492523212215

15 1490.731036305188949804 1490.73100663711270

20 1490.731036305188949804 1490.7310314344204

Using one of the two the Gaussian rules we obtain the corresponding Nyström inter-
polants f ∗

m(x), given by (21), and f̃m . In Table 2 we give values of these interpolants
at the points x = 0.5, x = 1 and x = 5. The same digits in f ∗

m(x) and f ∗
25(x) for

m = 5(5)20 are bolded.
Since the kernel and the solution in this case are very smooth, we see a very fast

convergence of Nyström interpolants f ∗
m(x), so that f ∗

25(x) can be taken as a very well
approximation of the exact solution f ∗(x). On the other hand, the Nyström interpolant
based on Laguerre-type nodes converges more slowly.

In both cases the matrices of the related linear systems are well-conditioned. For
instance the condition numbers of the matrices in (20) Vm ≡ V ( j1, j2)

m , with j1 = 1
and j2 = m, for m = 5, 10, 15 , 20 (in the infinity-norm) are 1.0218, 1.0260, 1.0271,
1.0284, respectively.

Example 3 We consider the Fredholm integral equation of the second kind

f (x) −
∫ +∞

0
cos(x + y) f (y)e−y−3−y3

dy = e1/x2
, x ∈ (0,+∞),

with k(x, y) = cos(x + y), w(x) = e−x−3−x3
, and g(x) = e1/x2

. By (3) we choose
the weight u(x) = (1 + x) e−(x−3+x3)/2 and consider the equation in the space Cu

given by (4). Since ‖K‖Cu→Cu < 1 this equation admits a unique solution in Cu .
In this case the function g increases exponentially for x → 0+, so it does not belong

to function spaces associated to generalized Laguerre weights. On the other hand, if
we multiply both sides of the equation by e−1/x2

, we obtain the equivalent equation
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Table 3 Values of the approximate solution at x = 0.5, x = 1 and x = 5, for m = 10(20)70

m f ∗
m (0.5) – exponential weight u f̃ ∗

m (0.5) · e4 – Laguerre weight ũ

10 54.62464753294463 54.62349877451629

30 54.62466842772536 54.62466806769319

50 54.62466842781927 54.62466843181872

70 54.62466842781927 Underflow occurred in computation

m f ∗
m (1) – exponential weight u f̃ ∗

m (1) · e – Laguerre weight ũ

10 2.6340588382504633 2.6337766902545059

30 2.6340654174597524 2.6340656449192323

50 2.6340654174976796 2.6340654201667359

70 2.6340654174976796 Underflow occurred in computation

m f ∗
m (5) – exponential weight u f̃ ∗

m (5) · e0.04 – Laguerre weight ũ

10 1.2543661133492144 1.2531280168491409

30 1.2543856822837072 1.2543846501698619

50 1.2543856823546275 1.2543856832259046

70 1.2543856823546275 Underflow occurred in computation

f̃ (x) −
∫ +∞

0

[
cos(x + y)ey−2−y−3−x−2

]
f̃ (y)e−y3

dy = 1, x ∈ (0,+∞),

with f̃ (x) = f (x) e−1/x2
. This last equation admits a unique solution in the space

Cũ , with ũ(x) = (1 + x) e−x3/2. In Table 3 we compare the two associated Nyström
methods, showing the correct decimal digits obtained in the approximate solution at
given points for the same values of m.

The method proposed in Sect. 3 is stable and the condition numbers of the matrices
in (20) Vm ≡ V ( j1, j2)

m , with j1 = 1 and j2 = m, for m = 10, 30 , 50, 70 (in the
infinity-norm) are 1.0955, 1.1066, 1.1110, 1.1134, respectively. On the other hand,
the method based on Laguerre zeros is less precise and applicable only for small values
of m.

Example 4 Now we consider the equation

f (x) −
∫ +∞

0
| cos(x + y)|5/4 f (y)e−y−2−y2

dy = e(x3+8)/(4x)

x + 4
, x ∈ (0,+∞),

with k(x, y) = | cos(x + y)|5/4, w(x) = e−x−2−x2
, and

g(x) = e(x3+8)/(4x)

x + 4
.
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Table 4 Absolute errors of the weighted Nyström interpolants f ∗
m (x) at x = 1/2, 1, 4, 8, for m = 10,

m = 100 and m = 200

m ( j1, j2) cond(V
( j1, j2)
m ) x = 1/2 x = 1 x = 4 x = 8

10 (1, 6) 1.166 1.15 (−4) 7.93 (−4) 2.42 (−6) 8.51 (−17)

100 (7, 45) 1.212 3.59 (−5) 6.60 (−5) 1.11 (−7) 1.61 (−17)

200 (11, 90) 1.217 6.90 (−7) 3.78 (−6) 1.16 (−8) 9.61 (−19)

Table 5 Values of Nyström
interpolants f ∗

m (x) at
x = 1/2, 1, 4, 8, for m = 10,
m = 100 and m = 200

m x = 1/2 x = 1 x = 4 x = 8

10 12.98424 1.990655 11.32452 950832.875282

100 12.98468 1.991643 11.32594 950832.875892

200 12.98488 1.991728 11.32602 950832.876026

Fig. 1 The Nyström interpolant f ∗
m (x) for 0 ≤ x ≤ 10 (left) and for 1 ≤ x ≤ 3 (right), when m = 300,

j1 = 15, j2 = 134

We consider this equation in Cu , where u(x) = (1 + x) e−(x−2+x2)/2. Since
‖K‖Cu→Cu < 1 this equation admits a unique solution in Cu . By Theorem 2 and
Corollary 1, since u(y)ky ∈ Z5/4(u) uniformly w.r.t. y, u(x)kx ∈ Z5/4(u) uniformly
w.r.t. x , while g is a smooth function, we have

∥∥( f ∗
m − f ∗) u

∥∥ = O

((√
am

m

)5/4
)

= O
(

m−15/16
)

,

taking into account that am ∼ m1/2.

Now, we apply the Gaussian quadratures for m = 10(10)50 and m = 100(50)300,
with the corresponding truncation as in Example 8.2 in [15]. Following Table 2 from
[15], we present here in Table 4 the indices j2 and j2 in “truncated sums” in (18)
and (10) for θ = 1/20, as well as the condition numbers of these reduced matrices
V ( j1, j2)

m . Their dimensions are j2 − j1 + 1 instead of m as in the case of Gaussian
formulae, dropping c m2 terms, c < 1, in the matrix of coefficients in the system of
linear equations.
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The absolute errors of the corresponding weighted Nyström interpolants at some
selected x are also given in the same table (we have considered as exact the approx-
imated solution obtained for m = 300). Numbers in parentheses indicate decimal
exponents, e.g., 1.15(−4) means 1.15 × 10−4. Moreover, the values of the corre-
sponding Nyström interpolants at the same selected points x are given in Table 5.

The Nyström interpolant f ∗
300(x) obtained with j1 = 15 and j2 = 134, for 0 ≤

x ≤ 10 and 1 ≤ x ≤ 3 is displayed in Fig. 1.
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9. Mastroianni, G., Milovanović, G.V.: Interpolation processes, Springer monographs in mathematics,

basic theory and applications. Springer-Verlag, Berlin (2008)
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weight functions. Stud. Univ. Babeş-Bolyai Math. 60(2), 211233 (2015)
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OPTIMAL QUADRATURE FORMULAS FOR
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(m,m−1)
2 SPACE
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Gradimir V. Milovanović2,† and Kholmat M. Shadimetov1

Abstract This paper studies the problem of construction of optimal quadra-
ture formulas in the sense of Sard in the W

(m,m−1)
2 [0, 1] space for calculating

Fourier coefficients. Using S. L. Sobolev’s method we obtain new optimal
quadrature formulas of such type for N + 1 ≥ m, where N + 1 is the num-
ber of the nodes. Moreover, explicit formulas for the optimal coefficients are
obtained. We investigate the order of convergence of the optimal formula for
m = 1. The obtained optimal quadrature formula in the W

(m,m−1)
2 [0, 1] space

is exact for exp(−x) and Pm−2(x), where Pm−2(x) is a polynomial of degree
m − 2. Furthermore, we present some numerical results, which confirm the
obtained theoretical results.

Keywords Fourier coefficients, optimal quadrature formulas, the error func-
tional, extremal function, Hilbert space.

MSC(2010) 65D32.

1. Introduction

Numerical calculation of integrals of highly oscillating functions is one of the more
important problems of numerical analysis, because such integrals are encountered
in applications in many branches of mathematics as well as in other science such as
quantum physics, flow mechanics and electromagnetism. Main examples of strongly
oscillating integrands are encountered in different transformation, for example, the
Fourier transformation and Fourier-Bessel transformation. Standard methods of
numerical integration frequently require more computational works and they cannot
be successfully applied. The earliest formulas for numerical integration of highly
oscillatory functions were given by Filon [11] in 1928. Filon’s approach for Fourier
integrals

I[f ;ω] =

∫ b

a

eiωxf(x) dx

is based on piecewise approximation of f(x) by arcs of the parabola on the integra-
tion interval. Then finite integrals on the subintervals are exactly integrated.

†the corresponding author. Email address: gvm@mi.sanu.ac.rs (G.V. Milo-
vanović)

1Institute of Mathematics, National University of Uzbekistan, Tashkent,
Uzbekistan

2Serbian Academy of Sciences and Arts, Beograd & University of Nǐs, Faculty
of Sciences and Mathematics, Nǐs, Serbia
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Afterwards for integrals with different type highly oscillating functions many
special effective methods such as Filon-type method, Clenshaw-Curtis-Filon type
method, Levin type methods, modified Clenshaw-Curtis method, generalized quad-
rature rule, Gauss-Laguerre quadrature are worked out (see, for example, [4,15,20,
40], for more review see, for instance, [21, 23] and references therein).

In [22] the authors studied approximate computation of univariate oscillatory
integrals (Fourier coefficients) for the standard Sobolev spaces Hs of periodic and
non-periodic functions with an arbitrary integer s ≥ 1. They found matching lower
and upper bounds on the minimal worst case error of algorithms that use n function
or derivative values. They also found sharp bounds on the information complexity
which is the minimal n for which the absolute or normalized error is at most ε.

In the work [29] the weight lattice optimal cubature formulas in the periodic

Sobolev’s space L̃
(m)
2 (Ω) were constructed. In particular, from the result of the work

[29], in univariate case when the weight is the function exp(iσx) (where x ∈ [0, 2π]
and σ is an integer), the Babuška optimal quadrature formula for Fourier coefficients
was obtained [3].

Recently, some optimal quadrature formulas for Fourier coefficients in the Sobolev

space L
(m)
2 (0, 1) of non-periodic functions have been constructed in [6].

This paper is devoted to construction of optimal quadrature formulas for approx-
imate calculation of Fourier integrals in a Hilbert space of non-periodic functions.
Precisely, we study the problem of construction such optimal formulas in the sense

of Sard in the W
(m,m−1)
2 [0, 1] space.

We consider the following quadrature formula∫ 1

0

e2πiωxϕ(x) dx ∼=
N∑

β=0

Cβϕ(hβ) (1.1)

with the error functional

�(x) = e2πiωxε[0,1](x)−
N∑

β=0

Cβδ(x− hβ), (1.2)

where Cβ are the coefficients of formula (1.1), h = 1/N , N ∈ N, i2 = −1, ω ∈ Z,
ε[0,1](x) is the indicator of the interval [0, 1] and δ(x) is the Dirac delta-function.

Functions ϕ belong to the space W
(m,m−1)
2 [0, 1], where

W
(m,m−1)
2 [0, 1] =

{
ϕ : [0, 1] → C

∣∣∣ ϕ(m−1) ∈ AC[0, 1] and ϕ(m) ∈ L2[0, 1]
}

is the Hilbert space of complex valued functions and in this space the inner product
is defined by the equality

〈ϕ, ψ〉 =
∫ 1

0

(
ϕ(m)(x) + ϕ(m−1)(x)

)(
ψ
(m)

(x) + ψ
(m−1)

(x)
)
dx, (1.3)

where ψ is the conjugate function to the function ψ and the norm of the function
ϕ is correspondingly defined by the formula

‖ϕ|W (m,m−1)
2 [0, 1]‖ = 〈ϕ, ϕ〉1/2
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and ∫ 1

0

(
ϕ(m)(x) + ϕ(m−1)(x)

)(
ϕ(m)(x) + ϕ(m−1)(x)

)
dx < ∞.

We note that the coefficients Cβ depend on ω, N and m, i.e., Cβ = Cβ(ω,N,m).
It should be noted that for a linear differential operator of order m, L ≡

Pm( d/ dx), Ahlberg, Nilson, and Walsh in the book [1, Chapter 6] investigated
the Hilbert spaces K2(Pm) in the context of generalized splines. Namely, with the
inner product

〈ϕ, ψ〉 =
∫ 1

0

Lϕ(x) · Lψ(x) dx,

K2(Pm) is a Hilbert space if we identify functions that differ by a solution of Lϕ = 0.
Also, such a type of spaces of periodic functions and optimal quadrature formulas
were discussed in [8].

The difference

(�, ϕ) =

∫ 1

0

e2πiωxϕ(x) dx−
N∑

β=0

Cβϕ(xβ) =

∫ ∞

−∞
�(x)ϕ(x) dx (1.4)

is called the error of the quadrature formula (1.1). The error of the formula (1.1) is

a linear functional in W
(m,m−1)∗
2 [0, 1], where W

(m,m−1)∗
2 [0, 1] is the conjugate space

to the space W
(m,m−1)
2 [0, 1].

By the Cauchy-Schwarz inequality

|(�, ϕ)| ≤ ‖ϕ|W (m,m−1)
2 [0, 1]‖ · ‖�|W (m,m−1)∗

2 [0, 1]‖.
So, the error (1.4) of formula (1.1) is estimated by the norm∥∥�|W (m,m−1)∗

2 [0, 1]
∥∥ = sup

‖ϕ|W (m,m−1)

2
[0,1]‖=1

|(�, ϕ)|

of the error functional (1.2).
Thus, the estimation of the error of the quadrature formula (1.1) over functions

of the space W
(m,m−1)
2 is reduced to finding the norm of the error functional � in

the conjugate space W
(m,m−1)∗
2 .

Clearly the norm of the error functional � depends on the coefficients Cβ . The
problem of finding the minimum of the norm of the error functional � by coefficients
Cβ when the nodes are fixed (in our case distances between neighbor nodes of
formula (1.1) are equal, i.e., xβ = hβ, β = 0, 1, . . . , N , h = 1/N) is called Sard’s
problem. And the obtained formula is called the optimal quadrature formula in the

sense of Sard. This problem was first investigated by A. Sard [24] in the space L
(m)
2

for some m. Here L
(m)
2 is the Sobolev space of functions which (m−1)-st derivative

is absolutely continuous and m-th derivative is square integrable.
There are several methods for constructing of optimal quadrature formulas in

the sense of Sard such as the spline method, the φ-function method (cf. [5], [25])
and Sobolev’s method. Note that Sobolev’s method is based on the construction of
a discrete analogue to a linear differential operator (cf. [37–39]). In different spaces
based on these methods, the Sard problem was investigated by many authors (see,
for example, [2, 5, 7, 9, 10, 14, 16–19, 24–28, 30, 31, 33, 36–39, 41, 42] and references
therein).
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The main aim of the present paper is to solve the Sard problem for quadrature

formulas (1.1) in the spaceW
(m,m−1)
2 [0, 1] using S. L. Sobolev’s method withN+1 ≥

m, i.e., to look for the coefficients Cβ that satisfy the following equality∥∥�̊|W (m,m−1)∗
2 [0, 1]

∥∥ = inf
C

β

∥∥� |W (m,m−1)∗
2 [0, 1]

∥∥. (1.5)

Thus, to construct Sard’s optimal quadrature formula of the form (1.1) in the

space W
(m,m−1)
2 [0, 1], we need to solve the following problems.

Problem 1. Find the norm of the error functional � of quadrature formulas (1.1)

in the space W
(m,m−1)∗
2 [0, 1].

Problem 2. Find the coefficients Cβ that satisfy equality (1.5).

It should be noted that Problems 1 and 2 were solved in [34] for the case ω = 0,
i.e., in the work [34] the optimal quadrature formulas of the form

∫ 1

0

ϕ(x) dx ∼=
N∑

β=0

Cβϕ(hβ)

in the sense of Sard were constructed. In the sequel we will solve Problems 1 and 2
in the cases when ω ∈ Z and ω �= 0.

The paper is organized as follows. In the second section the extremal function,
which corresponds to the error functional �, is given and, with its help, a repre-
sentation of the norm of the error functional (1.2) is calculated, i.e., Problem 1 is
solved. In Section 3 we obtain the system of linear equations for coefficients of the

optimal quadrature formulas in the space W
(m,m−1)
2 [0, 1]. Moreover, the existence

and uniqueness of the solution of this system are discussed. In Section 4, in the
cases m ≥ 2, the explicit formulas for the coefficients of the optimal quadrature
formulas of the form (1.1) are found, i.e., Problem 2 is solved in the cases m ≥ 2.
The obtained optimal quadrature formulas are exact for any polynomial of order
≤ m−2 and for the exponential function exp(−x). In Section 5 we solve Problem 2
in the case m = 1 and we calculate the norm of the error functional of the optimal

quadrature formula in the W
(1,0)
2 [0, 1] space. The obtained explicit formula for the

norm of the error functional shows dependence on ω and h of the error of the optimal

quadrature formula of the form (1.1) in W
(1,0)
2 [0, 1] space. Finally, in Section 6 we

present some numerical results which are confirm the obtained theoretical results
of the present work.

2. Extremal function and norm of the error func-

tional

To solve Problem 1, i.e., to get the explicit expression for the norm of the error

functional (1.2) in the space W
(m,m−1)∗
2 [0, 1], we use the concept of the extremal

function. The function ψ� is called the extremal function for the functional � (see,
[37]), if the following equality holds

(�, ψ�) =
∥∥� ∣∣W (m,m−1)∗

2 [0, 1]
∥∥ · ∥∥ψ�

∣∣W (m,m−1)
2 [0, 1]

∥∥. (2.1)
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Since W
(m,m−1)
2 [0, 1] is a Hilbert space, then the extremal function ψ� in this

space, is found with the help of the general form of a linear continuous functional
on Hilbert spaces given by the Riesz theorem. Then for the functional � and for

any ϕ ∈ W
(m,m−1)
2 [0, 1] there exists the function ψ� ∈ W

(m,m−1)
2 [0, 1] for which the

following equation holds
(�, ϕ) = 〈ψ�, ϕ〉 , (2.2)

where

〈ψ�, ϕ〉 =
∫ 1

0

(
ψ
(m)

� (x) + ψ
(m−1)

� (x)
)(

ϕ(m)(x) + ϕ(m−1)(x)
)
dx (2.3)

is the inner product defined in the space W
(m,m−1)
2 [0, 1].

From (2.2) taking into account (2.3) for the extremal function ψ� we get the
following boundary value problem

ψ
(2m)
� (x)− ψ

(2m−2)
� (x) = (−1)m�̄(x), (2.4)(

ψ
(m+s)
� (x)− ψ

(m+s−2)
� (x)

) ∣∣∣x=1

x=0
= 0, s = 1,m− 1, (2.5)(

ψ
(m)
� (x) + ψ

(m−1)
� (x)

) ∣∣∣x=1

x=0
= 0, (2.6)

where �̄ is the conjugate to �.

Theorem 2.1. The solution of the boundary value problem (2.4)–(2.6) is the ex-
tremal function ψ� of the error functional � and has the following form

ψ�(x) = (−1)m�̄(x) ∗Gm(x) + Pm−2(x) + d e−x,

where

Gm(x) =
sgnx

2

(
ex − e−x

2
−

m−1∑
k=1

x2k−1

(2k − 1)!

)
(2.7)

is a solution of the equation

G(2m)
m (x)−G(2m−2)

m (x) = δ(x), (2.8)

d is any complex number and Pm−2(x) is a polynomial of degree m−2 with complex
coefficients, and ∗ is the operation of convolution.

Theorem 2.1 can be proved as Theorem 2.1 in [34].

For the error functional (1.2) to be defined on the space W
(m,m−1)
2 (0, 1) it is

necessary to impose the following conditions

(�, xα) = 0, α = 0, 1, 2, . . . ,m− 2, (�, e−x) = 0. (2.9)

Hence, it is clear that for existence of the quadrature formulas of the form (1.1) the
condition N + 1 ≥ m has to be met.

The equalities (2.9) mean that our quadrature formula is exact for the function
e−x and for any polynomial of degree ≤ m− 2.

Now, using Theorem 2.1 we will get the representation of the square of the norm
of the error functional (1.2).
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We recall that a convolution of two functions is defined by the formula

ϕ(x) ∗ ψ(x) =
∫ ∞

−∞
ϕ(x− y)ψ(y) dy =

∫ ∞

−∞
ϕ(y)ψ(x− y) dy.

Taking into account the definition of convolution and equality (1.2) we calculate
the convolution �̄(x) ∗Gm(x), i.e.,

�̄(x)∗Gm(x) =

∫ ∞

−∞
�̄(y)Gm(x−y) dy =

∫ 1

0

e−2πiωyGm(x−y) dy−
N∑

β=0

C̄βGm(x−hβ),

where �̄ and C̄β are conjugates to � and Cβ , respectively. Then keeping in mind
(2.2), (2.3) and Theorem 2.1, we have

‖�‖2 = (�, ψ�) = 〈ψ�, ψ�〉 =
∫ ∞

−∞
�(x)ψ�(x) dx = (−1)m

∫ ∞

−∞
�(x)·(�̄(x) ∗Gm(x)

)
dx,

i.e.,

‖�‖2 = (−1)m
∫ ∞

−∞

(
e2πiωxε[0,1](x)−

N∑
β=0

Cβδ(x− hβ)

)

×
(∫ 1

0

e−2πiωyGm(x− y) dy −
N∑

γ=0

C̄γGm(x− hγ)

)
dx.

Hence we obtain

‖�‖2 = (−1)m

{
N∑

β=0

N∑
γ=0

CβCγGm(hβ − hγ)

−
N∑

β=0

∫ 1

0

(
Cβe

2πiωx + Cβe
−2πiωx

)
Gm(x− hβ) dx

+

∫ 1

0

∫ 1

0

e2πiωxe−2πiωyGm(x− y) dx dy

}
. (2.10)

Now we show that the right hand side of (2.10) is real. Really, let Cβ = CR
β +iCI

β ,

i2 = −1, where CR
β and CI

β are real. Using Euler’s formula e2πiωx = cos 2πωx +
i sin 2πωx, we get the following equalities

N∑
β=0

N∑
γ=0

CβC̄γGm(hβ − hγ) =

N∑
β=0

N∑
γ=0

(
CR

β CR
γ + CI

βC
I
γ

)
Gm(hβ − hγ),

C̄βe
2πiωx + Cβe

−2πiωx = 2CR
β cos 2πωx+ 2CI

β sin 2πωx,∫ 1

0

∫ 1

0

e2πiωxe−2πiωyGm(x− y) dx dy =

∫ 1

0

∫ 1

0

cos[2πω(x− y)]Gm(x− y) dx dy.
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Keeping in mind the last three equalities, from (2.10) for the norm of the error
functional we have

‖�‖2 = (−1)m

[
N∑

β=0

N∑
γ=0

(CR
β CR

γ + CI
βC

I
γ) Gm(hβ − hγ)

−2
N∑

β=0

CR
β

∫ 1

0

cos 2πωx Gm(x− hβ) dx

−2
N∑

β=0

CI
β

∫ 1

0

sin 2πωx Gm(x− hβ) dx

+

∫ 1

0

∫ 1

0

cos[2πω(x− y)] Gm(x− y) dx dy

]
, (2.11)

and from (2.9), we have the following equalities

N∑
β=0

CR
β (hβ)α =

∫ 1

0

xα cos 2πωx dx, α = 0, 1, 2, . . . ,m− 2, (2.12)

N∑
β=0

CR
β e−hβ =

∫ 1

0

e−x cos 2πωxdx, (2.13)

N∑
β=0

CI
β(hβ)

α =

∫ 1

0

xα sin 2πωxdx, α = 0, 1, 2, . . . ,m− 2, (2.14)

N∑
β=0

CI
βe

−hβ =

∫ 1

0

e−x sin 2πωxdx, (2.15)

Thus, Problem 1 is solved. Further in Sections 3 and 4 we solve Problem 2.

3. The system for coefficients of optimal quadrature

formulas (1.1) in the space W
(m,m−1)
2 [0, 1]

To find the minimum of the expression (2.11) under the conditions (2.12)–(2.15) we
apply the Lagrange method.

Consider the function

Ψ(CR
0 , . . . , CR

N , CI
0 , . . . , C

I
N , aR0 , . . . , a

R
m−2, a

I
0, . . . , a

I
m−2, d

R, dI)

= ‖�‖2 − 2(−1)m
m−2∑
α=0

aRα

⎛⎝∫ 1

0

xα cos 2πωxdx−
N∑

β=0

CR
β (hβ)α

⎞⎠
−2(−1)m

m−2∑
α=0

aIα

⎛⎝∫ 1

0

xα sin 2πωxdx−
N∑

β=0

CI
β(hβ)

α

⎞⎠
−2(−1)mdR

⎛⎝∫ 1

0

e−x cos 2πωxdx−
N∑

β=0

CR
β e−hβ

⎞⎠
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−2(−1)mdI

⎛⎝∫ 1

0

e−x sin 2πωxdx−
N∑

β=0

CI
βe

−hβ

⎞⎠ .

Equating to 0 the partial derivatives of Ψ with respect to CR
β , CI

β , (β = 0, N), aRα ,

aIα, (α = 0,m− 2), dR, and dI , we get the following system of linear equations, for
α = 0, 1, . . . ,m− 2 and β = 0, 1, . . . , N ,

N∑
γ=0

CR
γ Gm(hβ − hγ) +

m−2∑
α=0

aRα (hβ)
α + dRe−hβ =

∫ 1

0

cos 2πωxGm(x− hβ) dx, (3.1)

N∑
γ=0

CR
γ (hγ)α=

∫ 1

0

xα cos 2πωxdx, (3.2)

N∑
γ=0

CR
γ e−hγ =

∫ 1

0

e−x cos 2πωxdx, (3.3)

N∑
γ=0

CI
γGm(hβ − hγ) +

m−2∑
α=0

aIα(hβ)
α + dIe−hβ =

∫ 1

0

sin 2πωxGm(x− hβ) dx, (3.4)

N∑
γ=0

CI
γ(hγ)

α=

∫ 1

0

xα sin 2πωxdx, (3.5)

N∑
γ=0

CI
γe

−hγ =

∫ 1

0

e−x sin 2πωxdx. (3.6)

Now, multiplying both sides of (3.4), (3.5), and (3.6) by i and adding to both
sides of (3.1), (3.2), and (3.3), respectively, using notations Cβ = CR

β + iCI
β (β =

0, N), aα = aRα + iaIα (α = 0,m− 2), and d = dR + idI , for the coefficients of
the optimal quadrature formulas of the form (1.1) we get the following system of
N +m+ 1 linear equations, for α = 0, 1, . . . ,m− 2 and β = 0, 1, . . . , N ,

N∑
γ=0

CγGm(hβ − hγ) +

m−2∑
α=0

aα(hβ)
α + d e−hβ = fm(hβ), (3.7)

N∑
γ=0

Cγ(hγ)
α =

∫ 1

0

e2πiωxxα dx, (3.8)

N∑
γ=0

Cγe
−hγ =

∫ 1

0

e2πiωxe−x dx, (3.9)

where Gm(x) is defined by equality (2.7),

fm(hβ) =

∫ 1

0

e2πiωxGm(x− hβ) dx. (3.10)

We note that the system (3.7)–(3.9) has a unique solution when N +1 ≥ m and

this solution gives the minimum to ‖�‖2 under the conditions (3.8) and (3.9). The
uniqueness of the solution of this system is obtained from Theorems 3.1 and 3.2
of [34].
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From (2.11) and these theorems from [34], it follows that the square of the norm
of the error functional �, being a quadratic functions of the coefficients Cβ has a

unique minimum in some concrete value of Cβ = C̊β .
As it was said in the first section, the quadrature formula with the coefficients

C̊β (β = 0, N), corresponding to this minimum, is called the optimal quadrature

formula in the sense of Sard, and C̊β (β = 0, N) are called the optimal coefficients.

Below, for the purposes of convenience, the optimal coefficients C̊β will be de-
noted as Cβ .

4. Coefficients of optimal quadrature formulas (1.1)

In the present section we solve the system (3.7)–(3.9) and we find the explicit
formulas for the optimal coefficients Cβ . Here we use a similar method to the one
suggested by S. L. Sobolev [38] for finding the coefficients of optimal quadrature

formulas in the space L
(m)
2 (0, 1). Here the main concept used is that of functions of

discrete argument and operations on them. Theory of discrete argument functions
is given in [37,39]. For the purposes of completeness we give some definitions about
functions of discrete argument.

Suppose that ϕ(x) and ψ(x) are real-valued functions of real variable and are
defined in real line R.

Definition 4.1. A function ϕ(hβ) is called function of discrete argument if it is
defined on some set of integer values of β.

Definition 4.2. We define the inner product of two discrete functions ϕ(hβ) and
ψ(hβ) as the following number

[ϕ(hβ), ψ(hβ)] =
∞∑

β=−∞
ϕ(hβ) · ψ(hβ),

if the series on the right hand side of the last equality converges absolutely.

Definition 4.3. We define convolution of two discrete functions ϕ(hβ) and ψ(hβ)
as the inner product

ϕ(hβ) ∗ ψ(hβ) = [ϕ(hγ), ψ(hβ − hγ)] =
∞∑

γ=−∞
ϕ(hγ) · ψ(hβ − hγ).

Now, we return to our problem.
Suppose that Cβ = 0 when β < 0 and β > N . Using the above mentioned

definitions, we rewrite the system (3.7)–(3.9) in the following convolution form

Gm(hβ) ∗ Cβ + Pm−2(hβ) + d e−hβ = fm(hβ), β = 0, 1, . . . , N, (4.1)

N∑
β=0

Cβ · (hβ)α = gα, α = 0, 1, . . . ,m− 2, (4.2)

N∑
β=0

Cβ · e−hβ =
e−1 − 1

2πiω − 1
, (4.3)
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where Pm−2(hβ) =
∑m−2

α=0 aα(hβ)
α is a polynomial of degree m− 2,

fm(hβ) =

∫ 1

0

e2πiωxGm(x− hβ) dx, (4.4)

gα =

∫ 1

0

e2πiωxxα dx =
1

2πiω
+

α−1∑
k=1

(−1)k
α(α− 1) · · · (α− k + 1)

(2πiω)k+1
(4.5)

for α = 1, 2, . . . ,m− 2, g0 = 0, d is a constant, and Gm(x) is defined by (2.7).

Consider the following problem:

Problem 3. Find a discrete function Cβ , a polynomial Pm−2(hβ) of degree m− 2
and a constant d which satisfy the system (4.1)–(4.3) for the given fm(hβ).

Further we investigate Problem 3 and instead of Cβ we introduce the functions

v(hβ) = Gm(hβ) ∗ Cβ and u(hβ) = v (hβ) + Pm−2(hβ) + d e−hβ . (4.6)

In this statement it is necessary to express the coefficients Cβ by the function u(hβ).
For this, we need such an operator Dm(hβ) which satisfies the equality

Dm(hβ) ∗Gm(hβ) = δd(hβ), (4.7)

where δd(hβ) is equal to 0 when β �= 0 and is equal to 1 when β = 0, i.e., δd(hβ) is
the discrete delta-function.

In [32,35] the discrete analogue Dm(hβ) of the operator
d2m

dx2m
− d2m−2

dx2m−2
, which

satisfies equation (4.7) is constructed and its some properties are investigated.

The following results are proved in [32, 35].

Theorem 4.1. The discrete analogues to the differential operator
d2m

dx2m
− d2m−2

dx2m−2

satisfying the equation (4.7) has the form

Dm(hβ) =
1

p
(2m−2)
2m−2

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

m−1∑
k=1

Akλ
|β|−1
k , |β| ≥ 2,

−2eh +
m−1∑
k=1

Ak, |β| = 1,

2C +
m−1∑
k=1

Ak

λk
, β = 0,

(4.8)

where

C = 1 + (2m− 2)eh + e2h +
ehp

(2m−2)
2m−3

p
(2m−2)
2m−2

,

Ak =
2(1− λk)

2m−2[λk(e
2h + 1)− eh(λ2

k + 1)]p
(2m−2)
2m−2

λk P ′
2m−2(λk)

,
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and

P2m−2(λ) =
2m−2∑
s=0

p(2m−2)
s λs (4.9)

= (1− e2h)(1− λ)2m−2 − 2[λ(e2h + 1)− eh(λ2 + 1)]

×
[
h(1− λ)2m−4 +

h3(1− λ)2m−6E2(λ)

3!
+ · · ·+ h2m−3E2m−4(λ)

(2m− 3)!

]
.

Here, p
(2m−2)
2m−2 and p

(2m−2)
2m−3 are the coefficients of the polynomial P2m−2(λ) defined

by equality (4.9), λk are roots of the polynomial P2m−2(λ), |λk| < 1, and Ek(λ) is
the Euler-Frobenius polynomial of degree k (see [39]).

Theorem 4.2. The discrete analogue Dm(hβ) of the differential operator

d2m

dx2m
− d2m−2

dx2m−2

satisfies the following equalities

1) Dm(hβ) ∗ ehβ = 0,

2) Dm(hβ) ∗ e−hβ = 0,

3) Dm(hβ) ∗ (hβ)n = 0, n ≤ 2m− 3,

4) Dm(hβ) ∗Gm(hβ) = δd(hβ).

Here, Gm(hβ) is the function of discrete argument corresponding to the function
Gm(x), defined by equality (2.7) and δd(hβ) is the discrete delta function.

Then taking into account (4.6), (4.7) and Theorems 4.1 and 4.2, for the optimal
coefficients we have

Cβ = Dm(hβ) ∗ u(hβ). (4.10)

Thus, if we find the function u(hβ), then the optimal coefficients can be obtained
from equality (4.10).

To calculate this convolution, it is required to find the representation of the
function u(hβ) for all integer values of β. From equality (4.1), we get that u(hβ) =
fm(hβ) when hβ ∈ [0, 1]. Now we need to find the representation of the function
u(hβ) when β < 0 and β > N .

Since Cβ = 0 when hβ /∈ [0, 1] then Cβ = Dm(hβ) ∗ u(hβ) = 0, hβ /∈ [0, 1].

Now, we calculate the convolution v(hβ) = Gm(hβ) ∗ Cβ when hβ /∈ [0, 1].

Suppose β < 0 then, taking into account equalities (2.7), (4.2), (4.3), we have

v(hβ) = Gm(hβ) ∗ Cβ

= −1

2

N∑
γ=0

Cγ

(
ehβ−hγ − e−hβ+hγ

2
−

m−1∑
k=1

(hβ − hγ)
2k−1

(2k − 1)!

)

= −ehβ

4

e−1 − 1

2πiω − 1
+De−hβ +R2m−3(hβ) +Qm−2(hβ), (4.11)

225



1244 N. D. Boltaev, A. R. Hayotov, G. V. Milovanović & Kh. M. Shadimetov

where

R2m−3(hβ) =
1

2

⎛⎜⎝[m+1

2 ]−1∑
k=1

2k−1∑
α=0

(hβ)2k−1−α(−1)α

(2k − 1− α)!α!
gα

+
m−1∑

k=[m+1

2 ]

m−2∑
α=0

(hβ)2k−1−α(−1)α

(2k − 1− α)!α!
gα

⎞⎟⎠ (4.12)

is a polynomial of degree 2m− 3 in (hβ),

Qm−2(hβ) =
1

2

m−1∑
k=[m+1

2 ]

2k−1∑
α=m−1

(hβ)2k−1−α(−1)α

(2k − 1− α)!α!

N∑
γ=0

Cγ(hγ)
α (4.13)

is an unknown polynomial of degree m− 2 also in (hβ), and

D =
1

4

N∑
γ=0

Cγe
hγ . (4.14)

Similarly, in the case β > N , for the convolution v(hβ) = Gm(hβ) ∗ Cβ , we
obtain

v(hβ) =
ehβ

4

e−1 − 1

2πiω − 1
−De−hβ −R2m−3(hβ)−Qm−2(hβ). (4.15)

We denote

Q
(−)
m−2(hβ) = Pm−2(hβ) +Qm−2(hβ), a− = d+D, (4.16)

Q
(+)
m−2(hβ) = Pm−2(hβ)−Qm−2(hβ), a+ = d−D, (4.17)

and, taking into account (4.11), (4.15), (4.6), we get the following problem.

Problem 4. Find the solution of the equation

Dm(hβ) ∗ u(hβ) = 0, hβ /∈ [0, 1], (4.18)

having the form

u(hβ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−ehβ

4

e−1 − 1

2πiω − 1
+ a−e−hβ +R2m−3(hβ) +Q

(−)
m−2(hβ), β < 0,

fm(hβ), 0 ≤ β ≤ N,

ehβ

4

e−1 − 1

2πiω − 1
+ a+e−hβ −R2m−3(hβ) +Q

(+)
m−2(hβ), β > N.

Here, Q
(−)
m−2(hβ) and Q

(+)
m−2(hβ) are unknown polynomials of degree m − 2 with

respect to (hβ), a− and a+ are unknown constants.

If we find Q
(−)
m−2(hβ), Q

(+)
m−2(hβ), a

− and a+, then from (4.16), (4.17) we have

Pm−2(hβ) =
1

2

(
Q

(−)
m−2(hβ) +Q

(+)
m−2(hβ)

)
, d =

1

2
(a− + a+),
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Qm−2(hβ) =
1

2

(
Q

(−)
m−2(hβ)−Q

(+)
m−2(hβ)

)
, D =

1

2
(a− − a+).

Unknowns Q
(−)
m−2(hβ), Q

(+)
m−2(hβ), a

− and a+ can be found from the equation
(4.18), using the function Dm(hβ). Then we can obtain the explicit form of the
function u(hβ) and find the optimal coefficients Cβ . Thus, Problem 4 and, respec-
tively, Problem 3 can be solved.

But here we will not find Q
(−)
m−2(hβ), Q

(+)
m−2(hβ), a

− and a+. Instead of them,
using Dm(hβ) and u(hβ), taking into account (4.10), we find now the expressions
for the optimal coefficients Cβ when β = 1, . . . , N − 1.

We denote

ak =
Ak

λkp

∞∑
γ=1

λγ
k

(
− e−hγ

4

e−1 − 1

2πiω − 1
+R2m−3(−hγ)

+Q
(−)
m−2(−hγ) + a−ehγ − fm(−hγ)

)
, (4.19)

bk =
Ak

λkp

∞∑
γ=1

λγ
k

(
ehγ+1

4

e−1 − 1

2πiω − 1
−R2m−3(1 + hγ)

+Q
(+)
m−2(1 + hγ) + a+e−1−hγ − fm(1 + hγ)

)
, (4.20)

where λk are roots and p is the leading coefficient of the polynomial P2m−2(λ) of
degree 2m − 2 defined by (4.9) and |λk| < 1. The series in the notations (4.19),
(4.20) are convergent.

The following statement holds:

Theorem 4.3 (Theorem 3, [31]). The coefficients of optimal quadrature formulas

in the sense of Sard of the form (1.1) in the space W
(m,m−1)
2 [0, 1] have the following

form

Cβ = Dm(hβ) ∗ fm(hβ) +

m−1∑
k=1

(
akλ

β
k + bkλ

N−β
k

)
, β = 1, 2, . . . , N − 1, (4.21)

where ak and bk are unknowns and have the form (4.19) and (4.20) respectively,
λk are the roots of the polynomial P2m−2(λ) which is defined by equality (4.9) and
|λk| < 1.

From Theorem 4.3, it is clear that to obtain the explicit forms of the optimal

coefficients Cβ in the space W
(m,m−1)
2 [0, 1] it is sufficient to find ak and bk (k =

1,m− 1). But here we will not calculate series (4.19) and (4.20). Instead of that
substituting equality (4.21) into (4.1) we obtain the identity with respect to (hβ).
Whence, equating the corresponding coefficients in the left and the right hand sides
of equation (4.1) and using (4.2) when α = 1, 2, . . . ,m− 2, we find ak and bk. The
coefficients C0 and CN can be found from (4.2) when α = 0 and (4.3), respectively.
Below we do it.

In the present section we solve the system (4.1)–(4.3) for any m ≥ 2 and for
natural N that N + 1 ≥ m. As it was mentioned above, it is sufficient to find ak
and bk (k = 1,m− 1) in (4.21).
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The case m = 1 we consider in the next section. In the case m ≥ 2 the following
results hold:

Theorem 4.4. The coefficients of optimal quadrature formulas of the form (1.1)

with the error functional (1.2) and with equal spaced nodes in the space W
(m,m−1)
2 [0, 1]

when m ≥ 2, N + 1 ≥ m and ωh �∈ Z are expressed by formulas

C0 =
Ke4πiωh

(e2πiωh − eh)(e2πiωh − 1)
+

2πiω(1− eh)− 1

2πiω(1− 2πiω)(1− eh)

+
m−1∑
k=1

(
akλ

2
k

(1− λk)(eh − λk)
+

bkλ
N
k

(1− λk)(1− λkeh)

)
,

Cβ = e2πiωhβK +

m−1∑
k=1

(
akλ

β
k + bkλ

N−β
k

)
, β = 1, N − 1,

CN =
Keh

(e2πiωh − eh)(e2πiωh − 1)
+

2πiω(eh − 1)− eh

2πiω(1− 2πiω)(1− eh)

+eh
m−1∑
k=1

(
akλ

N
k

(1− λk)(eh − λk)
+

bkλ
2
k

(1− λk)(1− λkeh)

)
,

where ak and bk (k = 1,m− 1) are defined by the following system of 2m− 2 linear
equations

m−1∑
k=1

akλk

(λk − 1)(λk − eh)
+

m−1∑
k=1

bkλ
N+1
k

(λk − 1)(λkeh − 1)

=
1

2πiω(1− 2πiω)(1− eh)
+

Ke2πiωh

(e2πiωh − eh)(1− e2πiωh)
,

m−1∑
k=1

akλ
N+1
k

(λk − 1)(λk − eh)
+

m−1∑
k=1

bkλk

(λk − 1)(λkeh − 1)

=
1

2πiω(1− 2πiω)(1− eh)
+

Ke2πiωh

(e2πiωh − eh)(1− e2πiωh)
,

m−1∑
k=1

ak

j∑
t=1

λkΔ
t0j

(λk − 1)t+1
+

m−1∑
k=1

bk

j∑
t=1

λN+t
k Δt0j

(1− λk)t+1

=
j!h

(2πiωh)j+1
−

j∑
t=1

Ke2πiωhΔt0j

(e2πiωh − 1)t+1
, j = 1,m− 2,

and

m−1∑
k=1

ak

[
hj

j∑
t=1

λt
kΔ

t0j

(1− λk)t+1
−

j∑
i=1

hiCi
j

i∑
t=1

λN+t
k Δt0i

(1− λk)t+1

]

+
m−1∑
k=1

bk

[
hj

j∑
t=1

λN+1
k Δt0j

(λk − 1)t+1
−

j∑
i=1

hiCi
j

i∑
t=1

λkΔ
t0i

(λk − 1)t+1

]
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=

j−1∑
k=1

(−1)k
j(j − 1) · · · (j − k + 1)

(2πiω)k+1
+K

j−1∑
i=1

hiCi
j

i∑
t=1

e2πiωhtΔt0i

(1− e2πiωh)t+1
,

for j = 1,m− 2, where

K =
L

p
(2m−2)
2m−2

{
m−1∑
k=1

[
2Ak

λk
· 1− λk cos(2πωh)

λ2
k + 1− 2λk cos(2πωh)

− Ak

λk

]
−4eh cos(2πωh)+2C

}
,

L =
1

(2πiω)2 − 1
−

m−1∑
k=1

1

(2πiω)2k
,

λk are the roots of the polynomial (4.9), |λk| < 1, and p
(2m−2)
2m−2 , Ak and C are defined

in Theorem 4.1.

Theorem 4.5. The coefficients of optimal quadrature formulas of the form (1.1)

with the error functional (1.2) and with equal spaced nodes in the space W
(m,m−1)
2 [0, 1]

when m ≥ 2, N + 1 ≥ m and ωh ∈ Z, ω �= 0, are expressed by formulas

C0 =
2πiω(1− eh)− 1

2πiω(1− 2πiω)(1− eh)
+

m−1∑
k=1

[
akλ

2
k

(1− λk)(eh − λk)
+

bkλ
N
k

(1− λk)(1− λkeh)

]
,

Cβ =
m−1∑
k=1

(
akλ

β
k + bkλ

N−β
k

)
, β = 1, N − 1,

CN =
2πiω(eh − 1)− eh

2πiω(1− 2πiω)(1− eh)
+ eh

m−1∑
k=1

[
akλ

N
k

(1− λk)(eh − λk)
+

bkλ
2
k

(1− λk)(1− λkeh)

]
,

where ak and bk, k = 1,m− 1, are defined by the following system of 2m− 2 linear
equations

m−1∑
k=1

akλk

(λk − 1)(λk − eh)
+

m−1∑
k=1

bkλ
N+1
k

(λk − 1)(λkeh − 1)
=

1

2πiω(1− 2πiω)(1− eh)
,

m−1∑
k=1

akλ
N+1
k

(λk − 1)(λk − eh)
+

m−1∑
k=1

bkλk

(λk − 1)(λkeh − 1)
=

1

2πiω(1− 2πiω)(1− eh)
,

m−1∑
k=1

ak

j∑
t=1

λkΔ
t0j

(λk − 1)t+1
+

m−1∑
k=1

bk

j∑
t=1

λN+t
k Δt0j

(1− λk)t+1
=

j!h

(2πiωh)j+1
, j = 1,m− 2,

and

m−1∑
k=1

ak

[
hj

j∑
t=1

λt
kΔ

t0j

(1− λk)t+1
−

j∑
i=1

hiCi
j

i∑
t=1

λN+t
k Δt0i

(1− λk)t+1

]

+
m−1∑
k=1

bk

[
hj

j∑
t=1

λN+1
k Δt0j

(λk − 1)t+1
−

j∑
i=1

hiCi
j

i∑
t=1

λkΔ
t0i

(λk − 1)t+1

]

=

j−1∑
k=1

(−1)k
j(j − 1) · · · (j − k + 1)

(2πiω)k+1
, j = 1,m− 2.
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Here, λk are the roots of the polynomial (4.9) and |λk| < 1, Ak and C are defined
in Theorem 4.1.

In order to prove Theorem 4.4 we use the following formulas (cf. [13], [12])

n−1∑
γ=0

qγγk =
1

1− q

k∑
i=0

(
q

1− q

)i

Δi0k − qn

1− q

k∑
i=0

(
q

1− q

)i

Δiγk
∣∣
γ=n

,

β−1∑
γ=0

γk =

k+1∑
j=1

k!Bk+1−j

j! (k + 1− j)!
βj ,

(4.22)

where Δi0k =
i∑

�=1

(−1)i−�C�
i �

k, Δiγk is the finite difference of order i of γk, and

Bk+1−j are the Bernoulli numbers, as well as

Δαxν =

ν∑
p=0

Cp
νΔ

α0pxν−p. (4.23)

Proof of Theorem 4.4. Using the binomial formula in equality (4.4), for fm(hβ)
we deduce

fm(hβ) =
(e + 1)e−hβ

4(2πiω + 1)
− (1 + e−1)ehβ

4(2πiω − 1)
+ e2πiωhβ

[
1

(2πiω)2 − 1
−

m−1∑
k=1

1

(2πiω)2k

]

+

[m+1

2 ]−1∑
k=1

2k−1∑
α=0

(hβ)2k−1−α(−1)α

2(2k − 1− α)!α!
gα +

m−1∑
k=[m+1

2 ]

m−2∑
α=0

(hβ)2k−1−α(−1)α

2(2k − 1− α)!α!
gα

+

m−1∑
k=[m+1

2 ]

m−2∑
α=m−1

(hβ)2k−1−α(−1)α

2(2k − 1− α)!α!
gα. (4.24)

Then, using (4.24), Definition 4.3 and Theorems 4.1 and 4.2, after certain calcula-
tions for the convolution Dm(hβ) ∗ fm(hβ) we get

Dm(hβ) ∗ fm(hβ) = Dm(hβ) ∗
[
e2πiωhβ

(
1

(2πiω)2 − 1
−

m−1∑
k=1

1

(2πiω)2k

)]

= e2πiωhβ

[
1

(2πiω)2 − 1
−

m−1∑
k=1

1

(2πiω)2k

] ∞∑
γ=−∞

Dm(hγ)e2πiωhγ

= Ke2πiωhβ ,

where K is given in Theorem 4.4.
Therefore, from Theorem 4.3, taking into account the last equality, for coeffi-

cients Cβ , β = 1, N − 1, we have

Cβ = Ke2πiωhβ +

m−1∑
k=1

(
akλ

β
k + bkλ

N−β
k

)
, β = 1, 2, . . . , N − 1. (4.25)
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For the convolution Gm(hβ) ∗ Cβ of equality (4.1) we have

S(hβ) = C0

(
ehβ − e−hβ

2
−

m−1∑
k=1

(hβ)2k−1

(2k − 1)!

)
+ S1(hβ) + S2(hβ), (4.26)

where

S1(hβ) =

β−1∑
γ=1

Cγ

(
ehβ−hγ − ehγ−hβ

2
−

m−1∑
k=1

(hβ − hγ)2k−1

(2k − 1)!

)
,

S2(hβ) = −1

2

N∑
γ=0

Cγ

(
ehβ−hγ − ehγ−hβ

2
−

m−1∑
k=1

(hβ − hγ)2k−1

(2k − 1)!

)
.

Then, using (4.25), (4.22), (4.23) and taking into account that λk are roots of the
polynomial (4.9), after some simplifications, we get

S1(hβ) =e2πiωhβ

[
Keh

2(e2πiωh − eh)
− K

2(eh+2πiωh − 1)

− Ke2πiωh

e2πiωh − 1

m−1∑
k=1

h2l−1

(2l − 1)!

2l−1∑
t=0

Δt02l−1

(e2πiωh − 1)t

]

− ehβ

2

[
Ke2πiωh

e2πiωh − eh
+

m−1∑
k=1

(
akλk

λk − eh
+

bkλ
N
k

1− λkeh

)]

+
e−hβ

2

[
Ke2πiωh+h

eh+2πiωh − 1
+

m−1∑
k=1

(
akλke

h

λkeh − 1
+

bkλ
N
k eh

eh − λk

)]

+
Ke2πiωh

e2πiωh − 1

m−1∑
l=1

h2l−1

(2l − 1)!

2l−1∑
j=0

Cj
2l−1β

j
2l−1∑
t=0

Δt02l−1−j

(e2πiωh − 1)t

+

m−1∑
�=1

h2�−1

(2�− 1)!

2�−1∑
j=0

Cj
2�−1β

j
m−1∑
k=1

akλk

λk − 1

2�−1∑
t=0

Δt02�−1−j

(λk − 1)t

+

m−1∑
�=1

h2�−1

(2�− 1)!

2�−1∑
j=0

Cj
2�−1β

j
m−1∑
k=1

bkλ
N
k

1− λk

2�−1∑
t=0

(
λk

1− λk

)t

Δt02�−1−j .

(4.27)

Now, using the binomial formula and equalities (4.2) and (4.3), we obtain

S2(hβ) =
1

2

{
(e−1 − 1)ehβ

2(2πiω − 1)
+

e−hβ

2

N∑
γ=0

Cγe
hγ

+

[ [m+1

2 ]−1∑
k=1

2k−1∑
α=0

(hβ)2k−1−α(−1)α

(2k − 1− α)!α!
gα +

m−1∑
k=[m+1

2 ]

m−2∑
α=0

(hβ)2k−1−α(−1)α

(2k − 1− α)!α!
gα

+

m−1∑
k=[m+1

2 ]

2k−1∑
α=m−1

(hβ)2k−1−α(−1)α

(2k − 1− α)!α!

N∑
γ=0

Cγ(hγ)
α

]}
. (4.28)
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Taking into account (4.27), (4.28) and putting (4.26), (4.24) into (4.1), we get
the following identity with respect to (hβ):

S(hβ) + Pm−2(hβ) + d e−hβ = fm(hβ). (4.29)

As it was said above, equality (4.29) is the identity with respect to (hβ). Keeping
in mind (4.27), (4.28), (4.24), equating the coefficients of ehβ and the terms which
consist of (hβ)α, α = m− 1, 2m− 3 in both sides of (4.29), we get the following
equations for ak and bk

m−1∑
k=1

{
ak

λk − λN+1
k

(eh − λk)(1− λk)
+ bk

λk − λN+1
k

(λkeh − 1)(1− λk)

}
= 0, (4.30)

m−1∑
�=[m+1

2
]

{
−C0

(hβ)2�−1

(2�− 1)!
−

2�−1∑
j=m−1

(hβ)jh2�−j−1

j! (2�− j − 1)!

2l−1−j∑
t=0

Ke2πiωhΔt02l−1−j

(e2πiωh − 1)t+1

+
2�−1∑

j=m−1

(hβ)jh2�−j−1

(2�− 1− j)!j!

m−1∑
k=1

ak

2�−1∑
t=0

λkΔ
t02�−1−j

(λk − 1)t+1

+

2�−1∑
j=m−1

(hβ)j
h2�−j−1

(2�− 1− j)!j!

m−1∑
k=1

bk

2�−1∑
t=0

λN+i
k Δt02�−1−j

(1− λk)t+1

}
= 0. (4.31)

Unknown polynomial Pm−2(hβ) and the coefficient d can be found from (4.29)
by equating the corresponding coefficients of (hβ)α when α = 0, 1, . . . ,m − 2 and
e−hβ , respectively.

Now, from equations (4.2) when α = 0 and (4.3), taking into account (4.25),
using identities (4.22) and (4.23), after some simplifications for the coefficients C0

and CN , we get the following expressions

C0 =
Ke2πiωh

e2πiωh − eh
− 1

2πiω − 1

+

m−1∑
k=1

{
ak

λk(e
h − e) + λ2

k(e− 1) + λN+1
k (1− eh)

(e− 1)(1− λk)(eh − λk)

+bk
λN+1
k (eh − e) + λN

k (e− 1) + λk(1− eh)

(e− 1)(λk − 1)(λkeh − 1)

}
(4.32)

and

CN =
Keh

eh − e2πiωh
+

1

2πiω − 1

+

m−1∑
k=1

{
ak

λk(e− eh+1) + λN
k (eh+1 − eh) + λN+1

k (eh − e)

(e− 1)(1− λk)(eh − λk)

+bk
λN+1
k (e− eh+1) + λ2

k(e
h+1 − eh) + λk(e

h − e)

(e− 1)(1− λk)(1− λkeh)

}
, (4.33)

respectively. Then, from (4.31), using (4.32), grouping the coefficients of same
degrees of (hβ) and equating to zero, for ak and bk we obtain the following m − 1
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linear equations:

m−1∑
k=1

ak

[
j∑

l=1

h2l−2

(2l − 2)!

2l−2∑
t=0

λkΔ
t02l−2

(λk − 1)t+1
− λk(e

h − e) + λ2
k(e− 1) + λN+1

k (1− eh)

(e− 1)(λk − 1)(λk − eh)

]

+
m−1∑
k=1

bk

[
j∑

l=1

h2l−2

(2l − 2)!

2l−2∑
t=0

λN+t
k Δt02l−2

(1− λk)t+1
− λk(1− eh) + λN

k (e− 1)+λN+1
k (eh − e)

(e− 1)(λk − 1)(λkeh − 1)

]

=

j∑
l=1

[
1

(2πiω)2l−1
− h2l−2

(2l − 2)!

2l−2∑
t=0

Ke2πiωhΔt02l−2

(e2πiωh − 1)t+1

]
− Ke2πiωh

e2πiωh − eh
− 1

2πiωh− 1
,

for j = 1, [m/2], and

m−1∑
k=1

ak

[
j∑

l=1

h2l−1

(2l − 1)!

2l−1∑
t=0

λkΔ
t02l−1

(λk − 1)t+1

]
+

m−1∑
k=1

bk

[
j∑

l=1

h2l−1

(2l − 1)!

2l−1∑
t=0

λN+t
k Δi02l−1

(1− λk)t+1

]

=

j∑
l=1

[
1

(2πiω)2l
− h2l−1

(2l − 1)!

2l−1∑
t=0

Ke2πiωhΔt02l−1

(e2πiωh − 1)t+1

]
,

for j = 1, [(m− 1)/2].
Further, from (4.2) when α = 1, . . . ,m − 2, using equalities (4.25), (4.33) and

identities (4.22) and (4.23) for ak and bk we have the followingm−2 linear equations:

m−1∑
k=1

ak

{
hj

j∑
i=0

λi
k − λN+i

k

(1− λk)i+1
Δi0j −

j−1∑
l=0

hlCl
j

l∑
i=0

λN+i
k Δi0l

(1− λk)i+1

+
λk(e− eh+1) + λN

k (eh+1 − eh) + λN+1
k (eh − e)

(e− 1)(λk − 1)(λk − eh)

}

+
m−1∑
k=1

bk

{
hj

j∑
i=0

λN+1
k − λk

(λk − 1)i+1
Δi0j −

j−1∑
l=0

hlCl
j

l∑
i=0

λkΔ
i0l

(λk − 1)i+1

+
λN+1
k (e− eh+1) + λk(e

h − e) + λ2
k(e

h+1 − eh)

(e− 1)(λk − 1)(λkeh − 1)

}

=
1

2πiω
+

j−1∑
l=1

(−1)l
j(j − 1)(j − 2) · · · (j − l + 1)

(2πiω)l+1
− Keh

eh − e2πiωh

− 1

2πiω − 1
+K

j−1∑
l=0

hlCl
j

l∑
t=0

e2πiωthΔt0l

(1− e2πiωh)t+1
,

where j = 1,m− 2.
Finally, after some simplifications in (4.30) and the previous systems of equations

for ak and bk, we get the system which is given in the assertion of this theorem. �
The proof of Theorem 4.5 is similar to one of Theorem 4.4. Only one difference

is that Dm(hβ) ∗ fm(hβ) = K = 0.
For m = 2, m = 3 and m = 4, from Theorem 4.4 we have the following results:
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Corollary 4.1. The coefficients of optimal quadrature formulas of the form (1.1),
with the error functional (1.2), and with equal spaced nodes when ωh �∈ Z in the

space W
(2,1)
2 [0, 1], are expressed by formulas

C0 =
Ke4πiωh

(e2πiωh − eh)(e2πiωh − 1)
+

2πiω(1− eh)− 1

2πiω(1− 2πiω)(1− eh)

+
1

1− λ1

{
a1λ

2
1

eh − λ1
+

b1λ
N
1

1− λ1eh

}
,

Cβ = e2πiωhβK + a1λ
β
1 + b1λ

N−β
1 , β = 1, N − 1,

CN =
Keh

(e2πiωh − eh)(e2πiωh − 1)
+

2πiω(eh − 1)− eh

2πiω(1− 2πiω)(1− eh)

+
eh

1− λ1

{
a1λ

N
1

eh − λ1
+

b1λ
2
1

1− λ1eh

}
,

where

a1 =
(eh − λ1)(1− λ1)

λ1(eh − 1)(λN
1 + 1)

[
1

2πiω(2πiω − 1)
+

Ke2πiωh(1− eh)

(eh − e2πiωh)(1− e2πiωh)

]
,

b1 =
(1− ehλ1)(1− λ1)

λ1(eh − 1)(λN
1 + 1)

[
1

2πiω(2πiω − 1)
+

Ke2πiωh(1− eh)

(eh − e2πiωh)(1− e2πiωh)

]
,

λ1 =
h(e2h + 1)− e2h + 1− (eh − 1)

√
h2(eh + 1)

2
+ 2h(1− e2h)

1− e2h + 2heh

K =
L

p
(2)
2

[
2A1

λ1
· 1− λ1 cos (2πωh)

λ2
1 + 1− 2λ1 cos (2πωh)

− A1

λ1
− 4eh cos(2πωh) + 2C

]
,

L =
1

(2πω)2((2πω)2 + 1)
, A1 =

2(λ1 − 1)(λ1e
h − 1)(eh − λ1)

λ1 + 1
,

p
(2)
2 = 1− e2h + 2heh, C =

(
1 + eh

)2 − eh
λ2
1 + 1

λ1
.

Remark 4.1. For λ1 in Corollary 4.1 the following expansion

λ1 =
√
3− 2 +

2
√
3− 3

30
h2 − 3

√
3− 1

4200
h4 +O

(
h6
)

holds.

Corollary 4.2. The coefficients of optimal quadrature formulas of the form (1.1),
with the error functional (1.2), and with equal spaced nodes when ωh �∈ Z in the

space W
(3,2)
2 [0, 1], are expressed by formulas

C0 =
Ke4πiωh

(e2πiωh − eh)(e2πiωh − 1)
+

2πiω(1− eh)− 1

2πiω(1− 2πiω)(1− eh)

+
2∑

k=1

1

1− λk

{
akλ

2
k

eh − λk
+

bkλ
N
k

1− λkeh

}
,
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Cβ = Ke2πiωhβ +
2∑

k=1

(
akλ

β
k + bkλ

N−β
k

)
, β = 1, N − 1,

CN =
Keh

(e2πiωh − eh)(e2πiωh − 1)
+

2πiω(eh − 1)− eh

2πiω(1− 2πiω)(1− eh)

+ eh
2∑

k=1

1

1− λk

{
akλ

N
k

eh − λk
+

bkλ
2
k

1− λkeh

}
,

where ak and bk (k = 1, 2) are defined by the following system of linear equations

2∑
k=1

akλk

(λk − 1)(λk − eh)
+

2∑
k=1

bkλ
N+1
k

(λk − 1)(λkeh − 1)
=

1

2πiω(1− 2πiω)(1− eh)

+
Ke2πiωh

(e2πiωh − eh)(1− e2πiωh)
;

2∑
k=1

akλ
N+1
k

(λk − 1)(λk − eh)
+

2∑
k=1

bkλk

(λk − 1)(λkeh − 1)
=

1

2πiω(1− 2πiω)(1− eh)

+
Ke2πiωh

(e2πiωh − eh)(1− e2πiωh)
;

2∑
k=1

akλk

(λk − 1)2
+

2∑
k=1

bkλ
N+1
k

(λk − 1)2
=

h

(2πiωh)2
− Ke2πiωh

(e2πiωh − 1)2
;

2∑
k=1

akλ
N+1
k

(λk − 1)2
+

2∑
k=1

bkλk

(λk − 1)2
=

h

(2πiωh)2
− Ke2πiωh

(e2πiωh − 1)2
.

Here λk, k = 1, 2, are roots of the polynomial

P4(λ) = (1− e2h)(1−λ)4− 2
[
λ(e2h+1)− eh(λ2+1)

][
h(1−λ)2+

h3

6
(1+4λ+λ2)

]
,

for which |λk| < 1,

K = L

{
2∑

k=1

(
2Ak

λk
· 1− λk cos(2πωh)

λ2
k + 1− 2λk cos(2πωh)

− Ak

λk

)
− 4eh cos(2πωh) + 2C

}
,

L =
1

p
(4)
4

{
1

(2πiω)2 − 1
−

2∑
k=1

1

(2πiω)2k

}
,

and Ak and C are defined in Theorem 4.1.

Corollary 4.3. The coefficients of optimal quadrature formulas of the form (1.1),
with the error functional (1.2), and with equal spaced nodes when ωh �∈ Z in the
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space W
(4,3)
2 [0, 1], are expressed by formulas

C0 =
Ke4πiωh

(e2πiωh − eh)(e2πiωh − 1)
+

2πiω(1− eh)− 1

2πiω(1− 2πiω)(1− eh)

+
3∑

k=1

1

1− λk

{
akλ

2
k

eh − λk
+

bkλ
N
k

1− λkeh

}
,

Cβ = e2πiωhβK +

3∑
k=1

(
akλ

β
k + bkλ

N−β
k

)
, β = 1, N − 1,

CN =
Keh

(e2πiωh − eh)(e2πiωh − 1)
+

2πiω(eh − 1)− eh

2πiω(1− 2πiω)(1− eh)

+ eh
3∑

k=1

1

1− λk

{
akλ

N
k

eh − λk
+

bkλ
2
k

1− λkeh

}
,

where ak and bk (k = 1, 3) are defined by the following system of linear equations

3∑
k=1

akλk

(λk − 1)(λk − eh)
+

3∑
k=1

bkλ
N+1
k

(λk − 1)(λkeh − 1)
=

1

2πiω(1− 2πiω)(1− eh)

+
Ke2πiωh

(e2πiωh − eh)(1− e2πiωh)
;

3∑
k=1

akλ
N+1
k

(λk − 1)(λk − eh)
+

3∑
k=1

bkλk

(λk − 1)(λkeh − 1)
=

1

2πiω(1− 2πiω)(1− eh)

+
Ke2πiωh

(e2πiωh − eh)(1− e2πiωh)
;

3∑
k=1

akλk

(λk − 1)2
+

3∑
k=1

bkλ
N+1
k

(λk − 1)2
=

h

(2πiωh)2
− Ke2πiωh

(e2πiωh − 1)2
;

3∑
k=1

akλ
N+1
k

(λk − 1)2
+

3∑
k=1

bkλk

(λk − 1)2
=

h

(2πiωh)2
− Ke2πiωh

(e2πiωh − 1)2
;

3∑
k=1

akλk

(λk − 1)3
+

3∑
k=1

bkλ
N+2
k

(1− λk)3
− h

(2πiωh)3
= − h

2(2πiωh)2
− Ke2πiωh

(e2πiωh − 1)3
;

3∑
k=1

akλ
2
k(1− λN

k )

(1− λk)3
+

3∑
k=1

bkλk(λ
N
k − 1)

(λk − 1)3
=

(1− 2h)Ke2πiωh

2h2(e2πiωh − 1)2
.

Here λk, k = 1, 2, 3 are the roots of the polynomial

P6(λ) = (1− e2h)(1− λ)6 − 2[λ(e2h + 1)− eh(λ2 + 1)]
[
h(1− λ)4

+
h3

6
(1− λ)2(1 + 4λ+ λ2) +

h5

120
(1 + 26λ+ 66λ2 + 26λ3 + λ4)

]
,
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for which |λk| < 1,

K =
L

p
(6)
6

{
3∑

k=1

(
2Ak

λk
· 1− λk cos(2πωh)

λ2
k + 1− 2λk cos(2πωh)

− Ak

λk

)
− 4eh cos(2πωh) + 2C

}
,

L =
1

(2πiω)2 − 1
−

3∑
k=1

1

(2πiω)2k
,

p
(6)
6 is the leading coefficient of the polynomial P6(λ), and Ak and C are defined in

Theorem 4.1 for m = 4.

Now from Theorem 4.5 for m = 2, m = 3 and m = 4, we have the following
corollaries:

Corollary 4.4. The coefficients of optimal quadrature formulas of the form (1.1),
with the error functional (1.2), and with equal spaced nodes when ωh ∈ Z and ω �= 0

in the space W
(2,1)
2 [0, 1], are expressed by formulas

C0 =
2πiω(1− eh)− 1

2πiω(1− 2πiω)(1− eh)
+

1

1− λ1

{
a1λ

2
1

eh − λ1
+

b1λ
N
1

1− λ1eh

}
,

Cβ = a1λ
β
1 + b1λ

N−β
1 , β = 1, N − 1,

CN =
2πiω(eh − 1)− eh

2πiω(1− 2πiω)(1− eh)
+

eh

1− λ1

{
a1λ

N
1

eh − λ1
+

b1λ
2
1

1− λ1eh

}
,

where

a1 =
(eh − λ1)(1− λ1)

2πiω(2πiω − 1)λ1(eh − 1)(λN
1 + 1)

,

b1 =
(1− ehλ1)(1− λ1)

2πiω(2πiω − 1)λ1(eh − 1)(λN
1 + 1)

,

and

λ1 =
h(e2h + 1)− e2h + 1− (eh − 1)

√
h2(eh + 1)

2
+ 2h(1− e2h)

1− e2h + 2heh
.

Corollary 4.5. The coefficients of optimal quadrature formulas of the form (1.1),
with the error functional (1.2), and with equal spaced nodes when ωh ∈ Z and ω �= 0

in the space W
(3,2)
2 [0, 1], are expressed by formulas

C0 =
2πiω(1− eh)− 1

2πiω(1− 2πiω)(1− eh)
+

2∑
k=1

1

1− λk

{
akλ

2
k

eh − λk
+

bkλ
N
k

1− λkeh

}
,

Cβ =

2∑
k=1

(
akλ

β
k + bkλ

N−β
k

)
, β = 1, N − 1,

CN =
2πiω(eh − 1)− eh

2πiω(1− 2πiω)(1− eh)
+ eh

2∑
k=1

1

1− λk

{
akλ

N
k

eh − λk
+

bkλ
2
k

1− λkeh

}
,
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where ak and bk (k = 1, 2) are defined by the following system of linear equations

2∑
k=1

ak
λk

(λk − 1)(λk − eh)
+

2∑
k=1

bk
λN+1
k

(λk − 1)(λkeh − 1)
=

1

2πiω(1− 2πiω)(1− eh)
,

2∑
k=1

ak
λN+1
k

(λk − 1)(λk − eh)
+

2∑
k=1

bk
λk

(λk − 1)(λkeh − 1)
=

1

2πiω(1− 2πiω)(1− eh)
,

2∑
k=1

ak
λk

(λk − 1)2
+

2∑
k=1

bk
λN+1
k

(λk − 1)2
=

h

(2πiωh)2
,

2∑
k=1

ak
λN+1
k

(λk − 1)2
+

2∑
k=1

bk
λk

(λk − 1)2
=

h

(2πiωh)2
.

Here λk, k = 1, 2, are roots of the polynomial

P4(λ) = (1− e2h)(1−λ)4 − 2
[
λ(e2h +1)− eh(λ2 +1)

][
h(1−λ)2 +

h3

6
(1+ 4λ+λ2)

]
for which |λk| < 1.

Corollary 4.6. The coefficients of optimal quadrature formulas of the form (1.1),
with the error functional (1.2), and with equal spaced nodes when ωh ∈ Z and ω �= 0

in the space W
(4,3)
2 [0, 1], are expressed by formulas

C0 =
2πiω(1− eh)− 1

2πiω(1− 2πiω)(1− eh)
+

3∑
k=1

1

1− λk

{
akλ

2
k

eh − λk
+

bkλ
N
k

1− λkeh

}
,

Cβ =

3∑
k=1

(
akλ

β
k + bkλ

N−β
k

)
, β = 1, N − 1,

CN =
2πiω(eh − 1)− eh

2πiω(1− 2πiω)(1− eh)
+ eh

3∑
k=1

1

1− λk

{
akλ

N
k

eh − λk
+

bkλ
2
k

1− λkeh

}
,

where ak and bk (k = 1, 3) are defined by the following system of linear equations

3∑
k=1

ak
λk

(λk − 1)(λk − eh)
+

3∑
k=1

bk
λN+1
k

(λk − 1)(λkeh − 1)
=

1

2πiω(1− 2πiω)(1− eh)
,

3∑
k=1

ak
λN+1
k

(λk − 1)(λk − eh)
+

3∑
k=1

bk
λk

(λk − 1)(λkeh − 1)
=

1

2πiω(1− 2πiω)(1− eh)
,

3∑
k=1

ak
λk

(λk − 1)2
+

3∑
k=1

bk
λN+1
k

(λk − 1)2
=

h

(2πiωh)2
,

3∑
k=1

ak
λN+1
k

(λk − 1)2
+

3∑
k=1

bk
λk

(λk − 1)2
=

h

(2πiωh)2
,

3∑
k=1

ak
λk

(λk − 1)3
+

3∑
k=1

bk
λN+2
k

(1− λk)3
=

h

(2πiωh)3
− h

2(2πiωh)2
,
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3∑
k=1

ak
λ2
k − λN+2

k

(1− λk)3
+

3∑
k=1

bk
λN+1
k − λk

(λk − 1)3
= 0.

Here λk, k = 1, 2, 3, are roots of the polynomial

P6(λ) = (1− e2h)(1− λ)6 − 2
[
λ(e2h + 1)− eh(λ2 + 1)

][
h(1− λ)4

+
h3

6
(1− λ)2(1 + 4λ+ λ2) +

h5

120
(1 + 26λ+ 66λ2 + 26λ3 + λ4)

]
,

for which |λk| < 1.

5. Coefficients and norm of the error functional of

optimal quadrature formulas (1.1) in W
(1,0)
2 [0, 1]

Here we get the explicit expressions for coefficients and calculate the square of the
norm of the error functional (1.2), of the optimal quadrature formula (1.1), on the

space W
(1,0)
2 [0, 1].

For m = 1 the system (4.1)–(4.3) takes the form

N∑
γ=0

CγG1(hβ − hγ) + d e−hβ = f1(hβ), β = 0, 1, . . . , N, (5.1)

N∑
β=0

Cβe
−hβ =

e−1 − 1

2πiω − 1
, (5.2)

where

G1(x) =
sign (x)

4

(
ex − e−x

)
,

f1(hβ) = −ehβ(e2πiω−1 + 1)

4(2πiω − 1)
+

e−hβ(e2πiω+1 + 1)

4(2πiω + 1)
+

e2πiωhβ

(2πiω + 1)(2πiω − 1)
, (5.3)

and Cβ (β = 0, 1, . . . , N) and d are unknowns.
In this case Problem 4 is expressed as follows:

Problem 5. Find the solution of the equation

D1(hβ) ∗ u(hβ) = 0, hβ �∈ [0, 1], (5.4)

having the form

u(hβ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−ehβ

4

e−1 − 1

2πiω − 1
+ a−e−hβ , β < 0,

f1(hβ), 0 ≤ β ≤ N,

ehβ

4

e−1 − 1

2πiω − 1
+ a+e−hβ , β > N,

(5.5)

where f1(hβ) is defined by (5.3), a− and a+ are unknowns.

239



1258 N. D. Boltaev, A. R. Hayotov, G. V. Milovanović & Kh. M. Shadimetov

For m = 1, from Theorem 4.1 for D1(hβ), we obtain

D1(hβ) =
1

1− e2h

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, |β| ≥ 2,

−2eh, |β| = 1,

2(1 + e2h), β = 0.

(5.6)

Now, taking into account (5.6), for the convolution Cβ = D1(hβ) ∗ u(hβ), we
have

D1(hβ) ∗ u(hβ) = D1(h)(u(hβ − h) + u(hβ + h)) +D1(0)u(hβ).

Hence, keeping in mind (5.4) for β = −1 and β = N+1, we get the following system

D1(h)(u(−2h) + u(0)) +D1(0)u(−h) = 0,

D1(h)(u(Nh) + u(Nh+ 2h)) +D1(0)u(Nh+ h) = 0.

Whence, taking into account (5.5), (5.6) for a− and a+, we have

a− =
e− 1

4(2πiω + 1)
, a+ = − e− 1

4(2πiω + 1)
. (5.7)

Then, using (5.7), from (4.16) and (4.17) we obtain

d =
1

2
(a− + a+) = 0, D =

1

2
(a− − a+) =

e− 1

4(2πiω + 1)
. (5.8)

Substituting (5.7) into (5.5) for u(hβ) we have the following expression

u(hβ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−ehβ

4

e−1 − 1

2πiω − 1
+

e−hβ

4

e− 1

2πiω + 1
, β < 0,

f1(hβ), 0 ≤ β ≤ N,

ehβ

4

e−1 − 1

2πiω − 1
− e−hβ

4

e− 1

2πiω + 1
, β > N.

(5.9)

Using (5.9) and (5.6), taking into account (5.3), by direct calculations for optimal
coefficients Cβ = D1(hβ) ∗ u(hβ) (β = 0, 1, . . . , N) we obtain the following result:

Theorem 5.1. Coefficients of the optimal quadrature formulas of the form (1.1) in

the sense of Sard in the space W
(1,0)
2 [0, 1] have the form

C0 =
1 + e2h − 2e2πiωh+h − 2πiω(1− e2h)

(e2h − 1)(4π2ω2 + 1)
,

Cβ =
2(1 + e2h − 2eh cos 2πωh)

(e2h − 1)(4π2ω2 + 1)
e2πiωhβ , β = 1, 2, . . . , N − 1,

CN =
1 + e2h − 2eh−2πiωh + 2πiω(1− e2h)

(e2h − 1)(4π2ω2 + 1)
.
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Note that, in Theorem 5.1, the formulas for the optimal coefficients Cβ are
decomposed into two parts – real and imaginary parts. Therefore, from Theorem
5.1 we get the following results:

Corollary 5.1. Coefficients for the optimal quadrature formulas of the form∫ 1

0

ϕ(x) cos 2πωx dx ∼=
N∑

β=0

CR
β ϕ(hβ)

in the sense of Sard in the space W
(1,0)
2 [0, 1] have the form

CR
0 =

1 + e2h − 2eh cos 2πωh

(e2h − 1)(4π2ω2 + 1)
, CR

N =
1 + e2h − 2eh cos 2πωh

(e2h − 1)(4π2ω2 + 1)
,

CR
β =

2(1 + e2h − 2eh cos 2πωh)

(e2h − 1)(4π2ω2 + 1)
cos 2πωhβ, β = 1, 2, . . . , N − 1.

Corollary 5.2. Coefficients for the optimal quadrature formulas of the form∫ 1

0

ϕ(x) sin 2πωxdx ∼=
N∑

β=0

CI
βϕ(hβ)

in the sense of Sard in the space W
(1,0)
2 [0, 1] have the form

CI
0 =

2πω(e2h − 1)− 2eh sin 2πωh

(e2h − 1)(4π2ω2 + 1)
, CI

N = −2πω(e2h − 1)− 2eh sin 2πωh

(e2h − 1)(4π2ω2 + 1)
,

CI
β =

2(1 + e2h − 2eh cos 2πωh)

(e2h − 1)(4π2ω2 + 1)
sin 2πωhβ, β = 1, 2, . . . , N − 1.

Remark 5.1. When ω = 0, Theorem 5.1 reduces to Theorem 4.4 from [34].

Theorem 5.2. The square of the norm of the error functional (1.2), of the optimal

quadrature formula (1.1), on the space W
(1,0)
2 [0, 1], has the form

‖�̊‖2 =
1

(4π2ω2 + 1)2

(
4π2ω2 + 1− 2(e2h + 1− 2eh cos 2πωh)

h(e2h − 1)

)
. (5.10)

Proof. For m = 1 we rewrite the equality (2.11) in the following form

‖�‖2 = −
[

N∑
β=0

CR
β

(
N∑

γ=0

CR
γ G1(hβ − hγ)−

∫ 1

0

cos 2πωx G1(x− hβ) dx

)

+
N∑

β=0

CI
β

(
N∑

γ=0

CI
γG1(hβ − hγ)−

∫ 1

0

sin 2πωx G1(x− hβ) dx

)

−
N∑

β=0

CR
β

∫ 1

0

cos 2πωx G1(x− hβ) dx−
N∑

β=0

CI
β

∫ 1

0

sin 2πωx G1(x− hβ) dx

+

∫ 1

0

∫ 1

0

cos[2πω(x− y)]G1(x− y) dx dy

]
,
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where G1(x) is defined by (5.3).

Taking into account (5.8), from (5.1) we get

N∑
γ=0

CR
γ G1(hβ − hγ)−

∫ 1

0

cos 2πωx G1(x− hβ) dx = 0

and
N∑

γ=0

CI
γG1(hβ − hγ)−

∫ 1

0

sin 2πωx G1(x− hβ) dx = 0.

Then, using the last two equalities, for ‖�‖2 we obtain

‖�‖2 =
N∑

β=0

CR
β

∫ 1

0

cos 2πωx G1(x− hβ) dx+

N∑
β=0

CI
β

∫ 1

0

sin 2πωx G1(x− hβ) dx

−
∫ 1

0

∫ 1

0

cos[2πω(x− y)]G1(x− y) dx dy.

Finally, calculating these integrals and using Corollaries 5.1 and 5.2, after some
simplifications, we get (5.10). �

Remark 5.2. When ω = 0, Theorem 5.2 reduces to Theorem 5.1 from [34].

6. Numerical results

In this section we give some numerical results of the upper bounds for the errors
in the optimal quadrature formulas of the form (1.1), as well their analysis in the
cases m = 1 and m = 2.

According to the Cauchy-Schwarz inequality, in the space W
(m,m−1)
2 [0, 1] for the

absolute value of the difference (1.4) we get

|(�̊, ϕ)| ≤ ‖ϕ‖ · ‖�̊‖,

where ‖�̊‖ is the norm of the optimal error functional which corresponds to the
optimal quadrature formulas (1.1).

1◦ First we consider the case m = 1.

Using Theorem 5.2, for ‖�̊|W (1,0)∗
2 [0, 1]‖, when N = 1, 10, 102, 103, 104 and ω =

1, 11, 101, 1001, 10001, we get numerical results which are presented in Table 1.
Numbers in parenthesis indicate the decimal exponents. From the first column of
this table we see that order of convergence of our optimal quadrature formula is
O(N−1) and from the first row of Table 1 it is clear that the quantity ‖�̊‖ converges
as O(|ω|−1). From other columns and rows of Table 1 we conclude that order of
convergence of our optimal quadrature formula in the case m = 1 is O((N+ |ω|)−1).

242



Optimal quadrature formulas for Fourier coefficients 1261

Table 1. The numerical results for ‖�̊‖ in the case m = 1 when N = 10k, k = 0, 1, 2, 3, 4, and
ω = 1, 11, 101, 1001, 10001.

N ω = 1 ω = 11 ω = 101 ω = 1001 ω = 10001
1 1.5537(−1) 1.44657(−2) 1.5757878(−3) 1.589959433(−4) 1.5913902915020(−5)
10 2.8664(−2) 1.44078(−2) 1.5757130(−3) 1.589958665(−4) 1.5913902838027(−5)
102 2.8865(−3) 2.86386(−3) 1.5757104(−3) 1.589958638(−4) 1.5913902835341(−5)
103 2.8867(−4) 2.88652(−4) 2.8674495(−4) 1.589958638(−4) 1.5913902835314(−5)
104 2.8868(−5) 2.88675(−5) 2.8865576(−5) 2.867790858(−5) 1.5913902835314(−5)

Now, as an integrand we take the function ϕ(x) = e2x. Then for the actual error
RN (ω) of the optimal quadrature formula (1.1) we have the following estimate

RN (ω) = |(�̊, e2x)| =
∣∣∣∣∫ 1

0

e2πiωxe2x dx−
N∑

β=0

Cβe
2hβ

∣∣∣∣
≤ ‖e2x|W (1,0)

2 [0, 1]‖ · ‖�̊ |W (1,0)∗
2 [0, 1]‖

=
3

2

√
e4 − 1 ‖�̊ |W (1,0)∗

2 [0, 1]‖.

For the same values of N and ω, using formulas for the optimal coefficients Cβ from
Theorem 5.1 and formula (5.10), we get the numerical values for the actual error
RN (ω) and for the bound BN (ω) on the right hand side in the previous inequality.
These results are presented in Table 2.

Table 2. Numerical values of RN (ω) = |(�̊, e2x)| and BN (ω) = ‖e2x‖‖�̊‖ in the case m = 1 for some
selected values of N and ω.

N ω = 1 ω = 11 ω = 101 ω = 1001 ω = 10001
RN (ω) BN (ω) RN (ω) BN (ω) RN (ω) BN (ω) RN (ω) BN (ω) RN (ω) BN (ω)

1 2.1(−1) 1.7(0) 1.9(−3) 1.6(−1) 2.2(−5) 1.7(−2) 2.3(−7) 1.7(−3) 2.3(−9) 1.7(−4)
10 2.4(−3) 3.1(−1) 5.3(−4) 1.6(−1) 6.9(−6) 1.7(−2) 7.1(−8) 1.7(−3) 7.1(−10) 1.7(−4)
102 2.4(−5) 3.2(−2) 2.3(−6) 3.1(−2) 7.1(−6) 1.7(−2) 7.3(−8) 1.7(−3) 7.4(−10) 1.7(−4)
103 2.4(−7) 3.2(−3) 2.3(−8) 3.2(−3) 2.5(−9) 3.1(−3) 7.3(−8) 1.7(−3) 7.4(−10) 1.7(−4)
104 2.4(−9) 3.2(−4) 2.3(−10) 3.2(−4) 2.5(−11) 3.2(−4) 2.6(−12) 3.1(−4) 7.4(−10) 1.7(−4)

These numerical results confirm our theoretical results obtained in the previous
sections.

2◦ Now we consider the case m = 2.

From (2.11), taking into account (2.7), after some calculations for the norm of
the error functional of the optimal quadrature formula (1.1) we get the following
expression

‖�̊‖2 =
N∑

β=0

N∑
γ=0

(CR
β CR

γ + CI
βC

I
γ)

sgn(hβ − hγ)

2

[
sinh (hβ − hγ)− hβ + hγ

]
+

4π2ω2 + 2

4π2ω2(4π2ω2 + 1)
−

N∑
β=0

CR
β

[
(e−1 + 1)ehβ

2(4π2ω2 + 1)
+

cos(2πωhβ)

2π2ω2(4π2ω2 + 1)

]

−
N∑

β=0

CI
β

[
πω(e−1 + 1)ehβ

4π2ω2 + 1
+

sin(2πωhβ)

2π2ω2(4π2ω2 + 1)
− hβ

πω

]
. (6.1)
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Hence, using the formulas for the optimal coefficients Cβ which are given in Corol-
lary 4.4 when N = 1 and ω = 1, 11, 101, 1001, 10001, we get the results which are
presented in the first row of Table 3. Using the formulas of the optimal coeffi-
cients Cβ , which are given in Corollary 4.1, when N = 10, 100, 1000, 10000 and
ω = 1, 11, 101, 1001, 10001, we obtain the numerical results presented in other rows
of Table 3. From the numerical results of the first column of Table 3 we see that
order of convergence of the optimal quadrature formula (1.1) is O(N−2). And from
the results presented in the first row of Table 3 we conclude that order of conver-
gence is O(|ω|−2). From the results which are given in other columns and rows
of Table 3 we have that order of our optimal quadrature formula in this case is
O((N + |ω|)−2).

Table 3. The numerical results for ‖�̊‖ in the case m = 2 when N = 10k, k = 0, 1, 2, 3, 4, and
ω = 1, 11, 101, 1001, 10001.

N ω = 1 ω = 11 ω = 101 ω = 1001 ω = 10001
1 3.5377(−2) 2.96022(−4) 3.5116561(−6) 3.575090999(−8) 3.581528459606(−10)
10 4.3982(−4) 2.15172(−4) 2.5538002(−6) 2.599946583(−8) 2.604628302387(−10)
102 3.7819(−6) 3.99301(−6) 2.4902722(−6) 2.535258220(−8) 2.539823327481(−10)
103 3.7322(−8) 3.73427(−8) 3.9122983(−8) 2.528700745(−8) 2.533254031754(−10)
104 3.7273(−10) 3.72734(−10) 3.7291046(−10) 3.904339277(−10) 2.532596167387(−10)

Now we consider the function ϕ(x) = x2 as an integrand. Then for the error of
the optimal quadrature formula (1.1) we have

|(�̊, x2)| =
∣∣∣∣∣∣
∫ 1

0

e2πiωxx2 dx−
N∑

β=0

Cβ(hβ)
2

∣∣∣∣∣∣ ≤ ‖x2|W (2,1)
2 [0, 1]‖ · ‖�̊ |W (2,1)∗

2 [0, 1]‖

≤ 2

3

√
21 ‖�̊ |W (2,1)∗

2 [0, 1]‖.

Using formulas for the optimal coefficients Cβ which are given in Corollary 4.4 and
formula (6.1) for the left and the right hand sides of the last inequality, respectively,
when N = 1 and ω = 1, 11, 101, 1001, 10001, we get the numerical results given in
the first row of Table 4. The numerical results which are presented in other rows of
Table 4 are obtained by using Corollary 4.1 and formula (6.1).

Table 4. Numerical values of RN (ω) = |(�̊, x2)| and BN (ω) = ‖x2‖‖�̊‖ in the case m = 2 for some
selected values of N and ω.

N ω = 1 ω = 11 ω = 101 ω = 1001 ω = 10001
RN (ω) BN (ω) RN (ω) BN (ω) RN (ω) BN (ω) RN (ω) BN (ω) RN (ω) BN (ω)

1 7.5(−2) 1.1(−1) 6.3(−4) 9.0(−4) 7.4(−6) 1.1(−5) 7.6(−8) 1.1(−7) 7.6(−10) 1.1(−9)
10 1.5(−4) 1.3(−3) 3.6(−5) 6.6(−4) 4.3(−7) 7.8(−6) 4.3(−9) 7.9(−8) 4.3(−11) 8.0(−10)
102 1.4(−7) 1.2(−5) 1.5(−7) 1.2(−5) 4.4(−8) 7.6(−6) 4.4(−10) 7.7(−8) 4.4(−12) 7.8(−10)
103 1.4(−10) 1.1(−7) 1.4(−10) 1.1(−7) 1.5(−10) 1.2(−7) 4.5(−11) 7.7(−8) 4.4(−13) 7.7(−10)
104 1.4(−13) 1.1(−9) 1.4(−13) 1.1(−9) 1.4(−13) 1.1(−9) 1.5(−13) 1.2(−9) 4.5(−14) 7.7(−10)

Finally, for the function x �→ ϕ(x) = x2e−x, we consider an example of calcu-

lating Fourier coefficients
∫ 1

0
e2πiωxϕ(x) dx using the optimal quadrature formula in

the space W
(2,1)
2 . The real part of this integrand, cos(2πωx)ϕ(x), for ω = 80 is

presented in Figure 1 (left).

The exact value of the corresponding Fourier integral can be obtained in an
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Figure 1. Graphics of the integrand x �→ cos(2πωx)ϕ(x) for ω = 80 (left) and ω �→ 	{I(ω)} for
ω ∈ [10, 130] (right).

analytic form,

I(ω) =

∫ 1

0

e2πiωxϕ(x) dx =
2e + e2iωπ(−5 + 8iωπ + 4ω2π2)

e(1− 2iωπ)3
,

and therefore, we can calculate the actual relative errors

errN (ω) =
∣∣∣QN (ω)− I(ω)

I(ω)

∣∣∣
in our optimal quadrature sums QN (ω) =

N∑
β=0

Cβϕ(hβ).

Figure 2. Relative errors ω �→ errN (ω) for N = 10, 100, 1000.

The real part of the integral I(ω) is displayed in Figure 1 (right) for ω ∈ [10, 130].
Graphics of ω �→ errN (ω) for N = 10, 100, 1000, when ω runs over [1, 104], are

presented in Figure 2 in log-log scale.
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[20] G. V. Milovanović, Numerical calculation of integrals involving oscillatory and
singular kernels and some applications of quadratures, Computers Math. Ap-
plic., 1998, 36(8), 19–39.
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Performance of SIM-MDPSK FSO Systems
With Hardware Imperfections

Milica I. Petkovic, Student Member, IEEE, Goran T. Djordjevic, Member, IEEE,
George K. Karagiannidis, Fellow, IEEE, and Gradimir V. Milovanovic

Abstract— This paper studies the error performance of free-
space optical (FSO) systems, employing subcarrier intensity
modulation (SIM) with M-ary differential phase-shift key-
ing (MDPSK). Novel analytical expressions for the symbol error
probability are derived, based on the Fourier series approach.
The irradiance fluctuations of the received optical signal are
modeled by considering both Gamma-Gamma atmospheric tur-
bulence and pointing errors. In addition, hardware imperfections
of DPSK demodulator, as the phase noise of local oscillator at the
receiver, are considered. It is illustrated that the phase noise sig-
nificantly degrades the system performance, especially when the
optical signal transmission is impaired by weak atmospheric tur-
bulence and weak pointing errors effect. Furthermore, the phase
noise results in an unrecoverable error-rate floor, which is an
important limiting factor for SIM-DPSK FSO systems.

Index Terms— Atmospheric turbulence, free-space optics
(FSO), Gamma-Gamma distribution, differential phase-shift key-
ing (DPSK), phase noise, subcarrier intensity modulation (SIM),
symbol error probability (SEP).

I. INTRODUCTION

BESIDES the main advantages, as high data rate, wide
bandwidth and license-free transmission, free-space opti-

cal (FSO) systems are also characterized by low-power and
low-cost transmission, as well as easy and simple instal-
lation. Intensity-modulation/direct detection (IM/DD) with
on-off keying (OOK) is usually employed in commercial
FSO systems. However, in order to improve the system
performance subcarrier intensity modulation (SIM) was pro-
posed, where the radio-frequency (RF) subcarrier signal is
firstly premodulated by the data sequence bearing information,
and then it is used to modulate the intensity of the laser
source [1]–[4].
Several well-known modulation techniques from the field

of RF communications, were used to modulate a subcarrier
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signal in FSO systems. The SIM based FSO system employ-
ing quadrature amplitude modulation (QAM) were analysed
in [5]–[9], while SIM with M-ary phase-shift keying (MPSK)
was investigated in [4] and [9]–[14]. Furthermore, practi-
cal wireless communication systems also employ differential
phase-shift keying (DPSK), which does not require the carrier
phase estimation at the receiver. The performance of FSO sys-
tems with coherent detection and binary DPSK (BDPSK)
was analyzed in [3] and [15]–[19], while the case of SIM-
BDPSK was investigated in [20]–[26]. Furthermore, in order
to increase the capacity (or the system throughput), an FSO
system based on SIM and higher-order DPSK modulation was
also proposed and analyzed in [12], [13], and [27]. Specifi-
cally, an expression in integral form for the bit error rate (BER)
was presented in [12] and [13], while [27] compares the per-
formance of different modulation formats, including BDPSK
and quaternary DPSK (QDPSK), when space diversity is used
at the reception.
The FSO system performance can be notably degraded

due to the hardware imperfections. For example, the effects
of the imperfect reference carrier signal phase recovery on
error performance of SIM-MPSK FSO systems were examined
in [28], considering weak atmospheric turbulence modeled by
log-normal distribution. The effect of noisy reference signal
extraction on error rate degradation of coherent BPSK FSO
system in strong turbulence conditions was examined in [29].
Although the DPSK receiver does not require a carrier phase
estimation, the hardware imperfections of the DPSK demod-
ulator can seriously degrade the system performance. After
optical-to-electrical signal conversion in SIM-DPSK receiver,
it is necessary to down-convert the received DPSK signal.
In other words, a local oscillator, used in DPSK receiver for
down-conversion, generates signal, which is not ideal, in the
sense that phase of this signal is a random process fluctuating
over time. These fluctuations, which are in the same fre-
quency band with the useful signal, have the influence on the
detection process. This undesired phase is known as a phase
noise [30], [31].
Scanning the open literature, to the best of the authors’

knowledge, the effect of hardware imperfections as the phase
noise on the performance of the FSO system employing
SIM-MDPSK, has not been investigated so far. In this
paper, we derive novel analytical expressions for the sym-
bol error probability (SEP) of the SIM-MDPSK based FSO
system, when hardware imperfections are considered, using
the Fourier series method (FSM) [32]–[35]. The impact of
hardware imperfections is represented through the phase noise,

1536-1276 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Block diagram of a SIM-MDPSK FSO system.

which is modeled by the Tikhonov distribution [36]–[38],
and is generated by the local oscillator of DPSK demodu-
lator [30], [31], [36], [39], [40]. The intensity fluctuations
of the received optical signal are assumed to originate from
the combined effect of the Gamma-Gamma atmospheric tur-
bulence and the pointing errors [16], [41]–[45]. The derived
SEP expression is given in the convergent series form, whose
upper bound for the truncation error is estimated. Furthermore,
the derived expressions are simplified, when the pointing errors
effect can be neglected. Finally, numerical results are presented
and validated through Monte Carlo simulations.
The rest of the paper is organized as follows. Section II

describes the system and channel model, while the error
analysis is provided in Section III. Numerical results with
discussion are presented in Section IV and some concluding
remarks are given in Section V.

II. SYSTEM AND CHANNEL MODEL

The block diagram of the SIM-MDPSK FSO system is
presented in Fig. 1. The information data are differently
encoded and PSK is applied in an RF domain [46, p. 333].
DC bias is added to avoid clipping and distortion, and resulting
signal modulates the laser output, by using SIM. The radiated
optical power is given by

P (t) = Pt (1+ ms (t)) , (1)

where Pt represents the transmitted optical power and m
denotes the modulation index (0 < m ≤ 1). The optical
transmission via free space is influenced by atmospheric
turbulence and pointing errors. At the receiver, direct detection
is performed, DC bias is removed and an optical-to-electrical
conversion is applied via a PIN photodetector. The electrical
signal at the input of DPSK demodulator is expressed as

re (t) = IηPt ms (t) + n(t), (2)

where I is a random variable (RV), which follows Gamma-
Gamma distribution and represents atmospheric turbulence
and pointing errors, η denotes an optical-to-electrical con-
version coefficient and n(t) is an additive white Gaussian
noise (AWGN), with zero mean and variance, σ 2n . Finally,
the electrical signal, re (t), is recovered by the DPSK demod-
ulator, presented in Fig. 1, assuming that hardware imperfec-
tions exist.

A. Modeling the Combined Effect of Atmospheric
Turbulence and Pointing Errors

The well-known Gamma-Gamma distribution is used for
describing the effect of atmospheric turbulence [41], while the

pointing errors effect is described by the distribution which
assumes the radial displacement of laser beam at receiver
experiences Rayleigh distribution, with the jitter variance σ 2s
[42, eq. (11)].
Based on (2), the instantaneous SNR is defined as

γ = I 2η2Pt
2m2/(2σ 2n ). The probability density func-

tion (PDF) of γ is [5]

fγ (γ ) = ξ2

2�(α)�(β)γ
G 3,0
1,3

(
αβκ

√
γ

μ

∣∣∣∣ ξ2+1
ξ2, α, β

)
, (3)

where Gm,n
p,q (·) is the Meijer’s G-function [47, (9.301)], and

μ represents the average electrical SNR per symbol. The
relation between μ and the average electrical SNR per bit,
μb, is μ = μblog2M . The average electrical SNR per
bit is defined as μb = η2Pt

2m2κ2A20 I 2l /(2σ 2n ), with
κ = ξ2

/
(ξ2 + 1) [5]. The atmospheric turbulence parameters

are denoted by α and β, while ξ and A0 represent the pointing
errors parameters.
Assuming Gaussian plane wave propagation and zero

inner scale, the parameters α and β are defined as
α = (exp [0.49σ 2R(1+ 1.11σ 12/5R )−7/6] − 1)−1 and
β = (exp [0.51σ 2R(1+ 0.69σ 12/5R )−5/6]−1)−1 [1], [41], with
the Rytov variance σ 2R = 1.23C2nk7/6L11/6. The wave-number
is k = 2π/λ with the wavelength λ, L is the propagation
distance, and the refractive index is denoted by C2n .
The pointing error represents the misalignment between the

transmitter laser and the receiver photodetector. The parame-
ter ξ is defined as the ratio between the equivalent beam
radius at the receiver, wLeq , and the pointing error (jitter)
standard deviation at the receiver as ξ = wLeq /(2σs).
The parameter wLeq depends on the beam radius at dis-
tance L, wL , as w2Leq

= w2L
√

πerf (v)
/(
2v exp

(−v2
))
,

v = √
πa
/(√

2wL

)
[42], where a is the radius of a circular

detector aperture, erf (·) is the error function [47, (8.250.1)],
and A0 = [erf (v)]2. Next, the parameter wL is related with
the beam radius at the waist, w0, and the radius of curvature,
F0, by wL = w0((o + �o)(1+ 1.63σ 12/5R �1))

1/2, where
o = 1− L/F0, �o = 2L/(kw20), �1 = �o/(

2
o + �2o) [44].

B. Phase Noise

After signal conversion from optical-to-electrical domain,
classical signal detection is performed in electrical domain.
During the process of down-conversion, electrical signal is
multiplied by local oscillator output signal. The phase of
the local oscillator signal (also known as a phase noise)
is a random process fluctuating over time. Frequently local
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oscillator is embedded in frequency syntetyzator contained
phase locked loop (PLL). The phase noise generated by PLL is
well known to have a Tikhonov PDF [37, Ch. 2], [38]. Hence,
the phase noise, ϕ, of the local oscillator is assumed to be a
RV which follows Tikhonov PDF given by

fϕ (ϕ) = exp (b cos (ϕ))

2π I0 (b)
, |ϕ| ≤ π, (4)

where In(·) is the nth order modified Bessel function of the
first kind [47, (8.431)], b = 1/σ 2ϕ , and σ 2ϕ is the variance of
the phase noise.
Here, we use the Fourier series expansion of Tikhonov PDF,

because Fourier series form is tractable for integration that will
be necessary in mathematical derivations of SEP. We start with
the Fourier expansion [48, (9.6.34)]

eb cos ϕ = I0(b) + 2
∞∑

n=1
In(b) cos(nϕ), |ϕ| ≤ π, (5)

for a fixed b > 0.
Based on the expansion in (5), it is clear that Tikhonov PDF

given by (4), can be expressed in the Fourier series as

fϕ (ϕ) = 1

2π
+

∞∑
n=1

cn cos(nϕ), |ϕ| ≤ π, (6)

where

cn = In (b)

π I0 (b)
. (7)

Proposition 1: The series in (6) is convergent. For the
truncation error

EN (ϕ; b) =
∞∑

n=N+1
cn cos(nϕ), |ϕ| ≤ π, (8)

the following estimate

|EN (ϕ; b)| ≤ EN (0; b) ≤ BN (9)

holds, where

BN ≡ BN (b) = 1

π I0(b)

(
IN+1(b) +

∫ ∞

N+1
Iν(b) dν

)
. (10)

Proof: See Appendix A.
In Fig. 2, we present the bounds BN of the truncation errors

for N ≤ 40 and different values of σϕ . If we take a threshold
for the errors, e.g., ε = 10−8 (black line in Fig. 2), so that
BN < ε, we see that the corresponding number of terms should
be N = 35, 18, 13 and 10 for σϕ = 10o, 20o, 30o and 40o,
respectively.

III. ERROR PERFORMANCE
Since the decisions of the DPSK receiver are taken based

on the composite phase difference between signals received
during two consecutive symbol intervals, the decision variable
of differential detector can be written as

λ′ = [ψk+1 − ψk
]
mod 2π, (11)

where ψk+1 and ψk are the composite phase of con-
secutive received signals, bearing the information at the

Fig. 2. Upper bound of truncation errors for σϕ = 10◦ (red), σϕ = 20◦
(blue), σϕ = 30◦ (green), and σϕ = 40◦ (brown) when N ≤ 40.

(k +1)-th and the k-th interval, respectively. The local oscilla-
tor imperfections are represented through the phase noise ϕk+1
and ϕk at the (k + 1)-th and the k-th intervals, respectively.
Then, the decision variable of the differential detector is

λ = [(ψk+1 − ϕk+1) − (ψk − ϕk)
]
mod 2π

= [(ψk+1 − ψk) − (ϕk+1 − ϕk)
]
mod 2π. (12)

The term, (ψk+1 − ψk), represents the difference of the com-
posite phases, while, (ϕk+1 − ϕk), denotes the impact of the
phase noise.
On the contrary to the situation at the transmitter, where the

phase of RF carrier is constant, the composite phase of total
received signal is a RV. The PDF of the resulting phase, ψ ,
of received signal in a signaling interval is presented in the
Fourier series form as [32]–[34]

fψ(ψ) = 1

2π
+

∞∑
n=1

bn cos(nψ), (13)

where bn represents the Fourier coefficient for the FSO chan-
nel influenced by the Gamma-Gamma atmospheric turbulence
and pointing errors. In order to derive the Fourier coefficient
for the considered scenario, the PDF of the received signal
composite phase is written as

fψ (ψ) =
∞∫
0

f (ψ| γ ) fγ (γ ) dγ (14)

where fγ (γ ) is the PDF of the instantaneous SNR given in (3).
The conditional PDF is defined through a Fourier series form
of the received signal composite phase due to additive noise
as [32]–[34]

f (ψ| γ ) = 1

2π
+

∞∑
n=1

an(γ ) cos(nψ), (15)

where an(γ ) denotes the Fourier coefficient for AWGN chan-
nel defined as [34]

an(γ ) = �
( n
2+1)

n!π γ
n
2 exp(−γ )1F1

(n

2
+ 1; n + 1; γ

)
, (16)
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where 1F1 (·; ·; ·) is the confluent hypergeometric function
[47, (9.21)].

Proposition 2: After substituting (3), (15) and (16)
into (14), the PDF of the phase ψ is given as

fψ (ψ) = 1

2π
+

∞∑
n=1

n2α+β−4ξ2

π2� (α) � (β)
cos (nψ)

× G 6,1
3,6

(
α2β2κ2

16μ

∣∣∣∣ 1− n
2 , 1+ n

2 , ξ2+2
2

ξ2

2 , α
2 , α+1

2 ,
β
2 ,

β+1
2 , 0

)
. (17)

Proof: See Appendix B.
Based on (13) and (17), the Fourier coefficient for

FSO channel influenced by Gamma-Gamma atmospheric tur-
bulence and pointing errors is determined as

bn = n2α+β−4ξ2

π2� (α) � (β)

× G 6,1
3,6

(
α2β2κ2

16μ

∣∣∣∣ 1− n
2 , 1+ n

2 , ξ2+2
2

ξ2

2 , α
2 , α+1

2 , β
2 , β+1

2 , 0

)
. (18)

When the considered scenario assumes the pointing errors
to be very small, it can be neglected (ξ → ∞). In this
case, the optical link suffers only from atmospheric turbulence,
and the Fourier coefficient can be found by taking the limit
of (18) for ξ → ∞. After applying [49, (07.34.25.0007.01),
(07.34.25.0006.01) and (06.05.16.0002.01)], the Fourier coef-
ficient can be derived as

bGG
n = lim

ξ→∞ bn = n2α+β−3

π2� (α) � (β)

× G 5,1
2,5

(
α2β2

16μ

∣∣∣∣ 1− n
2 , 1+ n

2
α
2 , α+1

2 , β
2 , β+1

2 , 0

)
. (19)

For further analysis, it is required to find the PDF of the
decision variable λ, defined in (12). Firstly, we will introduce
the following rule related to the PDFs presented in the Fourier
series form.

Proposition 3: If the variables x1 and x2 are RVs with the
PDFs given in the Fourier series form, with coefficients z1n

and z2n , respectively, as

fx1 (x) = 1

2π
+

∞∑
n=1

z1n cos (nx) , |x | ≤ π,

fx2 (x) = 1

2π
+

∞∑
n=1

z2n cos (nx) , |x | ≤ π, (20)

then, the PDF of y = [x1 − x2] mod 2π , is

fy (y) = 1

2π
+

∞∑
n=1

πz1nz2n cos (ny) , |y| ≤ π. (21)

Proof: The proof can be found in [36], [50], and [51].

A. Error Analysis Without Considering
Hardware Imperfections

If no hardware imperfections are assumed, the decision
variable λ′ is defined in (11). Based on Proposition 3, after

replacing x1 and x2 with ψk+1 and ψk , respectively, and both
z1n and z2n with bn , the PDF of λ′ can be easily obtained as

fλ′(λ′) = 1

2π
+

∞∑
n=1

πb2n cos(nλ′),
∣∣λ′∣∣ ≤ π. (22)

The detection is performed in the manner to find the closest
possible transmitted phase compared with received composite
phase λ′. The probability of wrong symbol detection is given
by

Ps = 1−
π/M∫

−π/M

fλ′
(
λ′) dλ′. (23)

By substituting (22) into (23), the average SEP can be found
as

Ps = 1− 1

M
−

∞∑
n=1

2πb2n
n

sin
(nπ

M

)
. (24)

In [13], an expression for the average BER was derived in
integral form, assuming that the intensity fluctuations of the
optical signal are modeled by the log-normal and Gamma-
Gamma distributions. In the region of high average electrical
SNR values, the bit error probability could be approximated
by B E R ≈ Ps

/
log2M [40, p. 271]. By using this approxi-

mation and SEP in (24) with the Fourier coefficient of (19),
the numerical results from [13, Fig. 2] can be obtained.

B. Error Analysis in the Presence of Phase Noise

In the presence of the phase noise, the decision vari-
able λ is defined as in (12). The PDF of the variable,
δ = ϕk+1 − ϕk , can be found by utilization of Proposition 3.
Since the Tikhonov PDF of the phase noise is given in the
Fourier series form by (6), the PDF of the variable δ is found
as

fδ(δ) = 1

2π
+

∞∑
n=1

πc2n cos(nδ), |δ| ≤ π, (25)

with the Fourier coefficient cn previously defined by (7).
Taking into consideration that the variables ψ and ϕ

are statistically independent, based on (22) and (25), and
Proposition 3, the PDF of λ is

fλ(λ) = 1

2π
+

∞∑
n=1

π3b2nc2n cos(nλ), |λ| ≤ π. (26)

When the Gamma-Gamma atmospheric turbulence, pointing
errors and phase noise are assumed, the average SEP of the
SIM-MDPSK FSO system can be written as

Ps = 1−
π/M∫

−π/M

fλ (λ) dλ

= 1− 1

M
−

∞∑
n=1

2π3b2nc2n
n

sin
(nπ

M

)
, (27)

where the Fourier coefficients bn and cn are previously defined
in (18) and (7), respectively.
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Fig. 3. Upper bound of truncation errors for σϕ = 10◦ (red), σϕ = 20◦
(blue), σϕ = 30◦ (green), and σϕ = 40◦ (brown) when N ≤ 25.

Proposition 4: The series in (27) is convergent and the
following estimate∣∣∣∣∣Ps − 1+ 1

M
+

N∑
n=1

2π3b2nc2n
n

sin
(nπ

M

)∣∣∣∣∣ ≤ ESEPN (28)

holds, with the bound of truncation error

ESEPN = 2πb2N+1
I0(b)2

(
IN+1(b)2

N + 1 +
∫ ∞

N+1
Iν (b)2

ν
dν

)
. (29)

Proof: See Appendix C.
This truncation error is illustrated in Fig. 3. To achieve the

given truncation error, the higher number of terms in sum-
mation is required if the standard deviation is lower. In order
to achieve truncation error less than 10−8, for μ = 10 dB
the required number of terms in summation is N = 18, 10, 7
and 6, when σϕ = 10o, 20o, 30o and 40o, respectively.
In addition, the convergence rate decreases with increasing the
electrical SNR. In other words, the proposed series expression
converges better in low electrical SNR regime compared to
high electrical SNR regime.
As it will be shown in the next Section, the existence of the

phase noise results in the unrecoverable error-rate floor, which
is a meaningful limiting factor in SIM-DPSK based FSO
systems. This error-rate floor represents the constant value of
the average SEP, which occurs at the high average electrical
SNR. With a further increase in the transmitted optical power,
the improvement of the SEP performance will not be achieved.

Proposition 5: The unrecoverable error-rate floor can be
expressed as

P f loor
s = 1− 1

M
−

∞∑
n=1

2πc2n
n

sin
(nπ

M

)
. (30)

Proof: See Appendix D.
It can be noticed that the SEP floor is independent on

the FSO channel state (atmospheric turbulence and pointing
errors). On the other hand, the value of the SEP floor depends

Fig. 4. SIM-QDPSK SEP versus average electrical SNR for different
values of the phase noise standard deviation in various atmospheric turbulence
conditions.

on the phase noise standard deviation and order of DPSK
modulation, as it will be presented in the next Section.

IV. NUMERICAL RESULTS AND DISCUSSION

Based on derived expressions for the average SEP, numer-
ical results are obtained and validated by Monte Carlo
simulations. Monte Carlo simulations have been performed
using MATLAB® software package. Since intensity fluctua-
tions originate from both atmospheric turbulence and pointing
errors, the resulting optical signal intensity, I , is obtained
as a product of two different RVs, i.e., I = Ia × Ip . The
intensity fluctuations, Ia , due to atmospheric turbulence are
modeled by Gamma-Gamma distribution. The correspond-
ing RV, Ia , is generated as a product of two independent
Gamma-distributed RVs with shaping parameters α and β.
Command for generating Gamma-distributed RV is built-in
into MATLAB®. The RVs relating to the pointing errors, Ip ,
are generated based on [42, (9)], employing built-in command
for generating Rayleigh RV. The Tikhonov-distributed sam-
ples of phase noise are generated using the modified accep-
tance/rejection method, explained in [52, p. 382]. Modulation
and demodulation is simulated based on [46, p. 333-335].
The average SEP values are estimated using 107 transmitted
symbols.
In order to obtain the numerical results, the atmospheric

turbulence strength is determined by the refractive index
structure parameter as: C2n = 6 × 10−15 m−2/3 for weak,
C2n = 2 × 10−14 m−2/3 for moderate and
C2n = 5 × 10−14 m−2/3 for strong turbulence conditions.
The impact of the phase noise is specified by the phase noise
standard deviation.
The average SEP dependence on the average electrical

SNR of the FSO system employing SIM-QDPSK is presented
in Fig. 4, assuming different atmospheric turbulence conditions
and phase noise standard deviation σϕ = 5o or σϕ = 15o.
Lower values of the phase noise standard deviation correspond
to the weaker phase noise and better system performance.

255



PETKOVIC et al.: PERFORMANCE OF SIM-MDPSK FSO SYSTEMS WITH HARDWARE IMPERFECTIONS 5447

Fig. 5. SIM-QDPSK SEP versus the phase noise standard deviation
for different values of the normalized jitter standard deviation, in various
atmospheric turbulence conditions.

Furthermore, the impact of the atmospheric turbulence con-
ditions is stronger when the value of σϕ is lower. On the
other hand, when the effect of phase noise is very strong,
the atmospheric turbulence conditions has minor influence
on the SEP performance. In addition, the existence of the
unrecoverable error-rate floor is noticed in Fig. 4, meaning that
the DPSK hardware imperfections presented through phase
noise are an important limiting factor for SIM-DPSK systems.
This SEP floor appears at lower values of average electrical

SNR in weak atmospheric turbulence, as well as when the
value of σϕ is greater (stronger impact of the phase noise).
The SEP floor results based on (30) for σϕ = 5o are not
visible in Fig. 4 due to very low value. It can be concluded
that the SEP floor is not dependent on atmospheric turbulence
conditions, which is in agreement with mathematical deriva-
tion (see (41) and (30)).
Fig. 5 presents the SIM-QDPSK SEP dependence on the

phase noise standard deviation for different values of the
normalized jitter standard deviation, in various atmospheric
turbulence conditions. It can be observed that lower values
of the normalized jitter standard deviation reflects in better
system performance. It means that the positioning of the
FSO apertures is better and the pointing errors effect is
weaker. Also, the pointing error effect is stronger in weak
compared to moderate and strong atmospheric turbulence.
When the optical signal transmission suffers from very strong
atmospheric turbulence, the pointing errors effect has less
impact on the SEP performance.
In addition, the results for the FSO system when the point-

ing errors effect is neglected, obtained by using (27) and (19),
are also presented. These results are in agreement with those
when σs/a = 1. Hence, very low values of the normalized
jitter standard deviation means that the pointing errors effect
is very weak and can be neglected.
When the DPSK demodulator hardware imperfections are

dominant, and the phase noise is quite strong, the value of
σϕ is large. In that case, the FSO channel state (atmospheric
turbulence and pointing errors) does not play a major role
in the SEP performance. When σϕ → 0, the impact of the

Fig. 6. SIM-MDPSK SEP versus the phase noise standard deviation for
different values of the normalized jitter standard deviations.

Fig. 7. SIM-MDPSK SEP versus average electrical SNR of the FSO system
without hardware imperfections.

phase noise is very weak and can be neglected. For these
phase noise standard deviation values, the SEP takes constant
values, which are approximately the same as the SEP values
for the FSO system without phase noise. Also, atmospheric
turbulence and pointing errors have very strong impact on the
SEP performance, when σϕ is low.
Fig. 6 represents the SIM-MDPSK SEP dependence on

the phase noise standard deviation. The impact of the phase
noise on SEP is stronger when higher order SIM-MDPSK is
employed. For example, for σs/a = 1, in the case of M = 2,
the SEP is independent on phase noise up to σϕ = 10o,
while for M = 8, SEP drastically increases even starting
from σϕ = 2o. In addition, the weaker the pointing errors,
the stronger is the effect of phase noise on SEP. It can be
observed that the efect of DPSK order has minor influence on
the SEP performance when the impact of the phase noise is
very strong.
The SEP dependence on the average electrical SNR of

the FSO system without hardware imperfections is presented
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in Fig. 7. The results are obtained based on (24) with the
Fourier coefficient in (18), or in (19) when the pointing
errors are neglected. Different DPSK formats are observed:
SIM employing BDPSK, QDPSK and 8DPSK. As it is
expected, FSO system based on SIM-DPSK with higher mod-
ulation format has worse SEP performance, but the larger
amount of information can be transmitted. Also, consistent
with previous conclusions, greater value of the normalized
jitter standard deviations means worse system performance
due to stronger pointing errors. Agreement of the results based
on (18) for σs/a = 1 and (19) is noticed, meaning that very
low jitter standard deviation leads to weak pointing errors.

V. CONCLUSION

We have derived novel analytical expressions for the average
SEP of FSO system employing SIM-MDPSK. The irradiance
fluctuations at the received signal originate from the Gamma-
Gamma atmospheric turbulence and pointing errors. Based
on derived SEP expressions, numerical results have been
presented and confirmed by Monte Carlo simulations.
From the illustrated results, we have found that the hard-

ware imperfections result in the significant deterioration of
the FSO system performance. The phase noise is dominant
system factor, which causes the SEP performance damaging,
especially when optical signal transmission is influenced by
favorable conditions (weak atmospheric turbulence and weak
pointing errors effect). Similarly, when the impact of the phase
noise is very strong, atmospheric turbulence and pointing
errors effect has minor effect on the system performance.
Furthermore, the SIM based FSO system with higher DPSK
format is more sensitive to the existence of the phase noise.
Further, the existence of the phase noise leads to the unre-
coverable SEP floor, being meaningful limiting factor for
SIM-DPSK systems. It is observed that the SEP floor is
not dependent on the FSO channel state, but it is highly
dependent on the phase noise standard deviation and the DPSK
modulation order.

APPENDIX A
PROOF OF PROPOSITION 1

The series in (6) is a uniformly convergent series, because
the numerical series with positive terms,

∞∑
n=1

In(b), (31)

is convergent, which can be proved using the inequality [53](
1+ ν

b

)
Iν+1 (b) < Iν(b) (ν ≥ −1, b > 0). (32)

Namely, the series (31) is convergent if for a fixed m = �b�
(�x� denotes the smallest integer greater than or equal to x)

the series
∞∑

n=m
In(b) converges. According to (32), for n > m

we have

In(b) <
In−1(b)

1+ (n − 1)/b
<

In−1(b)

2
< · · · <

Im(b)

2n−m
, (33)

so that ∞∑
n=m

In(b) < Im(b)

∞∑
n=m

1

2n−m
= 2Im(b),

wherefrom we conclude that the series
∞∑

n=m
In(b) and (31) are

convergent. The sum of (31) is S = 1
2 (e

b − I0(b)) [54, p. 254].
According to Cauchy’s integral test (cf. [55, p. 120] or

[56, p. 159]), for the numerical series (31) we can give the
following estimates for the remainder term

∞∑
n=N+1

In(b) ≤ IN+1(b) +
∫ ∞

N+1
Iν(b) dν, (34)

where ν �→ Iν(a) is a decreasing positive continuous function
on (0,∞) [53].
Thus, for the truncation error EN (ϕ; b) given by (8) we

obtain |EN (ϕ; b)| ≤ EN (0; b) = (π I0(b))−1
∑∞

n=N+1 In(b),
i.e., (9), where BN is given by (10), because of (34).

APPENDIX B
PROOF OF PROPOSITION 2

After substituting (3), (15) and (16) into (14), the PDF of
the phase ψ is re-written as

fψ (ψ) = 1

2π
+

∞∑
n=1

�
( n
2 + 1)
n!π

ξ2

2� (α) � (β)
cos (nψ)

×
∞∫
0

γ
n
2−1 exp (−γ ) 1F1

(n

2
+ 1; n + 1; γ

)

× G 3,0
1,3

(
αβκ

√
γ

μ

∣∣∣∣ ξ2+1
ξ2, α, β

)
dγ. (35)

Based on [49, (07.20.26.0015.01)], the product of exponential
and confluent hypergeometric function is presented in terms
of the Meijer’s G-function as

exp (−γ )1F1
(n

2
+ 1; n + 1; γ

)
= � (n+1)

�
( n
2

) G 1,1
1,2

(
γ
∣∣∣ 1− n

2
0, −n

)
.

(36)

After substituting (36) into (35) and applying [49,
(06.05.16.0002.01) and (06.05.03.0001.01)], the PDF of the
phase ψ is

fψ (ψ) = 1

2π
+

∞∑
n=1

nξ2

4π � (α) � (β)
cos (nψ)

×
∞∫
0

γ
n
2−1G 1,1

1,2

(
γ
∣∣∣ 1− n

2
0, −n

)
G 3,0
1,3

(
αβκ

√
γ

μ

∣∣∣∣ ξ2+1
ξ2, α, β

)
dγ. (37)

The integral in (37) can be evaluated in closed-form by
using [49, (07.34.21.0013.01)], so the PDF of the phase ψ is
derived as

fψ (ψ) = 1

2π
+

∞∑
n=1

n2α+β−4ξ2

π2� (α) � (β)
cos (nψ)

× G 7,1
4,7

(
α2β2κ2

16μ

∣∣∣∣ 1− n
2 , 1+ n

2 , ξ2+1
2 , ξ2+2

2
ξ2

2 , ξ2+1
2 , α

2 , α+1
2 , β

2 , β+1
2 , 0

)
. (38)
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After the permutation of the parameters via
[49, (07.34.04.0003.01) and (07.34.04.0004.01)], and
the transformation of the Meijer’s G-function by
[49, (07.34.03.0002.01)], the final form of the PDF of
the phase ψ is presented in (17).

APPENDIX C
PROOF OF PROPOSITION 4

We observe the series in (27) given by

S =
∞∑

n=1

2π3b2nc2n
n

sin
(nπ

M

)
, (39)

for which we can prove its absolute convergence. As in
APPENDIX A we use the inequalities (32) and (33) and

consider the series
∞∑

n=m
2π3 b2nc2n/n, where m = �b�. Since

bn is a decreasing sequence, we can write
∞∑

n=m

2π3 b2nc2n
n

< 2π3 b2m

∞∑
n=m

c2n
n

= 2πb2m
I0(b)2

∞∑
n=m

In(b)2

n
.

Now, using (33) we conclude that
∞∑

n=m

In(b)2

n
< Im(b)2

∞∑
n=m

1

n4n−m
<
4Im(b)2

3m
,

i.e., ∞∑
n=m

2π3 b2nc2n
n

<
8πb2m
3m

(
Im(b)

I0(b)

)2
< +∞.

Thus, the series (39) is absolutely convergent, and also conver-
gent. For its truncation error we obtain the following estimate∣∣∣∣

∞∑
n=N+1

2π3 b2nc2n
n

sin
(nπ

M

)∣∣∣∣ ≤
∞∑

n=N+1

2π3 b2nc2n
n

≤ 2πb2N+1
I0(b)2

∞∑
n=N+1

In(b)2

n
.

Based on Cauchy’s criteria, as in APPENDIX A, it follows
∞∑

n=N+1

In(b)2

n
≤ IN+1(b)2

N + 1 +
∫ ∞

N+1
Iν(b)2

ν
dν

so that we get (28), with (29).

APPENDIX D
PROOF OF PROPOSITION 5

In order to determine the value of the SEP floor, it is
necessary to take the limit of (27) for μ → ∞, i.e.,

P f loor
s = lim

μ→∞ Ps = lim
μ→∞

{
1− 1

M
−

∞∑
n=1

2π3b2nc2n
n

sin
(nπ

M

)}
.

(40)

Since the Fourier coefficient bn is the only term in (27),
which depends on the average electrical SNR, after following
derivation in this Appendix, the limit of bn for μ → ∞ is
derived as

bμ→∞
n = lim

μ→∞ bn = 1

π
. (41)

The term bμ→∞
n is derived by following

lim
μ→∞ bn = lim

μ→∞
n2α+β−4ξ2

π2� (α) � (β)

× G 6,1
3,6

(
α2β2κ2

16μ

∣∣∣∣ 1− n
2 , 1+ n

2 , ξ2+2
2

ξ2

2 , α
2 , α+1

2 , β
2 , β+1

2 , 0

)

= lim
z→0

n2α+β−4ξ2

π2� (α) � (β)

× G 6,1
3,6

(
z

∣∣∣∣ 1− n
2 , 1+ n

2 , ξ2+2
2

ξ2

2 , α
2 , α+1

2 , β
2 , β+1

2 , 0

)
. (42)

The first step in finding lim
μ→∞ bn is applying [49,

(07.34.06.0001.01)] to represent the Meijer’s G-function
in (42) in series form. Since z → 0, higher order terms in the
series representation of Meijer’s G-function can be neglected,
and bμ→∞

n is determined as

bμ→∞
n = lim

μ→∞ bn ≈ 1

22π2

× 2α�
(

α
2

)
�
(

α+1
2

)
� (α)

2β�
(

β
2

)
�
(

β+1
2

)
� (β)

. (43)

After utilizing [49, (06.05.03.0002.01)
and (06.01.16.0006.01)], it is proved that holds

2x�
( x
2

)
�
( x+1
2

)
� (x)

= 2
√

π, (44)

so the final form of bμ→∞
n is derived as

bμ→∞
n = 1

π
. (45)
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Polynomials and Numbers Including
Apostol-Type and Humbert-Type
Polynomials

Gulsah Ozdemir, Yilmaz Simsek and Gradimir V. Milovanović

Abstract. The aim of this paper is to give generating functions and to
prove various properties for some new families of special polynomials
and numbers. Several interesting properties of such families and their
connections with other polynomials and numbers of the Bernoulli, Eu-
ler, Apostol–Bernoulli, Apostol–Euler, Genocchi and Fibonacci type are
presented. Furthermore, the Fibonacci-type polynomials of higher or-
der in two variables and a new family of special polynomials (x, y) �→
Gd(x, y; k, m, n), including several particular cases, are introduced and
studied. Finally, a class of polynomials and corresponding numbers, ob-
tained by a modification of the generating function of Humbert’s poly-
nomials, is also considered.
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1. Introduction and Preliminaries

The special polynomials and numbers play an important role in many branches
of mathematics and their development is always actual. Many papers and
books were published in this very wide area. We mention only a few books
connected with our results in this work (cf. [4,7,27,28]).

Y. Simsek was supported by the Research Fund of the Akdeniz University (No. FDK-2017-
2386). G. Milovanović was supported in part by the Serbian Academy of Sciences and
Arts (No. Φ-96) and by the Serbian Ministry of Education, Science and Technological
Development (No. #OI 174015).
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In this paper we consider some new families of numbers and polynomials,
including their generating functions, several interesting properties, as well as
their connections with other polynomials and numbers of the Bernoulli, Eu-
ler, Apostol–Bernoulli, Apostol–Euler, Genocchi, Fibonacci and Lucas type.
In order to give our results, we need to mention several special classes of
polynomials and numbers with their generating functions.

1◦ The Bernoulli polynomials of higher order B
(h)
d (x) are defined by

means of the following generating function

FBh(x, t;h) =
(

text

et − 1

)h

=
∞∑

d=0

B
(h)
d (x)

td

d!
. (1.1)

For h = 1, (1.1) reduces to the generating function of the classical Bernoulli
polynomials, B

(1)
d (x) = Bd(x). Furthermore, for x = 0, this gives the well-

known Bernoulli numbers Bd = Bd(0). For details see [1–7,13–22,29].
2◦ The Apostol–Bernoulli polynomials were introduced in 1951 by Apos-

tol [1] by means of the following generating function

FAB(x, t;λ) =
text

λet − 1
=

∞∑
d=0

Bd(x, λ)
td

d!
, (1.2)

where |t + log λ| < 2π (for details see [1–7,13–22,29]). Several their interest-
ing properties, formulas and extensions have been obtained by Srivastava [26]
(see also the recent book [27]). Using the suitable generating functions sev-
eral authors have obtained different generalizations and unifications of these
numbers and polynomials (cf. [2,5,13,14,16,17,22,29]).

Substituting x = 0 in (1.2), for λ �= 1, we get the Apostol–Bernoulli
numbers Bd(λ),

Bd(λ) = Bd(0, λ), (1.3)

and they can be expressed it terms of Stirling numbers of the second kind [1,
Eq. (3.7)]. Setting λ = 1 in (1.2), we get the classical Bernoulli polynomials
Bd(x) = Bd(x, 1).

Alternatively, the Apostol–Bernoulli numbers can be expressed in the
form

B0(λ) = 0, Bd(λ) = (−1)d−1d
λϕd−2(λ)
(λ − 1)d

, d ≥ 1, (1.4)

where ϕk(λ) are monic polynomials in λ and of degree k and ϕk(0) = 1. Using
the generating function (1.2) for x = 0 and (1.4), it is easy to prove that the
polynomials ϕk(λ) are self-inversive (cf. [20, pp. 16–18]), i.e., λkϕk(1/λ) ≡
ϕk(λ). Also, we can prove that

ϕk(λ) = (1 − λ)k + λ

k∑
ν=1

(
k + 1

ν

)
(1 − λ)ν−1ϕk−ν(λ), k ≥ 0, (1.5)
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as well as the following determinant form

ϕk(λ) = (−1)kλk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1/λ 0 0 · · · 0 1(
2
1

) −1/λ 0 · · · 0 ξ(
3
1

)
ξ

(
3
2

) −1/λ · · · 0 ξ2

...
...

...
. . .

...
...(

k
1

)
ξk−2

(
k
2

)
ξk−3

(
k
3

)
ξk−4 · · · −1/λ ξk−1(

k+1
1

)
ξk−1

(
k+1
2

)
ξk−2

(
k+1
3

)
ξk−3 · · · (k+1

k

)
ξk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where ξ = 1 − λ. For example, we have

ϕ0(λ) = 1, ϕ1(λ) = λ + 1, ϕ2(λ) = λ2 + 4λ + 1,

ϕ3(λ) = λ3 + 11λ2 + 11λ + 1, ϕ4(λ) = λ4 + 26λ3 + 66λ2 + 26λ + 1,

ϕ5(λ) = λ5 + 57λ4 + 302λ3 + 302λ2 + 57λ + 1,

ϕ6(λ) = λ6 + 120λ5 + 1191λ4 + 2416λ3 + 1191λ2 + 120λ + 1,

etc. Using (1.5) we can conclude that ϕk(1) = (k + 1)!.
3◦ The Apostol–Euler polynomials of the first kind Ed(x, λ) are defined

by means of the generating function

FAE(x, t;λ) =
2ext

λet + 1
=

∞∑
d=0

Ed(x, λ)
td

d!
, (1.6)

where |2t + log λ| < π (cf. [1–7,22,29]). For λ �= 1, substituting x = 1/2 in
(1.6) and making some arrangement, we obtain the Apostol–Euler numbers.
Setting λ = 1 in (1.6), we get the first kind Euler polynomials Ed(x) =
Ed(x, 1).

4◦ The Apostol–Euler polynomials of the second kind are defined by
means of the generating function

2
λet + λ−1e−t

etx =
∞∑

d=0

E∗
d (x, λ)

td

d!
(1.7)

(cf. [25]). A special kind of these polynomials for λ = 1 is denoted by E∗
d (x) =

E∗
d (x, 1), and the corresponding numbers by E∗

d = E∗
d (0). By using (1.6) and

(1.7), for x = 0, we have the following relation

E∗
d (0, λ) = 2dλEd

(
1
2
, λ2

)
.

The second kind Euler numbers E∗
d are defined by the special case of the first

kind Euler polynomials, E∗
d = 2dEd (1/2).

5◦ The Euler polynomials of higher order E
(h)
d (x) are defined by means

of the following generating function

FEh(x, t;h) =
(

2ext

et + 1

)h

=
∞∑

d=0

E
(h)
d (x)

td

d!
, (1.8)

so that, obviously, E
(1)
d (x) = Ed(x).
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6◦ The Genocchi numbers and polynomials and their generalizations.
The Genocchi numbers Gd are defined by the generating function

Fg(t) =
2t

et + 1
=

∞∑
d=0

Gd
td

d!
, (1.9)

where |t| < π (cf. [13,16,22,29]).
In general, for these numbers we have G0 = 0, G1 = 1, and G2d+1 = 0 for

d ∈ N. Some relations between the Genocchi, Bernoulli and Euler numbers
are given by G2d = 2(1 − 22d)B2d and G2d = 2dE2d−1. The sequence of
Genocchi numbers is

{gd}d≥0 = {0, 1,−1, 0, 1, 0,−3, 0, 17, 0,−155, 0, . . .}.

The Genocchi polynomials Gd(x) are defined by the following generating
function

Fg(x; t) = Fg(t)ext =
∞∑

d=0

Gd(x)
td

d!
, (1.10)

where |t| < π. Using (1.10), it is easy to see that

Gd(x) =
d∑

k=0

(
d

k

)
Gkxd−k

The first seven Genocchi polynomials are

G0(x) = 0, G1(x) = 1, G2(x) = 2x − 1, G3(x) = 3x2 − 3x,

G4(x) = 4x3 − 6x2 + 1, G5(x) = 5x4 − 10x3 + 5x,

G6(x) = 6x5 − 15x4 + 15x2 − 3.

The Apostol–Genocchi polynomials gd(x, λ) are defined by the generating
function

2t

λet + 1
ext =

∞∑
d=0

Gd(x, λ)
td

d!
, (1.11)

where |2t + log λ| < π. Setting λ = 1 in (1.11), we get the classical Genoc-
chi polynomials Gd(x) = Gd(x, 1), which reduce to the classical Genocchi
numbers Gd = Gd(0) for x = 0.

Substituting x = 0 in (1.11), for λ �= 1, we obtain the Apostol–Genocchi
numbers Gd(λ) = Gd(0, λ). For some details, properties and other general-
izations see [11,13,16,22,26,27,29].

7◦ The Stirling numbers of the second kind S2(n, k;λ) are defined by
means of the following generating function (cf. [3,24,26]):

FS(t, k;λ) =
(λet − 1)k

k!
=

∞∑
n=0

S2(n, k;λ)
tn

n!
, (1.12)

where k ∈ N0 and λ ∈ C.
The generalized Stirling numbers and polynomials have been defined by

means of the following generating function (cf. [3]):

(et − 1)k

k!
etα =

∞∑
n=0

S(α)(n, k)
tn

n!
. (1.13)
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Several combinatorial properties of these polynomials have been proved in
[3].

Simsek [24] has modified the generating function (1.13), defining the
so-called λ-array polynomials Sn

k (x;λ) by means of the following generating
function

FA(t, x, k;λ) =
(λet − 1)k

k!
etx =

∞∑
n=0

Sn
k (x;λ)

tn

n!
, (1.14)

where k ∈ N0 and λ ∈ C. Substituting λ = 1, the λ-array polynomials reduce
to the array polynomials, S(α)(n, k) = Sn

k (α; 1) (cf. [3,24]).
8◦ The Humbert polynomials {Πλ

n,m}∞
n=0 were defined in 1921 by Hum-

bert [12]. Their generating function is

(1 − mxt + tm)−λ =
∞∑

n=0

Πλ
n,m(x)tn. (1.15)

This function satisfies the following recurrence relation (cf. [7,18,19] and
references therein):

(n + 1)Πλ
n+1,m(x)−mx(n+λ)Πλ

n,m(x)−(n + mλ − m + 1)Πλ
n−m+1,m(x) = 0.

A special case of these polynomials are the Gegenbauer polynomials given as
follows [8]:

Cλ
n(x) = Πλ

n,2(x)

and also the Pincherle polynomials given as follows (see [12,23]):

Pn(x) = Π−1/2
n,3 (x).

Later, Gould [9] studied a class of generalized Humbert polynomials,
Pn(m,x, y, p, C), defined by

(C − mxt + ytm)p =
∞∑

n=0

Pn(m,x, y, p, C)tn,

where m ≥ 1 is an integer and the other parameters are unrestricted in
general (cf. [7], [10]).

Some special cases of the generalized Humbert polynomials,
Pn(m,x, y, p, C), can be given as follows (cf. [12]):

Pn

(
2, x, 1,−1

2
, 1
)

= Pn(x) Legendre (1784),

Pn(2, x, 1,−ν, 1) = Cν
n(x) Geganbauer (1874),

Pn

(
3, x, 1,−1

2
, 1
)

= Pn(x) Pincherle (1890),

Pn(m,x, 1,−ν, 1) = hν
n,m(x) Humbert (1921).

9◦ The Fibonacci-type polynomials in two variables (x, y) �→ Gj

(x, y; k,m, n) has been recently defined by Ozdemir and Simsek [21] by the
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following generating function

H(t;x, y; k,m, n) =
∞∑

j=0

Gj(x, y; k,m, n)tj =
1

1 − xkt − ymtm+n
, (1.16)

where k,m, n ∈ N0. An explicit formula for the polynomials Gj(x, y; k,m, n),
j = 0, 1, . . ., can be done in the following form [21]

Gj(x, y; k,m, n) =
[ j

m+n ]∑
c=0

(
j − c(m + n − 1)

c

)
ymcxjk−mck−nck,

where [a] is the largest integer ≤ a.
In this paper we give some new identities for the previous classes of poly-

nomials and investigate some new properties of these polynomials. Moreover,
by using their generating functions, we give some applications which are as-
sociated with the Fibonacci-type polynomials of higher order in two variables

The paper is organized as follows. Fibonacci-type polynomials of higher
order in two variables and a new family of special polynomials (x, y) →
Gd(x, y; k,m, n), which includes several special cases, are introduced and
studied in Sects. 2 and 3, respectively. Finally, Sect. 4 is devoted to a class of
polynomials and corresponding numbers, obtained by a modification of the
generating function of Humbert’s polynomials.

2. Fibonacci-Type Polynomials of Higher Order in Two
Variables

In this section we give a new generalization of the Fibonacci-type polynomials
in two variables.

Definition 2.1. Two variable Fibonacci-type polynomials of higher order
(x, y) �→ G(h)

j (x, y; k,m, n) are defined by the following generating function

∞∑
j=0

G(h)
j (x, y; k,m, n)tj =

1
(1 − xkt − ymtn+m)h

, (2.1)

where h is a positive integer.

Observe that

G(1)
j (x, y; k,m, n) = Gj(x, y; k,m, n).

We give now a computation formula of two variable Fibonacci-type polyno-
mials of higher order h in the following statement.

Theorem 2.2. We have

G(h1+h2)
j (x, y; k,m, n) =

j∑
�=0

G(h1)
� (x, y; k,m, n)G(h2)

j−� (x, y; k,m, n). (2.2)
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Proof. Setting h = h1 + h2 into (2.1), we start with
∞∑

j=0

G(h1+h2)
j (x, y; k,m, n)tj =

1
(1 − xkt − ymtn+m)h1

· 1
(1 − xkt − ymtn+m)h2

,

and then, using again (2.1), we get∞∑
j=0

G(h1+h2)
j (x, y; k, m, n)tj =

∞∑
j=0

G(h1)
j (x, y; k, m, n)tj

∞∑
j=0

G(h2)
j (x, y; k, m, n)tj .

Now, by using the Cauchy product in the right-hand side of the above equa-
tion, we obtain
∞∑

j=0

G(h1+h2)
j (x, y; k,m, n)tj =

∞∑
j=0

j∑
�=0

G(h1)
� (x, y; k,m, n)G(h2)

j−� (x, y; k,m, n)tj .

Finally, comparing the coefficients of tj on both sides in the previous equality,
we arrive at the desired result (2.2). �

Remark 2.3. Setting h1 = h2 = 1 in (2.2), we obtain the following formula
for computing two variable Fibonacci-type polynomials of the second order,

G(2)
j (x, y; k,m, n) =

j∑
�=0

G�(x, y; k,m, n)Gj−�(x, y; k,m, n).

If we take x := ax, y = −1, k = 1, m = 1, n = a − 1, (2.1) reduces to
∞∑

j=0

G(h)
j (ax,−1; 1, 1, a − 1)tj =

1
(1 − axt + ta)h

=
∞∑

j=0

Πh
j,a(x)tj .

Comparing the coefficients of tj on both sides of the above equality, we
obtain the following result.

Corollary 2.4. A relation between two variable Fibonacci-type polynomials of
higher order G(h)

j (x, y; k,m, n) and Humbert polynomials Πh
n,m(x) is given by

G(h)
j (ax,−1; 1, 1, a − 1) = Πh

j,a(x).

3. Special Polynomials Including Two Variable Fibonacci-Type
Polynomials and Bernoulli and Euler-Type Polynomials

In this section, in order to introduce a new family of polynomials, we mod-
ify and unify the generating functions of the Fibonacci-type polynomials in
two variables. By using these generating functions, we derive some relations
and identities including the Apostol–Bernoulli numbers, the Bernoulli-type
polynomials, the Humbert polynomials and the Genocchi polynomials. These
relations and identities also include the Fibonacci-type polynomials in two
variables.
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Now, we introduce the generating function for these new special poly-
nomials in two variables (x, y) �→ Gd(x, y; k,m, n), d ≥ 0, with the three free
parameters k,m, n.

Definition 3.1. The polynomials Gd(x, y; k,m, n) are defined by means of the
following generating function

F(z;x, y; k,m, n) =
1 − xk − ym

1 − xkez − ymez(m+n)

=
∞∑

d=0

Gd(x, y; k,m, n)
d!

(
z

1 − xk − ym

)d

. (3.1)

A recurrence relation for the polynomials Gd(x, y; k,m, n) can be proved.

Theorem 3.2. Let G0(x, y; k,m, n) = 1 and d be a positive integer. Then we
have

Gd(x, y; k,m, n) = xk
d∑

j=0

(
d

j

)
Gj(x, y; k,m, n)(1 − xk − ym)d−j

+ ym
d∑

j=0

(
d

j

)
Gj(x, y; k,m, n)(m + n)d−j(1−xk−ym)d−j .

Proof. By applying the umbral calculus methods to (3.1), we get

1 − xk − ym =

∞∑
d=0

Gd(x, y; k, m, n)
zd

(1 − xk − ym)dd!

− xk
∞∑

d=0

(G(x, y; k, m, n) + 1 − xk − ym)d zd

(1 − xk − ym)dd!

− ym
∞∑

d=0

(
G(x, y; k, m, n) + (m + n)

(
1 − xk − ym

))d zd

(1 − xk − ym)dd!
,

with the usual convention of replacing G
d(x, y; k,m, n) by Gd(x, y; k,m, n).

Comparing the coefficients of zd on the both sides of the previous equality,
we arrive at the desired result. �

A few first polynomials are

G0(x, y; k, m, n) = 1, G1(x, y; k, m, n) = xk + (m + n)ym,

G2(x, y; k, m, n) = [xk + (m + n)ym]2 − (m + n − 1)2xkym + xk + (m + n)2ym,

etc.
Now we consider special cases of the polynomials Gd(x, y; k,m, n). By

using the generating function from (3.1), we derive some new identities and re-
lations, which include the polynomials Gd(x, y; k,m, n), the Apostol–Bernoulli
and the Apostol–Euler polynomials and numbers, as well as the classical
Bernoulli, Euler and Genocchi polynomials and numbers.
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Theorem 3.3. Let d ≥ 1. The polynomials Gd(x, y; k,m, n), d ≥ 1, are con-
nected with the Apostol–Bernoulli numbers Bd(λ) in the following way

Gd−1(x, y; k, 1, 0) = − (1 − xk − y)d

d
Bd(xk + y), d ≥ 1. (3.2)

Proof. First, according to (3.1) and (1.2), we have the following relation

F(z;x, y; k, 1, 0) = −1 − xk − y

z
FAB(0, z;xk + y),

i.e.,
∞∑

d=0

Gd(x, y; k, 1, 0)
(1 − xk − y)d

zd

d!
= −1 − xk − y

z

∞∑
d=0

Bd(xk + y)
zd

d!
,

where we also used (1.3). However, since

z

1 − xk − y

∞∑
d=0

Gd(x, y; k, 1, 0)
(1 − xk − y)d

· zd

d!
=

∞∑
d=0

(d + 1)Gd(x, y; k, 1, 0)
(1 − xk − y)d+1

· zd+1

(d + 1)!

=
∞∑

d=1

dGd−1(x, y; k, 1, 0)
(1 − xk − y)d

· zd

d!
,

we have
∞∑

d=1

dGd−1(x, y; k, 1, 0)
(1 − xk − y)d

· zd

d!
= −

∞∑
d=1

Bd(xk + y)
zd

d!
, (3.3)

because B0(λ) = 0.
Comparing the coefficients of zd/d! on both sides in (3.3), we obtain

(3.2). �

By using the Apostol–Bernoulli numbers and the equality (3.2) we get
another computation formula for the polynomials Gd(x, y; k,m, n). Thus,

G1(x, y; k, 1, 0) = − (1 − xk − y)2

2
B2(x

k + y) = xk + y,

G2(x, y; k, 1, 0) = − (1 − xk − y)3

3
B3(x

k + y) = x2k + 2xky + xk + y2 + y,

G3(x, y; k, 1, 0) = − (1 − xk − y)4

4
B4(x

k + y) = (xk + y)[(xk + y)2 + 4(xk + y) + 1],

G4(x, y; k, 1, 0) = − (1 − xk − y)5

5
B5(x

k + y)

= (xk + y)[(xk + y)3 + 11(xk + y)2 + 11(xk + y) + 1], etc.

Theorem 3.4. Let d ≥ 0. The relation between the polynomials
Gd(x, y; k,m, n) and the Apostol–Bernoulli polynomials Bd(x, λ) is given by

Bd(x, xk) = −d

d−1∑
j=0

(
d − 1

j

)
xd−1−j

(1 − xk)j+1
Gj(x, 0; k,m, n). (3.4)
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Proof. Starting with (1.6) and (3.1) for y = 0 m �= 0, we conclude that

zexz
F(z;x, 0; k,m, n) = zexz 1 − xk

1 − xkez
= (xk − 1)FAE(x, z;xk), (3.5)

i.e.,

z
∞∑

d=0

(xz)d

d!

∞∑
d=0

Gd(x, 0; k,m, n)
(1 − xk)d+1

zd

d!
= −

∞∑
d=0

Bd(x, xk)
zd

d!
,

after replacing by the corresponding series representations. Now, using the
Cauchy product on the left-hand side of the above equality, we obtain

∞∑
d=0

d∑
j=0

(
d

j

)
xd−j Gj(x, 0; k,m, n)

(1 − xk)j+1

zd+1

d!
= −

∞∑
d=0

Bd(x, xk)
zd

d!
,

i.e., (3.4). �

Remark 3.5. By using (3.5), the equality (3.4) can be also given in the fol-
lowing form:

Bd(x, xk) = −
d∑

j=1

(
d

j

)
xd−j j Gj−1(x, 0; k,m, n)

(1 − xk)j
.

Theorem 3.6. The Euler polynomials Ed(x) can be expressed in terms of the
polynomials Gd(x, y; k,m, n) as

Ed(x) =
d∑

j=0

(
d

j

)
xd−j Gj(−1, 0; 1,m, n)

2j
. (3.6)

Proof. As in the proof of Theorem 3.4, we assume that m �= 0 and start with
a special case of the generating function in (3.1), with x = −1, y = 0 and
k = 1, i.e.,

F(z;−1, 0; 1,m, n) = FAE(0, t; 1).

Then, by the generating function of the Euler polynomials Ed(x) given by
(1.8) (for h = 1), we conclude that

exz
F(z;−1, 0; 1,m, n) = FEh(x, z; 1),

i.e.,
∞∑

d=0

(xz)d

d!

∞∑
d=0

Gd(−1, 0; 1,m, n)
2d

zd

d!
=

∞∑
d=0

Ed(x)
zd

d!

or
∞∑

d=0

d∑
j=0

(
d

j

)
xd−j Gj(−1, 0; 1,m, n)

2j

zd

d!
=

∞∑
d=0

Ed(x)
zd

d!
,

from which we obtain (3.6). �
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Theorem 3.7. The relation between the polynomials Gd(x, y; k,m, n) and the
Genocchi polynomials Gd(x) is given by

Gd(x) = d

d−1∑
j=0

(
d − 1

j

)
xd−1−j Gj(−1, 0; 1,m, n)

2j
. (3.7)

Proof. Assuming that m �= 0 and using (3.1) and (1.10), we have

zexz
F(z;−1, 0; 1,m, n) = Fg(x; t),

i.e.,

z

∞∑
d=0

(xz)d

d!

∞∑
d=0

Gd(−1, 0; 1,m, n)
2d

zd

d!
=

∞∑
d=0

Gd(x)
zd

d!
.

Since G0(x) = 0, after some standard manipulations, we obtain

∞∑
d=1

⎛⎝d

d−1∑
j=0

(
d − 1

j

)
xd−1−j Gj(−1, 0; 1,m, n)

2j

⎞
⎠ zd

d!
=

∞∑
d=1

Gd(x)
zd

d!
,

i.e., (3.7). �

Remark 3.8. The relation (3.7) can be also expressed in the following form

Gd(x) =
d∑

j=1

(
d

j

)
xd−j j Gj−1(−1, 0; 1,m, n)

2j−1
.

4. Modified Humbert Polynomials

In this section we modify the generating function of the Humbert polyno-
mials in order to obtain the generating functions for some other families of
special polynomials and numbers. We investigate certain properties of these
generating functions and derive a few identities and relations which include
the Apostol–Bernoulli and the Apostol–Euler numbers and polynomials, as
well as the Bernoulli numbers of higher order, the array polynomials, and
some other special numbers and polynomials.

First, we introduce a two-parameter family of the numbers {Yn(λ; a)}n≥0

by a generating function obtained from one of Humbert polynomials (1.15),
by the substitution (m,x, t, λ) → (a, λ, ez, 1).

Definition 4.1. A family of the numbers {Yn(λ; a)}n≥0 is defined by

F (z;λ, a) =
1

1 − aλez + eaz
=

∞∑
n=0

Yn(λ, a)
zn

n!
. (4.1)
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4.1. Computing Some Special Values of the Numbers Yn(λ, a)
Here, we consider two special cases.

Case a = 2. Substituting λ = 1 and a = 2 into (4.1), after multiplica-
tion by z2, we obtain

∞∑
n=0

Yn(1, 2)
zn+2

n!
=
(

z

ez − 1

)2

=
∞∑

n=0

B(2)
n

zn

n!
,

i.e.,
∞∑

n=2

Yn−2(1, 2)n(n − 1)
zn

n!
=

∞∑
n=0

B(2)
n

zn

n!
,

after using the series representation (1.1). Therefore, we have

B(2)
n = n(n − 1)Yn−2(1, 2), n �= 2,

where B
(2)
n denotes the Bernoulli numbers of the second order.

Now, we are interested for a case when λ = − 1
2 (β + β−1), where β > 1.

Theorem 4.2. If β > 1 we have

Yn

(− 1
2 (β + β−1), 2

)
=

1
4

n∑
j=0

(
n

j

)
Ej(0, β)En−j(0, β−1). (4.2)

Proof. Starting from (4.1), for a = 2, λ = −1
2 (β + β−1), and β > 1, i.e.,

F

(
z;−1

2
(β + β−1), 2

)
=

1
4
FAE(0, z;β)FAE(0, z;β−1),

and using the corresponding series representations (4.1) and (1.6), we obtain

∞∑
n=0

Yn

(− 1
2 (β + β−1), 2

) zn

n!
=

1
4

( ∞∑
i=0

Ei(0, β)
zi

i!

)⎛⎝ ∞∑
j=0

Ej(0, β−1)
zi

j!

⎞
⎠

=
1
4

∞∑
n=0

⎛⎝ n∑
j=0

(
n

j

)
Ej(0, β)En−j(0, β−1)

⎞
⎠ zn

n!
,

i.e., (4.2). �

In a particular case for β = 2, the equality (4.2) reduces to the following
identity

Yn

(− 5
4 , 2
)

=
1
4

n∑
j=0

(
n

j

)
Ej(0, 2)En−j

(
0, 1

2

)
.

We give the following functional equations related to the numbers
Yn(λ, a):

zF (z;λ, 1) = −FAB(0, z;λ − 1)

and

2F (z;λ, 1) = FAE(0, z; 1 − λ).
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Combining the above equations with (4.1), (1.2) and also (1.6), we get

Yn−1(λ, 1) = − 1
n

Bn(λ − 1) and Yn(λ, 1) =
1
2
En(0, 1 − λ).

4.2. A Recurrence Relation for the Numbers Yn(λ, a)
By applying the Umbral calculus methods to (4.1), we find a recurrence
relation for these numbers.

Theorem 4.3. Let 2 �= aλ and

Y0(λ, a) =
1

2 − aλ
.

Then, for n ≥ 1, we have

Yn(λ, a) =
n∑

j=0

(
n

j

)
(aλ − an−j)Yj(λ, a). (4.3)

Proof. Starting from (4.1), we get
∞∑

n=0

Yn(λ, a)
zn

n!
− aλ

∞∑
n=0

zn

n!

∞∑
n=0

Yn(λ, a)
zn

n!
+

∞∑
n=0

(az)n

n!

∞∑
n=0

Yn(λ, a)
zn

n!
= 1.

Now, using the Cauchy product rule in the left-hand side of this equality, we
obtain

∞∑
n=0

Yn(λ, a)
zn

n!
− aλ

∞∑
n=0

n∑
j=0

(
n

j

)
Yj(λ, a)

zn

n!
+

∞∑
n=0

n∑
j=0

(
n

j

)
an−jYj(λ, a)

zn

n!
= 1.

Therefore,
∞∑

n=0

Yn(λ, a)
zn

n!
= 1 +

∞∑
n=0

⎛⎝ n∑
j=0

(
n

j

)
(aλ − an−j)Yj(λ, a)

⎞
⎠ zn

n!
.

Comparing the coefficients of zn/n! on both sides of the above equality, we
arrive at the desired result. �

According to (4.3), we can recursively compute the values of the num-
bers Yn(λ, a) for aλ �= 2,

Yn(λ, a) =
1

2 − aλ

n−1∑
j=0

(
n

j

)
(aλ − an−j)Yj(λ, a).

This formula gives

Y0(λ, a) =
1

2 − aλ
,

Y1(λ, a) =
aλ − a

(2 − aλ)2
,

Y2 (λ, a) =
a2λ2 + (2 − 4a + a2)aλ

(2 − aλ)3
,

Y3 (λ, a) =
a3λ3 + (8 − 12a + 6a2 − a3)a2λ2 + (4 − 12a + 6a2 − 2a3)aλ + 2a3

(2 − aλ)4
,

etc.
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Remark 4.4. All numbers Yn(λ, a) are rational functions of real parameters
a and λ, with a pole λ = 2/a of order n + 1.

4.3. A New Family of Polynomials Pn(x; λ, a)
By (4.1), we can define a new family of polynomials Pn(x;λ, a) by means of
the following generating function:

G(z;x;λ, a) = exzF (z;λ, a),

i.e.,

G(z;x;λ, a) =
∞∑

n=0

Pn(x;λ, a)
zn

n!
=

exz

1 − aλez + eaz
. (4.4)

Using (4.1), (4.4), as well as the numbers Yj(λ, a), we obtain the following
representation of the polynomials Pn(x;λ, a).

Theorem 4.5. For n ∈ N0 we have

Pn(x;λ, a) =
n∑

j=0

(
n

j

)
xn−jYj(λ, a).

Proof. According to (4.4), we have
∞∑

n=0

Pn(x;λ, a)
zn

n!
=

( ∞∑
n=0

xn zn

n!

)( ∞∑
n=0

Yn(λ, a)
zn

n!

)
,

i.e.,

∞∑
n=0

Pn(x;λ, a)
zn

n!
=

∞∑
n=0

⎛⎝ n∑
j=0

(
n

j

)
xn−jYj(λ, a)

⎞
⎠ zn

n!
.

The last equality gives the desired result. �

Theorem 4.6. For n ≥ 1 we have
∂

∂x
Pn(x;λ, a) = nPn−1(x;λ, a).

Proof. By differentiating the generating function (4.4) with respect to x, we
conclude that

∂

∂x
G(z;x;λ, a) = zG(z;x;λ, a).

Then, using the corresponding series representation, we obtain
∞∑

n=0

∂

∂x
Pn(x;λ, a)

zn

n!
=

∞∑
n=1

nPn−1(x;λ, a)
zn

n!
,

from which the desired result directly follows. �

Theorem 4.7. The following identities
[n/2]∑
k=0

(
n

2k

)
Pn−2k(x;λ, a) =

1
2
(Pn(x + 1;λ, a) + Pn(x − 1;λ, a)) (4.5)
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and
[(n−1)/2]∑

k=0

(
n

2k + 1

)
Pn−2k−1(x;λ, a) =

1
2
(Pn(x + 1;λ, a) − Pn(x − 1;λ, a))

(4.6)
hold.

Proof. According to (4.4), we find that

G(z;x + y;λ, a) = eyzG(z;x;λ, a),

as well as the following equality

∞∑
n=0

Pn(x + y;λ, a)
zn

n!
=

∞∑
n=0

⎛⎝ n∑
j=0

(
n

j

)
yn−jPj(x;λ, a)

⎞
⎠ zn

n!
,

i.e.,

Pn(x + y;λ, a) =
n∑

j=0

(
n

j

)
yjPn−j(x;λ, a).

Now, substituting y = 1 and y = −1 into this equality, we obtain

Pn(x + 1;λ, a) =
n∑

j=0

(
n

j

)
Pn−j(x;λ, a)

and

Pn(x − 1;λ, a) =
n∑

j=0

(−1)j

(
n

j

)
Pn−j(x;λ, a),

respectively. Finally, adding and subtracting these equalities we get the iden-
tities (4.5) or (4.6). �
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Some Notes on Weak Subdifferential
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Abstract. Some necessary conditions for having nonempty weak subdifferential of a function are presented
and the positively homogeneous of the weak subdifferential operator is proved. Necessary and sufficient
conditions for achieving a global minimum of a weak subdifferentiable function is stated, as well as a link
between subdifferential and the Fréchet differential with a weak subdifferential. A result about the equality
of the fuzzy sum rule inclusion is also investigated. Finally, some examples are included.

To the memory of Professor Lj. Ćirić (1935–2016)

1. Introduction

The notion of weak subdifferential which is a generalization of the classic subdifferential, is introduced
by Azimov and Gasimov [1]. It uses explicitly defined supporting conic surfaces instead of supporting
hyperplanes. Recall that a convex set has a supporting hyperplane at each boundary point. This leads to
one of the central notions in convex analysis, that of a subgradient of a possible nonsmooth even extended
real valued function [4]. The main reason of difficulties arising when passing from the convex analysis to the
nonconvex one is that the nonconvex cases may arise in many different forms and each case may require a
special approach. The main ingredient is the method of supporting the given nonconvex set. Subgradients
plays an important role in deriving of optimality conditions and duality theorems. The first canonical
generalized gradient was introduced by Clarke [4]. He applied the generalized gradient systematically
to nonsmooth problems in a variety of problems. Since a nonconvex set has no supporting hyperline at
each boundary point, the notion of subgradient have been generalized by most researchers on optimality
conditions for nonconvex problems [3, 4]. By using the notion of subgradients, a collection of zero duality
gap conditions for a wide class of nonconvex optimization problems was derived [1]. In this study we give
some important properties of the weak subdifferentials. By using the definition and properties of the weak
subdifferential which are described in [1, 2, 10, 11], we present some facts concerning weak subdifferential in
the nonsmooth and nonconvex analysis. It is also obtained Necessary and sufficient optimality conditions
by using the weak subdifferential.
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283



P. Cheraghi et al. / Filomat 31:11 (2017), 3407–3420 3408

This paper is organized as follows. The definition and some preliminaries of the weak subdifferential
are given in Section 2. In Section 3, some theorems connecting operations on the weak subdifferential in the
non-smooth and non-convex analysis are provided. Also, a necessary condition in which a function attains
its global minimum by applying weak subdifferential is stated.

2. Preliminaries

Throughout this paper let X be a real normed space and let X∗ be the topological dual of X. By ‖ · ‖ we
denote the norm of X and by 〈x∗, x〉 the value of the linear functional x∗ ∈ X∗ at the point x ∈ X.

Definition 2.1 ([10, 11]). Let f : X→ R be a function and x̄ ∈ X be a given point. The set

∂ f (x̄) =
{
x∗ ∈ X∗ : (∀x ∈ X) f (x) − f (x̄) ≥ 〈x∗, x − x̄〉

}

is called the subdifferential of f at x̄ ∈ X.

Definition 2.2 ([10, 11]). Let f : X → R be a function and x̄ ∈ X be a given point. A pair (x∗, c) ∈ X∗ ×R+ where
R+, the set of nonnegative real numbers, is called the weak subgradient of f at x̄ ∈ X if the following inequality holds:

(∀x ∈ X) f (x) − f (x̄) ≥ 〈x∗, x − x̄〉 − c‖x − x̄‖.
The set

∂w f (x̄) =
{
(x∗, c) ∈ X∗ ×R+ : (∀x ∈ X) f (x) − f (x̄) ≥ 〈x∗, x − x̄〉 − c‖x − x̄‖

}
of all weak subgradients of f at x̄ ∈ X is called the weak subdifferential of f at x̄ ∈ X . If ∂w f (x̄) � ∅ , then f is called
weakly subdifferentiable at x̄.

Remark 2.3. It is obvious from the definition of weak subgradient that if ∂w f (x̄) is nonempty then it contains
uncountable members. Because if (x∗, c̄) ∈ ∂w f (x̄) , then we have

(∀x ∈ X) f (x) − f (x̄) ≥ 〈x∗, x − x̄〉 − c̄‖x − x̄‖.
Hence

(∀x ∈ X, ∀c ≥ c̄) f (x) − f (x̄) ≥ 〈x∗, x − x̄〉 − c‖x − x̄‖,
which the last inequality means that (x∗, c) ∈ ∂w f (x̄). This completes proof of the assertion.

Remark 2.4. It is clear that when f is subdifferentiable at x̄, then f is also weakly subdifferentiable at x̄ ; that is, if
x∗ ∈ ∂ f (x̄) , then by the definition of weak subgradient we get (x∗, c) ∈ ∂w f (x̄) for every c ≥ 0. But the following
example shows that the converse may fail.

Example 2.5. Let X = R and f (x) = −|x|. Then it follows from the definition of weak subdifferential that

(a, c) ∈ ∂w f (0)⇐⇒ (a, c) ∈ R ×R+ and (∀x ∈ X) − |x| ≥ ax − c|x|.
Hence the weak subdifferential can be explicitly written as

∂w f (0) =
{
(a, c) ∈ R ×R+; |a| ≤ c − 1

}
.

On the other hand, it follows from the definition of the subdifferential that ∂ f (0) = ∅.
Remark 2.6. It follows from Definition 2.2 that the pair (x∗, c) ∈ X∗ × R+ is a weak subdifferential of f at x̄ ∈ X if
and only if there exists a continuous (super linear) concave function

�(x) = 〈x∗, x − x̄〉 + f (x̄) − c‖x − x̄‖,
such that

(∀x ∈ X) �(x) ≤ f (x) and �(x̄) = f (x̄).
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The class of weakly subdifferentiable functions are wider than the class of subdifferentiable functions.
The weak subdifferential is a strong tool for studying nonconvex optimization problems, for instance, see
[1, 12]. It is worth noting that the calculation of weak subdifferential by using its definition is not easy
in general. The calculation of weak subdifferential for some functions is given in [14]. M.Kucuk, et al.
presented the very useful method for calculation of weak subdifferential of functions that represented as
the infimum of support functions, the functions that represented as difference of two sublinear functions ,
and convex functions.

Definition 2.7 ([13]). A function f : X→ R is called locally Lipschitz at x̄ ∈ X if there exist a nonnegative number
L (Lipschitz constant) and a neighborhood N(x̄) of x̄ such that

(∀x ∈ N(x̄)) | f (x) − f (x̄)| ≤ L‖x − x̄‖.
If the above inequality holds for all x ∈ X, then f is called Lipschitz with the Lipschitz constant L.

Theorem 2.8 ([10]). Let the weak subdifferential of f : X→ R at x̄ be nonempty. Then the set ∂w f (x̄) is closed and
convex.

3. Main Result

In this section we follow the main results given in [10]. In the sequel we need the following definition .

Definition 3.1 ([13]). A function f : X→ (−∞,+∞] is lower semicontinuous at x̄ ∈ X if

xn → x̄ → lim inf f (xn) ≥ f (x̄).

It is worth noting that Definition 3.1 was called sequentially lower semicontinuity by some authors
while they defined the lower semicontinuity of f at the point x̄ ∈ X as

lim inf
x→x̄

f (x) ≥ f (x̄).

It is clear that the lower semicontinuity at a point implies the sequentially lower semicontinuity at the point.
The next result provides a necessary condition for weak subdifferentiability of a function at a point.

Proposition 3.2. Let f be weak subdifferentiable at x̄ ∈ X. Then f is lower semicontinuous at x̄ ∈ X.

Proof. The weak subdifferentiability of f at x̄ implies that ∂w f (x̄) � ∅. Hence there exists the pair (x∗, c) ∈
X∗ ×R+ such that

(∀x ∈ X) f (x) − f (x̄) ≥ 〈x∗, x − x̄〉 − c‖x − x̄‖.
The result follows by taking the limit inferior of the both sides of the last inequality when x→ x̄.

The following example shows that the converse of Proposition 3.2 may fail.

Example 3.3. Let X = R and f (x) = −x2. It is easy to see that ∂w f (0) = ∅ while f is a continuous function.

The next definition is important in this paper.

Definition 3.4 ([7]). Let f : X → R be a function. If there is a continuous linear map f ′(x̄) : X → R with the
property

lim
‖h‖→0

| f (x̄ + h) − f (x̄) − 〈 f ′(x̄), h〉|
‖h‖ = 0,

then f ′(x̄) : X→ R is called the Fréchet derivative of f at x̄ ∈ X and f is called the Fréchet differentiable at x̄.
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The next conclusion provides a link between Fréchet differentiability and weak subdifferentiability of a
function.

Proposition 3.5. Assume f : X→ R is subdifferentiable and Fréchet differentiable at x̄. Then

{( f ′(x̄), c); c ≥ 0} ⊂ ∂w f (x̄).

Proof. Since f is subdifferentiable at x̄ ∈ X, then there exists x∗ ∈ ∂ f (x) ⊂ X∗ such that

(∀x ∈ X) f (x) − f (x̄) ≥ 〈x∗, x − x̄〉.
By taking

x = x̄ + te s.t. t ≥ 0, e ∈ X, ‖e‖ = 1,

we get

f (x̄ + te) − f (x̄) ≥ 〈x∗, te〉.
Therefore,

f (x̄ + te) − f (x̄)
t

≥ 〈x
∗, te〉
t
.

Now it is obvious from Fréchet differentiability of f at x̄, by letting t→ 0+, that

〈x∗ − f ′(x̄), e〉 ≤ 0.

Hence x∗ = f ′(x̄) and f ′(x̄) ∈ ∂ f (x̄). Then f ′(x̄) ∈ ∂ f (x) and so it follows from Remark 2.4 that

{( f ′(x̄), c); c ≥ 0} ⊂ ∂w f (x̄).

This completes the proof.

The following example shows that the conclusion in Proposition 3.5 may be strict.

Example 3.6. Let X = R, f ≡ 0 and x̄ = 0. Then by the definition of weak subdifferential and Fréchet differentia-
bility of f at x̄ we have, respectively,

∂w f (0) = {(a, c) ∈ R ×R+ ; |a| ≤ c}
and

A = {( f ′(0), c); c ≥ 0} = {(0, c); c ≥ 0}.
It is clear that A � ∂w f (0).

The following example shows that the subdifferentiability of f at x̄ in Proposition 3.5 is essential.

Example 3.7. Let X = R and f (x) = −x2. Then it is easy to verify that

∂ f (0) = ∅, ∂w f (x̄) = ∅ and f ′(0) = 0.

Remark 3.8. It is well known that if f is convex and Fréchet differentiable at x̄ then ∂ f (x̄) =
{

f ′(x̄)
}
. Hence by

Proposition 3.5 f is weak subdifferentiable at x̄.

The next result gives a characterization of having global minimum for a weakly subdifferentiable
function.
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Proposition 3.9. Suppose f : X → (−∞,+∞] is weakly subdifferentiable at x̄ ∈ X. Then f has a global minimum
at x̄ if and only if (0, c) ∈ ∂w f (x̄) for all c ≥ 0.

Proof. The proof directly follows from the definition of weak subdifferentiability of f at x̄ ∈ X.

The next conclusion asserts that the operator weak subdifferential (∂w) is positively homogeneous.

Proposition 3.10. Let f : X→ R be weakly subdifferentiable at x̄ ∈ X. Then

(∀α > 0) ∂w(α f )(x̄) = α∂w f (x̄).

Proof. If (x∗, c) ∈ α∂w f (x̄), then

1
α

(x∗, c) ∈ ∂w f (x̄).

Hence

(∀x ∈ X) f (x) − f (x̄) ≥
〈x∗

α
, x − x̄

〉
− c
α
‖x − x̄‖.

Thus,

(∀x ∈ X) α f (x) − α f (x̄) ≥ 〈x∗, x − x̄〉 − c̄‖x − x̄‖.
This means that α∂w f (x̄) ⊂ ∂wα f (x̄). Now we prove that the converse of the inclusion. Since α f with the
first part of proof is weakly subdifferentiable at x̄, then there exists a pair (x∗, c) ∈ ∂wα f (x̄) such that

(∀x ∈ X) α f (x) − α f (x̄) ≥ 〈x∗, x − x̄〉 − c̄‖x − x̄‖.
Hence

(∀x ∈ X) f (x) − f (x̄) ≥
〈x∗

α
, x − x̄

〉
− c
α
‖x − x̄‖.

This implies that

(x∗

α
,

c
α

)
∈ ∂w f (x̄).

Consequently, (x∗, c) ∈ α∂w f (x̄) and therefore ∂wα f (x̄) ⊂ α∂w f (x̄). This completes the proof.

Remark 3.11. Note that ∂w( f (αx̄)) = ∂wα f (x̄) may drop. Consider X = R, x̄ = 1, α =
√

2, and define

f (x) =

⎧⎪⎪⎨⎪⎪⎩
1, x ∈ Qc,

0, x ∈ Q.
Then we have

∂w f (1) =
{
(a, c) ∈ R ×R+; |a| ≤ c

}
, ∂w f (

√
2) = ∅.

Now we are interested to find a sufficient condition that the following equality holds.

Proposition 3.12. If f is a positively homogeneous function and weak subdifferentiable at x̄ and αx̄, where α is a
positive real number, then

∂w( f (αx̄)) = ∂w f (x̄).
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Proof. It follows from the hypothesis that

(x∗, c) ∈ ∂w f (αx̄) ⇐⇒ f (αx) − f (αx̄) ≥ 〈x∗, αx − αx̄〉 − c‖αx − αx̄‖
⇐⇒ α( f (x) − f (x̄)) ≥ α(〈x∗, x − x̄〉 − c̄‖x − x̄‖)
⇐⇒ (x∗, c) ∈ ∂w f (x̄).

This completes the proof.

In the next we recall the fuzzy sum rule and we investigate sufficient condition which the equality holds.

Proposition 3.13 ([10]). If f1 : X → R and f2 : X → R are weak subdifferential at x̄, then f1 + f2 is weak
subdifferential at x̄ and

∂w f1(x̄) + ∂w f2(x̄) ⊆ ∂w( f1 + f2)(x̄).

Remark 3.14. The simple example X = R, f1(x) = sin x, f2(x) = − sin x , x̄ = 0, shows that the inclusion of
Proposition 3.13 may be strict.

The following proposition provides sufficient conditions in which the equality of Proposition 3.13 holds.

Proposition 3.15. Assume that f1 : X → R is weak subdifferentiable at x̄, f2 : X → R is subdifferentiable and
Fréchet differentiable at x̄ and − f2 is subdifferentiable at x̄. Then

∂w f1(x̄) + ∂w f2(x̄) = ∂w( f1 + f2)(x̄).

Proof. If (x∗, c) ∈ ∂w( f1 + f2)(x̄), then

(∀x ∈ X) ( f1 + f2)(x) − ( f1 + f2)(x̄) ≥ 〈x∗, x − x̄〉 − c‖x − x̄‖.
Since f2 : X→ R is Fréchet differentiable at x̄ and − f2 is subdifferentiable at x̄,we get, see Proposition 3.5,

(∀x ∈ X) − f2(x) + f2(x̄) ≥ 〈− f ′2(x̄), x − x̄〉.
It follows from the first inequality that

(∀x ∈ X) ( f1(x) − f1(x̄)) + ( f2(x) − f2(x̄)) ≥ 〈x∗, x − x̄〉 − c‖x − x̄‖.
Hence

(∀x ∈ X) ( f1(x) − f1(x̄)) ≥ −( f2(x) − f2(x̄)) + 〈x∗, x − x̄〉 − c‖x − x̄‖.
Now the hypothesis implies

f1(x) − f1(x̄) ≥ 〈(− f ′2(x̄), x − x̄)〉 + 〈x∗, x − x̄〉 − c‖x − x̄‖.
Therefore

( f1(x) − f1(x̄)) ≥ 〈x∗ − f ′2(x̄), x − x̄)〉 − c‖x − x̄‖.
Then

(x∗ − f ′2(x̄), c) ∈ ∂w f1(x̄) , ( f ′2(x̄), 0) ∈ ∂w f2(x̄).

This means that

∂w( f1 + f2)(x̄) ⊆ ∂w f1(x̄) + ∂w f2(x̄).

The reverse side of the inclusion follows from Proposition 3.13 and so the proof is completed.

288



P. Cheraghi et al. / Filomat 31:11 (2017), 3407–3420 3413

Corollary 3.16. If for all but at most one of the weak subdifferentiable functions fi at x̄ , fi,− fi are Fréchet differentiable
and subdifferentiable at x̄, then

n∑
i=1

∂w fi(x̄) = ∂w

⎛⎜⎜⎜⎜⎜⎝
n∑

i=1

fi

⎞⎟⎟⎟⎟⎟⎠ (x̄).

Remark 3.17. It is easy to check that if f : X→ R is Fréchet differentiable at x̄, then f ,− f are subdifferentiable at x̄
if and only if

(∀x ∈ X) f (x) − f (x̄) = 〈 f ′(x̄), x − x̄〉.
Proposition 3.18. Let f1 : X → R be a function, − f1 be Fréchet differentiable and subdifferentiable at x̄ and
f2 : X→ R be a function. If f1 + f2 attains a global minimum at x̄, then (− f ′1(x̄), 0) ∈ ∂w f2(x̄).

Proof. Since f1 + f2 attains a global minimum at x̄ then

(∀x ∈ X) ( f1 + f2)(x) ≥ ( f1 + f2)(x̄)

and so we can rewrite the inequality as

(∀x ∈ X) f2(x) − f2(x̄) ≥ f1(x̄) − f1(x).

Hence the subdifferentability and Fréchet differentiabability of − f1, similar to the proof of Proposition 3.15,
imply that

(∀x ∈ X) f2(x) − f2(x̄) ≥ 〈− f ′1(x̄), x − x̄〉.
This means that

(− f ′1(x̄), 0) ∈ ∂w f2(x̄)

and so the proof is completed.

Proposition 3.19. Let f : X→ R be weak subdifferentiable at x̄ and � − f attain a global minimum at x̄. Then

∂w f (x̄) ⊂ ∂w�(x̄).

Proof. The weak subdifferentiability of f at x̄ implies that ∂w f (x̄) � ∅. Hence there exists (x∗, c) ∈ X∗ × R+
such that

(∀x ∈ X) f (x) − f (x̄) ≥ 〈x∗, x − x̄〉 − c‖x − x̄‖.
Since � − f attains a global minimum at x̄ then

(∀x ∈ X) (� − f )(x) ≥ (� − f )(x̄).

Therefore,

(∀x ∈ X) �(x) − �(x̄) ≥ f (x) − f (x̄).

Consequently, the above inequalities imply that

(∀x ∈ X) �(x) − �(x̄) ≥ 〈x∗, x − x̄〉 − c‖x − x̄‖.
This means that (x∗, c) ∈ ∂w�(x̄), which is the desired result and the proof is completed.

Corollary 3.20. If f attains a global minimum at x̄ then ∂w f (x̄) contains the weak subdifferentiable of the zero
function at x̄, that is

∂w0(x̄) ⊂ ∂w f (x̄).
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Example 3.21. The example, f (x) = −|x| for all x ∈ R and x = 0 shows that the condition x is a global minimum of
f in the previous corollary is essential.

Proposition 3.22. If � − f is a constant function on X, then

(∀x̄ ∈ X) ∂w f (x̄) = ∂w�(x̄).

Proof. From

(∀x ∈ X) ( f − �)(x) ≥ ( f − �)(x̄)

by Proposition 3.19 we have

∂w�(x̄) ⊂ ∂w f (x̄).

Similarly it follows from

(∀x ∈ X) (� − f )(x) ≥ (� − f )(x̄)

that

∂w f (x̄) ⊂ ∂w�(x̄).

This completes the proof.

Let Y be a real normed space and Y∗ denote the topological dual space of Y. For any y∗ ∈ Y∗, we consider
the scalar function 〈y∗, h〉 is defined by the equality

(∀u ∈ X) 〈y∗, h〉(u) = 〈y∗, h(u)〉,
where h : X→ Y is a function and X is a real normed space.

Let � : Y → R be a function and ȳ = h(x̄). In the next result we will concentrate on the composition
f (u) = �(h(u)), u ∈ X, and the projection operatorπ : X∗×R→ X∗, such thatπ(x∗, t) = x∗ for all (x∗, t) ∈ X∗×R.

Proposition 3.23. Assume that � is weak subdifferentiable at ȳ and 〈y∗, h〉 is weak subdifferentiable at x̄ for some
y∗ ∈ π(∂w�(ȳ)). If h is locally Lipschitz at x̄ with the constant Lipschitz L, then f is weak subdifferentiable at x̄ and

π(∂w〈y∗, h〉(x̄)) ⊂ π(∂w f (x̄)).

Proof. If w ∈ π(∂w〈y∗, h〉(x̄)) then there exists a nonnegative number c such that

(∀x ∈ X) 〈y∗, h〉(x) − 〈y∗, h〉(x̄) ≥ 〈w, x − x̄〉 − c‖x − x̄‖.
Since y∗ ∈ π(∂w�(ȳ)) then there exists c̄ ≥ 0 such that

(∀y ∈ Y) �(y) − �(ȳ) ≥ 〈y∗, y − ȳ〉 − c̄‖y − ȳ‖,
and so

(∀x ∈ X) �(h(x)) − �(h(x̄)) ≥ 〈y∗, h(x) − h(x̄)〉 − c̄‖h(x) − h(x̄)‖.
This means that

f (x) − f (x̄) ≥ 〈y∗, h(x) − h(x̄)〉 − c̄‖h(x) − h(x̄)‖
≥ 〈w, x − x̄〉 − c‖x − x̄‖ − c̄L‖x − x̄‖
= 〈w, x − x̄〉 − (c + c̄L)‖x − x̄‖,

then (w, c + c̄L) ∈ ∂w f (x̄). Consequently, w ∈ π(∂w f (x̄)). This completes the proof.
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It is worth noting that the conclusion of Proposition 3.23 can be rewritten in the following form:
⋃{
π(∂w〈y∗, h〉(x̄)) : y∗ ∈ ∂∗�(ȳ)

}
⊂ π(∂w f (x̄)).

Proposition 3.24. If f and −� is weak subdifferentiable, respectively, at x̄ and ȳ. If h is Lipschitz function with the
constant Lipschitz L, then for any y∗ ∈ π(∂w(−�(ȳ))) the function 〈y∗, h〉 is weak subdifferential at x̄ and

π(∂w f (x̄)) ⊂ π(∂w〈−y∗, h〉(x̄)).

Proof. If x∗ ∈ π(∂w f (x̄)) , then there exists a nonnegative number c such that

(∀x ∈ X) f (x) − f (x̄) ≥ 〈x∗, x − x̄〉 − c‖x − x̄‖.
Also if (y∗, c̄) ∈ ∂w(−�)(ȳ), then we have

(∀y ∈ Y) − �(y) + �(ȳ) ≥ 〈y∗, y − ȳ〉 − c̄‖y − ȳ‖.
Consequently,

(∀y ∈ Y) − 〈y∗, h〉(x) + 〈y∗, h〉(x̄) ≥ �(y) − �(ȳ) − c̄‖y − ȳ‖.
Therefore,

−〈y∗, h〉(x) + 〈y∗, h〉(x̄) ≥ f (x) − f (x̄) − c̄‖h(x) − h(x̄)‖
≥ 〈x∗, x − x̄〉 − c‖x − x̄‖ − c̄‖h(x) − h(x̄)‖.

Thus,

−〈y∗, h〉(x) + 〈y∗, h〉(x̄) ≥ 〈x∗, x − x̄〉 − c‖x − x̄‖ − c̄L‖x − x̄‖
= 〈x∗, x − x̄〉 − (c + c̄L)‖x − x̄‖.

This means that (x∗, c + c̄L) ∈ ∂w(〈−y∗, h〉(x̄)). Hence

x∗ ∈ π(∂w(〈−y∗, h〉(x̄)).

This completes the proof.

By combining Propositions 3.23 and 3.24 we obtain the following result.

Corollary 3.25. Let f be weak subdifferentiable at x̄ and � be Fréchet differentiable at ȳ , and � , −� is subdifferentiable
at ȳ. If h is locally Lipschitz function with the constant Lipschitz L at x̄, then

π(∂ f (x̄)) = π(∂w〈�′(ȳ), h〉(x̄)).

In the following we present some examples.

Example 3.26. The example

f (x) =

⎧⎪⎪⎨⎪⎪⎩
1, x ∈ Qc,

0, x ∈ Q, �(x) =

⎧⎪⎪⎨⎪⎪⎩
0, x ∈ Qc,

1, x ∈ Q,
shows that the weak subdifferentability of f ◦ � at x̄ may not imply the weak subdifferentability of f and � at x̄.

The next example shows that the composition of two weak subdifferentiable functions is not necessarily
weak subdifferentiable.
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Example 3.27. Take f (x) = x2 and �(x) = −x. Then f , � are weak subdifferentiable at x̄ = 0, but (� ◦ f )(x) = −x2 is
not weak subdifferentiable at x̄ = 0.

The next example shows that the product of two weak subdifferentiable functions is not necessarily
weak subdifferentiable.

Example 3.28. Let f (x) = x, �(x) = −x. Then f , � are weak subdifferentiable at x̄ = 0 while ( f�)(x) = −x2 is not
weak subdifferentiable at x̄ = 0.

The next example shows that the weak subdifferentability of f� at x̄ may not imply the weak subdif-
ferentability of f and � at x̄.

Example 3.29. Consider

f (x) =

⎧⎪⎪⎨⎪⎪⎩
1, x ∈ Qc,

0, x ∈ Q, and �(x) =

⎧⎪⎪⎨⎪⎪⎩
0, x ∈ Qc,

1, x ∈ Q.
Then � is not weak subdifferentiable at x = 0 while ( f�)(x) = 0 is weak subdifferentiable at each point of the real
number.

Proposition 3.30. If all fi, i ∈ I (I is a finite nonempty set) and f (u) = sup
i∈I

fi(u), u ∈ X, are finite at x̄, then the

closure of the convex hull of the set
⋃

i∈I0(x̄)
∂w fi(x̄) is a subset of ∂w f (x̄), i.e.,

cl

⎛⎜⎜⎜⎜⎜⎜⎝co

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

i∈I0(x̄)

∂w fi(x̄)

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ ⊂ ∂w f (x̄),

where I0(x̄) =
{
i ∈ I : fi(x̄) = f (x̄)

}
.

Proof. Suppose that
∑

i∈I0(x̄)

αi(x∗i , ci) ∈ co
⋃

i∈I0(x̄)

∂w fi(x̄),

such that
∑

i∈I0(x̄)
αi = 1, αi ≥ 0 , (x∗i , ci) ∈ ∂w fi(x̄). Then we have

(
∀x ∈ X, ∀i ∈ I0(x̄)

)
fi(x) − fi(x̄) ≥ 〈xi

∗, x − x̄〉 − ci‖x − x̄‖.
Therefore,

(∀x ∈ X)
∑

i∈I0(x̄)

αi fi(x) −
∑

i∈I0(x̄)

αi fi(x̄) ≥
∑

i∈I0(x̄)

αi〈xi
∗, x − x̄〉 −

∑
i∈I0(x̄)

αici‖x − x̄‖.

Since f (x) = sup
i∈I

fi(x), x ∈ X, we have I0(x̄) =
{
i ∈ I : fi(x̄) = f (x̄)

}
, so that

(∀x ∈ X) f (x) − f (x̄) ≥
〈 ∑

i∈I0(x̄)

αixi
∗, x − x̄

〉
−

∑
i∈I0(x̄)

αici‖x − x̄‖

and ∑
i∈I0(x̄)

αi(xi
∗, ci) ∈ ∂w f (x̄).
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Consequently,

co

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

i∈I0(x)

∂w fi(x̄)

⎞⎟⎟⎟⎟⎟⎟⎠ ⊂ ∂w f (x̄).

Now the clossedness of the set ∂w f (x̄) completes the proof.

The next proposition states necessary conditions that with them a weakly subdifferentiable function
obtains a global maximum.

Proposition 3.31. Let f at x̄ attain a global maximum. If (x∗, c) ∈ ∂w f (x̄), then ‖x∗‖ ≤ c.

Proof. Since f has a global maximum at x̄, then we have

(∀x ∈ X) f (x) ≤ f (x̄).

It follows from (x∗, c) ∈ ∂w f (x̄), that

(∀x ∈ X) f (x) − f (x̄) ≥ 〈x∗, x − x̄〉 − c‖x − x̄‖.
Hence

(∀x ∈ X) 0 ≥ 〈x∗, x − x̄〉 − c‖x − x̄‖,
Consequently

(∀x ∈ X) 〈x∗, x − x̄〉 ≤ c‖x − x̄‖,
and so

‖x∗‖ ≤ c.

This completes the proof.

Recall that in [11, 12, 14, 15], the well-known theorem about the representation of the directional
derivative of the convex functions as a point wise maximum of subgradients of that function is generalized
to a nonconvex case by using the notion of a subgradient. They worked on special class of invex functions
that includes the class of convex functions. It should be noted that the results given in [12] is a generalization
of the results presented in [11] for a special class of invex functions .The optimality condition formulated in
[12], guarantees the existence of the weak subgradient, that is the pair consisting of some linear functional
and some real number such that the graph of the homogeneous function defined by this paper, is a conical
surface which separates the optimal point from the given (non convex) set. In the sequel we establish
a new version of the main result of [12], for the Fréchet differentiable functions in the setting of infinite
dimensional normed spaces.

Proposition 3.32. If f is subdifferentiable and Fréchet differentiable at x̄, then f has a global minimum at x̄ if and
only if

(∀x ∈ X) 〈 f ′(x̄), x − x̄〉 = 0.

Proof. Suppose that f has a global minimum at x̄, then we have

(∀x ∈ X) f (x) − f (x̄) ≥ 0.

From the Fréchet differentiability of f at x̄, we get

lim
‖h‖→0

| f (x̄ + h) − f (x̄) − 〈 f ′(x̄), h〉|
‖h‖ = 0.
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If we take

h = λ(x − x̄),

then we obtain

0 = lim
λ→0+

f (x̄ + λ(x − x̄)) − f (x̄) − 〈 f ′(x̄), λ(x − x̄)〉
‖λ(x − x̄)‖

and so, since x̄ is a global minimum of f , we have

0 ≥ lim
λ→0+

−〈 f ′(x̄), λ(x − x̄)〉
‖λ(x − x̄)‖ .

Consequently, by the linearity of f ′(x̄), we can deduce that

(∀x ∈ X) 〈 f ′(x̄), x − x̄〉 = 0.

Conversely, by using our assumptions, we have

(∀x ∈ X) f (x) − f (x̄) ≥ 〈 f ′(x̄), x − x̄〉 = 0.

Then

(∀x ∈ X) f (x) ≥ f (x̄)

and this shows that x̄ is a global minimum of f . Hence the proof is completed.

Proposition 3.33. If f is subdifferentiable and Fréchet differentiable at x̄, then f is weakly subdifferentiable at x̄ if
and only if f ′(x̄) is weakly subdifferentiable at 0, the zero element of X, and

∂w( f (x̄)) = ∂w( f ′(x̄))(0).

Proof. From the Fréchet differentiability f at x̄, we have

lim
‖h‖→0

| f (x̄ + h) − f (x̄) − 〈 f ′(x̄), h〉|
‖h‖ = 0.

By taking

h = λ(x − x̄)

and by using the weak subdifferentiability of f at x̄, there exist (x∗, c) ∈ ∂w f (x̄), such that

(∀x ∈ X) f (x) − f (x̄) ≥ 〈x∗, x − x̄〉 − c‖x − x̄‖.
Hence

0 = lim
λ→0+

f (x̄ + λ(x − x̄)) − f (x̄) − 〈 f ′(x̄), λ(x − x̄)〉
‖λ(x − x̄)‖

and from the weak subdifferentiability of f at x̄ we get

(∀x ∈ X) 0 ≥ lim
λ→0+

〈x∗, λ(x − x̄)〉 − c‖λ(x − x̄)‖ − 〈 f ′(x̄), λ(x − x̄)〉
‖λ(x − x̄)‖

and equally

(∀x ∈ X)
〈x∗, x − x̄〉 − c‖x − x̄‖ − 〈 f ′(x̄), x − x̄〉

‖x − x̄‖ ≤ 0.

294



P. Cheraghi et al. / Filomat 31:11 (2017), 3407–3420 3419

Therefore,

(∀x ∈ X) 〈x∗, x − x̄〉 − c‖x − x̄‖ − 〈 f ′(x̄), x − x̄〉 ≤ 0

and so by taking z = x − x̄, we obtain

(∀z ∈ X) 〈 f ′(x̄), z〉 ≥ 〈x∗, z〉 − c‖z‖.
Now, it follows from f ′(x̄)(0) = 0, that (x∗, c) ∈ ∂w( f ′(x̄))(0). Conversely, if (x∗, c) ∈ ∂w( f ′(x̄))(0), then we can
write

(∀x ∈ X) 〈 f ′(x̄), x〉 ≥ 〈x∗, x〉 − c‖x‖.
Hence

(∀x ∈ X) 〈 f ′(x̄), x − x̄〉 ≥ 〈x∗, x − x̄〉 − c‖x − x̄‖,
and by applying the subdifferentiability and Fréchet differentiability f at x̄, we get

(∀x ∈ X) f (x) − f (x̄) ≥ 〈 f ′(x̄), x − x̄〉.
Then

(∀x ∈ X) f (x) − f (x̄) ≥ 〈x∗, x − x̄〉 − c‖x − x̄‖.
This means that (x∗, c) ∈ ∂w( f (x̄)) and proof is completed.

Proposition 3.34. If f is subdifferentiable and Fréchet differentiable at x̄, then

〈 f ′(x̄), x − x̄〉 = sup
{
〈x∗, x − x̄〉 − c‖x − x̄‖ : (x∗, c) ∈ ∂w f (x̄)

}
.

Proof. From the hypothesis and by using a similar proof as in Proposition 3.33, we deduce that

〈 f ′(x̄), x − x̄〉 ≥ sup
{
〈x∗, x − x̄〉 − c‖x − x̄‖ : (x∗, c) ∈ ∂w f (x̄)

}
.

Since ( f ′(x̄), 0) ∈ ∂w f (x̄), then

〈 f ′(x̄), x − x̄〉 ∈
{
〈x∗, x − x̄〉 − c‖x − x̄‖ : (x∗, c) ∈ ∂w f (x̄)

}
,

and the desired equality is obtained.

Corollary 3.35. We note that under above assumptions, if f attains a global minimum at x̄, then

sup
{
{〈x∗, x − x̄〉 − c‖x − x̄‖ : (x∗, c) ∈ ∂w f (x̄)

}
= 0.
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Abstract. By using a special property of the gamma function, we first define a productive form of gamma
and beta functions and study some of their general properties in order to define a new extension of the
Pochhammer symbol. We then apply this extended symbol for generalized hypergeometric series and
study the convergence problem with some illustrative examples in this sense. Finally, we introduce two
new extensions of Gauss and confluent hypergeometric series and obtain some of their general properties.

1. Introduction

Let R and C respectively denote the sets of real and complex numbers and z be an arbitrary complex
variable. The well known (Euler’s) gamma function is defined, for Re(z) > 0, as

Γ(z) =
∫ ∞

0
xz−1e−x dx,

and for z ∈ C \Z−0 , where Z−0 = {0,−1,−2, . . .}, as

Γ(z) =
Γ(z + n)∏n−1
k=0 (z + k)

(n ∈N) .

The limit definition of the gamma function

Γ(z) = lim
n→∞

n! nz∏n
k=0 (z + k)

, (1)

is valid for all complex numbers except the non-positive integers. An alternative definition is the productive
form of the gamma function, i.e.,

Γ(z) =
1
z

∞∏
k=1

(
1 +

1
k

)z(
1 +

z
k

)−1
. (2)
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When Re(x) > 0 and Re(y) > 0 , the (Euler’s) beta function [4] has a close relationship with the classical
gamma function as

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1 dt =

Γ(x)Γ(y)
Γ(x + y)

= B(y, x). (3)

The generalized binomial coefficient may be defined (for real or complex parameters a and b ) by
(
a
n

)
=

Γ(a + 1)
Γ(b + 1)Γ(a − b + 1)

=

(
a

a − b

)
(a, b ∈ C),

which is reduced to the following special case when b = n (n ∈N ∪ {0}) :
(

a
n

)
=

a(a − 1) · · · (a − n + 1)
n!

=
(−1)n(−a)n

n!
,

where (a)b (a, b ∈ C) denotes the Pochhammer symbol [19] given, in general, by

(a)b =
Γ(a + b)
Γ(a)

=

⎧⎪⎪⎨⎪⎪⎩
1 (b = 0, a ∈ C\{0}),
a(a + 1) · · · (a + n − 1) (b ∈N, a ∈ C).

A remarkable property of the gamma function, which is provable via the limit definition (1), is

Γ(z) = Γ(z̄)
(z=p+iq)⇒ Γ(p + iq) Γ(p − iq) ∈ R . (4)

In this paper, we exploit the property (4) to introduce an extension of the Pochhammer symbol in order
to apply it in the hypergeometric series of any arbitrary order. Then, we study the convergence problem
of the involved hypergeometric series with some illustrative examples. Finally, we introduce two new
extensions of Gauss and confluent hypergeometric series and obtain some of their general properties. For
this purpose, we first define a productive form of the gamma function, by referring to the property (4), as
follows

Π(p, q) =
Γ(p + iq) Γ(p − iq)

Γ(p)
(p > 0, q ∈ R). (5)

For analogous extensions of the gamma function see e.g. [2, 14]. The limit definition of (5) can be derived
from (1), so that we have

Π(p, q) =
1
Γ(p)

lim
n→∞

(n!)2 n2p

n∏
k=0

((p + k)2 + q2)
= lim

n→∞n! np
n∏

k=0

p + k

(p + k)2 + q2
. (6)

Also, the limit relation (1) implies that relation (6) is written as

Π(p, q) = Γ(p)
∞∏

k=0

(p + k)2

(p + k)2 + q2
. (7)

The result (7) shows that for any p > 0 and q ∈ R we respectively have

0 ≤ Π(p, q) ≤ Γ(p),

and

lim
q→∞Π(p, q) = lim

q→∞
Γ(p + iq) Γ(p − iq)

Γ(p)
= 0.
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In order to obtain an integral representation forΠ(p, q), we should first study the real functionΓ(p+iq)Γ(p−iq).
Hence, we consider the second kind of (Cauchy’s) beta function [4], which says that if Re(a) > 0, Re(b) > 0
and Re(c + d) > 1 then

1
2π

∞∫
−∞

dt

(a + it)c(b − it)d
=
Γ(c + d − 1)
Γ(c)Γ(d)

(a + b)1−(c+d). (8)

One of the consequences of (8) is the definite integral

π/2∫
−π/2

est(cos t)r dt =
2−rΓ(r + 1)π

Γ
(
1 + r+is

2

)
Γ

(
1 + r−is

2

) , (9)

which can be derived from the well-known identity

(a − it)p+iq(a + it)p−iq = (a2 + t2)p exp
(
2q arctan

t
a

)
.

The simplified version of (9) is as

Γ(p + iq)Γ(p − iq) =
π 22−2pΓ(2p − 1)
π/2∫
−π/2

e2qt(cos t)2p−2 dt

. (10)

On the other hand, since

Γ(p + iq)Γ(p − iq)
Γ(2p)

= B(p + iq, p − iq) =
∫ 1

0
(x − x2)

p−1
( x

1 − x

)iq
dx (11)

=

∫ 1

0
(x − x2)

p−1
cos

(
q log

x
1 − x

)
dx + i

∫ 1

0
(x − x2)

p−1
sin

(
q log

x
1 − x

)
dx, (12)

is a real value, for any p > 0 and q ∈ R we can conclude that

∫ 1

0
(x − x2)

p−1
sin

(
q log

x
1 − x

)
dx = 0.

Therefore, by noting relations (10) and (11), two integral representations of Π(p, q) are as

Π(p, q) =
Γ(2p)
Γ(p)

∫ 1

0
(x − x2)

p−1
cos

(
q log

x
1 − x

)
dx =

π 22−2pΓ(2p − 1)

Γ(p)
π/2∫
−π/2

e2qt(cos t)2p−2 dt

. (13)

Note that the definite integral in the second equality of (13) can be computed in terms of a series. In fact,
since

(cos t)a = 2−a(eit + e−it)a = 2−a
∞∑

k=0

(
a
k

)
e(a−2k)it = 2−a

∞∑
k=0

(
a
k

)
cos(a − 2k)t,

and ∫
ept cos qt dt = ept p cos qt + q sin qt

p2 + q2 + c,
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so we have

π/2∫
−π/2

e2qt(cos t)2p−2 dt = 2−2p+2

π/2∫
−π/2

e2qt
∞∑

k=0

(
2p − 2

k

)
cos(2p − 2 − 2k)t dt

= 2−2p+2
∞∑

k=0

(
2p − 2

k

) π/2∫
−π/2

e2qt cos(2p − 2 − 2k)t dt

= 2−2p+2
∞∑

k=0

(−1)k
(
2p − 2

k

)
q sinh(qπ) cos

(
(p − 1)π

)
+ (p − 1 − k) cosh(qπ) sin

(
(p − 1)π

)
q2 + (p − 1 − k)2 .

Remark 1.1. By noting the well-known identity Γ(z + 1) = z Γ(z), since

Γ(p + 1 + iq) = (p + iq) Γ(p + iq) and Γ(p + 1 − iq) = (p − iq) Γ(p − iq),

so

Π(p + 1, q) =
p2 + q2

p
Π(p, q). (14)

Similarly, the approach (14) can be followed for e.g. the Legendre duplication formula [5, 15]

(2π)
m−1

2 m
1
2−mzΓ(mz) = Γ(z) Γ

(
z +

1
m

)
Γ

(
z +

2
m

)
· · ·Γ

(
z +

m − 1
m

)
,

(when m = 2) so that we can eventually obtain

Π(2p, 2q) =
22p−1

√
π
Π(p, q)Π

(
p +

1
2
, q

)
.

Remark 1.2. When m ∈N, to computeΠ(m+ 1, q) we can again use the recurrence relation Γ(z+ 1) = z Γ(z)
to finally obtain

Π(m + 1, q) =
(m + iq)(m − 1 + iq) · · · (1 + iq) Γ(1 + iq) (m − iq)(m − 1 − iq) · · · (1 − iq) Γ(1 − iq)

m!

=
qπ

m! sinh(qπ)

m−1∏
k=0

((m − k)2 + q2) .

One of the other applications of (4) is to define the productive form of the beta function as follows

B(r, s; q) =
B(r + iq, s − iq) B(r − iq, s + iq)

B(r, s)
=
Π(r, q)Π(s, q)
Γ(r + s)

. (15)

For analogous extensions of the family of beta functions see e.g. [6, 13]. By referring to relation (7), the
productive form of (15) can be obtained as

B(r, s; q) = B(r, s)
∞∏

k=0

(r + k)2(s + k)2

((r + k)2 + q2)((s + k)2 + q2)
. (16)

Clearly the latter relation (16) shows that if r, s > 0 and q ∈ R then
∣∣∣B(r, s; q)

∣∣∣ ≤ B(r, s).
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2. An Extension of Pochhammer’s Symbol and its Application to Hypergeometric Functions

The generalized hypergeometric series appear in a wide variety of applied mathematics and engineering
sciences [1, 3, 12, 18]. For instance, there is a large set of hypergeometic-type polynomials whose variable
is located in one or more of the parameters of the corresponding hypergeometric functions [8–10]. These
polynomials are of great importance in mathematics as well as in many areas of physics. A few examples
of their applications are discussed by Nikiforov, Suslov and Uvarov [16]. See also [5, 15]. Hence, it seems
that any change in hypergeometric series, especially in Gauss and confluent hypergeometric functions,
can be notable in various branches of mathematics. In recent years, some new extensions are given in
this direction, e.g. [7, 17]. A main reason for introducing and developing the generalized hypergeometric
series is that many special functions [4, 9, 11] can be represented in terms of them and therefore their initial
properties can be directly found via the initial properties of hypergeometric functions. Also, they appear
as solutions of many important ordinary differential equations [9, 11, 15]. The generalized hypergeometric
function

pFq

(
a1, a2, . . . , ap
b1, b2, . . . , bq

∣∣∣∣∣ z
)
=

∞∑
k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k

zk

k!
, (17)

in which (r)k =
k−1∏
j=0

(r + j) denotes the same as Pochhammer symbol and z may be a complex variable is

indeed a Taylor series expansion for a function, say f , as
∞∑

k=0
c∗k zk with c∗k = f (k)(0)/k! for which the ratio of

successive terms can be written as

c∗k+1

c∗k
=

(k + a1)(k + a2) · · · (k + ap)
(k + b1)(k + b2) · · · (k + bq)(k + 1)

.

According to the ratio test [4], the series (17) is convergent for any p ≤ q + 1. In fact, it converges in |z| < 1
for p = q + 1, converges everywhere for p < q + 1 and converges nowhere (z � 0) for p > q + 1. Moreover,
for p = q + 1 it absolutely converges for |z| = 1 if the condition

A∗ = Re

⎛⎜⎜⎜⎜⎜⎜⎝
q∑

j=1

bj −
q+1∑
j=1

aj

⎞⎟⎟⎟⎟⎟⎟⎠ > 0, (18)

holds and is conditionally convergent for |z| = 1 and z � 1 if −1 < A∗ ≤ 0 and is finally divergent for |z| = 1
and z � 1 if A∗ ≤ −1.

There are two important cases of the series (16) arising in many physical problems [3, 8, 12, 15]. The first
case is the Gauss hypergeometric function convergent in |z| ≤ 1 that is denoted by

y = 2F1

(
a, b

c

∣∣∣∣∣ z
)
=

∞∑
k=0

(a)k(b)k

(c)k

zk

k!
,

and satisfies the differential equation

z (z − 1) y′′ + ((a + b + 1)z − c) y′ + ab y = 0. (19)

Particular choices of the parameters in the linearly independent solutions of the differential equation
(19) yield 24 special cases. The 2F1 can be given an integral representation as

2F1

(
a, b

c

∣∣∣∣∣ z
)
=

Γ(c)
Γ(b)Γ(c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − tz)−a dt

(
Re c > Re b > 0; |arg(1 − z)| < π

)
. (20)
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By using a series expansion of (1 − tz)−a in (20), one can also write the 2F1 in terms of the beta function as

2F1

(
a, b

c

∣∣∣∣∣ z
)
=

∞∑
k=0

(a)k
B(b + k, c − b)

B(b, c − b)
zk

k!
. (21)

The second case, which converges everywhere, is the confluent hypergeometric function

y = 1F1

(
b
c

∣∣∣∣∣ z
)
=

∞∑
k=0

(b)k

(c)k

zk

k!
,

as a basis solution of the differential equation

z y′′ + (c − z) y′ − b y = 0,

which is a degenerate form of equation (19) where two of the three regular singularities merge into an
irregular singularity. The 1F1 has an integral form as

1F1

(
b
c

∣∣∣∣∣ z
)
=

Γ(c)
Γ(b)Γ(c − b)

∫ 1

0
tb−1(1 − t)c−b−1ezt dt

(
Re c > Re b > 0; |arg(1 − z)| < π

)
,

and can be represented in terms of the beta function as

1F1

(
b
c

∣∣∣∣∣ z
)
=

∞∑
k=0

B(b + k, c − b)
B(b, c − b)

zk

k!
. (22)

Now, we can introduce an extension of the Pochhammer symbol in order to apply it in the generalized
hypergeometric series of any arbitrary order. Let us reconsider the gamma form of the Pochhammer symbol

(s)k =
Γ(s + k)
Γ(s)

. (23)

By noting (5), a real extension of (23) may be defined as

[s; q]k =
Π(s + k, q)
Π(s, q)

=
(s + iq)k(s − iq)k

(s)k
=

k−1∏
j=0

(s + j)2 + q2

s + j
.

Subsequently, a real extension of the hypergeometric functions may be defined as

pFq

(
[a1;α1r], [a2;α2r], . . . , [ap;αpr]
[b1; β1r], [b2; β2r], . . . , [bq; βqr]

∣∣∣∣∣ z
)
=

∞∑
k=0

[a1;α1r]k[a2;α2r]k · · · [ap;αpr]k

[b1; β1r]k[b2; β2r]k · · · [bq; βqr]k

zk

k!
, (24)

where {ak, αk}pk=1, {bk, βk}qk=1 ∈ R and r ∈ R. On the other hand, the definition

[s; q]k =
(s + iq)k(s − iq)k

(s)k
,

implies that the fraction term of (24) is expanded as

[a1;α1r]k[a2;α2r]k · · · [ap;αpr]k

[b1; β1r]k[b2; β2r]k · · · [bq; βqr]k
=

p∏
j=1

(aj + iα jr)k(aj − iα jr)k

(aj)k

q∏
j=1

(bj)k

(bj + iβ jr)k(bj − iβ jr)k
.
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M. Masjed-Jamei, G. V. Milovanović / Filomat 31:2 (2017), 207–215 213

This means that the real series (24) can be transformed to a standard hypergeometric function as follows

pFq

(
[a1;α1r], [a2;α2r], . . . , [ap;αpr]
[b1; β1r], [b2; β2r], . . . , [bq; βqr]

∣∣∣∣∣ z
)

= 2p+qF2q+p

(
a1 + iα1r, a1 − iα1r, . . . , ap + iαpr, ap + iαpr, b1, b2, . . . , bq
b1 + iβ1r, b1 − iβ1r, . . . , bq + iβqr, bq − iβqr, a1, a2, . . . , ap

∣∣∣∣∣ z
)
. (25)

Hence, the convergence radius of (24) would directly depend on the convergence radius of 2p+qF2q+p in (25)
as the following illustrative examples show.

Example 2.1. Let (p, q) = (2, 1). In this case, (24) is reduced to

2F1

(
[a1;α1r], [a2;α2r]

[b1; β1r]

∣∣∣∣∣ z
)
= 5F4

(
a1 + iα1r, a1 − iα1r, a2 + iα2r, a2 − iα2r, b1

b1 + iβ1r, b1 − iβ1r, a1, a2

∣∣∣∣∣ z
)
, (26)

whose convergence radius is |z| < 1. Moreover, according to (18), if a1+ a2 < b1 in (26), then the convergence
radius is extended to |z| ≤ 1.
As a particular case of (26), taking r = 0 gives the same as classical 2F1 and (α1, α2) = (0, 0) with β1r = q
yields

2F1

(
[a1; 0], [a2; 0]

[b1; q]

∣∣∣∣∣ z
)
= 3F2

(
a1, a2, b1

b1 + iq, b1 − iq

∣∣∣∣∣ z
)
,

which is convergent in |z| ≤ 1 if a1 + a2 < b1. Finally, if β1 = 0, (26) is reduced to

2F1

(
[a1;α1r], [a2;α2r]

[b1; 0]

∣∣∣∣∣ z
)
= 4F3

(
a1 + iα1r, a1 − iα1r, a2 + iα2r, a2 − iα2r

b1, a1, a2

∣∣∣∣∣ z
)
,

convergent in |z| ≤ 1 when a1 + a2 < b1.

Example 2.2. Let (p, q) = (1, 1). Then (24) changes to

1F1

(
[a1;α1r]
[b1; β1r]

∣∣∣∣∣ z
)
= 3F3

(
a1 + iα1r, a1 − iα1r, b1
b1 + iβ1r, b1 − iβ1r, a1

∣∣∣∣∣ z
)
, (27)

which is convergent everywhere. For instance, if α1 = 0 and β1r = q in (27), then the following real series
converges everywhere

1F1

(
[a1; 0]
[b1; q]

∣∣∣∣∣ z
)
= 2F2

(
a1, b1

b1 + iq, b1 − iq

∣∣∣∣∣ z
)
.

Example 2.3. An interesting case of (24) is when (p, q) = (1, 0), because the real series

y = 1F0

(
[a; q]
−

∣∣∣∣∣ z
)
= 2F1

(
a + iq, a − iq

a

∣∣∣∣∣ z
)
=

∞∑
k=0

⎛⎜⎜⎜⎜⎜⎜⎝
k−1∏
j=0

(a + j)2 + q2

⎞⎟⎟⎟⎟⎟⎟⎠ zk

(a)kk!
, (28)

satisfies the second order differential equation

z (z − 1) y′′ + ((2a + 1)z − a) y′ + (a2 + q2) y = 0.

Note that the more general case of (28) is indeed the real series

y = 2F1

(
a + iq, a − iq

b

∣∣∣∣∣ z
)
=

∞∑
k=0

⎛⎜⎜⎜⎜⎜⎜⎝
k−1∏
j=0

(a + j)2 + q2

⎞⎟⎟⎟⎟⎟⎟⎠ zk

(b)kk!
,

which satisfies the differential equation

z (z − 1) y′′ + ((2a + 1)z − b) y′ + (a2 + q2) y = 0.
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2.1. A new extension of Gauss and confluent hypergeometric functions
Since many special functions of mathematical physics can be represented in terms of 2F1 or 1F1 by special

choices of the parameters, they play a unifying role in the theory of special functions. Hence, any significant
generalization of them may be useful. In this section, we apply the generalized beta function (15) for two
relations (21) and (22) to respectively extend the functions 2F1 and 1F1. First, by noting two relations (15)
and (21), the proposed extension of 2F1 may be considered as

2F1

(
a, b

c

∣∣∣∣∣ z; q
)
=

∞∑
k=0

(a)k
B (b + k, c − b; q)

B (b, c − b)
zk

k!
, (29)

which reduces to the same as 2F1 for q = 0. Since
∣∣∣B(r, s; q)

∣∣∣ ≤ B(r, s) for any r, s > 0 and q ∈ R, the extended
series (29) converges in |z| ≤ 1 if c > b > 0 and c is not a negative integer or zero. Now, the integral
representation of (29) can be derived by (13) and (15) as follows

2F1

(
a, b

c

∣∣∣∣∣ z; q
)
=

∞∑
k=0

zk

k!
(a)kΓ(c)
Γ(b)Γ(c − b)

Π(c − b, q)
Γ(c) (c)k

Γ(2b + 2k)
Γ(b + k)

∫ 1

0
(x − x2)

b+k−1
cos

(
q log

x
1 − x

)
dx

=
Γ(c − b + iq)Γ(c − b − iq)Γ(2b)

Γ2(b)Γ2(c − b)

∫ 1

0
(x − x2)b−1 cos

(
q log

x
1 − x

) ⎛⎜⎜⎜⎜⎜⎝
∞∑

k=0

(a)k(b + 1/2)k

(c)k

(4zx(1 − x))k

k!

⎞⎟⎟⎟⎟⎟⎠ dx (30)

=
Γ(c − b + iq)Γ(c − b − iq)Γ(2b)

Γ2(b)Γ2(c − b)

∫ 1

0
(x − x2)b−1 cos

(
q log

x
1 − x

)
2F1

(
a, b + 1/2

c

∣∣∣∣∣ 4zx(1 − x)
)

dx .

Note that q = 0 in (30) gives a new representation for 2F1 so that we have

2F1

(
a, b

c

∣∣∣∣∣ z
)
=
Γ(2b)
Γ2(b)

∫ 1

0
(x − x2)

b−1
2F1

(
a, b + 1/2

c

∣∣∣∣∣ 4zx(1 − x)
)

dx .

Similarly, for the extension of 1F1 we can define

1F1

(
b
c

∣∣∣∣∣ z; q
)
=

∞∑
k=0

B (b + k, c − b; q)
B (b, c − b)

zk

k!
, (31)

which reduces to the same as 1F1 for q = 0. Again since
∣∣∣B(r, s; q)

∣∣∣ ≤ B(r, s) for any r, s > 0 and q ∈ R, the
generalized series (31) converges everywhere if c > b > 0 and c is not a negative integer or zero. Also, the
integral representation of (31) is derived in a similar way as

1F1

(
b
c

∣∣∣∣∣ z; q
)
=
Γ(c − b + iq)Γ(c − b − iq)Γ(2b)

Γ2(b)Γ2(c − b)

∫ 1

0
(x − x2)

b−1
cos

(
q log

x
1 − x

)
1F1

(
b + 1/2

c

∣∣∣∣∣ 4zx(1 − x)
)

dx .

(32)

Finally for q = 0, (32) reduces to a new representation for the series 1F1 as

1F1

(
b
c

∣∣∣∣∣ z
)
=
Γ(2b)
Γ2(b)

∫ 1

0
(x − x2)

b−1
1F1

(
b + 1/2

c

∣∣∣∣∣ 4zx(1 − x)
)

dx .
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Abstract. In this paper, we aim to present the improved version of
the reverse Hölder type inequalities by taking (k, s)−Riemann-Liouville
fractional integrals. Furthermore, we also discuss some applications of
Theorem 1 using some types of fractional integrals.

Keywords: (k, s)−Riemann-Liouville fractional integrals · Holder
inequality · Reverse Holder inequality

1 Introduction

Fractional integral inequalities involving (k, s)− type integrals attract the atten-
tions of many researchers due their diverse applications see, for examples, [1–4].
In [5], Farid et al. an integral inequality obtained by Mitrinovic and Pecaric was
generalized to measure space as follows.

Theorem 1. Let (Ω1, Σ1, μ1),(Ω2, Σ2, μ2) be measure spaces with σ−finite mea-
sures and let fi : Ω2 → R, i = 1, 2, 3, 4 be non-negative functions. Let g be the
function having representation

g(x) =
∫

Ω1

k(x, t)f(t)dμ1(t),

c© Springer International Publishing AG 2017
T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
https://doi.org/10.1007/978-3-319-67053-9_29
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where k : Ω2 × Ω1 → R is a general non-negative kernel and f : Ω1 → R is
real-valued function, and μ2 is a non-decreasing function. If p, q are two real
numbers such that 1

p + 1
q = 1, p > 1, then

∫
Ω2

f1(x)f2(x)g(x)dμ2(x) (1)

≤ C

(∫
Ω2

f3(x)g(x)dμ2(x)
) 1

p
(∫

Ω2

f4(x)g(x)dμ2(x)
) 1

q

,

where

C = sup
t∈Ω1

{(∫ b

a

k(x, t)f1(x)f2(x)dμ2(x)

)
(2)

(∫ b

a

k(x, t)f3(x)dμ2(x)

)−1
p
(∫ b

a

k(x, t)f4(x)dμ2(x)

)−1
q

}
.

The following definitions and results are also required.

2 Preliminaries

Recently fractional integral inequalities are considered to be an important tool
of applied mathematics and their many applications described by a number
of researchers. As well as, the theory of fractional calculus is used in solving
differential, integral and integro-differential equations and also in various other
problems involving special functions [6–8].

We begin by recalling the well-known results.

1. The Pochhammer k-symbol (x)n,k and the k-gamma function Γk are defined
as follows (see [9]):

(x)n,k := x(x + k)(x + 2k) · · · (x + (n − 1)k) (n ∈ N; k > 0) (3)

and

Γk(x) := lim
n→∞

n! kn (nk)
x
k −1

(x)n,k

(
k > 0; x ∈ C\kZ−

0

)
, (4)

where kZ−
0 :=

{
kn : n ∈ Z

−
0

}
. It is noted that the case k = 1 of equation

((3)) and equation ((4)) reduces to the familiar Pochhammer symbol (x)n and
the gamma function Γ . The function Γk is given by the following integral:

Γk(x) =
∫ ∞

0

tx−1 e− tk

k dt (	(x) > 0). (5)
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The function Γk defined on R
+ is characterized by the following three prop-

erties: (i) Γk(x + k) = x Γk(x); (ii) Γk(k) = 1; (iii) Γk(x) is logarithmically
convex. It is easy to see that

Γk(x) = k
x
k −1 Γ

(x

k

)
(	(x) > 0; k > 0) . (6)

2. Mubeen and Habibullah [10] introduced k-fractional integral of the Riemann-
Liouville type of order α as follows:

kJα
a [f (t)] =

1
Γk(α)

∫ t

a

(t − τ)
α
k −1

f (τ) dτ, (α > 0, x > 0, k > 0) , (7)

which, upon setting k = 1, is seen to yield the classical Riemann-Liouville
fractional integral of order α:

Jα
a {f(t)} := 1J

α
a {f(t)} =

1
Γ (α)

∫ t

a

(t− τ)α−1f(τ) dτ (α > 0; t > a) . (8)

3. Sarikaya et al. [11] presented (k, s)-fractional integral of the Riemann-
Liouville type of order α, which is a generalization of the k-fractional integral
(7), defined as follows:

s
kJα

a [f (t)] :=
(s + 1)1− α

k

kΓk (α)

∫ t

a

(
ts+1 − τ s+1

)α
k −1

τsf (τ) dτ, τ ∈ [a, b] , (9)

where k > 0, s ∈ R\ {−1} and which, upon setting s = 0, immediately reduces
to the k-integral (7).

4. In [11], the following results have been obtained. For f be continuous on
[a, b], k > 0 and s ∈ R\{−1}. Then,

s
kJα

a

[
s
kJβ

a f (t)
]

= s
kJα+β

a f (t) = s
kJβ

a [skJα
a f (t)] , (10)

and

s
kJα

a

[(
xs+1 − as+1

) β
k −1
]

=
Γk(β)

(s + 1)
α
k Γk(α + β)

(
xs+1 − as+1

)α+β
k −1

,

for all α, β > 0, x ∈ [a, b] and Γk denotes the k−gamma function.
5. Also, in [12], Akkurt et al. introduced (k,H)−fractional integral. Let (a, b) be

a finite interval of the real line R and 	(α) > 0. Also let h(x) be an increasing
and positive monotone function on (a, b], having a continuous derivative h′(x)
on (a, b). The left- and right-sided fractional integrals of a function f with
respect to another function h on [a, b] are defined by(

kJα
a+,hf

)
(x) (11)

:=
1

kΓk(α)

∫ x

a

[h(x) − h(t)]
α
k −1h′(t)f(t)dt, k > 0 ,	(α) > 0
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(
kJα

b−,hf
)

(x) (12)

:=
1

kΓk(α)

∫ b

x

[h(x) − h(t)]
α
k −1h′(t)f(t)dt, k > 0 ,	(α) > 0.

Recently, Tomar and Agarwal [13] obtained following results for
(k, s)−fractional integrals.

Theorem 2 (Hölder Inequality for (k, s)-fractional integrals). Let f, g :
[a, b] → R be continuous functions and p, q > 0 with 1

p + 1
q = 1. Then, for all

t > 0, k > 0, α > 0, s ∈ R − {−1},

s
kJα

a | fg (t)| ≤ [skJα
a |f (t)|p] 1

p [skJα
a |g (t)|q] 1

q . (13)

Lemma 1. Let f, g : [a, b] → R be two positive functions and 1
p + 1

q = 1, α, k > 0
and s ∈ R − {−1}, such that for t ∈ [a, b], s

kJα
a fp(t) < ∞, s

kJα
a gq(t) < ∞. If

0 ≤ m ≤ f(τ)
g(τ)

≤ M < ∞, τ ∈ [a, b], (14)

then the inequality

[skJα
a f(t)]

1
p [skJα

a g(t)]
1
q ≤

(
M

m

) 1
pq

s
kJα

a

[
f

1
p (t)g

1
q (t)
]

(15)

holds.

Lemma 2. Let f, g : [a, b] → R be two positive functions α, k > 0 and s ∈
R − {−1}, such that for t ∈ [a, b], s

kJα
a fp(t) < ∞, s

kJα
a gq(t) < ∞. If

0 ≤ m ≤ fp(τ)
gq(τ)

≤ M < ∞, τ ∈ [a, b], (16)

then we have

[skJα
a fp(t)]

1
p [skJα

a gq(t)]
1
q ≤

(
M

m

) 1
pq

s
kJα

a (f(t)g(t)) , (17)

where p > 1 and 1
p + 1

q = 1.

Motivated by this work, we establish in this paper some new extensions of the
reverse Hölder type inequalities by taking (k, s)−Riemann-Liouville fractional
integrals.
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3 Reverse Hölder Type Inequalites

In this section we prove our main results (Theorems 3 and 4).

Theorem 3. Let f(x) and g(x) be integrable functions and let 0 < p < 1,
1
p + 1

q = 1. Then, the following inequality holds

s
kJα

a |fg(t)| ≥ s
kJα

a |fp(t)| 1
p s

kJα
a |fq(t)| 1

q . (18)

Proof. Set c = 1
p , q = −pd. Then we have d = c

c−1 . By the Hölder inequality for
(k, s)−fractional integrals, we have

s
kJα

a |fp(t)| = s
kJα

a |fg(t)|p ∣∣g−p(t)
∣∣

≤ [skJα
a |fg(t)|pc]

1
c

[
s
kJα

a |g(t)|−pd
] 1

d

= [skJα
a |fg(t)|] 1

c [skJα
a |g(t)|q]1−p

. (19)

In equation (19), multiplying both sides by (s
kJα

a |gq(t)|)p−1, we obtain

s
kJα

a |fp(t)| (s
kJα

a |gq(t)|)p−1

≤ [skJα
a |fg(t)|]p . (20)

Inequality (20) implies inequality

s
kJα

a |fg(t)| ≥ s
kJα

a |fp(t)| 1
p s

kJα
a |fq(t)| 1

q (21)

which completes this theorem.

Theorem 4. Suppose p, q, l > 0 and 1
p + 1

q + 1
l = 1. If f, g and h are positive

functions such that

i.) 0 < m ≤ f
p
s

g
g
s

≤ M < ∞ for some l > 0 such that 1
p + 1

q = 1
s ,

ii.) 0 < m ≤ (fg)s

hr ≤ M < ∞,

then

(s
kJα

a fp(t))
1
p (s

kJα
a fq(t))

1
q (s

kJα
a fr(t))

1
r

≤
(

M

m

) 1
sr + pq

s3
s
kJα

a (fgh)(t). (22)

Proof. Let 1
p + 1

q = 1
s for some s > 0. Thus, s

p + s
q = 1 and 1

s + 1
r = 1. If we use

ii and Lemma 2 for H = fg and h, then we get

(s
kJα

a Hs(t))
1
s (s

kJα
a hr(t))

1
r ≤

(
M

m

) 1
sr

(s
kJα

a (Hh)(t)) (23)
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which is equivalent to

(s
kJα

a [fs(t)gs(t)])
1
s (s

kJα
a hr(t))

1
r ≤

(
M

m

) 1
sr

(s
kJα

a (fgh)(t)) . (24)

Now, using i and the fact that s
p + s

q = 1, and applying Lemma 2 to fs and gs,
we also have

(s
kJα

a fp(t))
s
p (s

kJα
a gq(t))

s
q ≤

(
M

m

) pq

s2

(s
kJα

a fs(t)gs(t)) (25)

which is equivalent to

(s
kJα

a fp(t))
1
p (s

kJα
a gq(t))

1
q ≤

(
M

m

) pq

s3

(s
kJα

a fs(t)gs(t))
1
s . (26)

Combining equations (24) and (26), we obtain desired inequality equation (22),
which is complete the proof.

4 Applications for Some Types Fractional Integrals

Here in this section, we discuss some applications of Theorem 1 in the terms of
Theorems 5-7 and Corollary 1-5.

Theorem 5. Let p, q be two real numbers such that 1
p + 1

q = 1, p > 1 and let
f be continuous on [a, b], k > 0 and s ∈ R\{−1} . Then∫ b

a

f1(x)f2(x)s
kJα

a f(x)dx (27)

≤ C

(∫ b

a

f3(x)s
kJα

a f(x)dx

) 1
p
(∫ b

a

f4(x)s
kJα

a f(x)dx

) 1
q

,

where

C = sup
t∈[a,b]

{(∫ b

a

(
xs+1 − ts+1

)α
k −1

f1(x)f2(x)dx

)
(28)

(∫ b

a

(
xs+1 − ts+1

)α
k −1

f3(x)dx

)−1
p
(∫ b

a

(
xs+1 − ts+1

)α
k −1

f4(x)dx

)−1
q

}
.

Proof. In Theorem 1, if we take Ω1 = Ω2 = (a, b), dμ1(t) = dt, dμ2(x) = dx and
the kernel

k(x, t) =

⎧⎨
⎩

(s+1)1− α
k (ts+1−τs+1)

α
k

−1
τs

kΓk(α) if a ≤ t ≤ x

0 if x < t ≤ b,

then g(x) becomes s
kJα

a f(t) and so we get desired inequality (27). This completes
the proof of Theorem 5.
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Corollary 1. In Theorem 5, if we take s = 0, then we get∫ b

a

f1(x)f2(x)kJα
a f(x)dx (29)

≤ C

(∫ b

a

f3(x)kJα
a f(x)dx

) 1
p
(∫ b

a

f4(x)kJα
a f(x)dx

) 1
q

,

where

C = sup
t∈[a,b]

{(∫ b

a

(x − t)
α
k −1

f1(x)f2(x)dx

)
(30)

(∫ b

a

(x − t)
α
k −1

f3(x)dx

)−1
p
(∫ b

a

(x − t)
α
k −1

f4(x)dx

)−1
q

}
.

Remark 1. In Corollary 1, α = k = 1, Theorem 1 reduces to Theorem 3.1 in [5].

Corollary 2. In Theorem 5, if we take f3(x) = fp
1 (x) and f4(x) = fq

2 (x), then
we get ∫ b

a

f1(x)f2(x)s
kJα

a f(x)dx (31)

≤ C

(∫ b

a

fp
1 (x)s

kJα
a f(x)dx

) 1
p
(∫ b

a

fq
2 (x)s

kJα
a f(x)dx

) 1
q

,

where

C = sup
t∈[a,b]

{(∫ b

a

(
xs+1 − ts+1

)α
k −1

f1(x)f2(x)dx

)
(32)

(∫ b

a

(
xs+1 − ts+1

)α
k −1

fp
1 (x)dx

)−1
p
(∫ b

a

(
xs+1 − ts+1

)α
k −1

fq
2 (x)dx

)−1
q

}
.

Corollary 3. In Corollary 2, if we take s = 0, then we get∫ b

a

f1(x)f2(x)kJα
a f(x)dx (33)

≤ C

(∫ b

a

fp
1 (x)kJα

a f(x)dx

) 1
p
(∫ b

a

fq
2 (x)kJα

a f(x)dx

) 1
q

,

where

C = sup
t∈[a,b]

{(∫ b

a

(x − t)
α
k −1

f1(x)f2(x)dx

)
(34)

(∫ b

a

(x − t)
α
k −1

fp
1 (x)dx

)−1
p
(∫ b

a

(x − t)
α
k −1

fq
2 (x)dx

)−1
q

}
.
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Remark 2. In Corollary 3, α = k = 1, Corollary 3 reduces to Corollary 3.2 in [5].

Theorem 6. Let (a, b) be a finite interval of the real line R and 	(α) > 0.
Let h(x) be an increasing and positive monotone function on (a, b], having a
continuous derivative h′(x) on (a, b). Also, let p, q be two real numbers such that
1
p + 1

q = 1, p > 1 and let f be continuous on [a, b], k > 0 and s ∈ R\{−1} .
Then ∫ b

a

f1(x)f2(x)
(

kJα
a+,hf

)
(x)dx (35)

≤ C

(∫ b

a

f3(x)
(

kJα
a+,hf

)
(x)dx

) 1
p
(∫ b

a

f4(x)
(

kJα
a+,hf

)
(x)dx

) 1
q

,

where

C = sup
t∈[a,b]

{(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f1(x)f2(x)dx

)

×
(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f3(x)dx

)−1
p

(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f4(x)dx

)−1
q

}
. (36)

Proof. Applying Theorem 1 with Ω1 = Ω2 = (a, b), dμ1(t) = dt, dμ2(x) = dx
and the kernel

k(x, t) =

{
(h(x)−h(t))

α
k

−1h′(t)
kΓk(α) if a ≤ t ≤ x

0 if x < t ≤ b,

then g(x) becomes
(

kJα
a+,hf

)
(x) and so we get desired inequality (35). This

completes the proof of Theorem 6.

Corollary 4. In Theorem 6, setting f3(x) = fp
1 (x) and f4(x) = fq

2 (x), we get

∫ b

a

f1(x)f2(x)
(

kJα
a+,hf

)
(x)dx (37)

≤ C

(∫ b

a

fp
1 (x)

(
kJα

a+,hf
)

(x)dx

) 1
p
(∫ b

a

fq
2 (x)

(
kJα

a+,hf
)

(x)dx

) 1
q

,
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where

C = sup
t∈[a,b]

{(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f1(x)f2(x)dx

)

×
(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)fp
1 (x)dx

)−1
p

(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)fq
2 (x)dx

)−1
q

}
. (38)

Theorem 7. Under the assumptions of Theorem 6, we have

∫ b

a

f1(x)f2(x)
(

kJα
b−,hf

)
(x)dx (39)

≤ C

(∫ b

a

f3(x)
(

kJα
b−,hf

)
(x)dx

) 1
p
(∫ b

a

f4(x)
(

kJα
b−,hf

)
(x)dx

) 1
q

,

where

C = sup
t∈[a,b]

{(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f1(x)f2(x)dx

)

×
(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f3(x)dx

)−1
p

(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f4(x)dx

)−1
q

}
. (40)

Proof. In contrast to Theorem 6, if we take the kernel

k(x, t) =

{
(h(x)−h(t))

α
k

−1h′(t)
kΓk(α) if x ≤ t ≤ b

0 if a < t ≤ x,

we obtain desired inequality.

Corollary 5. In Theorem 7, setting f3(x) = fp
1 (x) and f4(x) = fq

2 (x), we get

∫ b

a

f1(x)f2(x)
(

kJα
b−,hf

)
(x)dx (41)

≤ C

(∫ b

a

fp
1 (x)

(
kJα

b−,hf
)

(x)dx

) 1
p
(∫ b

a

fq
2 (x)

(
kJα

b−,hf
)

(x)dx

) 1
q

,
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where

C = sup
t∈[a,b]

{(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)f1(x)f2(x)dx

)

×
(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)fp
1 (x)dx

)−1
p

(∫ b

a

(h(x) − h(t))
α
k −1

h′(t)fq
2 (x)dx

)−1
q

}
. (42)
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Abstract. One class of linear multistep methods for solving the Cauchy problems of the
form y′ = F (x, y), y(x0) = y0, contains Adams-Bashforth rules of the form yn+1 = yn +

h
∑k−1

i=0 B
(k)
i F (xn−i, yn−i), where {B

(k)
i }k−1

i=0 are fixed numbers. In this paper, we propose
an idea for a weighted type of Adams-Bashforth rules for solving the Cauchy problem for
singular differential equations,

A(x)y′ +B(x)y = G(x, y), y(x0) = y0,

where A and B are two polynomials determining the well-known classical weight functions
in the theory of orthogonal polynomials. Some numerical examples are also included.

AMS subject classifications: 65L05, 33C45

Key words: weighted Adams-Bashforth rule, ordinary differential equation, linear multi-
step method, weight function

1. Introduction

In this paper, we present an idea for constructing weighted Adams-Bashforth rules
for solving Cauchy problems for singular differential equations.

There are two main approaches to increase the accuracy of a numerical method
for ordinary non-singular differential equations. In the first approach (i.e., multistep
methods), the accuracy is increased by considering previous information, while in
the second one (i.e., multistage methods or more precisely Runge-Kutta methods),
the accuracy is increased by approximating the solution at several internal points.

Multistep methods were originally proposed by Bashforth and Adams [2] (see
also [1, 3, 4]), where the approximate solution of the initial value problem

dy

dx
= F (x, y), y(x0) = y0, (1)

∗Corresponding author. Email addresses: mmjamei@kntu.ac.ir (M.Masjed-Jamei),
gvm@mi.sanu.ac.rs (G. V.Milovanović), ah.salehi@mail.kntu.ac.ir (A.H. Salehi Shayegan)
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is considered as

yn+1 = yn + h

k−1∑
i=0

B
(k)
i F (xn−i, yn−i). (2)

Many years later, Moulton [12] (see also, [3, 4]) developed a class of implicit
multistep methods, the so-called Adams-Moulton methods,

yn+1 = yn + h
k−1∑
i=−1

α
(k)
i F (xn−i, yn−i), (3)

which have some better characteristics than the previous ones.

The unknown coefficients B
(k)
i and α

(k)
i in relations (2) and (3) are chosen in

such a way that they have the highest possible accuracy order. These formulas are
indeed special cases of the so-called linear multistep methods denoted by

yn =

k1∑
j=1

ηjyn−j + h

k2∑
i=0

γiF (xn−i, yn−i).

Other special cases of linear multistep methods were derived by Nyström and
Milne [1, 4]. The idea of Predictor-Corrector methods was proposed by Milne [4] in
which yn is predicted by the Adams-Bashforth methods and then corrected by the
Adams-Moulton methods.

It is not fair to talk about linear multistep methods without mentioning the
name of Germund Dahlquist. In 1956, he [6] established some basic concepts such
as consistency, stability and convergence in numerical methods and showed that if
a numerical method is consistent and stable, then it is necessarily convergent.

However, it should be noted that the above-mentioned methods are valid only
for non-singular problems of type (1). In other words, if equation (1) is considered
as an initial value problem on (a, b) in the form

A(x)y′ = H(x, y), y(a) = y0, (4)

such that

A(a) = 0 or A(b) = 0,

then it is no longer possible to use usual Adams-Bashforth methods or other numer-
ical techniques. For this purpose, in this paper, we gave an idea for using a weighted
Adams-Bashforth rule.

For constructing these weighted rules we use a similar procedure as in the case of
non-weighted formulas. Therefore, in Section 2, we give a short account of construct-
ing the usual Adams-Bashforth methods by using linear difference operators and the
backward Newton interpolation formula. Such a procedure is applied in Section 3
for obtaining the weighted rules. By introducing the weighted local truncation error
of such rules, we determine their order. Finally, in order to illustrate the efficiency
of such weighted rules, we give some numerical examples in Section 4.
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2. Computing the usual Adams-Bashforth methods

In this section, we obtain the explicit forms of the coefficients {B(k)
i }k−1

i=0 in (2) using
the backward Newton interpolation formula for F (x, y) = F (x, y(x)) at equidistant
nodes xn−ν = xn − νh, ν = 0, 1, . . . , k− 1, and in the next section we apply such an
approach in order to get the corresponding weighted type of Adams-Bashforth meth-
ods. Here we use standard linear difference operators ∇ (the backward-difference
operator), E (the shifting operator), and 1 (the identity operator), defined by

∇f(x) = f(x)− f(x− h), Ef(x) = f(x+ h) and 1f(x) = f(x).

Since Eλ = (1−∇)−λ, we have

Eλ =

+∞∑
ν=0

(−1)ν
(−λ

ν

)
∇ν =

+∞∑
ν=0

(λ)ν
ν!

∇ν , (5)

where

(λ)ν = λ(λ + 1) · · · (λ+ ν − 1) =
Γ(λ+ ν)

Γ(λ)

is Pochhammer’s symbol. Assuming Fn−ν ≡ F (xn−ν , y(xn−ν)) for ν = 0, 1, . . . , k−1
and taking the first k terms of (5) for x = xn + λh we get

F (x, y(x)) = EλFn =

k−1∑
ν=0

(λ)ν
ν!

∇νFn + rk(Fn), (6)

where rk(Fn) denotes the corresponding error term. Using (6) we have

k−1∑
ν=0

(λ)ν
ν!

∇νFn =
k−1∑
ν=0

(λ)ν
ν!

ν∑
i=0

(−1)i
(
ν

i

)
E−iFn

=

k−1∑
i=0

(
(−1)i

i!

k−1∑
ν=i

(λ)ν
(ν − i)!

)
Fn−i =

k−1∑
i=0

C
(k)
i (λ)Fn−i, (7)

where λ = (x− xn)/h and

C
(k)
i (λ) =

(−1)
i

i!

k−1∑
ν=i

(λ)ν
(ν − i)!

= (−1)i
(λ)i
i!

(
λ+ k − 1

k − 1− i

)
, (8)

because, based on induction, we have

k∑
ν=i

(λ)ν
(ν − i)!

=
k−1∑
ν=i

(λ)ν
(ν − i)!

+
(λ)k

(k − i)!

= (λ)i

(
λ+ k − 1
k − 1− i

)
+ (λ)i

(
λ+ k − 1
k − i

)
= (λ)i

(
λ+ k
k − i

)
.

325



130 M.Masjed-Jamei, G.V.Milovanović and A.H. Salehi Shayegan

Now, integrating (1) over (xn, xn+1) and approximating F (x, y) by its backward
Newton interpolation polynomial (7) yield

y(xn+1)− y(xn) =

∫ xn+1

xn

F (x, y)dx ≈ h

k−1∑
i=0

B
(k)
i Fn−i, (9)

where

B
(k)
i =

∫ 1

0

C
(k)
i (λ)dλ =

(−1)i

i!

∫ 1

0

(λ)i

(
λ+ k − 1

k − 1− i

)
dλ. (10)

Table 1 shows the values B
(k)
i in (2) for k = 2, 3, . . . , 8.

k 2 3 4 5 6 7 8

B
(k)
0

3
2

23
12

55
24

1901
720

4277
1440

198721
60480

16083
4480

B
(k)
1 − 1

2 − 4
3 − 59

24 − 1387
360 − 2641

480 − 18637
2520 − 1152169

120960

B
(k)
2

5
12

37
24

109
30

4991
720

235183
20160

242653
13440

B
(k)
3 − 3

8 − 637
360 − 3649

720 − 10754
945 − 296053

13440

B
(k)
4

251
720

959
480

135713
20160

2102243
120960

B
(k)
5 − 95

288 − 5603
2520 − 115747

13440

B
(k)
6

19087
60480

32863
13440

B
(k)
7 − 5257

17280

Table 1: The coefficients of usual Adams-Bashforth formulae

By assuming that all previous values yn−i, i = 0, 1, . . . , k − 1, are exact, i.e.,
yn−i = y(xn−i), i = 0, 1, . . . , k − 1, (9) gives the k-step method (2). This k-step
method, known also as the kth-order Adams-Bashforth method, can be written in
the form

yn+k − yn+k−1 = h

k−1∑
j=0

β
(k)
j Fn+j ,

where β
(k)
j = B

(k)
k−1−j , j = 0, 1, . . . , k − 1.

According to (6), the local truncation error of this method at the point xn+k ∈
[a, b] can be expressed in the form

(Th)n+k =
y(xn+k)− y(xn+k−1)

h
−

k−1∑
j=0

β
(k)
j y′(xn+j) =

∫ 1

0

rk(Fn+k−1)dλ, (11)

where x �→ y(x) is the exact solution of the Cauchy problem (1). If y ∈ Ck+2[a, b],
then (11) can be expressed as (cf. [7, pp. 409–410])

(Th)n+k = Cky
(k+1)(ξk)h

k = Cky
(k+1)(xn)h

k + O(hk+1), (12)
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where xn < ξk < xn+k−1. In the simplest case (k = 1), we have the well-known
Euler method, yn+1 − yn = hFn. The so-called error constants Ck in the main term

of the local truncation error for k = 1, 2, 3, 4 and 5 are

C1 =
1

2
, C2 =

5

12
, C3 =

3

8
, C4 =

251

720
, C5 =

95

288
, (13)

respectively. Details on multistep methods, including convergence, stability and
estimation of global errors en = yn − y(xn), can be found in [4, 7, 11].

Remark 1. These coefficients B
(k)
i can also be expressed in terms of the first kind

Stirling numbers S(n, k), which are defined by

n−1∏
i=0

(x− i) =

n∑
k=0

S(n, k)xk,

(see [5, 8, 9, 13]). Namely, for each k ∈ N, coefficients (10) can be explicitly repre-
sented in terms of the first kind Stirling numbers as

B
(k)
i =

k−1∑
ν=i

⎛⎜⎜⎜⎜⎝
ν∑

j=0

(−1)j

j + 1
S(ν, j)

(−1)νν! +
ν∑

j=1

ij(j + 1)S(ν + 1, j + 1)

⎞⎟⎟⎟⎟⎠ , i = 0, 1, . . . , k − 1. (14)

3. Weighted type of Adams-Bashforth methods

In this section, we study the Cauchy problem for a special type of differential equa-
tions of the first order given on a finite interval, on a half line or on the real line, which
can be considered, without loss of generality, as (−1, 1), (0,+∞), and (−∞,+∞).
Thus, we consider the following initial value problem on (a, b)

A(x)y′ +B(x)y = G(x, y), y(x0) = y0, (15)

where A and B are two polynomials determining the well-known classical weight
functions in the theory of orthogonal polynomials (cf. [10, p. 122]). Such polynomials
and weight functions are given in Table 2, where α, β, γ > −1.

(a, b) w(x) A(x) B(x)
(−1, 1) (1− x)α(1 + x)β 1− x2 β − α− (α+ β + 2)x
(0,+∞) xγe−x x γ + 1− x

(−∞,+∞) e−x2

1 −2x

Table 2: Classical weight functions and corresponding polynomials A and B

Let again {xk} be a system of equidistant nodes with the step h, i.e., xk =
x0 + kh ∈ [a, b].
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Since the differential equation of the weight function is as (cf. [10, p. 122])

(Aw)′ = Bw,

after multiplying by w(x), our initial value problem (15) becomes

A(x)w(x)y′ +B(x)w(x)y = w(x)G(x, y), y(x0) = y0,

which is equivalent to

(A(x)w(x)y)′ = w(x)G(x, y), y(x0) = y0. (16)

Now, integrating from both sides of (16) over [xn, xn+1] yields

A(xn+1)w(xn+1)y(xn+1)−A(xn)w(xn)y(xn) =

∫ xn+1

xn

w(x)G(x, y)dx. (17)

Let x = xn+λh. Similar to relations (6), (7) and (9), the right-hand side of (17)
can be written in the form∫ xn+1

xn

w(x)G(x, y)dx = h

∫ 1

0

w(xn + λh)

{
k−1∑
ν=0

(λ)ν
ν!

∇νGn + rk(Gn)

}
dλ, (18)

and approximated as∫ xn+1

xn

w(x)G(x, y)dx ≈ h

∫ 1

0

w(xn + λh)

k−1∑
ν=0

(λ)ν
ν!

(
ν∑

i=0

(−1)i
(
ν

i

)
Gn−i

)
dλ

= h

k−1∑
i=0

(
(−1)i

i!

k−1∑
ν=i

1

(ν − i)!

∫ 1

0

w(xn + λh)(λ)νdλ

)
Gn−i

= h

k−1∑
i=0

B
(k)
i (h, xn)Gn−i,

where

B
(k)
i (h, xn) =

∫ 1

0

w(xn + λh)C
(k)
i (λ)dλ, (19)

Gn−i ≡ G(xn−i, y(xn−i)), C
(k)
i (λ) is given by (8) and rk(Gn) is the error term in

the corresponding backward Newton interpolation formula for G(x, y) = G(x, y(x))
at equidistant nodes xn−i = xn − ih, i = 0, 1, . . . , k − 1. Hence, the approximate
form of (17) becomes

A(xn+1)w(xn+1)y(xn+1)− A(xn)w(xn)y(xn) = h
k−1∑
i=0

B
(k)
i (h, xn)Gn−i, (20)

where the coefficients B
(k)
i (h, xn) depend on h and xn. As in the case of the

standard Adams-Bashforth methods, by assuming that all previous values yn−i,
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i = 0, 1, . . . , k − 1, are exact, i.e., yn−i = y(xn−i), i = 0, 1, . . . , k − 1, (20) gives our
weighted k-step method

A(xn+1)w(xn+1)yn+1 −A(xn)w(xn)yn = h

k−1∑
i=0

B
(k)
i (h, xn)Gn−i, n ≥ k − 1, (21)

where Gn−i ≡ G(xn−i, yn−i), i = 0, 1, . . . , k − 1.

The mentioned dependence of the coefficients B
(k)
i (h, xn) on the stepsize h and

xn makes these methods fundamentally different from the standard ones.
Similarly to (11), we can here define the corresponding weighted local truncation

error at the point xn+k ∈ [a, b] as

(Tw
h )n+k =

{
1

h
[A(xn+k)w(xn+k)y(xn+k)−A(xn+k−1)w(xn+k−1)y(xn+k−1)]

−
k−1∑
j=0

B
(k)
k−j−1(h, xn+k−1)G(xn+j , y(xn+j))

}
1

A(xn+k)w(xn+k)
,

where x �→ y(x) is the exact solution of the Cauchy problem (15).
Then, according to (17), with n := n+ k− 1, and using (18) and (20), we obtain

(Tw
h )n+k =

1

A(xn+k)w(xn+k)h

∫ xn+k

xn+k−1

w(x)rk(Gn+k−1)dx.

The first term omitted in the summation on the right-hand side in (18) is a good
approximation of the truncation error. We will call this quantity the main term of

the truncation error and denote by (T̂w
h )n+k.

Proposition 1. Let the exact solution of the singular Cauchy problem (15) be suffi-

ciently smooth, as well as the function x �→ g(x) = G(x, y(x)). Then, the main term

of the truncation error at the point xn+k can be expressed in the form

(T̂w
h )n+k =

hkg(k)(ξk)

A(xn+k)w(xn+k)

∫ 1

0

(
λ+ k − 1

k

)
w(xn+k−1 + λh)dλ, (22)

where

g(k)(x) = A(x)y(k+1)+[B(x) + kA′(x)] y(k)+k
[
B′(x)+

1

2
(k−1)A′′(x)

]
y(k−1) (23)

and xn−1 < ξk < xn+k−1.

Proof. According to (18), we have

(T̂w
h )n+k =

∇kGn+k−1

A(xn+k)w(xn+k)k!

∫ 1

0

w(xn+k−1 + λh)(λ)kdλ,

where the factor in front of the integral can be expressed in terms of divided differ-
ences as (cf. [7, p. 410])

∇kgn+k−1

k!
= hk [xn+k−1, xn+k−2, . . . , xn−1] g.
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On the other hand, supposing that the function x �→ g(x) = G(x, y(x)) is suffi-
ciently smooth, we can write

[xn+k−1, xn+k−2, . . . , xn−1] g =
g(k)(ξk)

k!
,

where ξk is between the smallest and the largest of these points. In order to calculate
these derivatives,

g′(x) =
∂G

∂x
+

∂G

∂y
y′, g′′(x) =

∂2G

∂x2
+

[
2
∂2G

∂x∂y
+

∂2G

∂y2
y′
]
y′ +

∂G

∂y
y′′, etc.

we use the relation g(x) = G(x, y(x)) = A(x)y′(x) + B(x)y(x). Since A(x) is a
polynomial of degree at most two and B(x) is a polynomial of first degree, these
derivatives can be calculated much simpler for each k ≥ 0 in the form (23).

In this way, we obtain (22).

Formally, (22) is of the same form as (12), i.e., Ckg
(k)(ξk)h

k, where

Ck = Ck(h, xn) =
1

A(xn+k)w(xn+k)

∫ 1

0

(
λ+ k − 1

k

)
w(xn+k−1 + λh)dλ

and g(k) is given by (23). In the case of standard Adams-Bashforth methods, Ck are
the error constants given by (13) and they are independent of the stepsize h and xn.
Also, instead of g(k), there is only the derivative y(k+1) in (12). Because of these
differences, the actual order of the weighted methods can be reduced (see examples
in Section 4).

In the sequel, we consider the three cases given previously in Table 2.

3.1. Case (a, b) = (−1, 1)

Consider the Cauchy problem of Jacobi type

(1− x2)y′ + (β − α− (α+ β + 2)x) y = G(x, y), y(x0) = y0,

where xn = x0 + nh ∈ (−1, 1).
In this case, relation (20) is reduced to

yn+1 = d(h, xn)yn + h
k−1∑
i=0

D
(k)
i (h, xn)Gn−i, (24)

where

d(h, xn) =
A(xn)w(xn)

A(xn+1)w(xn+1)
=

(1− xn)
α+1(1 + xn)

β+1

(1− xn+1)α+1(1 + xn+1)β+1

and

D
(k)
i (h, xn) =

1

A(xn+1)w(xn+1)

∫ 1

0

w(xn + λh)C
(k)
i (λ)dλ.
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Putting

c(h, xn) =
(1− xn)

α(1 + xn)
β

(1− xn+1)α+1(1 + xn+1)β+1

and

Φ
(k)
i (h, xn) =

∫ 1

0

(1− xn − λh)
α
(1 + xn + λh)

β
C

(k)
i (λ)dλ, (25)

rule (24) can be simplified as

yn+1 = c(h, xn)

(
(1− x2

n)yn + h

k−1∑
i=0

Φ
(k)
i (h, xn)Gn−i

)
. (26)

In the special (Legendre) case α = β = 0, (25) is reduced to

Φ
(k)
i (h, xn) =

∫ 1

0

C
(k)
i (λ)dλ = B

(k)
i , (27)

whereB
(k)
i are the same coefficients as for standard (non-weighted) Adams-Bashforth

formulas given by (10).

3.2. Case (a, b) = (0,∞)

Now, consider the Cauchy problem of Laguerre type

xy′ + (γ + 1− x)y = G(x, y), y(x0) = y0,

in which xn = nh for n = 0, 1, . . ., and the main relation (20) is reduced to the
corresponding equation (24) with

d(h, xn) =
A(xn)w(xn)

A(xn+1)w(xn+1)
= eh

(
xn

xn+1

)γ+1

,

and

D
(k)
i (h, xn) =

B
(k)
i (h, xn)

A(xn+1)w(xn+1)
=

eh

xγ+1
n+1

∫ 1

0

(xn + λh)
γ
e−λhC

(k)
i (λ)dλ.

In other words, we have

D
(k)
i (h, xn) = x−(γ+1)

n d(h, xn)Φ
(k)
i (h, xn),

such that

Φ
(k)
i (h, xn) =

∫ 1

0

(xn + λh)
γ
e−λhC

(k)
i (λ)dλ. (28)

Hence, the relation corresponding to (20) takes the form

yn+1 = eh
(

xn

xn+1

)γ+1

yn +
ehh

xγ+1
n+1

k−1∑
i=0

Φ
(k)
i (h, xn)Gn−i. (29)
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Note that when γ = 0, the coefficients (28) are independent of xn and

Φ
(k)
i (h, xn) = Φ

(k)
i (h) =

∫ 1

0

e−λhC
(k)
i (λ)dλ. (30)

For instance, for k = 1(1)5 and i = 0, 1, . . . , k − 1, relation (30) gives

k = 1 :

Φ
(1)
0 (h) =

1− e−h

h
;

k = 2 :

Φ
(2)
0 (h) =

1 + h− e−h(1 + 2h)

h2
,

Φ
(2)
1 (h) = −1− e−h(1 + h)

h2
;

k = 3 :

Φ
(3)
0 (h) =

2 + 3h+ 2h2 − e−h(2 + 5h+ 6h2)

2h3
,

Φ
(3)
1 (h) = −2(1 + h)− e−h(2 + 4h+ 3h2)

h3
,

Φ
(3)
2 (h) =

2 + h− e−h(2 + 3h+ 2h2)

2h3
;

k = 4 :

Φ
(4)
0 (h) =

6 + 12h+ 11h2 + 6h3 − 2e−h(3 + 9h+ 13h2 + 12h3)

6h4
,

Φ
(4)
1 (h) = −2(3 + 5h+ 3h2)− e−h(6 + 16h+ 19h2 + 12h3)

2h4
,

Φ
(4)
2 (h) =

6 + 8h+ 3h2 − 2e−h(3 + 7h+ 7h2 + 4h3)

2h4
,

Φ
(4)
3 (h) = −2(3 + 3h+ h2)− e−h(6 + 12h+ 11h2 + 6h3)

6h4
;

k = 5 :

Φ
(5)
0 (h) =

12 + 30h+ 35h2 + 25h3 + 12h4 − e−h(12 + 42h+ 71h2 + 77h3 + 60h4)

12h5
,

Φ
(5)
1 (h) = −2(12 + 27h+ 26h2 + 12h3)− e−h(24 + 78h+ 118h2 + 107h3 + 60h4)

6h5
,

Φ
(5)
2 (h) =

12 + 24h+ 19h2 + 6h3 − e−h(12 + 36h+ 49h2 + 39h3 + 20h4)

2h5
,

Φ
(5)
3 (h) = −2(12 + 21h+ 14h2 + 4h3)− e−h(24 + 66h+ 82h2 + 61h3 + 30h4)

6h5
,

Φ
(5)
4 (h) =

12 + 18h+ 11h2 + 3h3 − e−h(12 + 30h+ 35h2 + 25h3 + 12h4)

12h5
.
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Remark 2. According to (30), it is clear that lim
h→0

Φ
(k)
i (h) = B

(k)
i , i = 0, 1, . . . , k−1,

where B
(k)
i are the coefficients of standard (non-weighted) Adams-Bashforth formu-

las given by (10).

Remark 3. Consider the Cauchy-Laguerre problem xy′+(1−x)y = y (i.e., G(x, y) =
y), which is simplified as

y′ = y, y(0) = 1,

with the exact solution y = ex. Considering the simplest method (for k = 1) gives

yn+1 =
eh

1 + h
xn

(
yn +

h

xn
Φ

(1)
0 (h)Gn

)
=

eh

xn+1

(
xnyn + (1− e−h)G(xn, yn)

)
.

Now, substituting xn = nh in the above relation yields

yn+1 =
(1 + nh)eh − 1

(n+ 1)h
yn, with y0 = 1.

For example, we have

y1 =
eh − 1

h
, y2 =

(1 + h)eh − 1

2h
· e

h − 1

h
,

y3 =
(1 + 2h)eh − 1

3h
· (1 + h)eh − 1

2h
· e

h − 1

h
,

or, in general,

yn =

n∏
ν=1

[1 + (ν − 1)h]eh − 1

νh
.

The method is convergent, i.e.,

lim
n → +∞

(nh = x = const)

yn = lim
n→+∞

n∏
ν=1

[
1 + (ν − 1)

x

n

]
ex/n − 1

νx

n

= ex. (31)

In order to prove (31) we define a sequence {an}n∈N by

an =

n∑
ν=1

log

⎧⎨⎩
[
1 + (ν − 1)

x

n

]
ex/n − 1

νx

n

⎫⎬⎭
n

and apply the well known Stolz-Cesàro theorem. Namely, if we prove the convergence

lim
n→+∞

an − an−1

n− (n− 1)
= lim

n→+∞ log

⎧⎪⎪⎨⎪⎪⎩
[
1 +

(
1− 1

n

)
x

]
ex/n − 1

x

⎫⎪⎪⎬⎪⎪⎭
n

= L,
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then the limit lim
n→+∞

an
n

also exists and it is equal to L. Since

1

x

{[
1 +

(
1− 1

n

)
x

]
ex/n − 1

}
= 1+

x

n
+O(n−2),

we conclude that L = log ex = x. Therefore, we obtain (31), because

lim
n→+∞

an
n

= lim
n→+∞

n∑
ν=1

log

⎧⎨⎩
[
1 + (ν − 1)

x

n

]
ex/n − 1

νx

n

⎫⎬⎭
= lim

n→+∞
log

⎧⎨⎩
n∏

ν=1

[
1 + (ν − 1)

x

n

]
ex/n − 1

νx

n

⎫⎬⎭ = x.

3.3. Case (a, b) = (−∞,∞)

Now, consider the Cauchy problem of Hermite type

y′ − 2xy = G(x, y), y(x0) = y0,

in which xn = x0 + nh ∈ (−∞,∞) and the main relation (20) is reduced to the
corresponding equation (24) with

d(h, xn) =
e−x2

n

e−x2

n+1

= ex
2

n+1
−x2

n = eh(2xn+h),

and

D
(k)
i (h, xn) =

B
(k)
i (h, xn)

e−x2

n+1

= ex
2

n+1

∫ 1

0

e−(xn+λh)2C
(k)
i (λ)dλ.

In other words, we have D
(k)
i (h, xn) = d(h, xn)Φ

(k)
i (h, xn), such that

Φ
(k)
i (h, xn) =

∫ 1

0

e−(2xnλh+λ2h2)C
(k)
i (λ)dλ.

Hence, the relation corresponding to (20) takes the form

yn+1 = eh(2xn+h)

(
yn +

k−1∑
i=0

Φ
(k)
i (h, xn)Gn−i

)
. (32)

Remark 4. As in the case of non-weighted methods, in applications of these meth-
ods for k > 1, we need the additional starting values yi = si(h), i = 1, . . . , k − 1,
such that lim

h→0
= y0 (cf. [11, pp. 32–36]).
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4. Numerical examples

In order to illustrate the efficiency of our method, in this section we give two nu-
merical examples for singular Cauchy problems on (0,∞) and (−1, 1). In particu-
lar, the weighted Adams-Bashforth methods with respect to the standard Laguerre
weight given in Subsection 3.2 have the simplest form and they can find adequate
application in solving weighted singular Cauchy problems. The third case when
(a, b) = (−∞,∞) is not interesting for applications because equation (15) is not
singular in a finite domain.

Example 1. We first consider a singular Cauchy problem

(1− x2)y′ − 3xy =
y2
((
1− x2

)
tan(x) + 4x+ 1

)
sec(x)

x− 1
, y(−1) = 2 cos 1.

Here,

G(x, y) =
y2
((
1− x2

)
tan(x) + 4x+ 1

)
sec(x)

x− 1
+ xy

and the exact solution of this problem is given by y(x) = (1− x) cos x.
In order to solve the problem for x ∈ [−1, 0], we apply the k-step method (26),

with α = β = 0 (Legendre case) and Φ
(k)
i (h, xn) given by (27). For the sake of

simplicity, in the case k > 1, for starting values we use the exact values. Otherwise,
some other ways must be applied (see Remark 4).

Relative errors obtained by this k-step method when k = 1, 2, . . . , 5, for h = 0.02
and h = 0.01, are displayed in log-scale in Figures 1 and 2, respectively.

Figure 1: Relative errors for methods (26) in Example 1 for h = 0.02 and k = 1, 2, . . . , 5

We consider now the actual errors, |yn+k − y(xn+k)| at a fixed point x = xn+k

obtained by using the k-step method (26) for different stepsize h and different k. We
take x = −0.5 and h = 0.05, 0.02 and 0.01. The corresponding errors are presented
in Table 3. Numbers in parentheses indicate decimal exponents.

Note that the effect of reducing the step-size h to the accuracy of the solution is
greater if k is higher. Assuming an asymptotic relation in the form

e(h, k, x) = |yhn+k − y(xn+k)| ≈ Ckh
αk , (33)
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Figure 2: Relative errors for methods (26) in Example 1 for h = 0.01 and k = 1, 2, . . . , 5

h k = 1 k = 2 k = 3 k = 4 k = 5
0.05 2.27(−1) 1.14(−1) 4.76(−3) 6.68(−5) 1.45(−5)
0.02 4.10(−1) 7.87(−2) 1.20(−3) 1.18(−5) 6.89(−7)
0.01 5.46(−1) 5.77(−2) 4.21(−4) 2.57(−6) 6.34(−8)

Table 3: Absolute errors in the obtained sequences {yn+k}n at the point x = xn+k = −0.5, using
the k-step method (26) for k = 1, 2, . . . , 5 and h = 0.05, 0.02 and 0.01

where xn+k = −1 + (n + k)h = x = const, and Ck and αk are some constants, we
can calculate the following quotient for two different steps h1 and h2,

e(h1, k, x)

e(h2, k, x)
≈
(
h1

h2

)αk

.

Therefore,

αk =
log(e(h1, k, x)/e(h2, k, x)

log(h1/h2)
. (34)

These values are presented in Table 4 for h1/h2 = 2 and h1/h2 = 5. As we can
see, the obtained values for the exponents αk are very similar in these two cases.

h1/h2 α1 α2 α3 α4 α5

2 −0.41 0.45 1.51 2.20 3.44
5 −0.54 0.42 1.51 2.02 3.38

Table 4: The parameters αk obtained from (34) for k = 1, 2, . . . , 5 and different stepsizes

As we can see, the actual order of the method is reduced approximately for one
order of magnitude. This effect is mentioned in Section 3 after Proposition 1.

Example 2. Here we consider again the Cauchy problem of Jacobi type

(1− x2)y′ − 2xy = 1− x− 4x2 − 5x3 + xy, y(−1) = 1,
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whose exact solution is y(x) = x2+x+1. According to Proposition 1, in this simple
case, we have

g(x) = G(x, y(x)) = −4x3 − 3x2 + 1,

as well as

g′(x) = −12x2 − 6x, g′′(x) = −24x− 6, g′′′(x) = −24, g(iv)(x) = 0.

Now, we apply the k-step method (26) for k = 1(1)4, h = 0.05 and h = 0.01 (see
Tables 5 and 6), and for starting values (when k > 1) we use the exact values of the
solution. In these tables, we only give the relative errors of the obtained values for
x = −0.9,−0.8,−0.7,−0.6,−0.5 (m.p. is machine precision).

x k = 1 k = 2 k = 3 k = 4
−0.9 5.62(−2) 5.09(−3)
−0.8 4.88(−2) 6.37(−3) 3.17(−4) m.p.
−0.7 4.37(−2) 7.03(−3) 4.46(−4) m.p.
−0.6 3.80(−2) 7.29(−3) 5.62(−4) m.p.
−0.5 3.18(−2) 7.23(−3) 6.42(−4) m.p.

Table 5: Relative errors in the obtained approximate sequences {yn+k}n using k-step methods (26)
for k = 1(1)4 and h = 0.05

x k = 1 k = 2 k = 3 k = 4
−0.9 9.81(−3) 2.61(−4) 3.19(−6) m.p.
−0.8 9.19(−3) 2.82(−4) 3.92(−6) m.p.
−0.7 8.37(−3) 2.94(−4) 4.53(−6) m.p.
−0.6 7.33(−3) 2.96(−4) 5.11(−6) m.p.
−0.5 6.15(−3) 2.89(−4) 5.62(−6) m.p.

Table 6: Relative errors in the obtained approximate sequences {yn+k}n using k-step methods (26)
for k = 1(1)4 and h = 0.01

As in Example 1, we consider asymptotic relation (33) at x = xn+k = −0.5,
when k = 1, 2, 3 and h1 = 0.05 and h2 = 0.01. The values of the corresponding
exponent (34) are presented in Table 7.

k k = 1 k = 2 k = 3
h1/h2 = 5 α1 = 1.00 α2 = 2.00 α3 = 2.94

Table 7: The parameters αk obtained from (34) for k = 1, 2, 3 and h1/h2 = 5

As we can see, in this polynomial case, there is not previously mentioned defect
in the order. Note that the local truncation error (22) is equal to zero for each k ≥ 4,
because of g(k)(x) = 0. Also, we see that the actual errors in Tables 5 and 6 for
k = 4 are on the level of machine precision.
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Example 3. Now we consider the Cauchy problem of Laguerre type

xy′ + (1− x)y =
3x2 + 1

(x2 + 1)2
e−xy2, y(0) = 1,

whose exact solution is y = (x2 + 1)ex. We apply the k-step method (29) for
k = 1(1)6. The corresponding relative errors for h = 0.05 are given in Table 8, and
for h = 0.01 in Table 9. In these tables, we only give relative errors of the obtained
values for x = 0(0.1)1. As in Example 1, for starting values we use the exact values
of solution.

x k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
0.1 5.66(−2) 3.74(−3)
0.2 1.18(−1) 1.43(−2) 7.17(−4) 1.89(−5)
0.3 1.81(−1) 2.62(−2) 1.62(−3) 7.55(−5) 2.89(−6) 6.33(−8)
0.4 2.45(−1) 3.94(−2) 2.62(−3) 1.32(−4) 5.83(−6) 2.39(−7)
0.5 3.08(−1) 5.42(−2) 3.76(−3) 1.98(−4) 9.39(−6) 4.16(−7)
0.6 3.70(−1) 7.10(−2) 5.10(−3) 2.74(−4) 1.33(−5) 6.11(−7)
0.7 4.30(−1) 9.01(−2) 6.66(−3) 3.63(−4) 1.79(−5) 8.48(−7)
0.8 4.88(−1) 1.11(−1) 8.49(−3) 4.67(−4) 2.33(−5) 1.11(−6)
0.9 5.42(−1) 1.35(−1) 1.06(−2) 5.88(−4) 2.95(−5) 1.42(−6)
1.0 5.93(−1) 1.62(−1) 1.31(−2) 7.29(−4) 3.67(−5) 1.77(−6)

Table 8: Relative errors in the obtained sequences {yn+k}n using k-step methods (29) for k =
1, 2, . . . , 6 and h = 0.05

x k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
0.1 5.26(−2) 1.86(−3) 2.63(−5) 2.92(−7) 2.97(−9) 2.85(−11)
0.2 1.05(−1) 4.17(−3) 6.20(−5) 7.37(−7) 8.17(−9) 8.70(−11)
0.3 1.58(−1) 6.73(−3) 1.02(−4) 1.23(−6) 1.39(−8) 1.51(−10)
0.4 2.12(−1) 9.66(−3) 1.47(−4) 1.80(−6) 2.04(−8) 2.24(−10)
0.5 2.67(−1) 1.31(−2) 2.00(−4) 2.45(−6) 2.80(−8) 3.09(−10)
0.6 3.23(−1) 1.71(−2) 2.63(−4) 3.23(−6) 3.70(−8) 4.10(−10)
0.7 3.80(−1) 2.18(−2) 3.38(−4) 4.16(−6) 4.76(−8) 5.28(−10)
0.8 4.35(−1) 2.73(−2) 4.26(−4) 5.25(−6) 6.02(−8) 6.67(−10)
0.9 4.89(−1) 3.38(−2) 5.30(−4) 6.53(−6) 7.49(−8) 8.32(−10)
1.0 5.41(−1) 4.12(−2) 6.51(−4) 8.03(−6) 9.22(−8) 1.02(−9)

Table 9: Relative errors in the obtained sequences {yn+k}n using k-step methods (29) for k =
1, 2, . . . , 6 and h = 0.01

Using Proposition 1 we determine the main term of the truncation error at the
point xn+k = x, for example, when h = 0.01 and x = 0.5.

Since∫ 1

0

(
λ+ k − 1

k

)
e−(x−h+λh)dλ = e−xQk, Qk =

1

k!

∫ 1

0

(λ)ke
−(λ−1)hdλ,
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we first calculate the values: Q1 = 0.501671, Q2 = 0.41792, Q3 = 0.376058, Q4 =
0.34955, Q5 = 0.330639, and Q6 = 0.316389. The corresponding derivatives

g(k)(x) = xy(k+1) + (k + 1− x)y(k) − ky(k−1)

are

g′(x) = ex
(
3x2 + 6x+ 1

)
, g′′(x) = ex

(
3x2 + 12x+ 7

)
,

g′′′(x) = ex
(
3x2 + 18x+ 19

)
, g(iv)(x) = ex

(
3x2 + 24x+ 37

)
,

g(v)(x) = ex
(
3x2 + 30x+ 61

)
, g(vi)(x) = ex

(
3x2 + 36x+ 91

)
,

where ξk ∈ (x− (k + 1)h, x− h
)
, k = 1, 2, . . . , 6.

Now, taking x = xn+k = (n + k)h = 0.5, h = 0.01, and ξk = x − h = 0.49 in

(22), we obtain an approximation of the main term (T̂w
h )n+k in the form

(T̂w
h )n+k ≈ hkg(k)(x− h)Qk

x
, k = 1, 2, . . . , 6,

whose numerical values for k = 1, 2, . . . , 6, after dividing by y(0.5) = 2.0609, are:
3.70(−2), 9.00(−4), 1.70(−5), 2.74(−7), 4.00(−9), 5.48(−11), respectively. As ex-
pected, the actual global errors from Table 9 (the row referring to x = 0.5) are larger
compared to the corresponding local truncation errors.

x α1 α2 α3 α4 α5 α6

0.5 0.08 0.95 1.92 2.87 3.81 4.75
1.0 0.05 0.93 1.94 2.90 3.86 4.80

Table 10: The parameters αk obtained from (34) for k = 1, 2, . . . , 6 and h1/h2 = 2 at two points
x = 0.5 and x = 1.0.

Finally, as in Example 1, we assume the behavior of the actual errors in the form
(33), where xn+k = (n + k)h = x = const. We compare actual errors obtained for
h1 = 0.02 and h2 = 0.01 at two points x = 0.5 and x = 1.0. The results for αk,
k = 0, 1, . . . , 6 are presented in Table 10. As we can see, the obtained values of the
exponents αk at these points are very close, but again with a defect of one order in
its magnitude!
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