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IIpenrosop

Hayune axtuBHOCTH KOje caM nmao TokoMm 2017. ronuHe, a Koje cy mpe CBera Be3aHe 3a paj Ha
WHAMBUIYAJTHOM aKaJeMUjCKOM Tpojekty D-96 (HMwmepnorayuonu u KeadpamypHu npoyecu
3ACHOBAHU HA Meopuju OPMOLOHAIHOCMU), OTIUCAHE Cy Y OBOj IyOJHKaIlMjH, Kao W ydeurie Ha
MeljyHapOHUM HayYHUM KOH(EpEeHIIjaMa TOKOM OBE I'O/IMHE.

VY mpBOoM Jeny ONMUCYyjy ce HUCTpakuBama oOaBibeHa y  2017. TOAMHM W Jaje ce CIHUCaK
00jaBJbeHUX pazoBa y TOM meproxy. (CBa HEOIXoJHA JOKyMEHTa Koja cy mojaHera Onesbemy 3a
MaTeMaTuky, pu3nuky u reo-Hayke CAHY, a omHOCe ce Ha Hay4YHY aKTHBHOCT, CY CaapiKaj APyTror
Jena oBe MyOnmKanuje. AKTUBHOCTH Ha HaydHHM KoH(pepeHmmjama TokoMm 2017. rogmae cy
npuka3ase y Tpehem neny. Haj3an, KOMIUIETHH paloBU ce Aajy Y 4eTBPTOM Jey IIyOnuKaIuje.

Mapna ce oBoM mpoOjeMaTHKOM OaBHM BHIIE OJ TPU ACLCHHUjE, ca pajoM Ha mpojekry PD-96
(dopmastHO cam To4yeo HakoH Mor u3dopa y CAHY 2006. ronune. [lapanenHo cam pajwo ¥ Ha
npojekTy MunuctapctBa Hayke PemyOmumke CpOuje (cama MHUHUCTapCcTBO MPOCBETE, HAyKe H
TEXHOJIOIIKOT pa3Boja) ce j0 2015. roquHe, Kaga 300T TEH3MOHNCAmka TIpecTaje PHUHAHCHPATHE
MOT HAay4HOT paJjia Il0 TOM OCHOBY.

Pesynraru Mor jocajalliiber HaydHOI pajia CaolllTaBaHW Cy Ha MelyHapOIHUM CKyIOBHMA M
00jaBJbUBaHM y TIO3HATUM CBETCKHMM YaCOMUCHMA MM MOHOrpadujaMa (IeTtapu ce Mory Hahu Ha
cajry: http://www.mi.sanu.ac.rs/~gvm/). Kao jeman o 3HayajHHUX pe3yiTaTa [OMHEEM
MoHorpadujy Interpolation Processes — Basic Theory and Applications, Springer Monographs in
Mathematics, Springer — Verlag, Berlin — Heidelberg, 2008 (XIV+444 pp.), xojy cam 00jaBHO
3ajeqHo ca koseroM byserne Mactpojanujem (Giuseppe Mastroianni) u3 HUranuje.

V¥ Beorpany, 22. neuembpa 2017. I'pagumup B. MunosanoBuh
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1. U3BELITAJ O PAJY HA ITPOJEKTY ®-96 VY 2017. 'OJAUHHA






1.1. Omnwuc ucrpaxxupama

V cknany ca MmjaHOM HAacTaB/beHA Cy HCTpakuBama Ha mpojexty y 2017. rogunu y oOmactu
KBaJIpaTypHHUX M CyMAILMOHUX (POpPMyYJIa, OPTOrOHAIHUX MOJIMHOMA M CIICUUjaTHUX (PYHKIIH]a.

Omnmite TeXHHCKE KBangpaTypHe ¢opmyne bupkod-JyHroBor Tuma ca MaKCHMAaIHHM CTETIEHOM
TAQYHOCTH 3a HHTETPAINjy AaHANUTHYKHX (QYHKOWja Yy KOMIUIEKCHO] paBHH, YKJbydyjyhu
KapaKkTepu3alnjy M jeUHCTBEHOCT TakBUX (hopMyIa, Ka0 M HyMEPHUKY KOHCTPYKIIHjy YBOPOBA H
TeKUHCKAX KoeHIHUjeHaTa pasmarpaHe cy y paay [l]. Excmmmutaum o0muk  “9BOpHOT
noanHOMa” je 1oOHjeH 3a reHepanucany I erenbayepoBy TexxnHcKy (yHKIujy. Haj3an, npoydaBan
jé HM3 TeHEepalMCaHUX KBaApaTypHUX (opMyla W HWUXOBH  “YBOPHH THOJIMHOMU~ CYy
HMHTEPNPETHUPAHHU Y TEPMUHIMA T3B. MYJITHILUI-OPTOTOHAIHHUX MOJIMHOMA.

Hymepuuko wn3pauyHaBame HHTETpajia ca Op30 OCHHIATOPHMM (YHKIMjaMa W IpUMEHE Y
u3pauyHaBawy DypujeoBnx u becenmoBux tpanchopmanmja, xkao u paszsoj ¢opmyna I'aycosor
THITa ca MOIM(HUKOBAaHOM XEPMHUTOBOM TEXHWHOM 1ato je y [2]. MeTonu cy 3acCHOBaHH Ha HJICjH
MeToJa KoMIutekcHe uHterpanuje (Bunetw: [G.V. Milovanovié, Comput. Math. Appl. 36 (1998),
19-39]).

CumOonnuKo-HyMepHUiKa U3padyHaBamba HOBUX KJlaca OPTOTOHAIHUX IOJMHOMA B 0JroBapajyhux
laycoBux kBagpaTypHUX (oOpMyjia y OIHOCY Ha KapAauHaiHe B-cruiajHoBe (Kao TEXHHE
¢byHKIMje) pazmarpana cy y [3], 1ok je y [4] mat MeTox KOHCTPYKIIHje CHMETPHYHHUX KBaJIpaTypa
I"aycoBor Trma 3a mapHe TeXHHCKE (QyHKIIHje, KOJH je IPUMEHEH Ha KBajpaType ca [lomauexoBom
TexxuHoM Ha (—1,1), ka0 ¥ Ha cCUMETpHUYHE KBaJpaTypHe (GopMmysie Koje ce 1ojaBbyjy y Aber-
[Imana cymammonum ¢Qopmymnama. JleTasbHa CTyAWja TakBHX CyManHMOHHX (opMmyria, Kao H
onrosapajyhux dopmyna Ojnep-MakinopeHOBOT THIIA, YKIbYUYjyhn KIacndHe W HOBE pe3yJiraTe,
W3JI0KEeHa je Kao ToceOHO TornaBibe y Springer-oBoj MoHorpaduju [5] (Progress in
Approximation Theory and Applicable Complex Analysis), xoja je mnocBeheHa HeIaBHO
npeMuHyIoM npodecopy Paxmany [Q.I. Rahman (1934-2013)].

Ksanparypue ¢opmyse ['aycoBor Tuma 3a €KCHOHCHIMjalHE TESKUHCKE (YHKIHUje HA PEasHOj
moiyocu, koje omoryhaBajy uHTerpauujy QGyHKIHMja ca CHHIYJIApPUTCTUMa Yy HYJIH W/HIH
6eckonaunoctu (Buzmetu: [G. Mastroianni, I. Notarangelo, G.V. Milovanovi¢, IMA J. Numer.
Anal. 34 (2014), 1654—-1685]), npuMemeHe Cy Ha KOHCTPYKIHMjy MeTona HuctpemoBor Tthma 3a
pemaBame oaroapajyhe kimace ®penxoiIMOBHX HMHTETPATHHUX jeJHAYMHA Jpyre Bpcte [6].
Crynuja CcTaOMIHOCTH W KOHBEPTEHIMje JTOOMjeHOT HyMEpHYKOr Meroja Oa3upaHa je Ha
HPETXOIHNM pe3ylTaTuMa O TEKHHCKO] MOJMHOMHUjaTHOj alpOKCHMAlWjH M T3B. “OJCEYCHUM
I'aycoBuM KBajJpaTypHUM (GopMyiama.

KoHcTpyKuuja onTUMaiHUX KBaapatypHuX (opmyna y Capa-oBOM CMHCIY 32 M3pauyHaBambe
OypujeoBux uHTErpasia y XuidepoBoM MPOCTOpy He-IepHOIuYHIX (yHKIHja WZ(m’m_l) je maray



pany [7], xoju je obGjaBmbeH y Toky 2017. romuue. Muade, oBM pe3ydTaTtd Cy IOOWjeHH Y
MPETXO/IHO] KaJIEHIapCKOj TOAWHU | MPHUKa3aHH Cy y u3BemTajy 3a 2016. ronuHy, Tako aa ce y
oarosapajyhumM n3Bemrajuma o pagy Ha npojexty y 2017. rogunu 3a bunten @onna oBaj wiaHak
He TIoMUBe (BuAeTH ofesbke 2.3 u 2.4 y 0BOj MyOJInKaujm).

I'eneparopcke (QyHKIMje ¥ OCOOMHE HOBHX Kilaca CICLUjaJHUX IOJMHOMA M HUXOBE Be3e ca
J00po Tmo3HaTUM Kiacama nosimHoMa bepHynmjesor, Ojneposor, Amnocron-bephynujesor,
Anocron-Ojneposor, I'enounjeBor 1 @uOOHAYMjeBOT TUIA Cy pa3marpane y pany [9]. Takohe cy
yBeIeHe W IpoydaBaHe Kiace nonuHomMa PuOoHa4YMjeBOT THIIA ca JABE NPOMEHJBUBE, Ka0 OHE
nobujeHe Moan(UKarjoM TeHepaTopcke GyHKIHje XyMOSpPTOBHX MTOJIMHOMA.

IToTpeOHM W JOBOJAHM YCJOBH 3a IMOCTH3alke TIIO0ATHOT MUHHMyMa (yHKIHje ca ciaabum
cyomudepennmjaom gatu cy y pany [10], kao u Beza uzmely cyoaudepenimjana u OpemeoBor
nudepernujana ca crabuM cyoaudepeHIrjaIoM.

Ha ocHOBY u3BecHHX clielnMjanHux ocoOuHa rama Qynkuuje, y pamy [11] ce nedunmme
excreHsuja [loxxamepoBor cumbOomna, koja omoryhaBa yBoheme excreHsuje [aycoBe u
KOH(JIyeHTHE XUIepreoMeTprjcke GyHKIMje, Kao U JOOHjamhe IHUXOBHX OMIITHX 0COOMHA.

Y pamy [12] ce pmaje mobGoselmaHa Bep3Wja peBep3He XeJaepoBe HEjeHAKOCTH IOMOhy
(k,s)—Puman-JInyBuiaoBOr (h)pakIIMOHOT HHTETPaANa, Kao U OAroBapajyhe mpuMeHe.

Hosga kmaca texxunckux Anamc-bamdoproBux dopmyna 3a pemasame KomujeBux npobdiaema 3a
cuHrynapHe audepeHuujalHe jelHaunHe mpeajgoxkeHa je y pany [13], mpu yemy je TeKHMHCKA
(GyHKIHja OHA KOja Cce M0jaBJbyje KO KIIACHYHUX OPTOTOHAIHUX ITOJMHOMA.

Hajzan y pany [8], koju npunana obnactu OeXWYHUX TEJICKOMYHHUKAIMja, aHAIM3HPA CE MPEHOC
uHpopMaIrja Kpo3 clo00IHH MPOCTOP KopuihierheM ONTHYKUX CHrHaia. Y paay ce yTBphyje
yTHIA] XapABEPCKHX HECABPIICHOCTH NPHjEMHUKa y KOMOHMHAIMjU ca HECaBPIICHUM
MTO3UIIHOHKUpPAEM IIPEAajHIKa y OJHOCY Ha TPHjeMHHK M aTMocdepcke TypOyneHuuje, Ha
BEpPOBAaTHONY Tpemike kaaa ce Kopuctd audepeHnujamHa QaszHa Monmynanmja. M3pas 3a
BepoBaTHONy rpemke je oxpeheH y OOIMKYy KOHBEPIeHTHOT (DyHKIMOHAIHOT pefa 3a KOjH je
HaljeHa mpenM3Ha ropma I'paHula Tpellke Ojcelama Kao MHTerpail MoaudukoBaHe becenose
¢ynkunje npse Bpere [,(b) po napamerpy v Ha HEOrpaHHMYEHOM MHTepBaly 3a pUKcHO b. OBUM
je omoryheHo m3pauyHaBame BepoBaTHOhe rpelike ca NMpOM3BOJFHOM TadHOIINy 3a pasinduTe
Hnapamerpe CHcTeMa.



1.2. Cnucak o6jaBpenux pagosay 2017. roguau
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G.V. Milovanovié¢: Generalized weighted Birkhoff-Young quadratures with the maximal
degree of exactness, Appl. Numer. Math. 116 (2017), 238 — 255. [RJ234]*

G.V. Milovanovié¢: Computing integrals of highly oscillatory special functions using
complex integration methods and Gaussian quadratures, Dolomites Res. Notes
Approx. 10 (2017), Special Issue, 79 — 96. [RJ240]

G.V. Milovanovié¢: Symbolic-numeric computation of orthogonal polynomials and
Gaussian quadratures with respect to the cardinal B-spline, Numer. Algorithms 76 (2017),
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Schmeisser, eds.), pp. 429 — 461, Springer, 2017, ISBN 978-3-3199-49240-1. [BC33]
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G. Ozdemir, Y. Simsek, G.V. Milovanovi¢: Generating functions for special polynomials
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Math. 14 (2017), no. 3, Art. 117, 17 pp. [RJ238]

P. Cheraghi, A.P. Farajzadeh, G.V. Milovanovié: Some notes on weak subdifferen-

tial, FILOMAT 31 (2017), 3407 — 3420. [RJ239]

M. Masjed-Jamei, G.V. Milovanovi¢: An extension of Pochhammer's symbol and its
application to hypergeometric functions, FILOMAT 31 (2017), 207 — 215. [RJ232]

M. Tomar, P. Agarwal, S. Jain, G.V. Milovanovi¢: Some reverse Hélder type inequalities

involving  (k,s)—Riemann-Liouville fractional integrals, In: Functional Analysis in

Interdisciplinary Applications. FAIA 2017 (T. Kalmenov, E. Nursultanov, M. Ruzhansky,

M. Sadybekov, eds.), Springer Proceedings in Mathematics & Statistics, Vol. 216, pp. 302 —

311, Springer, Cham, 2017, ISBN 978-3-319-67052-2. [BC34]

M. Masjed-Jamei, G.V. Milovanovi¢, A.H. Salehi Shayegan: On weighted Adams-

Bashforth rules, Math. Commun. 23 (2018), 127 — 144. [RJ242]

*) Os3Haka Ha Kpajy pedepeHile ykasyje Ha mo3uimjy Te pedepenue Ha cajty http://www.mi.sanu.ac.rs/~gvm/publ0.html ; Ha
npumep [RI234] je 234. pedepenna y crucky “Refereed Journals”.







2. JOKYMEHTA IIOAHETA OAE/BEILY 3A MATEMATHUKY,
PU3UKY U T'EO-HAYKE CAHY






Onesbeme za mMaTreMaTuky, (u3uky u reo-nayke CAHY,
beorpan

JInunu uzBemtaj CAHY akanemuxa I'pagumupa B. Musiopanosuha 3a 2017.
TOAUHY

PenoBuu mpodecop Enexrponckor dakynrera Yuupepsutera y Humry, y nensuju. Ilpenaje Ha
JIOKTOPCKHM CTyaujama Ha EjekrpoTexHmdkom Qakynrtery YHuBep3urera y beorpany. Unan je
Hayunor Beha Marematuukor unctutyta. On mapra 2016. rogune y CAHY o6aBiba GyHKIHjy
cekperapa Ojyiesberba 32 MaTeMaTHKY, GU3UKY U Teo-Hayke U wiaH je [Ipencennumrea CAHY.

I'maBuu ypennuk je y uaconmcuma “Journal of Inequalities and Applications” (Springer),
“Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques”
(CAHY, Beoepao) wn “Publications de l'Institut Mathématique” (Mamemamuuxu uncmumym
CAHY, Beoepao), ypennuk (Associate Editor) y waconucuma ca SCI nucte “Applied Mathematics
and Computation” (Elsevier), “Optimization Letters” (Springer), “Applicable Analysis and
Discrete Mathematics” (Enexmpomexuuuxu gaxyimem y beoepaoy) n “FILOMAT” (IIpupoomno-
mamemamuuru paxyrimem y Huwy), kao 1 4iaH pepakuuja Buine yaconuca y Cpouju, Byrapckoj,
Pymynuju, Jepmennju, Uuaauju, Upany, Xpsarckoj u Typckoj.

Y CAHY pagu Ha uHAUBUAyaTHOM mpojekty P-96 mox HacmoBoM Humepnonauuonu u
Keéaopamypnu npouecu 3acHO8AHU HA meopuju opmozonannocmu. Y OKBUPY MUHHCTapcTBa
NpOCBETE, HayKe M TEXHOJIOWIKOr pa3Boja Penybimke CpOuje Oe3 duHaHcHpama ydecTByje M
PYKOBOJH  TPOJEKTOM ,,AnpoKcumayuja unmezpainux u oudepenuyujannux onepamopa u
npumene* y o0IacTH OCHOBHUX HCTPaXXMBamba. YUECTBOBAO j€ y KOMHCHjaMa 3a OAOpaHy BHIIE
JIOKTOPCKHX THcepTandja y 3eMibH 1 MHOcTpaHcTBY. Y CAHYVY je opranmsoBao melyHapomHy
HayuHy KoH(pepernnjy y CAHY, ACTA 2017: Approximation and Computation — Theory and
Applications (30.11. — 02.12), mocBeheny cBerckm mo3HatoM HaygHHKY Bantepy [ayumjy (W.
Gautschi) moBogom merosor 90-tor polennana.

VY toky 2017. romunre o6jaBuo je 13 panosa (10 y gacommcuma ca SCI mucte) m ompxkao Tpu
IUICHApHA TIpefaBama Ha MelyHapomunM HayunuM ckymnoBuMa [[CRAPAM 2017 (May 11-15,
Kusadasi — Aydin, Turkey); EnuMDeS-17 (September 11-12, UH1-EST Berrechid, Morocco);
ACTA 2017 (November 30-December 2, Belgrade)].

Penosun unan CAHY



Gradimir V. Milovanovié, redovni ¢lan SANU
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ITpojexar ®-96: UHTepNoOIALMOHH M KBA/IPATYPHH NPOLECH 3aCHOBAHH HA
TEOPHUjH OPTOTOHAJTHOCTH

PykoBopunai: I'pagumup B. MusioBanosuh
H3Bemrraj 3a 2017. roquny

VY ckiay ca INIaHOM HAaCTaBJbEHA Cy MCTPKUBAIba y 00JACTH KBAIPATypHUX U CYMAaIlMOHHX
dopMyna, OpPTOrOHAJTHMX TIOJIMHOMAa H cClHenujatHuxX (QyHknuja. Ommre TEKUHCKE
KBazpatypHe ¢opmyine bupkod-JyHroBor THma ca MaKCHMaJHHM CTEIICHOM TadyHOCTH 3a
WHTETPAINjy aHATUTHYKAX (YHKIHja Y KOMIUIEKCHO] PaBHH, YKJbY4yjyhu KapakTepuzanujy u
jemuHCTBEHOCT (opMyna, Kao M HYMEPHUYKYy KOHCTPYKIHjy YBOpOBAa M TEKHHCKHX
koedummjenara, pazmarpane cy y panay [1]. ExcrmmmnTan obnuk “aBopHOT monmHOMA” je
nobujer 3a reHepaiicany lerenOayepoBy TeXHHCKY (YHKIHjYy, a MpOy4YaBaH je W HH3
TCHCPAIMCAHUX KBAApPAaTypHHX (opMyra U HHXOBH “qBOpHH  NOJIHMHOMH  Cy
UHTEPNPETHPAHH Yy TEPMHUHUMA T3B. MYJTHUIUI-OPTOTOHAJIHUX MoOJMHOMA. Hymepuuko
M3padyHaBamke MHTErpajga ca Op30 OCLIIATOPHUM (YHKIMjaMa U [IPUMCHE Y H3pauyyHaBamby
OypujeoBux u becenoBux TpaHchopmanuja, kao u pas3Boj ¢opmyna [aycoBor Tuma ca
Mou(UKOBaHOM XEPMHTOBOM TEXHHOM Hato je y [2]. Meromm cy 3acHOBaHM Ha WJICjH
MeToJa KomruiekcHe uHTerpanuje (Bumet: [G.V. Milovanovi¢, Comput. Math. Appl. 36
(1998), 19-39]). CumOoIMUKO-HyMEpHUYKa H3padyHaBara HOBHX KJaca OPTOTOHAITHHX
nonuHOMa M ofrosapajyhux ['aycoBux kBampaTypHuX (opmyna y ogHOCY Ha KapAWHamHE B-
crutajHoBe pasMatpaHa cy y [3], mok je y [4] mar MeTon KOHCTPYKIHjEe CHMETPUIHHUX
KBajpaTypa ['aycoBor Tuma 3a mapHe TeKHHCKE (YHKIUje, KOjH je MPUMEHCH Ha KBaapaType
ca IlomauexoBoM TexuHOM Ha (—1,1), ka0 U Ha cuMeTpUYHE KBagpaTypHe (opMyle Koje ce
nojaBibyjy y Aben-Ilnana cymanmonum dopmynama. JleTasbHa CTy/uja TaKBHX CyMaIlHOHUX
dopmyna, kao u  oxarosapajyhux Qopmymna Ojnep-MakiiopeHOBOT THIIA, YKIBY4yjyhn
KJIacHYHE W HOBE pe3yiTaTe, HW3JIOKCHAa je Kao I0CeOHO IIorNlaBbe y Springer-oBoj
MoHorpaduju [5]. KBamparypre ¢dopmyne ['aycoBor Thma 3a eKCIIOHEHIHjaTHE TEXKHWHCKE
¢yHKIMje Ha pealHO] TONyocH, Koje omoryhaBajy wHrerpamujy (¢yHKOmja ca
CHHTYJIapUTeTUMAa y Hynu u/mnu OeckoHauHocTu (Buiaetu: [G. Mastroianni, I. Notarangelo,
G.V. Milovanovi¢, IMA J. Numer. Anal. 34 (2014), 1654-1685]), npumemene cy Ha
KOHCTPYKIHUjy MeTona HuctpemoBor Trma 3a pemasame oaropapajyhe kinace @peaxonMoBux
MHTETpaJiHAX jenHaunHa npyre Bpcte [6]. HoBa kmaca texwmHCkHX Anamc-bamdoproBux
¢dopmyna 3a pemaBarme KommjeBux npoOsieMa 3a CHHTYJapHEe TUPEpeHIMjaTHe jeHaYHHE
npemiokena je y [12], 1ok ¢y y [8] wu3BemeHe reHepaTopcke (QyHKIMje 3a CICIHjaTHe
moauHOMEe W OpojeBe, yKJbydyjyhm monmHOoMe ArmoctoioBor u XyMmOepToBor Tuma. Y
pamoBuma [9] u [10] wm3maxy ce U3BeCHH TEOPUjCKU KOHIIETITH ci1ador cyoandepeHimjana y
TEOPHjH ONTHUMM3AINjE, Ka0 U eKcTeH3Hja IloxxamepoBor cumOO0Ia M HEroBa MPHMEHA Ha
xunepreoMerpujcke ¢Gynknuje. Y pamgy [11] ce maje mobosplmaHa Bep3uja peBep3HE
XennepoBe HejeaHakocTu nomohy (k,s)—Puman-JIluyBuiioBor ¢(paxkiuoHOr HWHTErpaisa Hu
oxrosapajyhe npumene. Haj3an, y pany [7] Tpetupa ce npodieM y TeleKkoMyHHKaIjama.

1. G.V.Milovanovi¢: Generalized weighted Birkhoff-Young quadratures with the maximal
degree of exactness, Applied Numerical Mathematics 116 (2017), 238 — 255.
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2. G.V.Milovanovi¢: Computing integrals of highly oscillatory special functions using
complex integration methods and Gaussian quadratures, Dolomites Research Notes on
Approximation 10 (2017), Special Issue, 79 — 96.

3. G.V.Milovanovié: Symbolic-numeric computation of orthogonal polynomials and
Gaus-sian quadratures with respect to the cardinal B-spline, Numerical Algorithms
76 (2017), 333 — 347.

4. M. Masjed-Jamei, G.V. Milovanovi¢: Construction of Gaussian quadrature formulas
for even weight functions, Applicable Analysis and Discrete Mathematics 11 (2017), 177
—198.

5. G.V.Milovanovié: Summation formulas of Euler-Maclaurin and Abel-Plana: old and
new results and applications, In: Progress in Approximation Theory and Applicable
Complex Analysis — In the Memory of Q.I. Rahman (N.K. Govil, R.N. Mohapatra, M.A.
Qazi, G. Schmeisser, eds.), pp. 429 — 461, Springer, 2017, ISBN 978-3-3199-49240-1.

6. G. Mastroianni, G.V. Milovanovié¢, I. Notarangelo: A Nystrom method for a class of
Fredholm integral equations on the real semiaxis, Calcolo 54 (2017), 567 — 585.

7. M.IL Petkovi¢, G.T. Djordjevi¢, G.K. Karagiannidis, G.V. Milovanovi¢: Performance
of SIM-MDPSK FSO systems with hardware imperfections, IEEE Transaction on
Wireless Communications 16 (2017), 5442 — 5451.

8. G. Ozdemir, Y. Simsek, G.V.Milovanovi¢: Generating functions for special

polynomials and numbers including Apostol-type and Humbert-type polynomials,
Mediterranean Journal of Mathematics 14 (2017), no. 3, Art. 117, 17 pp.

9. P. Cheraghi, A.P. Farajzadeh, G.V. Milovanovi¢: Some notes on weak subdifferen-
tial, FILOMAT 31 (2017), 3407 — 3420.

10. M. Masjed-Jamei, G.V. Milovanovi¢: An extension of Pochhammer’s symbol and its
application to hypergeometric functions, FILOMAT 31 (2017), 207 — 215.

11.M. Tomar, P. Agarwal, S. Jain, G.V.Milovanovi¢: Some reverse Hdlder type
inequalities involving (k,s)—Riemann-Liouville fractional integrals, In: Functional
Analysis in Interdisciplinary Applications. FAIA 2017 (T. Kalmenov, E. Nursultanov,
M. Ruzhansky, M. Sadybekov, eds.), Springer Proceedings in Mathematics & Statistics,
Vol. 216, pp. 302 — 311, Springer, Cham, 2017, ISBN 978-3-319-67052-2.

12. M. Masjed-Jamei, G.V. Milovanovié¢, A.H. Salehi Shayegan: On weighted Adams-
Bashforth rules, Mathematical Communications 23 (2018), 127 — 144.

Penoun wian CAHY

FpaﬂHMHW
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Project ®©-96: Interpolation and quadrature processes based on the theory of
orthogonality

Leader: Gradimir V. Milovanovi¢
Report for 2016

According to the plan of this project, the work on the development and applications of
quadrature and summation processes, orthogonal polynomials and special functions is
continued. General weighted quadrature formulas of Birkhoff-Young type with the maximal
degree of exactness are given in [1]. It includes a characterization and uniqueness of such rules,
as well as numerical construction of nodes and weight coefficients. An explicit form of the node
polynomial of such kind of quadratures with respect to the generalized Gegenbauer weight
function is obtained. Also, a sequence of generalized quadrature formulas is studied and their
node polynomials are interpreted in terms of multiple orthogonal polynomials. An account on
computation of integrals of highly oscillatory functions based on the so-called complex
integration methods is presented in [2]. Beside the basic idea of this an approach established by
Milovanovi¢ [Comput. Math. Appl. 36 (1998), 19-39] some applications in computation of
Fourier and Bessel transformations are given. Also, Gaussian quadrature formulas with a
modified Hermite weight are considered. Symbolic-numeric computation of orthogonal
polynomials and the corresponding Gaussian quadratures with respect to the cardinal B-spline
are considered in [3]. A method for constructing symmetric Gaussian formulas with respect to an
even weight function is given in [4], and it is applied to quadratures related to the Pollaczek-
type weight functions on (—1, 1), as well as to symmetric Gaussian quadrature rules on the real
line, which appear in the Abel-Plana summation formulas. A detailed study of such summation
formulas, as well as ones of the Euler—Maclaurin type, including classical and new results, is
presented as a chapter in the Springer monograph [5]. Quadrature rules of Gaussian type with
exponential weight functions on the real semiaxis (see [G. Mastroianni, I. Notarangelo, G.V.
Milovanovi¢, IMA J. Numer. Anal. 34 (2014), 1654—-1685]) are applied for getting a Nystrom
method for a class of Fredholm integral equations of the second kind on the real semiaxis [6]. A
new class of Adams-Bashforth rules for solving the Cauchy problem for singular differential
equations is proposed in [12], and in [8] new generating functions for some special classes of
polynomials and numbers are derived, including polynomials of Apostol and Humbert type.
Certain theoretical concepts of weak subdifferential in the optimization theory, as well as an
extension of the Pochhammer symbol and its application to hypergeometric functions are given
in [9] and [10]. An improved version of the reverse Hdolder type inequalities by taking
(k,s)~Riemann-Liouville fractional integrals, as well as some applications are presented in [11].
Finally, a problem in telecommunication is treated in [7].

1. G.V.Milovanovié¢: Generalized weighted Birkhoff-Young quadratures with the maximal
degree of exactness, Applied Numerical Mathematics 116 (2017), 238 — 255.
2. G.V. Milovanovié¢: Computing integrals of highly oscillatory special functions using

3. complex integration methods and Gaussian quadratures, Dolomites Research Notes on
Approximation 10 (2017), Special Issue, 79 — 96.
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4. G.V.Milovanovi¢: Symbolic-numeric computation of orthogonal polynomials and
Gaussian quadratures with respect to the cardinal B-spline, Numerical Algorithms
76 (2017), 333 — 347.

5. M. Masjed-Jamei, G.V. Milovanovi¢: Construction of Gaussian quadrature formulas
for even weight functions, Applicable Analysis and Discrete Mathematics 11 (2017), 177
—198.

6. G.V.Milovanovié¢: Summation formulas of Euler-Maclaurin and Abel-Plana: old and
new results and applications, In: Progress in Approximation Theory and Applicable
Complex Analysis — In the Memory of Q.I. Rahman (N.K. Govil, R.N. Mohapatra, M.A.
Qazi, G. Schmeisser, eds.), pp. 429 — 461, Springer, 2017, ISBN 978-3-3199-49240-1.

7. G. Mastroianni, G.V. Milovanovié, I. Notarangelo: A Nystrom method for a class of
Fredholm integral equations on the real semiaxis, Calcolo 54 (2017), 567 — 585.

8. M.IL Petkovi¢, G.T. Djordjevi¢, G.K. Karagiannidis, G.V. Milovanovi¢: Performance
of SIM-MDPSK FSO systems with hardware imperfections, IEEE Transaction on
Wireless Communications 16 (2017), 5442 — 5451.

9. G. Ozdemir, Y. Simsek, G.V.Milovanovi¢: Generating functions for special
polynomials and numbers including Apostol-type and Humbert-type polynomials,
Mediterranean Journal of Mathematics 14 (2017), no. 3, Art. 117, 17 pp.

10. P. Cheraghi, A.P. Farajzadeh, G.V. Milovanovié: Some notes on weak subdifferen-
tial, FILOMAT 31 (2017), 3407 — 3420.

11. M. Masjed-Jamei, G.V. Milovanovi¢: An extension of Pochhammer’s symbol and its
application to hypergeometric functions, FILOMAT 31 (2017), 207 — 215.

12. M. Tomar, P. Agarwal, S. Jain, G.V.Milovanovi¢: Some reverse Hdlder type
inequalities involving (k,s)—Riemann-Liouville fractional integrals, In: Functional
Analysis in Interdisciplinary Applications. FAIA 2017 (T. Kalmenov, E. Nursultanov,
M. Ruzhansky, M. Sadybekov, eds.), Springer Proceedings in Mathematics & Statistics,
Vol. 216, pp. 302 — 311, Springer, Cham, 2017, ISBN 978-3-319-67052-2.

13. M. Masjed-Jamei, G.V. Milovanovi¢, A.H. Salehi Shayegan: On weighted Adams-
Bashforth rules, Mathematical Communications 23 (2018), 127 — 144.

Full member of SASA

Gradimir m
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IIpojexkar ®-96: UHTepnoianMoOHH ¥ KBAAPAaTyPHH NPOLIeCH
3aCHOBAHHU HA TEOPHjH OPTOrOHATHOCTH

Pykosoanaan: I'pagumup B. MuioBanosuh

IInan pana 3a 2018.

HacraBak wucTpakuBama y o00JacTH crHeudjadHuX (YHKIHUja, TEOpHje amnpoKCHMAIH]a,
OPTOTOHAIHOCTH M HyMepuuke wuHTerpauuje: (1) pa3Boj TIeHepalMCaHUX JIMHEAPHUX
UHTErpamHuX omeparopa KanTopoBuueBor tvna u (p,q)-QyHKIMja M HpPHUMEHE Yy TECOPHjU
anpokcumarja;  (2)  excrenswja  Pochhammer-oBor cmmboma w®  mpuMmMeHe  Ha
XurepreoMeTpujcke  pynknuje; (3) cTyamja TeHEpalIMCaHMX CyMAallMOHMX TeopeMa 3a
xunepreoMerpujcke  Qynkmmje 2F] wu  mpumena Ha JlammacoBy — TpaHc(hopMarmjy
KOHBOJYLIMOHUX HHTerpana ca Kummer-oBuM QyHKIIHjama 1F1; (4) mnpoyuaBame
OPTOrOHAIHUX MOJMHOMA ca MoudukoBaHoM UeOHIIeBIbEBOM MEPOM U pa3Boj KBajapaTypa ca
BUIIECTPYKUM YBOPOBHMA 3a M3pauyHaBame Dypuje-UebumesbeBux koedunujenata; (5)
NpYMEHE KBaJPATYPHUX U CYMallMOHMX METO/A Y TeICKOMYHHUKAIMjaMa 1 eJICKTPOMarHeTHIIH.

Taxobe ce HacTaBsba paJ Ha MOHOTpadujama:

1. KsaapatypHu npouecu y CyMHpamwy CIHOPO KOHBepreHTHuUX penoBa (Quadrature
Processes in Summation of Slowly Convergent Series) u

2. KsapaprypHe ¢opmyie ca BumectpykuM uBopoBuma (Quadrature Formulae with
Multiple Nodes).

PenoBuu wiian CAHY

r paﬂHanm
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3. HAYUHE KOH®EPEHLMJE U NPEJABAIbA ¥V
2017. TOJAUHUA
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3.1. Kondepenuuja ICRAPAM 2017 y Typckoj

VYV nepuony on 11. mo 15. maja oapkana je mehynaponna kondpepennuja: [ICRAPAM
2017 (International Conference on Recent Advances in Pure and Applied
Mathematics) y Typckoj (Palm Wings Ephesus Resort Hotel, Kusadasi — Aydin). buna
je To dYeTBpTa MmO peay KOH(EpeHIHja ca UCTUM Ha3WBOM, y opranmszauuju Istanbul
Commerce University, Turkish Cooperation and Coordination Agency u Typcke
akagemuje nayka (TUBA), a raBuu oprammsartop je 6mo mpod. Ekrem SAVAS,
penoBan wiaH Typcke akazemuje Hayka. Ilopen cenam IUICHApHHMX TIpeAaBama Ha
KoH(epeHINjH je, Kpo3 BUIIE CEKIHja, n3TaxeHo 1 oko 200 kpahux mpenaBama.

ToxkoM KoH(]epeHIHje OpraHu30BaHA je M jeJHOJAHEBHA EKCKyp3Wja ca OOMIaCKOM
napesHor rpuxor rpaga Edeca (Ephesos), nocetu Kyhu bnaxxene Boropoauiie Mapuje
(The House of the Virgin Mary) u ceny Sirince.

AEGEAN
REGION
of
TURKEY

® [ZMIR

Celmeg o AYDIN

1@Ephesus o panukiale
Samos & Kusadasi
G i
L]

Warmaris
2 .« = Dalaman

Bodrum o

VYV npamem TekcTy Ouhe gaTm HEKH JAeTabu ca KOH(epeHIHje, ancTpakT —IIEHApHOT
npeaBama, Kao U MHTepecanTHe GoTtorpaduje ca eKCKyp3uje.
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Onememe za MmaTeMaTHKy, pusuky u reo-nayke CAHY, Beorpan

H3BemTaj o 6opaBky y Typckoj

V nepuoxy ox 11. no 16. maja 6opasuo cam y Typckoj, rae cam ydectBoBao Ha International Conference

on Recent Advances in Pure and Applied Mathematics — ICRAPAM 2017 (May 11 — 15, 2017, Palm

Wings Ephesus Resort Hotel, Kusadasi — Aydin, Turkey), xao mienapau npepaBad. Tom npuinkoMm cam
0JIpKao TpeaBarbe MO HacioBoM “Summation and Quadrature Processes for Slowly Convergent Series”.
Konbepentmjy cy opranuzoBanu Istanbul Commerce University, Turkish Cooperation and
Coordination Agency u Typcka akanemuja nayka (TUBA).

TpomkoBu OOpBKa Cy OKPUBEHHU O] cTpaHe gomahuHa.

23. maj 2017. PenoBun wian CAHY

I'papumup B. MunoBanoBuh

20



CRTLPTIM

International Conference on Recent Advances in
Pure and Applied Mathematics

INTERNATIONAL CONFERENCE on RECENT
ADVANCES in PURE AND APPLIED
MATHEMATICS

(ICRAPAM 2017)

May 11-15, 2017, Palm Wings Ephesus
Resort Hotel, Kusadasi - Aydin, TURKEY
WWww.icrapam.org

Conference Program Booklet

III
ISTANBUL COMMERCE
UNIVERSITY
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International Conference on Recent Advances in
Pure and Applied Mathematics

Conference Program Overview

11" of May

9:30-12:00 Registration

12:00-14:00 Lunch Break

14:00-14:50 Plenary Talk by Robin Harte, Chair: Okay Celebi

15:00-16:40 Sessions 1

16:40-18:00 Sessions 2

18:00-18:20 Coffee Break

18:20-19:10 Plenary Talk by Mujahid Abbas, Chair: Mohammed al-Gwaiz
12th of May

9:00-10:00 Plenary Talk by Taras Banakh, Chair: Ekrem SAVAS

10:00-10:50 Opening Ceremony

10:50-11:00 Coffee Break

11:00-12:40 Sessions 3

13:00-14:30 Lunch Break

14:30-15:20 Plenary Talk by Mohammed al-Gwaiz , Chair: Taras Banakh

15:20-16:40 Sessions 4

16:40- 17:00 Coffee Break

17:00- 19:30 Sessions 5

19:10-19:40 Poster Session

20:00-23:00 Gala Dinner

13" of May

EXCURSION

14" of May

9:00-9:50 | plenary Talk by A. Okay Celebi, Chair: Robin Harte

10:00-12:00 Sessions 6
12:00-14:00 Lunch Break

14:00-14:50 | plenary Talk by Gradimir V. Milovanovic, Chair: Reza Langari

15:00-16:40 Sessions 7
16:40-17:00 Coffee Break
17:00-18:20 Session 8
18:20-18:30 Coffee Break

18:30-19:20 Plenary Talk by Brahim Mezerdi, Chair: Mujahid Abbas
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CR7LPTIM

International Conference on Recent Advances in
Pure and Applied Mathematics

9:00-10:40 Sessions 9

10:40-11:00 Coffee Break

11:00-12:00 Closing Ceremony

Plenary Talk Titles

11* May, .
14:00-14:50 Robin Harte Gelfand Theory Unplugged
11" May, Mujahid Abbas Solution of an implicit complementarity problem on isotone projection
18:20-19:10 cones
12" May, Taras Banakh Topological spaces with an $omega®omega$-base
9:00-10:00
12" May, Mohammed Al- The Sturm-Liouville Theory And Fourier Analysis

14:30-15:20 NcWETH

14th May, .
14th May, Gradimir V.
B EHEIIE Milovanovic
14th May, Brahim Mezerdi
18:30-19:20

Schwarz problem for higher order equations in a polydisc

Summation and Quadrature Processes for Slowly Convergent Series

On optimal control of stochastic mean field systems
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INTERNATIONAL CONFERENCE on RECENT ADVANCES in
PURE AND APPLIED MATHEMATICS (ICRAPAM 2017)
May 11-15, 2017, Palm Wings Ephesus Resort Hotel,

Kusadasi - Aydin, TURKEY www.icrapam.org

Summation and Quadrature Processes for Slowly Convergent
Series

Gradimir V. Milovanovi¢

Serbian Academy of Sciences and Arts, Belgrade, Serbia
gvm@mi.sanu.ac.rs

Abstract: An account on summation/integration methods for computation of
slowly convergent series and finite sums, as well as some new results on this
subject and new applications, are presented. Methods are based on Gaussian
quadrature formulas with respect to some non-classical weight functions over the
real line or the halfline. For constructing such quadrature rules we use recent
progress in symbolic compuation and variableprecision arithmetic, implemented
through our Mathematica package “OrthogonalPolynomials” [1], [2]. Some
details on these methods can be found in [3], [4], [5].

Keywords: Summation, Gaussian quadrature rules, weight function,
convergence, orthogonal polynomials.
References:

[1] A. S. Cvetkovi¢ and G. V. Milovanovi¢, “The Mathematica Package
OrthogonalPolynomials”, Facta Univ. Ser. Math. Inform. 19 (2004), 17-36.
[2] G. V. Milovanovi¢ and A. S. Cvetkovi¢, “Special classes of orthogonal
polynomials and corresponding quadratures of Gaussian type”, Math. Balkanica
26 (2012), 169-184.

[3] G. V. Milovanovi¢, “Summation of series and Gaussian quadratures”, In:
Approximation and Computation (R.V.M. Zahar, ed.), ISNM Vol. 119, pp. 459-
475, Birkhduser Verlag, Basel-Boston-Berlin, 1994.

[4] G. Mastroianni and G. V. Milovanovi¢, Interpolation Processes - Basic
Theory and Applications, Springer Monographs in Mathematics, Springer
Verlag, Berlin - Heidelberg - New York, 2008.

[5] G. V. Milovanovi¢, “Summation formulas of Euler-Maclaurin and Abel-
Plana: old and new results and applications”, In: Progress in Approximation
Theory and Applicable Complex Analysis — In the Memory of Q,I. Rahman
(N.K. Govil, R.N. Mohapatra, M.A. Qazi, G. Schmeisser, eds.), Springer, 2017
(to appear).
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CR7LPTIM

International Conference on Recent Advances in
Pure and Applied Mathematics

Opranusarop koHdpepenuuje Prof. Dr. Ekrem Savas (JieBo) fo/eibyje npusHame akaaeMUKy
I'paaumupy B. Munosanouhy (j1ecHO) 3a O/IpXaHO TUIEHAPHO Mpenasame Summation and
Quadrature Processes for Slowly Convergent Series.
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3.2. Koudepenunja ENuMDeS-17 y Mapoky

IToBogom 60-tor pohennana Anan I'ecaba (Allal Guessab), mpodecopa Université de Pau
u3 ®panrycke, y Mapoky je ma Université Hassan 1% Settat, Ecole Superieure de
Technologie, Berrechid, onpxan nayyrm ckyn mox HacinoBoMm “Effective Numerical
Methods for Decision Support” (Berrechid, September 11-12, 2017), kao u onOpana
JIOKTOpCKe aucepranyje kanaunata Yassine ZAIM mox HacnoBoM: Approximation by
enriched conforming and nonconforming finite elements.

ITpodecop T'ecad je nHave mopeksnom u3 Mapoka. [Ipe 30 roguHa y4ecTBOBao caM Kao
nHocTpanu wiaH Komucuje 3a on0paHy meroBe JOKTopcke aucepranuje Ha Université de
Pau, na jyry ®@panmycke. HakoH Tora pa3BHiIN CMO yCIICITHY BHIICTOIUIIEY CAPATHY Yy
o0acT eKCTpeManHuX mpobieMa W KBaJpaTypHUX MpoIeca, W3 KOje je MPOMCTEKao
Behn 6poj 3ajeqanuxux pagosa. To je Omo TIaBHM pa3ior ga OyneM MO3BaH Off CTpaHe
00a yHMBep3WTeTa 1a OJIPXKMM IUICHAPHO IIpelaBameé Ha OBOM CKYIy, Kao U Ja
yuectByjeM y Kommcuju 3a ombpaHy IOKTOpPCKE mucepaiyje Kanaumaata Y. Zaim, y
OKBHPY 3ajeJHUYKHUX JOKTOPCKUX CTYIHja MOMEHYTHX yHUBep3uTeTa u3 DpaHiycke u
Mapoxka. Unaue, Berrechid je mecto y perrony Kazaonanke (Casablanca).

V najeM TEKCTy Hajy ce JleTalbH ca CKyIla, HACIOBHA CTpaHa JNOKTOPCKE JHcepTalje,
n3BemTaj 0 6bopaBKy y Mapoky, kao u Bumie ¢pororpaduja n3 Mapoka.
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Programme du Workshop : ENuMDeS-17
11 et 12 septembre 2017,
UH1- EST Berrechid

- Lundi 11 septembre :

14h-18h : Soutenance de la thése de doctorat : Yassine Zaim :

« Approximation by enriched conforming and nonconforming finite elements »
Devant le jury composé des professeurs, R. Aboulaich, B. Achchab, R. Becker, A.
Guessab, G. Milovanovic, G. Schmeisser, A. Souissi



- Mardi 12 septembre :
Matin 9h-13h

1. Gradimir Milovanovic, Académies des Sciences et des Arts de la
Serbie.

« Summation and Quadrature Processes for Slowly Convergent Series. » (45
mn)

2. Roland Becker, Université de Pau et des Pays de I’Adour, France
« Convergence of adaptive finite element methods » (45 mn)

3. Abdellatif Agouzal, Université Claude Bernard Lyon 1, France
« Discretization of BVP on unstructured meshes. » (45 mn)

4. Gerhard Schmeisser, Université Erlangen—Nuremberg, Allemagne

« Extension of basic relations valid for bandlimited functions to larger
spaces via a unified distance concept » (45 mn)

Apres-midi : 14h30-18h30

5. Ahmed Taik, FST Mohammadia, Université Hassan 2, Casablanca,
Maroc

« Analysis and numerical simulation of some combustion problems with
critical parameters » (45 mn)

6. Abdellah LAMNII, Université Hassan 17, FST Settat, Maroc
« Control curves and wavelets for Uniform Hyperbolic Trigonometric

spline » (30 mn)

7. Domingo Barrera, Université de Grenade, Espagne
« On trivariate near-best blending quasi-interpolation operators. » (30 mn)

8. Othmen Nouisser, Université Ibnou Tofail Kénitra-Maroc
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« Approximation des données a plusieurs variables et analyse de I’erreur »
(30 mn)

N3epmnn Onoop CAHY

Onebeme za MaTeMaTUKY, (pu3NKy U reo-nayke CAHY
[Ipenmer: bopaBak y Mapoky

Ha mo3uB Université de Pau et des Pays de 1'Adour (PAU, France) u Université
Hassan 1™ Settat (Ecole Supericure de Technologie, Berrechid, Morocco) 6opaBuo cam
y Mapoky oa 9. no 13. cenremopa.

1) Tom mpwiIuKOM OJp)Kao caM IuleHapHO mpenaBame Ha Workshop-u “Effective

2)

Numerical Methods for Decision Support” mox nacnoBom: Summation and
Quadrature Processes for Slowly Convergent Series. Ckyn je oapKaH TOBOJOM
60-tor pohenmana np Ajan I'ecada (Allal Guessab), mpodecopa ca Université
de Pau u3 ®panmycke, koju je mopexinoMm u3 Mapoka. Mnrage, masae 1988.
rofivHe yuecTBOBao caM y Komucuju 3a on6paHy merose JOKTOPCKE AUCEPTAIH]je
(Ip>xaBHU JOKTOpAT) HA IOMEHYTOM YHHUBEp3uTeTy y dpaHiryckoj.

VYuectBoBao y Komucuju 3a og0paHy TOKTOpCKe aucepTanuje kanauaara Yassine
ZAIM 1non HacmoBoM: Approximation by enriched conforming and
nonconforming finite elements, y OKBHUPY 3ajeAHHYKHX HOKTOPCKUX CTyIHja
MIOMEHYTUX yHUBep3uTeTa u3 dpaniuycke u Mapoxa.

TpoukoBu OOpaBKa Cy MOKPUBEHU O CTpaHe AomahrHa, a OBpaTHE aBUO KapTe Ha
penanuju beorpan-®pankdypr-Kazadiaka 06e30e110 je GpaHIlyCKH YHUBEP3UTET.

22. centembap 2017. PenoBuu wian CAHY

I'pagumup B. MunoBanosuh

ﬂ&ml/—
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[IpenaBame I'. B. MunoBanosuha

33



DOCTOR *
*  EUROPEUS
*

IVERSITE *
CAMPUS & *
(] msociaoon  FRANCE a9g®a@a % *

campusfrance.org

THESE

présent ée pour obtenir | egradede
docteur del’universit & hassan premier desettat
et
del’universitéde pau et des pays del’adour

Spécialité : Mathématiques appliquées
par
Yassine ZAIM

| ddlr

UNIVERSITE HASSAN 1

Approximation par éléments finis conformes et non conformes enrichis
Approximation by enriched conforming and nonconforming finite elements

zzzzz=zz=zzsz

3
@

3
@

soutenue publiquement le 11 Septembre 2017

Devant la commission d’examen composée de :

ACHCHAB Boujemaa Professeur a I'Université Hassan Premier de Set at
GUESSAB Allal Professeur al’Université de Pau et des Pays de I’Adour
LOPEZ DE SILANES Maria Cruz  Professeur & I'Universidad de Zaragoza

SCHMEISSER Gerhard Professeur a Friedrich-Alexander-University of Erlangen-Nirnberg
TOUHAMI Ahmed Maitre de conférences HDR & I’Université Hassan Premier de Set at
ABOULAICH Rajae Professeur & I'Université Mohammed V de Rabat

BECKER Roland Professeur aI’Université de Pau et des Pays de I’Adour
CARDENAS-MORALES Daniel Professeur aI’Université de Jaen, Espagne

SOUISS Ali Professeur & I'Université Mohammed V de Rabat

V. MILOVANOVIC Gradimir Professeur a Serbian Academy of Sciences and Arts, Serbia
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Yanosu Komucuje 3a ox06pany JoKTOpCKe aucepraiuje (cieBa Ha 1ecHo): R.
Aboulaich, G. V. Milovanovi¢, G. Schmeisser, A. Souissi, R. Becker, B.
Achchab, A. Guessab

Ca xonerom I'epxapmom (G. Schmeisser) n3 Hemauke npunmkom nocere Hajehoj mamuju
y A¢pumm (Grande Mosquee Hassan II, Casablanca)
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3.3. Kondepenmuja ACTA 2017 y Cpouju

Tponuesna koHdpepennmja ACTA 2017: AITIPOKCUMALMNJE U HU3PAUYHA-
BAIbA —- TEOPUJA U IIPUMEHE (APPROXIMATION AND COMPUTATION -
THEORY AND APPLICATIONS), noceehena Bonerpy ['ayunjy (Walter Gautschi),
npodecopy emepurycy Ha Purdue ynusepsurery (Unnujana, CAJI), moBoIOM HEroBor
90-tor pohennana, onpkana je ox 30. HoBemOpa 1o 2. aenemdpa 2017. rogune y CAHY
n MammackoM (dakynrereTy YHHBep3uTeTa y beorpamy ca oko Ime3meceT ydecHHKa W3
12 3emasba.

VY npammeM TEKCTy HaBOJAE Ce CBH JeTalbu moueB on [lpemnora 3a opraHuszanujy
koH(pepenuuje ACTA 2017, criucka cyopranusaropa KoHdpepeHmuje, cactapa Hayusor u
OpranuzanuoHor ondopa, CIMCKa IUICHAPHUX TIIpelnaBaya, l3Bemraja o oJpikaHO]
KOH(EepeHIj1, cajTa W mocTepa KoHpepeHIuje, nporpaMa KoHpepeHIrje, Kao U HU3
dotorpaduja ca orBapama koHpepenuuje y CAHY m TokoM HapenHa JBa JlaHa Ha
MamuHckoM dakynrety. Takohe, nmata je W Tpe3eHTalMja IUICHAPHOT TpelaBarmba
“Walter Gautschi — A Master in Approximation and Computation”, xoje je ogp:xao
akagemuk ['pagumup B. MunoBanoBuh, HakoH oTBapama KoHpepenuuje y CAHY.
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CPIICKA AKAJIEMHUJA HAYKA 1 YMETHOCTH
Onesberse 32 MATEMAaTHKY, (PU3UKY U reo-HayKe

Mpeamer: [peasor 3a opranuzanyjy mehynapoane koHdepeHiuje

3a 2017. ronuHy IulaHHpa ce opraHu3anuja MeljyHaponHe HaydyHe KOH(EpCHIH]je
nox HacioBoM APPROXIMATION AND COMPUTATION - THEORY AND
APPLICATIONS, koja he Outu mnocsehiena Boserpy Tayuwjy (Walter Gautschi),
npodecopy emeputycy Ha Purdue ynusepsurery (Muamjana, CAJl), TOBOJOM HETrOBOT
90-Tor pohenana.

MecTto onp:kaBama KOH(pepeHUHuje:
CAHY u MammHcku ¢daxynrer YHusepsutera y beorpany, beorpan

Bpeme oap:xkaBama koHdepeHuuje:
30. noBemOap — 2. neuembap, 2017.

Opranuszaropu KoHdepeHIUje:

CAHY (Opesseme 3a MaTeMaTHKy, (pU3NKy U reo-HayKe),
MammHcku ¢akyiaTeT YHUBep3uTeTa y beorpany,
Enextporexuuuxu ¢akynreT YHuepsutera y beorpany,
[TpuponHo-mMaremaTHuky Qakynrer YHuBep3uTeTa y Humy,
[MpupoxHo-mMaremaTnuku Qakynrer YHuBep3urera y Kparyjesity,
[pupoaHo-maremaTnyku (akynret YHuepsurera y HoBom Cany,
Maremariaku dakynrer y beorpany,

Marematnuku nuaetutyT CAHY
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Hayunu on6op xkondepenuuje:

akagemuk ['pamumup B. Munosanosuh, npeaceaank Ondopa,
akagemuk CreBan [Tununosuh,

akagemuk Anekcanaap Usuh,

npo¢. Enape lumu, unoctpanu wian CAHY, Yuusepsuret y Oxkchopay,
npod. Muoapar Cranesuh, Mauacku dakynrer y beorpany,
npod. bomko JoBanosuh, Marematiuku dakynrer y beorpany,
npo¢. Kion bpesuncku (Claude Brezinski, France),

npod. Jlorap Pajuen (Lothar Reichel, USA),

mpo¢. Boarep Ban Ace (Walter Van Assche, Belgium),

npo¢. @panmucko Maprnenan (Francisco Marcellan, Spain),
npod. Boann Monerato (Giovanni Monegato, Italy),

npo¢. Bysene Mactpojanu (Giuseppe Mastroianni, Italy),
npo¢. Corupuc Hotapuc (Sotirios E. Notaris, Greece).

Opranuszainuonu oa60p KoHdepeHuuje:

npo¢. Muoapar Cranesuh, npencenauk Onoopa,
npod. Anexcannap L{Betkosuh,

npod. Mapuja Cranuh,

npo¢. Henan Llakuh,

npod. paran Hophesuh,

npo¢. Harama Kpejuh,

npod. 3opan OrmaHoBuh,

mpog. 3opua CtaHuMupoBuh,

mpo¢. Muoapar MatesbeBuh, nomcau wian CAHY,
npo¢. Bnagumup Pakouesuh, nonucuu wian CAHY,
noueHTt JaBopka Jacuapauh.

IInenapuu npegasauu (y 0BOM MOMEHTY):
Claude Brezinski, France
Martin J. Gander, University of Geneva, Geneva, Switzerland
Francisco Marcellan, Universidad Carlos III de Madrid, Spain
Sotirios Notaris, University of Athens, Greece
Lothar Reichel, Kent State University, Ohio, United States

Walter Van Assche, University of Leuven, Leuven, Belgium
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Oo6pa3znoxeme:

Bontep ['ayum (pohen y bazeny, llIBajuapcka, 11. nemembpa 1927) cnana y pen
Bo/IehiMX CBETCKUX HAyYHHKA Y OOJIACTH HyMEpHUKEe aHajM3e, CIelUjaTHuX QYHKIH]ja U
TEopHje anpoKCUMaIja U JyroroJuiimby je mpodecop Ha Purdue yuusepsutery y CAJ]
(cama emeputyc npodecop). Y Behnnu Bonehnx mehynapomnux gacomuca Ouo je Iyro
TOJVHA TJIABHU YPEIHHUK WM wWwiaH peaakuuje (Mathematics of Computation [ American
Mathematical Society], Numerische Mathematik [Springer], SIAM daconucuma, uT/.).
UnaH je penakmuje Hamler Hajcrapujer yaconuca Publications de ['Institut Mathématique.
Ha xonrpecy cpnckux marematudapa 2008. rogune y HoBom Canmy 6uo je mieHapHU
npenaBad. Capaamy ca Bonrtepom [ayumjem je ortmoueo mpod. MwuoBanoBuh 1983.
roAMHE, yHpaBo y BpeMe Kaga je Bonrep layum moummao ca pas3BojeM T3B.
KOHCMpPYKMUeHe — meopuje  OpPMOZOHAIHUX — NOAUHOMA W PA3BOJEM  HYMEPUUKUX
keadpamypa. OIl CBHX capaJHHKa ca KojuMa je 00jaBJbHBa0 pajoBe, ['aydn numa Janexo
Hajsehn Opoj pamoBa ca MmumoBanoBmhem. JlaHac y OBUM O00JacTHMa HyMepuuxe
aumanuze ¥ meopuje anpoxkcuMayuja yCIenHo paay neceTak Maremarndapa y Cpouju, Ha
(axynretnma YHuBep3urera y beorpany, Kparyjesny n Humry, mro je u pasmor na ce
Kao CyOpraHM3aTOpH OB KOH(EPEHIHje 10jaBibyjy U TH (haKkyaTeTH.

Tema koH(pepeHIHje 00yXBaTa MPETXOJHO ITOMEHYTE O0JIACTH, M je U 3HATHO
IIMpa ¥ NPEACTaBba TPEHYTHO aKTYeJIHY NPOOJIEMAaTHKY Y MCTPaKHBAmHMa y CBETY, a
KOja Cy 3acTylUbeHa M y TekyhuMm mpojektuMa MHUHHCTapcTBa NPOCBETE, HayKe H
TEXHOJIOIIKOT pa3Boja Pemyonuke Cpouje.

Ha xoH(epeHnuju ce ouexyje BeIUKN Opoj Y4eCHHUKA U3 3eMJbe U MHOCTPAHCTBA.
[penBuljeno je na ce npeu naH koHdpeniwje (30. HoBembap) oaBuja y CBeuaHoj canu Ha
npyrom cmpary Ilamare CAHY, ca pyukom y Kiny6y CAHY. Jlpyra nBa npana
KoH(pepeHIMje OU ce oJBWjaia y mpocTopujamMa MamuHckor ¢akyntera y beorpamy.

Ocranu gerajbu 6uhe maTv HaKHAIHO.

14. nenembap 2016. Axanemuk 'pagumup B. Munosanosuh
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N3epmnn Onoop CAHY
Onebeme za MaTeMaTUKY, (pu3uKy U reo-nayke CAHY

[Ipenmer: U3BemTaj o oap:xxkanoj kongepenuuju ACTA 2017

VY opranmsanuju CAHY ox 30. HoBemOpa 10 2. nenembpa 2017. ronuHe oapxana je
MehyHapoaHa KOH(epeHIHja oJt HacJI0BOM AIMPOKCUMALINJE n
N3PAYYHABAIbLA - TEOPUJA U TIPUMEHE (APPROXIMATION AND
COMPUTATION — THEORY AND APPROXIMATION), koja je O0ura mocBehena
npod. Baarep I'ayunjy (Walter Gautschi), jenHoM ox ocHEBa4Ya MOJEpHE HyMEpUYKe
aHanmu3se, MoBooM meroBor 90-tor pohenmana. Bontep Iayum je pohien y bazeny y
[IBapmajckoj 11. neriem6pa 1927. rogune, Ayrorouliky je ipodecop, a caga eMEepHUTyC
npodecop, Ha [apay yausepsutery (Purdue University) y CAJl. Jenan je ox Bomehnx
HayYyHHKa y oO0JacTH HyMepHuke aHaim3e, CIelNUjaTHuX (QYHKIHja U TeopHje
anpokcumarja. Bumre ox 30 roguaa akTHBHO capaljyje ca maremarmuapuma y Cpouju.

Koopranmzaropu koHndpepenuuje cy Ownmm Maremarnukun wuHcetutyT CAHY,
npupopHo-mMareMaTnukn Qakynrern y Humry, Hosom Camy wm Kparyjesny, xao u
Maremarnuku ¢akynrter, Mammucku 1 EnekrporexHnuku (akynrer YHHBep3UTeTa y
Beorpany.

VY pany kordepenuuje Ouio je 5 mueHapHux npeaasada u 60 ydecHnka u3 12 3emaspa
(benruja, bocna n Xepnerosuna, I'puka, Wramuja, Wpan, M3paen, Mpan, Ilosscka,
[Inanwuja, lIBajinapcka, CAJl , Cpbuja, Typcka).

22. nenembap 2017. Penoun wian CAHY

I'paguvmup B. MunoBanosuh

ﬁw
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Overview

ACTA 2017: APPROXIMATION AND
COMPUTATION - THEORY AND APPLICATIONS

POSTER ORGANIZERS COMMITTEES SPEAKERS SUBMISSION LOCAL
INFORMATION IMPORTANT DATES PHOTOS PROGRAM INDEXES

Overview

Dedicated to Professor Walter Gautschi on the Occasion of his 90th
Anniversary

Belgrade, November 30 - December 2, 2017

The international conference APPROXIMATION AND COMPUTATION — THEORY AND
APPLICATIONS (ACTA 2017) will be held in Belgrade, Serbia on November 30 -
December 2, 2017. The event will be held over three days, with presentations delivered
by researchers from the international community, including presentations from keynote
speakers and state-of-the-art lectures. The aim of the conference is to bring together
leading scientists of the international Numerical and Applied Mathematics community and
young researchers from all over the world working in mathematics and its applications to
present their researches, to exchange new ideas, to discuss challenging issues, to foster
future collaborations and to interact with each other.

The conference is dedicated to the renowned mathematician Walter Gautschi, one of the
founders of modern numerical analysis. Walter Gautschi, born in Basel, Switzerland, 11
December 1927, is one of the the world leading scientists in the field of numerical
analysis, special functions and approximation theory and a longtime professor at Purdue
University (now emeritus professor).

The topics to be covered include (but are not limited to): All the research areas of
Numerical Analysis and Computational Mathematics and all the research areas of Applied
Mathematics.

Topics

o Polynomials and Orthogonal Systems
o Numerical Integration (Quadrature and Cubature formulae)
o Approximation Theory

¢ Scientific Computing

o Applied Mathematics

The session's organizer is responsible for the selection of papers and the submission of
full papers for the conference proceedings.

Disclaimer | Powered by EasyChair Smart Program

https://easychair.org/smart-program/ACTA2017/Home.html

9

5/4/18, 2:15 PM
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Conference poster

ACTA 2017: APPROXIMATION AND
COMPUTATION - THEORY AND APPLICATIONS

Conference poster

APPROXIMATION AND COMPUTATION -
THEORY AND APPLICATIONS

Dedicated to Professor Walter Gautschi on the Occasion of his 90th
Anniversary

ACTA 2017

International conference

+Poly ials and Orth | Sy
+Numerical gration (Qi and Cubature formulae)
+ Approximation Theory

« Scientific Computing
+Applied Mathematics

Scientific Committee: [ Organizing Committee:
Claudo Brezinsk, France Nenad Cakié
Aleksandar Ii¢, Serbia ‘Aleksandar Cvetkovié.
Bosko Jovanovi¢, Serbia Dragan Djordjevié
Francisco Marcellan, Spain Natasa Kreji¢
Giuseppe Mastroianni, lialy Miodrag Mateljevic:
Gradimic V. Miovanové, Seria, Charman [l Zoran Ggnjanon
o, Viadimir RakoZey

Marija Stani¢

Water Van Assche, Beigium

Disclaimer | Powered by EasyChair Smart Program

https://easychair.org/smart- program/ACTA2017/Poster.html
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Program 5/4/18, 2:20 PM

ACTA 2017: APPROXIMATION AND
COMPUTATION - THEORY AND APPLICATIONS

HOME POSTER ORGANIZERS COMMITTEES SPEAKERS SUBMISSION LOCAL
INFORMATION IMPORTANT DATES PHOTOS INDEXES

PROGRAM

Days: Thursday, November 30th ~ Friday, December 1st  Saturday, December 2nd

Thursday, November 30th, 2017

View this program:  with abstracts  session overview talk overview

09:00-10:00  Session : Registration

LOCATION: Main hall 2nd floor (Serbian Academy of Sciences and Arts)

10:00-10:30  Session : Opening Ceremony

LOCATION: Main hall 2nd floor (Serbian Academy of Sciences and Arts)

10:30-11:30  Session A

CHAIRS: Gradimir Milovanovi¢, Lothar Reichel and Miodrag Spalevic¢

LOCATION: Main hall 2nd floor (Serbian Academy of Sciences and Arts)
10:30 Gradimir Milovanovi¢

WALTER GAUTSCHI - A Master in Approxi ion and C ion (
abstract )

11:00 Walter Gautschi
Prog by Acci Some Reflecti on my Career ( abstract )

11:30-12:00 Coffee Break

12:00-12:30  Session B
LOCATION: Main hall 2nd floor (Serbian Academy of Sciences and Arts)

12:00 Miodrag_Spalevi¢

Walter Gautschi and Serbian School of Numerical Integration ( abstract )

12:30-13:15  Session C
LOCATION: Main hall 2nd floor (Serbian Academy of Sciences and Arts)

12:30 Walter Van Assche

i Hermite poly ials and sii qu e ( abstract )

13:30-15:00 Lunch Break

15:00-16:30  Session D
LOCATION: Main hall 2nd floor (Serbian Academy of Sciences and Arts)
15:00 Martin Gander

Five Decades of Time Parallel Time Integration: Best Current Methods for
Parabolic and Hyperbolic Problems ( abstract )

15:45 Francisco Marcellan, Cleonice Bracciali and Serhan Varma
Orthog poly i Geroni transfor i and quadrature
rules ( abstract )
16:30-17:00 Coffee Break

17:00-18:30  Session E
LOCATION: Main hall 2nd floor (Serbian Academy of Sciences and Arts)
17:00 Sotirios Notaris
G

Kronrod qt e: Recent ad and open i (
abstract )

17:45 Lothar Reichel, Hessah Alqahtani and Miroslav Pranic
Generalized Anti-Gauss-Type Quadrature Rules ( abstract )

Friday, December 1st, 2017

View this program:  with abstracts ~ session overview talk overview

09:00-11:00  Session A1

https://easychair.org/smart-program/ACTA2017/index.html Page 1 of 4
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Program

CHAIR: Lothar Reichel
LOCATION: 514 (Faculty of Mechanical Engineering)
09:00 Maria Carmela De Bonis and Donatella Occorsio
A product integration rule for hypersingular integrals on the positive
semi-axis ( abstract )
09:30 Miroslav Pranic, Stefano Pozza and Zdenek Strakos
Gauss quadrature and incurable breakdown in the Lanczos algorithm (
abstract )
10:00 Giuseppe Mastroianni and Incoronata Notarangelo
Polynomial approximation of functions with exponential monotonicity (
abstract )
10:30 Gluseppe Mastroianni, Gradimir V. Milovanovic and Incoronata Notaranae/o
thod for Fredholm integral eq with
welghts on (0,+x) ( abstract )

11:00-11:30 Coffee Break

11:30-13:30  Session A2

CHAIR: Sotirios Notaris
LOCATION: 514 (Faculty of Mechanical Engineering)
11:30 Walter Gautschi and Gradimir Milovanovic
Binet-type polynomials and their zeros ( abstract )
12:00 Yilmaz Simsek
Generating functions for some special poly
Charlier, Hermite type, Milne-Thomson type and the other polynomials (
abstract )
12:30 Maria Carmela De Bonis and Donatella Occorsio
On a quadrature method for Prandtl's integro-differential equations in
weighted Zygmund spaces with uniform norm ( abstract )
13:00 Maria Carmela De Bonis and Concetta Laurita
On the stability of a modified Nystrom method for Mellin convolution
equations ( abstract )

ials including Poi

13:30-15:00 Lunch Break

15:00-16:30  Session A3

CHAIR: Francisco Marcellan

LOCATION: 514 (Faculty of Mechanical Engineering)
15:00 Mahmoud Behrocztfar

i for time-fractional differential equation with
boundary conditions ( abstract )

15:30 Ramon Orive
Minimax Approximation and Probability. Estimating the parameter of a
biased coin ( abstract)

16:00 Dora Selesi
Approximation of generalized stochastic processes ( abstract )

15:00-16:30  Session B3
CHAIR: Katica R Stevanovic Hedrih
LOCATION: 513 (Faculty of Mechanical Engineering)
15:00 Irem Kucukoglu and Yilmaz Simsek
Numerical evaluations on power series including the numbers of Lyndon
words and interpolation functions for the Apostol-type polynomials (
abstract )
15:30 Svetislav Savovic, Branko Drijaca and Alexandar Djordjevich
Unconditionally positive finite dlfference and standard finite difference

schemes for ad diffusion r i ( abstract )
16:00 Svetislav Savov:c Branko Drlraca and Alexandar Djordjevich
Numerical of 1sional advection-diffusion ion with

and periodic b dary conditions ( abstract )

16:30-17:00 Coffee Break

17:00-19:00  Session A4

CHAIR: Donatella Occorsio

LOCATION: 514 (Faculty of Mechanical Engineering)
17:00 Agnieszka Prusinska and Alexey Tretyakov

https://easychair.org/smart-program/ACTA2017/index.html|
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Program

P-regular optimization -- and
17:30 Predrag Stanimirovic, Marko Petkovic and Miroslav Ciric

RNN solution of linear matrix equation and its applications ( abstract )
18:00 Tugba Bostanci and Giilen Bascanbaz-Tunca

An Extension of Stancu Operator ( abstract )
18:30 Snezana S. Djordjevic

Analysis of a class of j gradi thods ( abstract )

( abstract )

17:00-19:00  Session B4
CHAIR: Bilge Peker
LOCATION: 513 (Faculty of Mechanical Engineering)
17:00 Zorica Milovanovic¢ Jekni¢
Parabolic-Hyperbolic Transmission Problem in Disjoint Domains (
abstract )
17:30 Bratislav Sredojevi¢ and Dejan Bojovi¢
Finite difference method for the 2D heat equation with concentrated
capacity ( abstract )
18:00 Katica R Stevanovic Hedrih

Approximati inani igation of the vibro-impact dynamics of
rolling bodies in successive central collisions on curvilinear trace (
abstract )

18:30 Haldun Alpaslan Peker
A Semi-Analytical Approach to Solve a Flow Model ( abstract )

Saturday, December 2nd, 2017

View this program:  with abstracts ~ session overview talk overview

09:00-11:00  Session AA1

CHAIR: Miroslav Pranic
LOCATION: 514 (Faculty of Mechanical Engineering)
09:00 Aleksandar Jovanovi¢, Marija Stani¢ and Tatjana Tomovic¢
Construction of the optimal set of quadrature rules in the sense of
Borges ( abstract )
09:30 Dusan Puki¢, Lothar Reichel and Miodrag Spalevié¢
Internality of truncated generalized averaged Gaussian quadratures (
abstract )
10:00 Davorka Jandrli¢, Miodrag Spalevi¢ and Jelena Tomanovi¢
Error Estimates for Certain Cubature Formulae ( abstract )
10:30 Rada Mutavdzic¢ and Aleksandar Pejcev
Error bounds for Kronrod extension of generalizations of Micchelli-Rivlin
quadrature formula for analytic functions ( abstract )

09:00-11:00  Session BB1
CHAIR: Haldun Alpaslan Peker
LOCATION: 513 (Faculty of Mechanical Engineering)
09:00 Bilge Peker
On the Use of Continued Fractions to Solve Binary Quadratic
Diophantine Equations ( abstract )
09:30 Nenad Cakic and Ivana Jovovi¢
Ong ized itney numbers ( abstract )
10:00 Rabia Aktas and Fatma Tasdelen
Miscellaneous Properties for a Class of Analytic Functions Defined by
Rodrigues Type Formula ( abstract )
10:30 Dragan Paviovi¢, Gradimir Milovanovi¢ and Jovan Cvetic
Calculation of the channel discharge function for the generalized
lightning traveling current source return stroke model ( abstract )

11:00-11:30 Coffee Break

11:30-13:30  Session AA2

CHAIR: Maria Carmela De Bonis

LOCATION: 514 (Faculty of Mechanical Engineering)
11:30 Miodrag Mateljevi¢

Interior estimate for elliptic PDE and distortion of quasiconformal
harmonic mappings ( abstract )

https://easychair.org/smart-program/ACTA2017/index.html|
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Program

12:00 Zoran Ovcin, Natasa Kreji¢ and Natada Krklec Jerinkic¢
Stochastic Approximation Method with Second Order Search Directions (
abstract )

12:30 Ljubica Mihi¢, Aleksandar Pejcev and Miodrag Spalevi¢
Error estimations of Turan formulas with Gori-Micchelli and generalized
Chebyshev weight functions ( abstract )

13:00 Zoran Vidovi¢
Bayesian prediction of order istics based on record values from
generalized exponential distribution ( abstract )

11:30-13:30  Session BB2
CHAIR: Dejan Bojovi¢
LOCATION: 513 (Faculty of Mechanical Engineering)

11:30 Milan Dotli¢, Boris Pokorni, Milenko Pusi¢ and Milan Dimki¢
Non-linear multi-point flux approximation in the near-well region ( abstract

12:00 Bojan Banjac, Tatjana Lutovac and Branko Male$evic
One method for proving some classes of analytical inequalities ( abstract
)

12:30 Ljubica Vujovic and Zeljko Djurovic
Application of machine learning algorithms to high frequency trading (
abstract )

13:00 Zoran Pucanovic¢
Note on right zero divisors in the ring of infinite upper triangular matrices
over a field ( abstract )

13:30-15:00 Lunch Break

Disclaimer | Powered by EasyChair Smart Program

https://easychair.org/smart-program/ACTA2017/index.html|
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WALTER GAUTSCHI - A Master in
Approximation and Computation

Gradimir V. Milovanovi¢

Serbian Academy of Sciences and Arts, Beograd, Serbia

International Conference ACTA 2017:

APPROXIMATION AND COMPUTATION
Theory and Applications

Belgrade (November 30 — December 2, 2017)

This Conference is Dedicated to
Professor Walter GAUTSCHI

On the Occasion of His 90th Birthday
L GrdmirV Miomnodé, grmont sam.acrs
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@ Walter Gautschi is world-renowned scientist in the field in numerical
analysis and approximation theory.

@ He is one of the founders of modern numerical analysis.
@ His research cover a wide range of topics including

— ordinary differential equations,

— linear difference equations,

— interpolation and approximation,

— special functions,

— orthogonal polynomials,

— quadrature processes,

— history of mathematics.

o Walter Gautschi:
Born: December 11, 1927 (Basel, Switzerland)
Schools: Primary and secondary in Basel graduating in 1947

University of Basel: — Primary subject: mathematics; — Secondary
subjects: physics, physical chemistry, and actuarial mathematics

o University of Basel has a long tradition going back to 1460, with
the world-class mathematicians (brothers Jacob and Johann
Bernoulli, Johann's sons Daniel and Johann 1, etc.)

@ Full professors: Andreas Speiser and Alexander Ostrowski

@ A. Ostrowski (b. 1893, Kiev) came to Basel in 1927

@ During Walter's studies he improved a graphical method for solving
ordinary differential equations, due to Richard Grammel
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Professor Alexander Markowich Ostrowski
(1893-1986)

By suggestion of A. Ostrowski, Gautschi developed methods for
analyzing the error of Grammel's method and expanded it into a

Ph.D. thesis (1953)
Beside his thesis work, Walter looked also at numerical methods!

Walter studied the book Numerische Behandlung von
Differentialgleichungen (by Lothar Collatz) from cover to cover.

Using Bieberbach's techniques to Runge-Kutta-Zurmiihl
methods, Walter obtained local error bounds for all derivatives of
order < n.

These results were published in 1955 in the journal Zeitschrift fiir
Angewandte Mathematik und Physik (ZAMP)
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@ After his Ph.D. exam, Walter received a two-year fellowship for study
abroad from a private Swiss foundation in St. Gallen.

@ In 1954, he went to Roma for a year as a Research Fellow at the
National Institute for Application and Computation, founded and
directed by Mauro Picone.

@ He then came to the United States for appointments in three
laboratories:

Harvard Computation Lab in 1955,
National Bureau of Standards in 1956,
Oak Ridge National Lab in 1959.

Experience with electronic computers, programming (in machine
code) on (Professor Aiken's) MARK Il computer.

@ Two chapters of the Handbook of Mathematical Functions, edited
by Milton Abramowitz and Irene A. Stegun.

¢ & ¢ @

HANDBOOK OF
MATHEMATICAL FUNCTIONS

with Formulas, Graphs, and Mathematical Tables

15 Hyparguormotric Fusctioon 5 [
Faums Opsnmerrivoen
b Jucobien Kilpie Fusetimon and Theta Funations . . . . -t

L M. MisanTuousos

17, Ellipie Iniegrus -
L M Misxe-Tuowsox

18, Weiarsirssn Ellptio and Raluted Funtions . . . . . .. ... 041

Tiatan H, Soursann
19, Purhole Olisde Fuscton [
30 F. Musen
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@ Abramowitz introduced Walter to the work of J.C.P. Miller on his
backward recurrence algorithm, which became one of the early areas
of emphasis in Walter's research.

@ Walter's goal was to find a stable algorithm for computing a
minimal solution of a three-term recurrence relation.

@ Walter worked on this for several years, applying these ideas to the
recursive computation of many special functions and then
published a comprehensive account of this work in 1967.

@ As a byproduct of his work on special functions, Walter published
inequalities involving ratios of gamma functions.

This work has a very high citations!

@ The work on the Handbook required knowledge of methods for
(numerical) calculating special functions.

@ Seminar on computing special functions at the Mathematics Center
of the University of Wisconsin (Dick Askey).

Gradimir V. Milovanovi¢, gvm@mi .sanu.ac.rs

@ During the 1960s, in addition to theoretical work in several domains
of special functions, Walter developed a number of computer
algorithms for evaluating special functions:

— the gamma function and incomplete beta function ratios,
— Bessel functions of the first kind, Legendre functions,
— regular Coulomb wave functions, the complex error function,
— repeated integrals of the coerror function, and incomplete gamma
functions.
Oak Ridge National Laboratory (1959-1963)
@ Alston Householder’'s Mathematics Panel.

@ During this period he was twice invited to lecture at the Michigan
University Engineering Summer Conferences then organized by
Robert C. F. Bartels.

@ In 1963, Walter started his permanent academic career at Purdue
University as Professor of Mathematics and Computer Science.

Gradimir V. Milovanovi¢, gvm@mi .sanu.ac.rs
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@ Through contacts with chemists during his stay in the Oak Ridge
National Laboratory, he became interested in the numerical
aspects of Gaussian quadrature and orthogonal polynomials.

@ Later, this become one of the principal areas of Walter’s
research!

@ In about two dozen papers, Walter Gautschi developed the so-called
constructive theory of orthogonal polynomials on the real line

— effective algorithms for numerically generating orthogonal
polynomials with respect to an arbitrary measure,

— a rigorous and detailed stability analysis of algorithms,
— new applications of orthogonal polynomials.
@ Methods for constructing OP:
— Method of (modified) moments,
— Discretized Stieltjes-Gautschi procedure,

— Lanczos algorithm.

@ Walter's work and his contributions in the constructive theory of
orthogonal polynomials allow the construction of many new classes
of polynomials and their application in diverse areas of applied and
numerical analysis, e.g.,

— numerical integration,

— interpolation processes,

— integral equations,

— probability,

— moment-preserving spline approximation,
— summation of slowly convergent series,
— approximation theory, e.t.c.

@ General algorithms for modifications of the measures by linear and
quadratic factors and divisors.

@ Software:
— ORTHPOL (1994) in FORTRAN;
— OPQ and SOPQ (Matlab routines);
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Teaching Activities:

@ Walter regularly taught the beginning graduate course on Numerical
Analysis, an advanced course on the Numerical solution of
ordinary differential equations, and occasionally courses on
Numerical linear algebra and Optimization.

@ He had 8 Ph.D. students.

o Walter officially retired from Purdue University in 2000 with the title
of Professor Emeritus, but both his research and lecturing activities
continued ever since!

European Academies: In 2001, he was elected
— Foreign Member of the Bavarian Academy of Sciences in Munich
— Corresponding Member of the Turin Academy of Sciences

@ He was also named a SIAM Fellow in 2012.

Publications:

@ Walter has published 4 books, 34 book chapters, 170 refereed journal
papers, 7 refereed papers in conference proceedings, translated 3
books, and edited 5 conference proceedings.

@ He wrote 279 reviews for Mathematical Reviews.

@ His books have set a high standard for graduate textbooks in their
respective subjects.
Numerical analysis — an introduction, published by Birkhauser
(1997; 2012)
Orthogonal polynomials — computation and approximation,
published by Oxford University Press (2004);

Orthogonal Polynomials in MATLAB — Exercises and Solutions,
published by SIAM (2016).
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Walter Gautschi
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Analysis
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Gradimir V. Milovanovié, gvm@ni.sanu.ac.rs

Walter Gautschi
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Orthogonal Polynomials
in MATLAB

L ercises and Solutions

Orthogonal Polynomials

Computation and Approximation

WALTER GAUTSCHI

Gradimir V. Milevanovié, gvm@mi .sanu.ac.rs
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@ Walter was also active as a translator (from German), translating

— (jointly with R. Bartels and C. Witzgall) the text Einfiihrung in die
Numerische Mathematik by J. Stoer and R. Bulirsch,

— preparing an annotated translation of H. Rutishauser's Vorlesungen
tiber numerische Mathematik, and

— (jointly with his wife Erika) an English translation of E. A.
Fellmann’s Leonhard Euler.

Emil Alfred Fellmann (1927-2012) was a Swiss historian of science,
which was particularly known for his collaboration in the publication
of the works of Leonhard Euler.

Emil A. Fellmann

Leonhard Euler

Emil A. Fellmann
Translated by Erika Gautschi and Walter Gautschi

Birkhduser Verlag
Basel - Boston - Berlin
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@ Walter's contributions have had a significant impact on the field, and
his papers are widely cited.

@ They are characterized by their clarity of exposition and will remain
excellent resources for researchers in the field.

@ Throughout his academic career, Walter participated and lectured at
numerous national and international meetings.

@ He was also a frequent visitor at other academic institutions
(Polytechnics of Milan and Turin, University of Padua, ETH in
Zurich, University of Basel, etc.)

@ Plenary lecture about Leonhard Euler (1707-1783) at the
International Congress on Industrial and Applied Mathematics
in Ziirich, 2007.

2007 was the Euler year!

@ Walter Gautschi visited Serbia 3 times (1984, 1987, and 2008).

@ In 1987 at the international conference Numerical Methods and
Approximation Theory in Ni3, he gave a plenary talk;

@ In 2008 also as a plenary lecturer he attended

— the international conference Approximation and Computation at
University of Nig,

— the 12th Serbian Mathematical Congress in Novi Sad.
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Introduction

During the Conference “Numer. Methods & Approx. Theory”
(Ni3, August 18-21, 1987)

Gradimir V. Milovanovié, gvm@ni.sanu.ac.rs

fmtroduction

Archaeological site “lustiniana Prima” (6th century)
(Lebane, South Serbia)

Gradimir V. Milovanovié, gvm@mi .sanu.ac.rs
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Introduction

AFTER EXCURSION: They are waiting for dinner
(Lebane, South Serbia)

fmtroduction

Temple E (Selinunte), Sicily, Italy
During an excursion at OPSFA3, Erice, 1990
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Editorial Activities:

@ From 1966 to 1999, Walter was a member of the Editorial Committee
of Mathematics of Computation and its Managing Editor from
1984 to 1995.

@ On the 50th anniversary of Mathematics of Computation, Walter
edited an AMS proceedings volume entitled A half-century of
computational mathematics.

@ Other journals for which he served as an Associate Editor are

— Numerische Mathematik, 1971 to the present (Honorary Editor
since 1991),

— SIAM Journal on Mathematical Analysis, 1970-1973,
— Calcolo, 1975-1987.

@ In addition, in 1981-1983, Walter served as a Special Editor of
Linear Algebra and its Applications.

@ Gautschi was co-editor of a number of other proceedings volumes.

Gradimir V. Milovanovié, gvm@ni.sanu.ac.rs

fmtroduction

Gradimir V. Milovanovié, gvm@ni .sanu.ac.rs
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Introduction

AN

SPRINGER OPTIMIZATION
AND ITS APPLICATIONS

Walter Gautschi - Giuseppe Mastroianni
Themistocles M. Rassias (Editors)

Approximation
and Computation

In Honor of Gradimir V. Milovanovi¢

@ Springer

@ Walter's 65th birthday was celebrated by a conference held in his
honor in December 1993 at Purdue University

@ The proceedings volume of this conference under title Approximation
and Computation was published by Birkhaduser in 1994,

Editor of this volume was Ramsay V.M. Zahar (the first Walter's
Ph.D. student)
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B

Purdue Conference (December 3, 1993)

fntroduction

Approximation

and Computation:

A Festschrift in Honor of Walter Gautschi
polierampe et omerbrre—

[

L Gredimir V. Milovenovic, guntut sam.ac.zs
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Introduction

In Walter's house, December 1993
(Ramsay V.M. Zahar, Louis de Branges and GVM)

——

Gradimir V. Milovanovié, gvntni.sanu.ac.rs

Birkhduser/Springer Project in 2014
Series: Contemporary Mathematicians

Woalter Gautschi — Selected Works with Commentaries
(Edited by Claude Brezinski & Ahmed Sameh)

Claude Brezinski
Ahmed Sameh
Editors

Gradimir V. Milovanovi¢, gvm@ni .sanu.ac.rs
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@ This set of three volumes includes reprints of many of Gautschi’s
papers and commentaries on his work by some of his colleagues.

@ List of Contributors:

Walter Van Assche

Gradimir Milovanovié¢
iki Institut SANU

Department of ic
KU Leuven, Heverlee, Belgium

John C. Butcher
Department of Mathematics
The University of Auckland
Auckland, New Zealand

Martin Gander

Section de Mathématiques
Université de Genéve
Genéve, Switzerland

Nick Higham

School of Mathematics

The University of Manchester
Manchester, UK

Jacob Korevaar

Korteveg de Vries Institut
University of Amsterdam
Amsterdam, The Netherlands

Lisa Lorentzen

Institutt for Matematiske
Fag NTNU

Trondheim, Norway

Beograd, Serbia

Giovanni Monegato
Dipartimento di Matematica
Politecnico di Torino
Torino, Italy

Lothar Reichel
Department of Mathematical Sciences
Kent State University Kent, OH, USA

Javier Segura

Departamento de Matematicas
Estadistica y Computacion
Universidad de Cantabria, Santander,
Spain

Miodrag M. Spalevié¢
Department of Mathematics
University of Belgrad
Belgrade, Serbia

Gerhard Wanner
Section de Mathématiques
Université de Genéve
Geneéve, Switzerland

o Volume 1 (xii+694 pp.) includes a biography and summary of
Gautschi's work, as well as commentaries on his work in

— numerical conditioning (by Nicholas Higham),

— special functions (by Javier Segura), and

— interpolation and approximation (by Miodrag Spalevi¢).

The main part of this volume are reprints of 44 papers by Walter

Gautschi from these three areas.

@ Volume 2 (xiv+914 pp.) includes commentaries on his work in

— orthogonal polynomials on the real line (by Gradimir Milovanovi¢),
— polynomials orthogonal on the semicircle (by Lothar Reichel),

— Chebyshev quadrature (by Jacob Korevaar),

- Kronrod and other quadratures (by Giovanni Monegato), and

— Gauss-type quadratures (by Walter van Asche).

The main part are reprints of 54 Walter’s papers from these several

areas.




@ Volume 3 (xii+767 pp.) includes commentaries on Walter's work on
— linear recurrence relations (by Lisa Lorentzen),
— ordinary differential equations (by John Butcher),
— computer algorithms and software packages (by G. Milovanovi¢),
— history and biography (by Gerhard Wanner), and
— miscellaneous topics (by Martin J. Gander).

Again main part of this volume are reprints of 38 papers by Walter
Gautschi from these several areas.

This is an impressive project on more than 2400 pages with 136
reprints on his papers in 13 subjects!

@ Walter Gautschi is one of the leading numerical analysts of the
second half of the 20th and the beginning of the 21st century!

@ His scientific work is very wide, ranging from special functions,
quadrature and orthogonal polynomials to difference and differential
equations, software implementations, and the history of mathematics!

@ He has contributed to almost all areas of numerical analysis, and
many of his results have proven to be highly significant and timeless!
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OtBapame koHpepenuuje (CAHY, 30. HoBembap 2017. roaune)

o

[To3npaBuu roBop akanemuka 3opana [lonosuha, mornpencenanka CAHY

VY npBom peny y CAHY: npod. Buktop Henosuh, npepcraBaiuk MuHHCTapCTBa
NpOCBeTe, HAyKe W TEXHOJOIIKOT pa3Boja, akageMuk 3opaH I[lomoswuh,
notnpencenauk CAHY, mpod. Bonrep Iayum (Walter Gautschi) wu mpod.
®panrmcko Maprenan (Francisco Marcellan)
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Panno Ipencennururo: JI. Pajuen (L. Reichel), I'.B. MunoBanosuh 1
M.M. Cnanesuh

Ha Mammnuckom dakynrety (1. nemem6ap): Y. Simsek, W. Gautschi,
GVM i G. Mastroianni
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Bounrep u Epuka I'ayun Ha Mammackom dakyntery ca 'BM
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G.V. Milovanovi¢: Generalized weighted Birkhoff-Young quadratures with the maximal
degree of exactness, Appl. Numer. Math. 116 (2017), 238 — 255. [RJ234]
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Generalized weighted Birkhoff-Young quadratures with the
maximal degree of exactness ™

Gradimir V. Milovanovi¢

@ CrossMark

2 Serbian Academy of Sciences and Arts, Beograd, Serbia

b State University of Novi Pazar, Serbia

ARTICLE INFO

ABSTRACT

Article history:
Available online 12 July 2016

Dedicated to Professor Francesco
A. Costabile on his 70th birthday

Keywords:
Quadrature formula
Weight function
Error term
Orthogonality
Analytic function
Nodes

Several types of quadratures of Birkhoff-Young type, as well as a sequence of the weighted
generalized quadrature rules and their connection with multiple orthogonal polynomials,
are considered. Beside a short account on a recent result on the generalized (4n + 1)-point
Birkhoff-Young quadrature, general weighted quadrature formulas of Birkhoff-Young type
with the maximal degree of exactness are given. It includes a characterization and unique-
ness of such rules, as well as numerical construction of nodes and weight coefficients.
An explicit form of the node polynomial of such kind of quadratures with respect to
the generalized Gegenbauer weight function is obtained. Finally, a sequence of general-
ized quadrature formulas is studied and their node polynomials are interpreted in terms of
multiple orthogonal polynomials.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

Weight coefficients
Multiple orthogonal polynomial

1. Introduction and preliminaries
The well-known quadrature formula for numerical integration over the line segment [zg — h, zo 4+ h] of analytic functions
in the complex domain Q= {z : |z—zo| <7}, |h| <T,
2zo+h b
/ f @ dz= =241 o) +4[F 20+ ) + f 2o = )] = [f o +ih) + [ (20 = il)]}-+REY (f)
Zo—h

was obtained by Birkhoff and Young [5], and it is exact for all algebraic polynomials of degree at most five. Young [32]
proved that its error term can be estimated by

Il
REY ()] < ——max|f©(2)],
REY ()] = 150 max /O @)

where S denotes the square with vertices zg +ikh, k=0, 1, 2,3 (see also the monograph [6, p. 136]). Birkhoff-Young rule
can be compared with the so-called extended Simpson rule (cf. [28, p. 124]) with the nodes zp, zp & h, zg & 2h, and

* This paper was supported by the Serbian Ministry of Education, Science and Technological Development (No. #01174015).
* Correspondence to: Serbian Academy of Sciences and Arts, Beograd, Serbia.
E-mail address: gvm@mi.sanu.ac.rs.

http://dx.doi.org/10.1016/j.apnum.2016.06.012
0168-9274/© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

75



G.V. Milovanovi¢ / Applied Numerical Mathematics 116 (2017) 238-255 239

zo+h
h
[ r@dz {114+ 34 Fo + 1+ Fao =] = [ Fao+ 200+ 2o - 20)] J+RECD)
Zofh
where
REPI~ o), 0 Gy

Both formulas use N =5 points and have the same algebraic degree of exactness d = 5, but [REY ()|~ 0.4|RES (f)|.
In 1976 Lether [10] transformed Birkhoff-Young formula from [zg — h,zp + h] to [—1, 1] (of course, without loss of
generality),

I(f)—/f(l)dz——f(0)+ [fFD+ fF(=D]- [f(i)+f(—i)]+R5(f), (11)

and pointed out that the three point Gauss-Legendre quadrature which is also exact for all polynomials of degree at most
five, is more precise than (1.1) and he recommended it for numerical integration. However, ToSi¢ [29] improved the quadra-
ture (1.1) in a simple way taking its nodes at the points £r and =ir, with r € (0, 1), instead of 1 and =i, respectively, and
derived an one-parametric family of quadrature rules in the form

1(f>=2( )f(0>+(612 1;4>[f(r)+f( "]
1 1 . .
+ (—@ + 1o_4> [fGr) + f(=in]+RE(f3 7). (12)

It is clear that for r =1 it reduces to (1.1). However, for r = {/3/5, the coefficient of f(ir) + f(—ir) vanishes, and it reduces
to the three point Gauss-Legendre formula,

I(f)=gf(0)+g [f (@) +f<—\/§)} +RS(), (13)

where RS (f) = RI(f; V/3/5).
Expanding the error-term Rg(f; r) in (1.2) in the form

2 2
R_rf(f;r):(—ﬁr + )f(ﬁ)(0)+< ﬁr += )f<8>(0)+ (1.4)

and putting r = /3/7 in order to vanish the first term in (1.4), To3i¢ [29] obtained a five-point formula of algebraic degree
of exactness seven,

16 1(7 [7 o3 J3
I(H=7fO+5 (g + 5) [f (f;) +f (—f;)}
+%(g— %) [f(iﬁ)Jrf(—iﬁ)}rRQ“(f), (15)

1
MF 4 ® (10) A L1076 F®
RME(fy=RI(f;3/7) = 793800f ) + 61122600f 0) + 1.26-107° f*°)(0).

We note that the error term in the Gaussian formula (1.3) is given by

with the error-term

RS RI(f:v/3/5) = ——f®©© ®0 - ~6.35-107° f©)(0).
3(f)=Rs(f;v3/5 15750f 0) - 226800f ©)+-- 20

Quadrature formulae of Birkhoff-Young type for analytic functions have been investigated in several papers in different
directions (cf. [1,15,20,22]). These formulas can also be used to integrate real harmonic functions (see [5]). In addition,
we mention also that Lyness and Delves [12] and Lyness and Moler [13], and later Lyness [11], developed formulae for
numerical integration and numerical differentiation of complex functions.
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An extra motivation for a development of this kind of quadratures lies in the possible application of such rules in a
construction of orthogonal polynomials on the radial rays in the complex plane (cf. [16,24,25,17,18]). In order to explain
this fact we consider a case of these polynomials on the four rays, with the inner product defined by

1

(.0 = [[£ @8 + fG28@ + £ (28 + [ (-i2)ED |w(z)dz

0

where w is a given weight function. Extending w to an even function on (—1, 1) (again denoted as w), this inner product
can be expressed in the form

1

(.0 = [ [1@5@ + fi25@] we dz.
-1

For the numerical construction of recursive coefficients for these orthogonal polynomials on the radial rays, by using the
discretized Stieltjes—Gautschi procedure (see [18]), we need a quadrature rule for exactly computing integrals of the form
(f,1), when f is an algebraic polynomial (except for rounding errors). Weighted quadratures of Birkhoff-Young type (of
sufficiently large degree of exactness) would be very appropriate for this kind of integration, since their nodes are on the
real and the imaginary axis. As a simple illustration of this fact we can see that the rule (1.5), with w(x) =1, gives the
following formula

1

/[f(z) + f(in)]dz~ %f(m + % [f (ﬁ) +f (—C/g) +f (1@) +f (—lﬁ)}

-1

of algebraic degree of exactness seven. On the other hand, the corresponding formula of the same complexity, obtained by
the Gaussian rule (1.3),

_/: [f@+f@)dz~ 10+ {f (@) f (—@) +f (1@) +f (—1@)} ,

has the algebraic degree of exactness five.

In this paper we consider several types of quadrature rules of Birkhoff-Young type, as well as a sequence of the weighted
generalized quadratures and their connection with multiple orthogonal polynomials. The paper is organized as follows. In
Section 2 we gave a short account of a recent result on a generalized (4n + 1)-point Birkhoff-Young quadrature. Section 3 is
devoted to general weighted quadrature formulas of Birkhoff-Young type with the maximal degree of exactness, including a
characterization and the uniqueness of such rules as well as the numerical construction of the nodes and the weights of the
rule. In the case of the generalized Gegenbauer weight function, explicit form of the node polynomials is derived. Finally,
a sequence of generalized quadrature formulas and their connection to multiple orthogonal polynomials are presented in
Section 4.

2. Generalized (4n + 1)-point Birkhoff-Young quadrature

In 1982 Milovanovic¢ and Pordevic¢ [23] extended Tosi¢’s formula (1.2) to the following nine-point quadrature rule of
interpolatory type

I(f) = Af(0) + B[ f (x1) + f (=x) ] + C[ f (ix1) + f(~ix1)]

+ D[f(x2) + f(—=x2)] + E[ f(ix2) + f(=ix2) ][+Ro(f; x1, %2), (21)
with 0 < x; < x2 < 1. Taking
63 —4+/114 63 +4+/114
x1:x>{:47 and xz:sz‘l;, (2.2)
143 143

this formula has the algebraic degree of exactness d = 13, with the error-term
Ro(f; X}, x5) ~3.56-1074f(19(0).

Recently, this result has been extended to the (4n + 1)-point interpolatory quadrature formula of the form [21]

1
I(f):= / f(@dz= Qan+1(f) + Ran+1(f), (2.3)

-1
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where
n
Quns1(F) = A0S ) + Y| AL £ o) + F(—x0] + B Fix0) + f(=ixo)] ] (24)
k=1

and Rgp+1(f) is the corresponding remainder term. The nodes in (2.4) are connected with the zeros of a monic polynomial
of degree 4n + 1,

n n
Wan+1(2) :zZajz‘” :zl—[(z4 —1r), O<ri<---<m<l, (2.5)
j=0 k=1
ie, xx = ¢r,, k=1,...,n. In [21] it has been proved that there exists a unique interpolatory quadrature formula of the

form (2.4) with the maximal degree of exactness dmax = 6n+ 1, and that the respective coefficients a; in (2.5) are given by

; , j=0,1,....n, (2.6)

e

w=ewﬂ( ;
2j —)
nt J+2 2n—2j

where (s); is the standard notation for Pochhammer’s symbol

L's+j
$)j=s(s+1)---(s+j-1)= (F%)]) (T is the gamma function).
The weight coefficients Ag and Ay, Bk, k=1,...,n, in the interpolatory quadrature formula (2.4), can be expressed in

the form

1
1
Ag==—— | Pn(zY dz,
0 m@[“

4 4
Ap = /Z P (Z) 7. By= /Zzp ") 4 k=1.....n.
4rkP () 4rkP (o) J z +J—

The corresponding node polynomials p,(z) are (see [21]):

126z 15 o 42922+6932 7
143 a3 PPOT 323 1615 323

204z3+1458622 17162+ 9
115 15295 10925 = 2185’

- s 199524 452273 92378722 1001z 77
Ps(2)=2" — + - + - ;
899 2697 186093 = 20677 103385

562 = 25 69025+3277524 371450023+2099522 442z 13
Pole)= 259 12617 3293037 © 99789 33263 ' 99789’

For n =1 and n = 2, the previous result reduces to (1.5) and (2.1), with parameters (2.2), respectively.

~ 3 5
P1(Z)=Z—7, p2(2) =2" —

Pa)=2*

3. A general weighted quadrature rule of Birkhoff-Young type

We consider now a generalized weighted N-point quadrature formula of interpolatory type for the numerical integration
of analytic function,

1w f) = [ F@w@)dz= Quiws )+ Ru(w: . 31)
with respect to an arbitrary even positive function w : (—1,1) — R™, for which all moments ; = f_ll *w(z)dz, k=
0,1,..., exist. Notice that ptox+1 =0 and pok > 0 for each k € Ng. The quadrature sum Qn(w; f) has the form

Qv(w: f)= §jd”ﬂﬁmy+2](”fww+f<m]+3“1ﬂww+feuwﬂ, (32)

k=1
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with nodes at the zeros of a monic polynomial with real coefficients of degree N,

n
wn@) =2"pv(@) =2"[ [ =), 0<ri< - <m<1, (3.3)
k=1

ie, xy=Yri, k=1,...,n, where N=4n+v, with

n—N v=N 4Ne{0123}
T4 4

and Ry(w; f) is the corresponding remainder term. Notice that rp’s in the node polynomial (3.3) are also dependent on v,
but we write only ry instead of r,(cv).

The N-point quadrature formula (3.1)-(3.2) of interpolatory type has degree of exactness at least N—1=4n+v —1 for
an arbitrary distribution of nodes ry, k=1,...,n, in (3.3).

If v=0, the first sum in Qn(w; f) is empty. Also, in order to have Qn(w; f) = I(w; f) =0 for f(z) =z, it must be
C{” =0, 50 that Qant1(w; f) = Qan2(W; f).

In the simplest case when 1 <N <3 (n=0, N =v), the quadrature sum reduces only to Qn(w; f) = Q,(w; f) =

v—1 3
> ¢V, ie,
j=0

Qi(w; f)=Qa2(w; f)=pof(0) and Q3(W;f)=uof(0)+%f"(0)- (34)

Here, we are interested in weighted quadrature formulae of type (3.2), with aAmaximal degree of exactness for an
arbitrary N € N. In that case, the corresponding quadrature sum will be denoted by Qn(w; f).

3.1. Characterization of QN(W; f) and its numerical construction

Let P be the set of all algebraic polynomials with real coefficients (real polynomials) and let P, be its subset of degree
at most n.

Throughout this paper we assume that w: (—1,1) — R™ is a given even nonnegative function, for which all moments
WUk = f_ll z"w(z) dz, k=0,1,..., exist and o > 0. Then, the inner product, defined with this weight function as

1
(p,q)=/p(2)q(2)w(2) dz (p,qe?), (3.5)
-1

gives rise to a unique system of monic real orthogonal polynomials 7y (-) = my(w; -), such that

T (2) = mp(w; z) = 7K + terms of lower degree, k=0,1,...,
and

0, n#k,
(T, 7Tn) = |17 > 8o = X
17l n=k,

where ||7,||2 = fll 72(2)?w(z) dz. Such monic polynomials (orthogonal with respect to an even weight function) satisfy the
following three-term recurrence relation (cf. [14, p. 102])

Tey1(2) = 27k (2) — Betk—1(2), k=0,1,..., (3.6)

with 79(z) =1 and 7w_1(z) =0, where B; >0, k=1,2,.... It is convenient to put Sy = K.
The following theorem gives a characterization of the quadrature formula (3.1)-(3.2) with a maximal degree of exactness.

'[\heorem 3.1. For a given weight function w : (—1,1) — R* and each N € N there exists a unique interpolatory quadrature
Qn(w; f), with a maximal degree of exactness dmax = 6n + s, where N =4n + v, withn =[N/4], v =N — 4[N/4] € {0, 1,2, 3},
and

v—1, v=0,2,

s= (3.7)
v, v=1,3.

The nodes of such a quadrature rule are zeros of the monic real polynomial @y (z) = z°Pn,, (z*) which is characterized by the following
orthogonality relation
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1
(h(Z?), 2 Do (@h) = /h(zz)z5+1ﬁn,v(z4>w(z) dz=0, hePi_1, (3.8)
—1
or
1
(T, 2 P (2Y) = / T (@2 Py (@HW(2)dz=0, 0<k<n, (3.9)

-1
where {1r}} is the sequence of monic polynomials orthogonal with respect to the inner product (3.5).
Proof. The case N < 3 is solved by (3.4). Therefore, we suppose that N >4 and that the node polynomial for the quadrature
formula Qn(w; f) is given by (3.3).

Suppose that f € Py, where d > N =4n+v (n =[N/4], v =N — 4[N/4]). Then, this polynomial can be expressed in the
form

f@) =u@wn@) + V(@) =u@z" ppu (@) + v (2), (3.10)

where u € Py_n and v € Py_1. By integrating (3.10) we obtain

1 1
I(w;f):/u(z)a)N(z)w(z)dz—i-/v(z)w(z)dz. (3.11)
-1 -1

Since v € Py_1, it is clear that the last integral on the right hand side in (3.11), i.e., I(w; v) can be exactly calculated by
using the interpolatory quadrature formula (3.1) (of degree of exactness N — 1). Thus, I(w; v) = Qn(w; v). However, since

N (X)) =1V x) pnv () = 1" % pnv () =0, 1<k<n; 0<p <3,

where N=4n+v and v=N —4[N/4] € {0, 1, 2, 3}, and

of) (=0, 0<j<v—1 v=123,

according to (3.10), we conclude that
f*x) =v(i*x), 1<k<n, 0<pu<3,

and

fP0) =vP0), 0<j<v-1, v=1,2,3,

and therefore, I(w;v) = Qn(w;Vv) = Qn(w; f). Thus, (3.11) reduces to I(w; f) = (u, wn) + Qn(w; f), where the inner
product is given by (3.5).

Now, we can see that the quadrature formula Q n(w; f) has a maximal degree of exactness ifand only if (u, wy) =0 for a
maximal degree of the polynomial u € P4_p. Such Qn(w; f) and wy(z) we denote by aN(w; f) and &N (2) (= z“ﬁn,v(z“)),
respectively, and the previous “orthogonality conditions” can be considered with respect to the values of v, i.e.,

(h(z*),2"Pnv(2")) =0 and (zh(z%), 2" Pn,v(z*) =0 (312)

for v=0,2 and v =1, 3, respectively, where h € P,,_1. These relations can be represented in a compact form (3.8), where s
is defined by (3.7). Notice that s + 1 € {0, 2, 4}. Alternatively, (3.8) can be expressed in the form (3.9).

The maximal degree of exactness of the quadrature On(w; f) can be found as the maximal degree of a polynomial
u € Py_p for which (u, wy) =0, i.e., (3.12). Thus,

2n—1, v=0,2,

dmax — N =
max 2n, v=1,3,

from which we conclude that dpax =6n+s. O

In the sequel we use the “orthogonality conditions” (3.9) in order to construct our quadratures @N(w; ).
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According to (3.3) and using the elementary symmetric functions, defined by

o =4yt

v
02( ):r1r2 + -+ Th—1mn,

o =rir2- -,

we can express the polynomial z5*1 P, ,(z%) in the form

n
ZSHﬁn,v (24) _ Z(_l)]U;V)Z4(n—])+s+l i
j=0

(3.13)

where, for the convenience, we put O‘é‘)) = 1. Then, using (3.13), the “orthogonality conditions” (3.9) reduce to the following

system of linear equations

n
S 1o, 24D =0, k=0,1,..n 1,
j=0

n
Z(—l)]ilsk’zn,zjﬂknffj-(v) = Sk.2n+n> k=0,1,...,n—1,
j=1

where s ; are the inner products given by
1
Sk.j = (Tak, 229) = / T2 w(z)dz, 0<k<],
-1

and 217 =s+ 1. Notice that s+ 1 is an even number (according to (3.7)) and n € {0, 1, 2}.
The system of linear equations (3.14) can be done in the matrix form

AVG V) — )

where
r -1
so2n—24n  —S02n—4+y --- (=)' soy
S1.2n— —S1.2n— -1
A(U): 1,2n—-2+n 1,2n—4+n =1 1,1
L Sn—1,2n—2+n —Sn—1,2n—4+4n (_1)n_lsn—1,n
and
- )
S0,2n+n 0y
v)
S1,2n4+n 0,
b™ = and o™=
| Sn—1,2n4n on(v)

(314)

(3.15)

(3.16)

(3.17)

(3.18)

The inner products Sk 2n—2j4+y, Which appear as elements of A® and b"), should be calculated for 0 <k <n —1 and
0<2n—2j+n <2n+n. In other words, for generating the system of equations (3.14), i.e., (3.16), we use only entries from

the following matrix of the type n x (2n+7),

$0,0 S0,1 --- So.n—1 <o 50,2n4n
S11 .-+ S1in-1 cee S1.2n4y
s — ,
Sn—1,n—=1 ... Sn—1,2n+n
Sn,n—1 ceo o Sn2n4n

where n =n(v) =0, 1, and 2, depending on v=0, v=1 or v =2, and v = 3, respectively.
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It is clear that sp j are moments of the weight function,
1
So.j = (1,zzf)=/zzjw(z)dz=,uz,-, j=0,1,..., (3.20)
-1

as well as that s, ; =0 for k > j. Using the recurrence relation (3.6) for orthogonal polynomials with respect to the weight
function w : (—1,1) — R¥, it can be proved that the following two-dimensional recurrence relation

Sk,j+1 = Sk+1,j + (Bak + B2k+1)Sk.j + BakB2k—15k—1.j (3.21)
holds. The proof of this relation and an algorithm for calculating a matrix of the form (3.19) have been recently done in [20].
Notice that sg x = o1 - - - Pak, k = 0.

Remark 1. Coefficients in the two-dimensional relation (3.21) appear also in the three-term recurrence relation for polyno-
mials {7TZI<(\/E)}I<EN0 orthogonal with respect to the weight function w(+/t)/+/t on (0, 1) (cf. [14, pp. 101-103]). Otherwise,

Tak2(2) = (2 = Bak — Baks D T2k (2) — PaBok—1Tak—2(2). k=1.2,....
Thus, using Theorem 3.1 and the previous facts we have the following result:

Theorem 3.2. Let N =4n + v (> 4), with

n= N v=N-4 N €{0,1,2,3}
4] 4 e
(V)

the inner products sy ; be given by (3.15), and oW = [01(") 0y 0,5")]7 be the unique solution of the system of linear equations
(3.16), where the matrix A"") and the vector b are given by (3.17) and (3.18), respectively.
Then, all zeros of the polynomial

n n
Prv@ =Y (Do =[]z —r0),
j=0 k=1

are real, simple and contained in (0, 1), and they determine the (nonzero) nodes of the quadrature formula @4n+v(w; ), with maximal
degree of exactness dmax = 6n + s, where s is given by (3.7).

Proof. According to (3.9) for k =0, the equality
1
/ B (@ w(@) dz=0
-1

holds. This is exactly the first equation in the system (3.16). Since s+ 1 is an even number (=29 € {0, 2,4}) and 'ﬁn’v(z“)
is an even polynomial (of degree 4n), we conclude that Py ,(z) must change its sign at least at one point in (0, 1). Suppose
that this polynomial changes its sign at m points in (0,1), e.g. at rq, ..., . It means that P, ,(z*) changes its sign at the
points £¢r, k=1,...,n.

Define now an even polynomial of degree 2m such that

®(2) = (2 = 1)+ (2 — )
Then, we can conclude that the polynomial ’p\n,v(z“)<1>(z) does not change its sign on (—1, 1) and therefore
1
(@.2 " Pau(2h) = / ()2 Pap (2 w(2) dz #£0. (3.22)
-1

Since ®(z) can be expressed as linear combination of even orthogonal polynomials {7y it (w.r.t. the weight function
won (—1,1)), ie.,

*(2) =) Yrn(),

k=0
we get

82



246 G.V. Milovanovi¢ / Applied Numerical Mathematics 116 (2017) 238-255

m
(P, ZS-H/ﬁn.v(Z‘l)) = Z Vi (7T2k, Zs+lﬁn,v(z4))~
k=0

Using the “orthogonality conditions” (3.9) we conclude that

{ m<n,
n,v(z )= —
Ya(T2n, 21 Pnw(@h), m=n.

Because of (3.22), it means that the case m <n is not possible, so it must be m=n. O

(@ Zs+l

3.2. Weight coefficients in the quadrature formula QN(W; iD)

Let Qn(w; f) be an N-point quadrature of interpolation type with simple (in general, complex) nodes z; € Z,
Qv(w; f) =) W;f(z),
zjeZ

and with the corresponding weight coefficients W;. They can be obtained by an integration of the Lagrange polynomial
constructed on the set Z, i.e.,

Iv(f;i)= N g,

ez (z — zj)wy (z)

where wy(z) is the node polynomial. Then, the weight coefficients can be expressed in the form

W= f ©N @) wiz)dz (3.23)

a)N (z])
We separately consider cases v=0, v=1, and v =3.

3.2.1. Quadrature formula @4n(w; )
In this case (v =0), the quadrature nodes belong to Z = {£x, +ixx,k=1,...,n}, so that
wan(2) = pro(@?), Wy, (2) =42%p) o(2h).
Using (3.23) and notations for coefficients as in (3.2), we can formulate and prove the following result:

Theorem 3.3. The weight coefficients in the quadrature formula @4n(w; f) with the maximal degree of exactness d = 6n — 1 are
given by

0) _

/ pn O(Z)
k 4~/“Arkpno(rk)

W(z)dz, k=1,...,n,

© _ Pro(z?)

v /
k 4ﬁpn o) J 22+ i

w(z)dz, k=1,...,n,

where

Pro@=[Je-r =Y (-1)ioOz" .

k=1 j=0

3.2.2. Quadrature formula @m“(w; 1D
In this case (v = 1), the quadrature nodes belong to Z = {0, x;, £ix,, k=1, ...,n}, so that

Wan1(2) = 2P 1 (24, Wiy 1(2) = P (2h) +42%p), 1 (2.
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Theorem 3.4. The weight coefficients in the quadrature formula @4,1“ (w; f) with the maximal degree of exactness d = 6n + 1 are

given by

1
1
ch = / ZHw(z)dz,
0 () | Pna(Z5)w(2)

A0 _ Z Pn 1(z%)

w(z)dz, k=1,...,n,
k 4rkpn 10 ] 22 = e

o) 22ppa (2%

w(z)dz, k=1,...,n,
k 4rkpn1(rk>/ 22+ 7

where

Pna(2) = l_[(z —rj)= Z(—l)jdj(l)z"’f,

j=1 j=0

3.2.3. Quadrature formula §4n+3(w; D)
In the case v =3 we have the following result:

Theorem 3.5. Let 5(()”, Kl(cl), El({”, k=1,...,n, be the weight coefficients of the quadrature formula §4n+1(ﬁz; f), with the maxi-
mal degree of exactness d = 6n + 1, where W(z) = z2w(z). Then, the corresponding weight coefficients in the quadrature formula

@4n+3(w; f), with the maximal degree of exactness d = 6n + 3, are given by

3 _ AV -BY @ _ 1=
Co = 22 . Gl =m=0, G ZECO’
Xk
A 3D
3) _ Tk (3) _ _
Ak =— Bk —X—z, k=1,...,n,
k k
where ug, k=0, 1, ..., are moments of the weight function w, and xﬁ =r,k=1,...,
n n
—~ S i
Ps@=[]-rp=) (1o 2"
j=1 j=0

Proof. Let xo = \/ro and x; = ¢/, k=1,...,n. According to

W3 =32 —10) [ [ =) +42* @ —10) Y [ [* =10,

v=1 j=1v#j

we have

n
Wy 3(0) = =10 [ [ (=) = —ropa(0),
v=1
n

Wy 3(Ex0) = 2r0 [ [ (F — 1) = 2ropa (1),

n, are zeros of the polynomial

v=1
Wl 3(EX0) = 4n (Vi +10) [ [ e = 1) = 4ne (/7 — 10) P (o).
v#£k
W3 (Fix) = 4r (=T — 10) [ [ (ke = 1) = =41 (/Fi 4 10) pry (),
v#£k
where k=1, ...,n. Now, applying (3.23) and using notations for coefficients as in (3.2), we get the desired results. O
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3.3. Explicit form of the node polynomial in @N(W; f) for the generalized Gegenbauer weight

In this part we determined the expressions in a closed form of si ; for the generalized Gegenbauer weight defined by

w2 =|z|Y(1 - %) (a,y > —1), (3.24)
on (—1,1). The monic polynomials W\(,a‘ﬁ)(z), v=0,1,..., orthogonal with respect to this weight function, where g =
(y — 1)/2, were introduced by LaS¢enov [9] (cf. [14, pp. 147-148]). These polynomials can be expressed in terms of the
Jacobi polynomials Pf,a’ﬁ) (z), v=0,1,..., which are orthogonal on (—1, 1) with respect to the weight function w@®#(z) =
(1-2%1+2)*f, a, B> —1. Namely,

@.p) k! @.B) 5,2

7% z)=————P 2z° —1), 3.25
2" @ k+a+p+1) K ( ) (3-25)
@.p) k! @.+1) 5 2

%% z)=————2P 2z —1).
2k+1( ) (k+a+ﬂ+2)k k ( )

Notice that W;i‘fl) (2) = zWéﬁ’ﬁ H)(z). The polynomials Wl(,o"’3 )(z) satisfy the following three-term recurrence relation

Wi @ =W P @) - pw P @, v=01,...

WGP @ =0, wiP @ =1,
where

- kk+a) PR S YO SEY)
T 2ktatBktatpr) PN T GkratrB-—D2kta+p)’

fork=1,2,..., except when ¢ + 8= —1; then g1 =(B+1)/(@+ B +2).
First, in our case, we need explicit expressions for the products

Bak

1
skj= (WP 227y = / WP ()22 |21 — 2% dz, 0<k<]. (3.26)
-1

Let o, ¥ > —1 (i.e,, 8 > —1). Then the products defined in (3.26) are (cf. [20, Lemma 5.1])

, 0<k<j. (3.27)

B k! (j)r(k+a+1)r(j+ﬂ+1)
T k+a+B+D\k) Tk+jta+p+2)

Otherwise, because of orthogonality, sy j =0 for k > j.
In the following theorem we give the explicit form of the node polynomial (3.3):

Sk, j

Theorem 3.6. For the generalized Gegenbauer weight function (3.24), the coefficients of the node polynomial

n
Puv(@ = (~1)o[ 2"
j=0

in the quadrature formula QN(W; f) are given by
(n) (B+n+2n—j)+ 1)

)@+ B+n+2mn—j)+n+1);’
where B =(y —1)/2andn=(s+1)/2.

W) _
O'j =

j=0,1,...,n, (3.28)

Proof. Regarding Theorem 3.1 the node polynomial P, ,(z) exists uniquely. Therefore, it is enough to prove that the coeffi-
cients (3.28) satisfy the system of equations (3.14), i.e.,

n n
Y Dskan-2jq0]” =Y (1" Is2jm0," =0,
j=0 j=0

for each k=0,1,...,n—1.
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Using (3.27) we see that

k! 2j+\Tk+a+DI'Qj++n+1) (1)
Slc,2j+n=—( ) - B =
(k+o+ B+ 1) k F'k+2j+a+B+n+2)
where
; 0, v=0,
j,(c”):"(;n-‘ and n=npw)={1, v=1lorv=2,
2, v=3.
For j < ](”) the inner product si 2j;, = 0. Also, from (3.28) we conclude that
U(U)_<n> (B+n+2j+ Don—2;j _(n)F(a+/3+7]+2j+n+l) re+n+2n+1)
n=j (@+p+n+2j+n+Da; \j/ T@+p+n+3n+1) T@B+n+2j+1)
Therefore,

sk2]+,,an ]_C(U)( )(2]+77—k+1)k(k+2]+0l+13+77+2)n k—1»

where C,EV) is a coefficient which does not depend on j, i.e.,

W _ 1 Tk+a+DLB+n+2n+1)
kK™ ka4 B+1) Fa+p+n+3n+1)

so that we should prove that the sums
sy = Z (- 1)!(.)(214 n—k+ Dtk +2j+a+B+n+2n k1 (329)
=i

are equal to zero for each k=0,1,...,n—1.
Since 2j+n—k+1),=0 for j < j,((”), the summation in (3.29) is equivalent to

sy = Z( 1>f< )<2J+n k+ Dtk +2j+ 0o+ B+10+2n k1. (330)
Expanding (2j +n —k+ 1)g(k+2j+ o + B+ n+ 2)p_k—1 in powers of j, we conclude that it is a polynomial in j of
degree n — 1 for each k=0,1,...,n—1, ie,

n—1
Q@j+n—k+Dpk+2j+a+B+n+2ns 1= vj' O<k=n-1),
i=0

where the coefficients y; depend, in general, on n, k, v, @, and B. In this way, we see that (3.30) becomes

s,ﬁ”:Z(—w( )Zm —ZmZ( 1>1< )j" O<k=n-—1).
j=0

i=0 j=0

Finally, using the identity (see Gould [8, p. 2, Formula (1.13)])

n /n\ 0, 0<i<n-—1,
>eni(7)i= .
=0 J

(=D™!, i=n,

we conclude that S(”) =0foreach0O<k<n-1. O
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4. A sequence of generalized quadrature formulas

In this section we consider a sequence of quadrature rules {Q,l\,mj(f)}m,

Qim(f)= Zd”f“konZZA,ﬁ”j[ (xie™) + f(—xe™)], m=1.2...., (41)

k=1 j=1

for weighted numerical integration of an analytic function,

1
I(w; f) = / f@w@ dz= Q" (f) + R (w; f),

where
j—m
Xe= 2r., k=1,...,m Gj:u, j=1,...,m,
m
and the node polynomial is defined by
n
wn(z) =2"plM (™) = 2¥ [[@" =), 0<ri<-i<m<1, (4.2)

with N=2mn+v,n=[N/2m], and v € {0, 1,...,2m — 1}.
For v =0, the first sum in Q[m](f) is empty. RE\T](W; f) in (3.1) is the corresponding remainder.

As before in Section 3, the coefficients C;”) for odd j must be zero, so we can conclude that Q£ﬂ1+u(f) = Qé’rrr'l]rl+v71(f)
for v=2,4,...,2m — 2. In this set of quadrature rules there is a unique interpolatory quadrature Q,[Vm](f) with a maximal

degree of exactness, and we can prove the following result (see [19]):

Theorem 4.1. Let m be a fixed positive integer and w be a nonnegative even weight function on (—1, 1), for which all moments
Uk = f_ll Z*w(z)dz, k > 0, exist and Jo > 0. Forany N € N there exists a unique interpolatory quadrature @,[Vm](f) with the maximal
degree of exactness dmax = 2(m + 1)n + s, where

N v—1, v even,
n=|—1|, v=N-2mne{0,1,...,2m—1}, s=

2m v, v odd.

The node polynomial (4.2) is characterized by the following orthogonality relations

1
/t"ALm1(t’" V2wt dt=0, k=0,1...,n—1. (4.3)

0
In the case m =1 (see Fig. 1 (left)), the node polynomial @pn4y(2) = z"'ﬁm,(zz), with v =0 or v =1, is a monic
polynomial of degree 2n + v, which is orthogonal to P,,4,_1 with respect to the even weight function w on (-1, 1),
so that the rule @,[\,”(f) is a standard Gaussian formula. Since s = —1 for v=0 and s =1 for v =1, according to the
orthogonality relations (4.3), the sequences of polynomials

() = @D and ﬁ,&”l(o:wz”%fﬂ)

are orthogonal on (0, 1) with respect to the weight functions w(+/t)/+/t and w(y/t)+/t, respectively (see also [14, Theo-
rem 2.2.11]). Notice that the origin appears as a quadrature node only when v =1.

In the case m = 2, the nodes are symmetrically distributed on the real and imaginary axes (see Fig. 1 (right)), and the
quadrature rules (4.1) reduce to the generalized quadrature of Birkhoff-Young type considered in Section 3. The orthog-
onality conditions (3.8) which characterize the interpolatory quadrature Qy(w; f), with a maximal degree of exactness
dmax = 6n + s, can be expressed in the equivalent form (4.3) (for m =2 and Py, :ﬂﬂ, ). Indeed, (3.8), i.e.,

1
% 118, (z4))—/ 225, 0 (@Hw(z)dz=0, k=0,1,....n—1,

-1
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Fig. 1. Distribution of nodes for m =1 (left) and m =2 (right).

Fig. 2. Distribution of nodes for m =3 (left) and m =6 (right).

can be written as
1 1

@ 2 B () =2 f 2 P (ZHw(z) dz = / P e Pw(VHde =0 (0 <k <n),
0 0

after changing variables z = +/t.
The characterization (4.3) shows that ﬁ,ﬁmﬂ (t™) must be orthogonal to P,_1 with respect to the weight function w,, (t) =

/2w (y/t) on (0, 1). Precisely, these polynomials ’p\hmg’ﬁmjﬁhmzjm_l (each of degree n) are orthogonal to P,_; with
respect to the weight functions wo(t) = t=12w(t), wi(t) = t'2w(D), ..., wam_1(t) = " 2w( /1), respectively. The
distribution of the nodes for m =3 and m =6 and some v € {0, 1, ...,2m — 1} are presented in Fig. 2.

All results obtained in Section 3 for the rules Qn(w; f) can be directly extended to the generalized quadrature formulas
Q,[\,m](f). Here, we mention only the extension of Theorem 3.6.

Theorem 4.2. For the weight function (3.24), the coefficients of the node polynomial in (4.2),

n
pil@ =Y (~1io{"z",
j=0
are given in explicit form by
O_‘(v):(n> B+n+mm—j)+ Dp;
J j)@+n+B+mm—j)+n+1m’
where B =(y —1)/2and n=(s+1)/2.

j=1,...,n,
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In this section, however, we give another approach to this kind of quadrature rules. Namely, the orthogonality conditions
(4.3) can be interpreted in terms of the so-called multiple orthogonal polynomials. Because of that, in the sequel we give
some basic facts on this kind of orthogonality.

4.1. Multiple orthogonal polynomials

Multiple orthogonal polynomials are intimately related to Hermite-Padé approximants and, because of that, they are
known as Hermite-Padé polynomials (for a nice survey see Aptekarev [2]). Multiple orthogonal polynomials are a general-
ization of the standard orthogonal polynomials in the sense that they satisfy m orthogonality conditions.

Let m > 1 be an integer and let wj, j=1,...,m, be weight functions on the real line so that the support of each w;
is a subset of an interval E;. Let n = (n1,ny,...,ny) be a vector of m nonnegative integers, which is called a multi-index
with the length |n| =n; +ny 4+ --- 4+ np. There are two types of multiple orthogonal polynomials, but here we consider
only the so-called type Il multiple orthogonal polynomials my(t) of degree |n|. Such monic polynomials are defined by the m
orthogonality relations

/n.,(t)t‘wl(t)dtzo, £=0,1,...,n1 — 1,
Eq

/n..(t)tfwz(t)dmo, £=0,1,...,ny—1,

E2 (4.4)

fnn(t)t‘wm(t)dtzo, £=0,1,...,0m —1.

Em

Evidently, for m =1 they reduce to the ordinary orthogonal polynomials.

n
The conditions (4.4) give |n| linear equations for the |n| unknown coefficients ay  of the polynomial 7y () = ‘i Gk.n tk,
k=0
where ajn;,n = 1. However, the matrix of coefficients of this system of equations can be singular and we need some ad-
ditional conditions on the m weight functions to provide the uniqueness of the multiple orthogonal polynomials. If the
polynomial 7Ty, (t) is unique, then we say that n is a normal multi-index and if all multi-indices are normal then we have a
perfect system of weight functions.
One important perfect system is the AT system, in which all weight functions are supported on the same interval E
(=Eq{=Ey=---=Ep) and the |n| functions:

wi(), twi(t), ..., t"TTwq(t), wa(D), twa(t), ..., T Twa(t), ..., Wn(D), twn(D), ..., "™ Twp ()

form a Chebyshev system on E for each multi-index n. This means that every linear combination
m
> Qo1 WD),
j=1

where Qnj—1 is a polynomial of degree at most n; — 1, has at most |n| — 1 zeros on E.
In 2001 Van Assche and Coussement [31] proved the following result:

Theorem 4.3. For an AT system the type Il multiple orthogonal polynomial 7y, (x) has exactly |n| zeros on E.

In the last decade there is a growing interest in the study of multiple orthogonal polynomials, including recurrence
relations, numerical constructions, special weight functions, etc. (cf. [3,4,7,26,27,30]).

4.2. Generalized quadrature formulae in terms of multiple orthogonal polynomials

Starting from Theorem 4.1 we can prove the following statement:

Theorem 4.4. Let m be a fixed positive integer and w be a nonnegative even weight function on (—1, 1), for which all moments
Uk = f11 Z*w(z)dz, k > 0, exist and o > 0. For any N € N there exists a unique interpolatory quadrature rule Q,[\,m](f), with the
maximal degree of exactness dmax = 2(m + 1)n + s, if and only if the polynomial ﬁﬁmﬂ (t) is the type Il multiple orthogonal polynomial
TTn (), with respect to the weight functions
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2j)/(2m)—1 1/2 .
wj(t) = tST2D/CM =1y, 1/@my i1 om,

on (0, 1), withn; =1+ [ "= ] j=1.....m.
Proof. At first, if we put t!/™ instead of t in (4.3), it is easy to see that the orthogonality relations (4.3) are equivalent to
1
/t’</mﬁ,l,'?1v‘(t)t““)/(z'")*1 w(/®Mydt=0, k=0,1,....,n—1.
0

Now, putting k =m¢{ + j — 1, where { =[k/m] and j=1,...,m, and defining

n—j

wij(t) = t(s+2j)/(2m)—lw(tl/(2m)) and nj:=1+ |: :| , j=1,...,m,

we conclude that the polynomial ﬁ,[{f‘\}(t) satisfies m orthogonality relations like (4.4), i.e.,

1
ft‘ﬁﬁ’?u](t)wmt)dt:o, 6=0,1....m—1,
0

1

/t“ﬁ,ﬂ{"J(t)wz(t) dt=0, ¢=0,1....ny—1,
0

1
/t"ﬁ,&’ﬁ}(t)wm(t) dt=0, £=0,1....ny—1.

0
Notice that these weight functions w;, j=1,2,...,m, defined on the same interval E;y =E; =--- = E =E =(0,1), can
be expressed in the form w(t) = tY=D/Mwq (1), j=1,...,m, where wq(t) = t¢+2/@m=1y(1/@M)_Since the Miintz system

{ghrG-D/m Tk =0,1,..., nj—1; j=1,..., m, is a Chebyshev system on [0, 0o), and also on E = (0, 1), and w1(t) > 0 on E,
we conclude that {wj, j=1,...,m} is an AT system on E.

Therefore, according to Theorem 4.3, the unique type II multiple orthogonal polynomial ’ﬁ,llmd (t) = n(t) has exactly

Jj=1
zeros in (0,1). O

Example 1. Let w(z) = 1/+/1 — z2 (Chebyshev weight of the first kind), n =8, and m = 3. According to Theorem 4.2, the
node polynomials for v=0,1,...,5 are

s 10875t N 50025t3  250125t2 N 350175t 10005
5168 34816 720896 = 16777216 268435456’
531 () — ¢5 2697t N 21710853 1550775t | 310155¢ 310155
P51t = 1216 1323008 3407872 ' 8388608 1073741824’
9889t  17058525t>  3411705t>2 3411705t 3411705

PoyO =t

5131 5
t)y=t>— - - ,

Ps3(0) 4256 9261056 5963776 | 58720256 3758096384

55y =5 155t N 33712563 1550775t | 7753875t 2171085

P55t = 64 165376 2228224 ' 92274688 1073741824’

as well as 55]2(0 :ﬁ?]] (t) and '15[53,11(0 :ﬁ%(t).
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On the other side, regarding Theorem 4.4, we have that n= (2,2, 1), |n| =5, and

1 1 1
t), t), D= ) s fi =0),
{w1(), wa(t), ws(t)} Vet i i (for v =0)
1 1 G
= B B fi =1 dv=2),
NN A
1 vt Vit

= , , (forv=3and v =4),
V1=t V1= V1=

6 6/.5
= vt vt ! (for v =5),

VIi—J8 =3 =

so that it is easy to check the equalities

1
/t‘ﬁf,f]v(r)w] (©)dt=0, ¢=0,1,

0
1
/ Pl Owadt =0, £=0.1,
0
1
f Pl (wsmydt=0, ¢=0,
0

for each v=0,1,...,5.
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Abstract

An account on computation of integrals of highly oscillatory functions based on the so-called complex
integration methods is presented. Beside the basic idea of this approach some applications in computation
of Fourier and Bessel transformations are given. Also, Gaussian quadrature formulas with a modified
Hermite weight are considered, including some numerical examples.

1 Introduction and Preliminaries

In this paper we give an account on computing integrals of highly oscillatory functions based on the so-called complex integration
methods and using quadrature processes in general, as well as some new results and numerical examples. Some of these results
have been recently presented during author’s lecture at the 4th Dolomites Workshop on Constructive Approximation and Applications,
Session: Numerical integration, integral equations and transforms (September 8-13, 2016, Alba di Canazei, Italy).
We deal here with integration of functions of the form
b
I(f,K)=I(f(~),K(-;X))=f w(O)f (DK (t;x)dt, (€8]
a
where (a, b) is an interval on the real line, which may be finite or infinite, w(t) is a given weight function, and the kernel K(t; x)
is a function depending on a parameter x and such that it is highly oscillatory or/and has singularities on the interval (a, b) or in
its nearness. Typical examples of such kernels are:
(@) Oscillatory kernel K(t;x) = e™, where x = w is a large positive parameter. Then we have Fourier integrals over (0, +00)
(Fourier transforms)
+00

F(fiw)= f thf(Oetdt  (u>-—1)
0

or Fourier coefficients (on a finite interval)

a(f)=a(f) +ib(f) = %J- f()e*de, (2)

where w =k €N.
(b) Oscillatory kernels K(t;x) = H(v’")(xt), where x = w is also a large positive parameter. These integral transforms are
known as Hankel (or Bessel) transforms (see Wong [51]),

H(x) = f tfF(OH™(wt)dt  (m=1,2), 3)
0

where H™(t), m = 1,2, are the Hankel functions of first and second type and order v,
H(vl)(z) =J,(2)+iY,(z) and Hf,z)(z) =J,(2)—iY,(2),
where J, is the Bessel function of the first kind and order (index) v, defined by
+00
(=1)k 2 \2k+y
J =) ——(= s J_p(2) = (=1)"J,(2).
) ;k!r(m v+1)(2) (=)= (1)

Otherwise, J, is a particular solution of the so-called Bessel differential equation

22y" +zy’ + (22— )y =0.
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The second linearly independent solution of this equation is the Bessel function of the second kind Y, (sometimes known as Weber
or Neumann function),
J,(z)cos(vm) —J_,(z)

Y.(#) = sin(vm)

(¢) Logarithmic singular kernel K(t;x) = log|t — x|, where a < x < b.

(d) Algebraic singular kernel K(t;x) = |t — x|%, where a > —1 and a < x < b.

Also, we mention here an important case when K(t;x) = 1/(t — x), where a < x < b and the integral (1) is taken to be a
Cauchy principal value integral.

Integrals of rapidly oscillating functions appear mainly in the theory of special functions and Fourier analysis, but also in other
applied and computational sciences and engineering, e.g., in theoretical physics (in particular, theory of scattering), acoustic
scattering, quantum chemistry, theory of transport processes, electromagnetics, telecommunication, fluid mechanics, etc. For
example, in the last time, a very attractive problem is the numerical solution of Volterra integral equation of the second (or first)
kind with highly oscillatory kernel

s+ [ 2D ya= o,
0

or N x eiwg(xft) d
}’(x)“'J; my(f) t=p(x),

where x €[0,1],0<a <1, w>1, p(x) and g(x) are given functions, and y(x) is unknown function.
We mention also a type of integrals involving Bessel functions

+00
zv(f;w)=f eI (@Of () de, v> -1,
0

with a large positive parameter w. Such integrals appear in some problems of high energy nuclear physics (cf. [14]).
In Fig. 1 we present the graphics of J5(wx) and Y;(wx) on [1, 10] for some values of the parameter w

y

y

0.00) u“‘n‘\n“““‘,‘”‘H e x

-005

Figure 1: The graphics of J3(100x) (left) and Y3(1000x) (right) on [1,10]

Conventional techniques for computing values of special functions are power series, Chebyshev expansions, asymptotic
expansions, recurrence relations, sequence transformations, continued fractions and best rational approximations, differential
and difference equations, quadrature methods, etc. A nice survey on these methods, including a list of recent software for special
functions as well as a list of new publications on computational aspects of special functions is given recently by Gil, Segura
and Temme [18]. An application of standard quadrature formulas to I(f;K) usually requires a large number of nodes and too
much computation work in order to achieve a modest degree of accuracy. In a recent joint survey paper with M. Stani¢ [40] we
discussed some specific nonstandard methods for numerical integration of highly oscillating functions, mainly based on some
contour integration methods and applications of some kinds of Gaussian quadratures, including complex oscillatory weights. In
particular, Filon-type quadratures for weighted Fourier integrals, exponential-fitting quadrature rules, Gaussian-type quadratures
with respect to some complex oscillatory weights, methods for irregular oscillators, as well as two methods for integrals involving
highly oscillating Bessel functions have been considered, including some numerical examples. In addition, we mention also the
so-called integrals with irregular oscillators

b
If;¢]l= f flo)e@s®dx, @

where —0o < a < b < +09, |w]| is large, and both f and g are sufficiently smooth functions. In a special case when g(x) = x, we
have the so-called regular oscillators. Numerical calculation of the integrals 4 has been treated in a large number of papers (cf.
[10, 11, 12], [22], [24], [26, 27, 28, 29], [31], [43, 44, 45, 46], etc.). The most important are asymptotic methods, Filon—type
methods, and Levin-type methods. Asymptotic method was presented by Iserles and Ngrsett [29].
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Using suitable integral representations of special functions, in this paper, we show how existing or specially developed quadrature
rules can be successfully applied to effectively calculation of highly oscillatory integrals (Fourier type integrals, oscillatory Bessel
transformation, Bessel-Hilbert transformation, etc.). The procedure is based on an idea from our paper [35] from 1998, where,
beside an account on some special — fast and efficient — quadrature methods for weighted integrals of strongly oscillatory functions,
we introduced the so-called Complex Integration Methods for some classes of oscillatory integrals (1).

This paper is organized as follows. In Section 2 we give some basic facts on the Complex Integration Methods. Applications
of these methods to integrals of highly oscillatory special functions are treated in Section 3. Finally, in Section 4 we consider
Gaussian quadrature formuals with respect to a modified Hermite weight on R.

2 Complex Integration Methods — Basic Idea

The basic idea of the Complex Integration Methods is to transform the integral of an oscillatory function to a weighed integral with
respect to the exponentially decreasing weight function on (0, +00).
First we illustrate this idea to calculation of the Fourier integrals on the finite interval [—1,1],
1

I(f;w)=| f(x)e“*dx, )
-1

assuming that f is an analytic real-valued function in the half-strip of the complex plane, —1 < Rez < 1, Imz > 0, with possible
singularities at the points z, (v =1,...,m) inside the region

Gy={z€C|-1<Rez<1,0<Imz <5},

where § is sufficiently large.
Now we suppose that the corresponding residues of these singularities give

27112 Iges{f(z)ei‘“z} =P +iQ, (6)
y=1 i
as well as that there exist the constants M > 0, 6, > 0 and £ < w such that
1
f If (x +i8)|dx < Me®® (5> 5, > 0). @)
-1
y
A
- A
Rl =
Y Fs c
R
A
Y
> > X
-1 0 o 0 a a+R

Figure 2: The contours of integration I's (left) and Cg (right)
By integrating the function z — f(z)el* over the contour Iy = 3G (see Fig. 2 (left)), we have

5 -1 0
§ f(z)e“*dz = J FQQ+iy)etVidy + f f(x +18)el @+ dx +J F(=1+iy)eCHMidy + I(f; w)
Ts 0 1 5

2nii}5&zs{f(z)ei“’z} =P +iQ,
=1 "

ie.,

13 1

[e7@f(~1+iy)—e“f(1+iy)]e ¥ dy +f (x +i6)ef(x +i5) dx.

-1

I(f;w):P+iQ+if

0
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P

Because of (7) we conclude that

— b

1 1
II5] ‘f £ (x +i8)el @+ dx J f(x+i8)el“* dx
4 -1

A

1
< e—wf?j If (x +16)| dx < Mel&=),

-1

Thus, I; — 0 when § — +00, and

1 +00 . t ) t
I(f;w)=P+iQ+ — Cr1+i—)—eTf(—-14+i—)|e""dt. 8
(f;w) iQ iwL [e f( 10)) e f( 1w)]e t 8
In this way we proved the following result:

Theorem 2.1 ([35]). Let f be an analytic real-valued function in the half-strip of the complex plane, —1 < Rez < 1, Imz > 0, with
possible singularities z, (v =1,...,m) in the region G5 = intT}, such that (6) holds. Supposing that there exist the constants M > 0
and & < w such that the condition (7) holds for sufficiently large &, we have (8).

The obtained integral (8) in Theorem 2.1 can be solved by using the Gauss-Laguerre rule.
In order to illustrate the efficiency of this method we consider a simple example — Fourier coefficients (2), with f(t) =
1/(t? +£2)™ (m €N, & > 0). Thus, we are interested in the integrals

1
alf)= f fe*™dx,  w=km.
-1

According to (8), for 1 < m < 3, we have

NG O . . .
() =P+iQ+ =~ L [ (1+i)=f(—1+i)Jeae,

where, in our case, we have
T

7671{7“:, m=1,
e
) (1 +kme)
— i) — H ikmz | —kme —
flz)= YO P+1Q—21r1§:ei§{f(z)e }_ 2 & m=2,
(3 + 3kme + k*m?e?) . me3

8¢5

For calculating c5(f), c1o(f) and c,o(f), when & = 1 and ¢ = 1072, we apply the n-point Gauss-Laguerre rule forn=1,...,7
nodes. The corresponding relative errors in quadrature approximations are given in Table 1. Numbers in parentheses indicate
decimal exponents. As we can see the convergence is faster for larger k (and smaler €).

Table 1: Relative errors in n-point Gauss-Laguerre approximations of ¢ (f) for k =5,10,40 and ¢ = 1 and 1072

k=5 k=10 k=40
n e=1 e=10" e=1 =107 e=1 e=10"
1 1.11(—2) | 1.69(—9) 2.60(—3) 1.28(—10) || 1.59(—4) 7.91(—13)
2 || 3.48(—4) | 1.38(—10) || 2.56(—5) 3.40(—12) || 1.04(=7) 1.45(—15)
3 || 2.12(-5) | 8.83(—12) || 2.71(=7) 1.02(—13) || 5.78(—11) | 3.35(—18)
4 || 3.84(=7) | 1.03(—13) || 3.25(—9) 3.21(—15) || 5.45(—=14) | 9.92(—21)
5 || 3.49(—8) | 7.80(—14) || 1.29(—10) | 8.69(—17) || 8.20(—13) | 4.48(—22)
6 || 8.46(—9) | 9.35(—15) || 4.06(—=12) | 2.94(—19) || 4.77(—12) | 2.39(—21)
7 || 1.61(—9) | 6.62(—16) || 1.65(—13) | 2.21(—19) || 5.40(—14) | 2.75(—23)
Table 2: Gaussian approximation of the integral ¢, (f)
k e=1 e=10""

5 |[ 4.0039258346130827412(—3)
10 || —1.0100710270520897087 (—3)
—6.3313694112094129150 (—5)

1.553332097827282899812027 (+6)
1.507753137017524820873537 (+6)
1.008860345037773704075638 (+6)

Approximative values obtained by 7-point Gauss-Laguerre rule are presented in Table 2. Digits in error are underlined.
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Now we consider the Fourier integral on (0, +00),

F(f;w)= J f(x)e" dx,
0

ro= [ (e 0 (5))

which means that is enough to consider only the case w = 1.
In order to calculate F(f; 1) we select a positive number a and divide the integral over (0, +00) into two integrals,

which can be transformed to

Ff0= f f(x)e”dx+f f e dx = Li() + Ly(f),
0 a
where 1 ~
Ldf):aj flat)e™ dt and Lz(f):J flx)e™ dx.
0 a

For calculating the second integral L,(f) we use the complex integration method over the closed circular contour C, presented in
Fig. 2 (right).

Theorem 2.2 ([35]). Suppose that the function z — f(z) is defined and holomorphic in the region D = {z € C|Rez > a >0, Imz >
0}, and such that

A
@)l =< Pk when |z] — +00, O]
2
for some positive constant A. Then
+00
Ly(f) =iei“f fla+iy)e?dy  (a>0). (10)
0
In this case, by Cauchy’s residue theorem, we have
a+R m/2 0
f fGx)e™dx + J [f=)e],_, pooRie” d6 +f fla+iy)e@idy =o. an
a 0 R

Let z=a+Re, 0 < 0 < /2. Because of (9), we have that

If)l < —— = 4 b3
la+Rcos® +isinf@| a2+ 2aRcos@ +R2 Va2 +R?

(0<6<m/2).

Using Jordan’s inequality sin 6 > 26 /7, when 0 < 6 < 71/2, we obtain the following estimate for the integral over the arc

/2 n/2
iz PN i —Rsin n A T —
L [f(z)e ]Z:HReisRleedO SL |f(a+Re9)|e R SRdGSE.ﬁ.E(I_e R)—>O,

when R — +00, and then (10) follows directly from (11).
In the numerical implementation we use the Gauss-Legendre rule on (0, 1) and Gauss-Laguerre rule for calculating L, (f) and
L,(f), respectively.

3 Computing Integrals of Highly Oscillatory Special Functions

The idea on complex integration methods has been exploited in many papers, which are dealing with integrals of special functions,
in particular with a highly oscillatory Bessel kernels (cf. Chen [4, 5, 6, 7, 8], Kang and Xiang [30], Xu, Milovanovi¢ and Xiang [53],
Xu and Milovanovié¢ [52], Xu and Xiang [54], etc.). For example, Chen [4] considered the numerical evaluation of the integrals
on (a,b), 0 < a < b, involving highly oscillatory Bessel kernel J,,(wx), where J,(wx) is the Bessel function of the first kind and
of order v(> 0) and w is a large positive parameter. Using the integral form of Bessel function and its analytic continuation, he
applied the complex integration methods to transform these integrals into the forms on [0, 400) that the integrand does not
oscillate and decays exponentially fast, and which can be efficiently computed by using Gauss-Laguerre quadrature rule.

Evaluation of Cauchy principal value integrals of oscillatory functions was also considered in such a way by Wang and
Xiang [50], as well as applications to the computation of highly oscillatory Bessel Hilbert transforms [52]. We mention also the
corresponding applications in solving Volterra and Fredholm integral equations with highly oscillatory kernels (cf. [13], [23],
[32].

Recently, Xu, Milovanovi¢ and Xiang [53] developed a method for efficient computation of highly oscillatory integrals with
Hankel kernel,

b +00
Il[f]:J- fOOHP(wx)dx  and Iz[f]:f fOHD (wx)dx, 12
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for w > 1 and b > a > 0. Using the integral form of the Hankel function for x > 0 (see [20, p. 915])

9 eilex—5r5) [ it -1
HO(wx) =\ ———— (l+ ) Tprretde,
nwx T(v+3) Jo 2wx

they obtained the following integral representations for the previous integrals:

9 e-in@vn/4 [P i ) o e-in@v/a [F° i i
Il[f]= 57[‘(1;4.%) L f(x)x g(x)emx dx and Iz[f]= Eir(vﬂ_%) J; f(X)X g(x)euux dx,

where

2wx

+00 . 1
g(X):J (1+71t ) Pe-ietdt. (13)
0

Supposing that f be a holomorphic function in the half-strip of the complex plane, a < Re(z) < b, Im(z) > 0, as well as
that there exist two constants C and wy, such that |f(x +1iR)| < Ce®°k, a < x < b, with 0 < w, < w, the integral I,[f] can be
reduced to (see [53])

i \lTe—in(2v+l)/4
LIfl=—\ ——=——(G(a)—G(b)), 14
o\ 7o T(r+1)
where oo
G(c):ei“CJ F(c+ it)e_‘dt. (15)
o w

Really, (14) follows after an application of the complex integration method over the contour I' = 9D =T, UL, UT; UT} (see Fig. 3
(left)), where D is the region

D={zeC|a<Re(z)<b, 0<Im(z) <R}.

In this case, the integrand F(z) = f(2)z7/2g(z) is a holomorphic function in D, such that fﬁ UL F(z)el** dz = 0.
Y y
A A
a+iR I3 b+iR I
<< R <<
FQ rz
Y A
Iy rY A
&
I's
»P—=—-- X - » X
0 a F] b 0 & r 1 a
Figure 3: The contours of integration I' = 9D (left) and I' = 3(G \ G’) (right)
Regarding the assumptions we can see that
‘ j F(z)el**dz | < J |F(2)e?||dz| < CMe @ @R(h—q) >0 as R— 400,
T3 I3
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ie., fr3 F(z)el*”dz — 0 as R— 400, so that

J F(2)e*dz = — lim f F(2)el* dz
I R=>teo ) unur,

R R
lim {{ F(a+iy)ei°’(““y)dy—if F(b+iy)eiw(b+iﬂdy}
0 0

R—+00

. +00 . +00
= o) e [

L (Ga) = G(b),
w

where

G(c) =e** Lwo F(c + it)e_' dt.

b 9 ein(2ve1)/4 _
Il[f]zj‘ f(x)Hgl)(wx)dxz\inlJ. F(z)e‘“zdz,
a Tw F(v+ ,) N

2

Thus, we have

ie., (14).
Similarly, using a circular contour like one in Fig. 2 (right), the second integral in (12) can be reduced to

+00 o i Fe—in(2v+l)/4
L[f] =J; FOIH(wx)dx = > EWG(G)-

Since F(z) = f(2)z ?g(z) and g(x) defined in (13), after certain transformations, G(c) can be transformed to (see [53])

c + 7t i iz
G(c) = el c+—t+ —s) et e dt ds.

w 2w

For computing this double integral, in [53] we used two classical Gaussian quadrature rules

+00 n
f hGw,(x)dx = Y AGRGO) +RO[R], €=1,2; 16)
0

one with respect to the Laguerre weight w,(t) = ™" and the second one to the generalized Laguerre weight w,(s) = s*"/%e™*.
The coefficients in the three-term recurrence relations for the corresponding orthogonal polynomials,

¢ Oy, ( 0,
(0 = (x— a0 - B0 (%), k=0,1,...,

with Tr(é)(x) =1, n(l)(x) =0, are given by

W =2k+1, B =1, B =k
1 1 1
(2) _ = (2) _ = (2) _ _ =
—2k+v+2, N —F(v+2), N —k(k+v 2),

respectively. With these recursive coefficients, it is easy to compute quadrature parameters in (16), the nodes xiei and the weights
(Christoffel numbers) A(rf}(, using the well-known Golub-Welsch algorithm [19] (see also [33, p. 100]), with the Jacobi matrices

0 l
NONIN/2 0
[2© 0] [3©
1 ay 2
Jalw) = [ (t=1,2).

/p©
ﬁn—l
/5O a®
- o ﬂnfl A

This algorithm is implemented in our MATHEMATICA package OrthogonalPolynomials (see [9], [38]), which is freely down-
loadable from the web site: http://www.mi.sanu.ac.rs/ gvm/.
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Now, an application of quadrature formulas (16) to (14) gives

LLf1=Quyn, [f 14 Ry, 1, [,

where the cubature sum Q,,, ,,[f] (with n; nodes in the first quadrature and n, nodes in the second one) is given by

P b IS ) e
Quyn,lf1= \ o 17T ZZA,”kAnz,[w(xnl,k,xnz,,a) o x? b)),

k=1 j=1
where _
f(c+ it) i i v—1/2
— (C + gf + Es) .
1
(c+1c)
Theorem 3.1 ([53]). Suppose that f is a holomorphic function in the half-strip of the complex plane, a < Re(z) < b, Im(2) =0,

and there exist two constants C and w, such that |f (x + iR)| < Ce®*%, a < x < b, with 0 < w, < w. Then the error bound of the
method for the integral I,[f ] is given by

o(t,s;0) ="

_3_
LIf1=Quun[f1=0(0727%), w>1,
where T = min{n,,n,}.
A similar result has been proved for the quadrature method
= i 2 e @A 1) e 0 @
=—\|—— AT AT o(x 7 x T s a
Q“Lﬂz [f] w Tw F(v+ %) ; = ny,k nz,_/sa( ny,k> “ ng,j )
for calculating I,[ f ].

Theorem 3.2 ([53]). Suppose that f is a holomorphic function in the complex plane {O <arg(z) < 71:/2}, and there exists some
constant C,, such that |f (z)| < C; as |z| — +00. Then the error bound of the method for the integral I,[f ] is given by

LUf1=Quy n[f1=0(077), 0> 1,
where T = min{n,,n,}.

As we can see the convergence of quadrature sums Q,, ,,[f] and 6,%2 [f]to I,[f] and L[ f], respectively, is very fast,
especially for larger w.
In the sequel we mention another approach for computing the Bessel transformations

=.f f(x),(wx)dx  and Iz[f]:j f()T,(wx)dx,
0 0

where a > 0 and v is an arbitrary nonnegative number. The method has been recently developed in a joint paper by Xu [52] and
it is based on the use of the following important identity
1

J,(z) = @ma)i2

{e%(”%)”iwoyv(ziz) +e’%("+%)"iwoyv(—2iz)}, a”

where W, ,(2) is the Whittaker W function, as well as its asymptotic property as z — 0,
z'2logz, y=0,
Worla)~ ] s ; »>0. a9

Based on an idea of Chen [8], we rewrite the integral I,[f ] as a sum I, [f ] = I;[f ]+ I;[f ], where

a 2n—14m, f(k)(O)
Lifl1= f F(x)J,(wx)dx and I/[f]= T x*J,(wx)dx, (19)
0 k=0 :
where n; =[] is the smallest integer not less than v, and
2n—1+ng k) 0
F(x)=f(x)— fT()xk. (20)

k=0
The integral in I[f ] can be expressed in the explicit form [20, p. 676]

Zk ( k+v+1

j x*J (wx)dx = {(k+ v—1)J, (cua)sk Lo l(wa)f.]v,l(wa)sgz(wa)},
0

@k IT( v—l;rl )

where 5(2) "(2) denotes the second kind of Lommel function.
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For the integral I;[f ] we put
Fy(x) = F()x™2e7 W, (—2iwx) and  Fy(x) = F(x)x"2e“*W, ,(2iwx), (21)

where F is defined in (20). Now, according to the identity (17), we can see that

1 1 . 1 1 .
F(2) (wz) = ———{ez2FF(g)z 12w, (2iwz) +e 20+ F(2)z7 12w, (—2iwsz)
Vanw ’ ’
1 { — 1+ d)mi i ) Dymi —i
= ——__le3 Pnip (z)em)z +ez(v+2)mF (z)e fwz |
V2nw ! 2

In order to calculate the integral I;[f] defined in (19) we suppose that f is a holomorphic function in the half-strip of
the complex plane 0 < Re(z) < a and define we define the regions G = {z eC | 0 <Re(z) <a 0<Im(z) < R} and

G = {z ecC | |z] <€, 0 <arg(z) < 7r/2}, such that G contains G, i.e., 0 < ¢ < min{a,R} (see Fig. 3 (right)). Then, we
note that z — F,(2)e'** is holomorphic in G \ G’ (see (18) for behaviour at z = 0), as well as the functio_n z — F,(z)e7**
in a symmetric region with respect to the real axis. Therefore, by the Cauchy Residue Theorem, fr Fi(z)e'* dz = 0, where
'=90(G\G)=T, UL UL UL, UT; (displayed in Fig. 3 (right)), as well as fr* F,(2)e % dz = 0 over the symmetric contour I'*
(w.r.t. the real axis).

Applying the complex integration method Xu and Milovanovi¢ proved the following result:

Theorem 3.3 ([53]). Assume that f is a holomorphic function in the half-strip of the complex plane, 0 < Re (z) < a, and there exist
two constants C and w,, such that for 0 < w, < w, the inequalities

a

a
J |F;(x +iR)|dx < Ce®*® and f |Fo(x +iR)|dx < Ce®oR
0 0

hold, where F, and F, are defined in (21). Then the integral I,[ f ] can be rewritten in the following form

f F(x)J,(wx)dx = {e%”*%)’“[f [F2, @]~ I[F;,0]] + 20 [F;, 0] - I[Fl,a]]},
0

2nw

where

iy ipy _ jemioy [T ipy _
17, y]= = Fi(y+>)e?dp and I[F,y]="— Foy = )e dp, 22)
0 0

and F; and F, are defined in (21).

A similar result has been obtained for the integral I,[ f ] over (0,+00) [53]. Also, numerical quadrature rules of Gaussian
type for computing the line integrals I[F;,a] and I[F;,0] (j = 1,2) have been analyzed in detail in [53].
In the case a > 0 these integrals can be evaluated by the n-point Gauss-Laguerre quadrature rule as

alwa ja—iwa
1€

n . .
ix ie ixy
I[F;,a]~ Q?[Fl’a] == E kal(a + Z) and I[F,,a]~ Q;‘[FM] == E kaz(a— ;)
k=1 k=1

However, when a = 0 the behavior of the functions F; and F, at z = 0 should be taken into account. According to (18) we
have introduced the functions

Fi(x)
1’ , v=0,
ogx
L(x):
! Fj(x)
]7, v>0,
xa

for j = 1,2, where a =[v]— v, and then we concluded that for v > 0 the previous integrals can be evaluated by the generalized
Gauss-Laguerre quadrature rule (with the parameter ), e.g.,

I+a 1

i (77 ip i\ ip i ix?
- ElerPdp=( — Z)pae=P dp ~ Q" == E a Zk
I[Fl’o]_wJ; Fl(w)e dP—(w) J;J Ll(w)P € dP~Q1[p1,o]_(w) k:kaLl(w).

Finally, the most complicated case is when a = 0 and v = 0. Then for the integral I[F;,0] we have

oo

. +00 . . + . .
I[F;,0]= iJ- Fl(%)e"’ dp = if Ll(%)log(%)e’l’ dp. (23)
0 0

Evidently, the Gauss-Laguerre (GL) quadrature rule is not feasible, because of logarithmic singularity. However, if we rewrite the
integral I[F;,0] as a linear combination of two integrals,

I[F,,0]= i{fo Ll(%)[log(i)—l +p]e_p dp—J; Ll(%)(p—l—logp)e_p dp},
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then, we can apply the ordinary Gauss-Laguerre rule to the first integral and the so-called logarithmic Gauss-Laguerre (logGL)
rule to the second one. Thus, the application of such two n-point rules leads to the following approximate formula

. n . ) n G
I[F1>O] ~ Q?[F],o] = i{kZWkLl(%)[log(i) —1+ Xk] —;Wf(%)}’
=1 =

where x,‘f and wf, k=1,...,n, are the nodes and weights of the n-point logGL-rule. A similar formula can be done for I[F,,0]
(see [53]).
The last quadrature rule on (0, +00) with respect to the weight function

wi(x)=x*(x—1—logx)e™ on (0,+00),

has been constructed recently by Gautschi [16], using his MATLAB package SOPQ for symbolic/variable-precision calculations
(see Appendix B in [17]). Graphics of this weight for « = —1/2,0,1/2 are presented in Fig. 4. Following Gautschi [16], the

y
‘,
04
03
0.2

0.1

> X

O'O: 1 2 3 4 5 6

Figure 4: Gautschi’s logGL weight function for a = —1/2 (red line), a = 0 (black line), and a = 1/2 (blue line)

moments with of the weight function x — wS(x) on R are
+00
U = J x(x —1—logx)e ¥ dx =T(a+k+1Da+k—y(a+k+1)], k>0,
0
where 1(x) = I’(x)/T(x) is the logarithmic derivative of the gamma function, as well as the modified moments relative to the
system of monic generalized monic Laguerre polynomials f;")(x),
o [a—y(a+ 1) (a+1), k=0,
my :J x”‘(x—l—logx)fi“)(x)e’x dx{ al(a+1), k=1,
’ (D k—DIT(a+1), k>2.
Using these moments and the previous mentioned MATHEMATICA package OrthogonalPolynomials we can obtain the
recursive coefficients af and B¢. For example for a = 0, we have
W =1 o= 3y+5 o = 20y*4+106y° + 11172 + 32y — 1
N y+1 2 (y+1)(4y3 +14y2+5y—1)

o© = 403217 +48480y° +176768° +237320y" +72624y° —31006y° — 8839y + 2489
3 (473 + 1472 + 5y — 1) (14474 + 110473 + 1652y2 + 184y — 237) ’

§6 = ﬁ_y+1 ﬁc_4Y3+14Y2+5Y—1 G_y(y+1)(144y4+1104y3+1652y2+184y—237)
o =T AT P yy+12 " (473 +14y2 + 5y —1)°

, etc.,

where v is the well-known Euler’s constant (see [53]).

Theorem 3.4 ([53]). If the functions F,(x) and F,(x) defined by (21) satisfy the condition of Theorem 3.3, the error bound of the
method for the integral I, [ f ] can be estimated as

@ oty = { 0T g, v =0,

h[f] 1 - O(w“z”_3/2), > 0.
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An alternative approach for computing the integral (23) has been also developed in [53]. Namely, we constructed the
so-called universal (direct) quadrature formulas of Gaussian type

+oo n
f g(t)e™ de = > Ag(7) +Ry(), 24)
0 k=1

which are exact for each g(t) = p(t) + q(t)logt, where p(t) and q(t) are algebraic polynomials of degree at most n — 1. These
quadrature rules can calculate integrals with a sufficient accuracy, regardless of whether their integrands contain a logarithmic
singularity, or they do not. Thus, an application of such rules avoids the separation into singular and non-singular parts in
integrands, as well as an additional integration of such a singular part using some special logarithmically weighted quadrature
formula like one w.r.t. the weight function wg(t). Thus, with the universal quadrature formula (24) we can directly calculate the
integrals I[F,, y] and I[F,, y] given by (22) in Theorem 3.3; for example,

I[F,y]~ ie%yzn:AkFl(y + %")
k=1

Unfortunately, the construction of such universal quadrature formulas is not simple. Namely, there are not elegant tools
for their construction like Golub-Welsch procedure in the case of construction quadrature rules with a polynomial degree of
precision. In this non-polynomial case, in order to construct the quadrature formula (24), we must solve the following system of
2n nonlinear equations

n +00
ZAk%(Tk):J pi(t)e™dt, j=1,2,...,2n, (25)
k=1 0
in 7, and A, k =1,...,n, taking an orthonormal system {@,, ¢, ..., ¥,,} obtained from the system of 2n linearly independent

functions U = {1,t,...,t" !, logt, tlogt,...,t" ' logt} by an orthogonalization process (cf. [33, pp. 75-77]). Since ¢,(t) =1,
the right-hand side in the previous system of Eqs. becomes

J ()i (e dt = . J '
i(t t)e tdt
0 ’ ' 0, j#o.

Otherwise, a direct use of the non-orthogonal system of the basis functions U leads to a very ill-conditioned iterative process.

The orthonormal system of functions {(;, ¢,, ..., ¥,,} can be considered as a Miintz system {t?, t* ..., t*>-1} on (0, +00),
with A; =A4,,;=j,j=0,1,...,n—1. Then, we can see that ¢;(t) = fj,l(t), j=1,...,n, are normalized classical Laguerre
polynomials. So, for different n € N, we obtain the following orthogonal functions:

1° n=1:
V6
P1()=1, @y(t)= 7(Y+108 t);

2° n=2:

6
=1, ¢(O0=t=1, ¢s()=\ —(r+1—t+logr),

6
a(t) =\ m{G—y(TEZ —12)—[r* +y(6—nH)]t +[12—n? + (2> — 6)t ]log t};

3 n=3:

(£2—4t+2), <p4(t)=1 3

D) m(6+4)/—8t+f2+410gt),

PO =1, @y()=t—1, s(t) = %
s(t) = c5{24—2n2 +y(21 -2+ [2r% =27 +y(2n® —15)] ¢ + (9 — n)e? + [ (2% — 15)t — 272 +21]logt},
e(t) = c6{504 —517% + 2y (279 —48n* + 2n*) + 2[4n* — 247% — 153 — y(4n* — 667 + 261) | t

+[54+24n* —3n* +y(72— 277 + 21 ] £

+[(72—277% + 27*) 2 — 2(261 — 667> + 4n*) t + 2(21* — 487* + 279) |log t},

where

6 3
C. = d ¢ =
5 \J—1080+549ﬂ:2—84ﬂ:4+4ﬂ:5 anc e \J 159408 — 6561072 + 27277 + 158476 — 21678 + 8710

etc.
For solving the system of equations (25) we use the well-known Newton-Kantorovich method, with quadratic convergence,
but the main problem which then arises is how to provide sufficiently good starting values. Our strategy in the construction is
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based on the method of continuation, starting from the corresponding standard Gauss-Laguerre formula (with a polynomial
degree of exactness). Numerical values of parameters 7, and A, k =1,...,n, for 1 <n < 6 was presented in [53]. For some
additional details on the generalized Gaussian quadratures on a finite interval and for Miintz systems of functions see [36], [39]
and [37].

4 Gaussian Quadrature Formulas with a Modified Hermite Weight

. . . . . . - . 2
I this section we consider the Gaussian quadrature formula on R with respect to a modified Hermite weight x — ™" by the

square root term x — 4/1+ax + f3x2, i.e
2
—X

e

\/1+ax+ﬂx2’

w@P(x) = (26)
with the real parameters a and f3 such that a® < 4f3.

Remark 1. The weight function w'*)(x) has the quasi-singularities near to the real axis if > — 4. In the limit case, wiea?/ D(x)
has a singularity, i.e., a pole of the first order at the point —a/(2f) on the real line.

Several methods for modified weights (measures) by the rational terms (linear and quadratic factors and divisors) can be
found in [15, Subsection 2.4], as well as the corresponding MATLAB software in [17, pp. 19-27].
Thus, we are interested here in constructing Gaussian quadrature rules of the form

fx)
oo M 1+ax+px2

where A, = A(f*ﬁ) are weight coefficients (Christoffel numbers), and R, (f) is the corresponding remainder term, such that
Ry(f) =0 for each f € P,y_;.
Remark 2. In 1997 Bandrauk [3] stated a problem how to evaluate the integral

+oo

e dx =D A f(x,)+Ry(f), @n
v=1

+00
H, H,
o= | M) ey, 28)
Vi1toax+ ﬁxz
where H,,(x) is the Hermite polynomial of degree m, defined by
dﬂ
H,(x) = (1)’ i — (), n=o.

Alternatively, the question was how to find computationally effective approximations for the integral (28). The function
X — Hm(x)e”‘z/ 2 is the quantum-mechanical wave function of m photons, the quanta of the electromagnetic field. The integral
(28) expresses the modification of atomic Coulomb potentials by electromagnetic fields. In the case m = n = 0, the integral I('i ’éj
represents the vacuum or zero-field correction (for details see [2, Chaps. 1 and 3]).

Evidently, for a = § =0, the integral I expresses the orthogonality of the Hermite polynomials, i.e, I2% = 2"m!y/75,, ,,
where §,, , is the Kronecker delta.

A solution for Ig ’f was derived by Grosjean [21] in the following form

ap +°°[(4/5 ao? /4/3 J+°Q_ . (@r+2j) a \*"
I‘*"‘ﬁjzzo It D o g () o

where

4B —a?
¢,;=—r+log4—log 252 +2H;+H,; —2H,, 5,

y (=0.57721566490...) is Euler’s constant, and H ; is the j-th harmonic number,

1 1
Hy=1+-+4-+-.
2 J
Also, he gave a study of Im 0> m=1,2,..., as well as a five-term recurrence relation for these integrals.

The problem from Remark 2 was also considered in [35], with the monic Hermite polynomials H, (x) = 27¥H,(x) in (28).
For constructing the coefficients a; and B, k =0,1,..., in the three-term recurrence relation

T (¥) = (x — @) m(x) = By (x), k20 (mo(x) =1, p_4(x) =0) (29

for polynomials 7, (x) orthogonal on (—oo, c0) with respect to the modified Hermite weight function (26), it was used the
discretized Stieltjes-Gautschi procedure with the discretization based on the standard Gauss-Hermite quadratures,

+00 +00 P(X)
f P(OWeP(x)dx = — ) ~'dx
oo oo V1+ax+fBx?
N AP(T)

14

S S
o/ 1+atd +p(ri)?
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where P is an arbitrary algebraic polynomial, and 7}’ = 7, are nodes (zeros of Hy(x)) and

A — INYN - m
kT NHy_(7,)?

are the weights (Christoffel numbers) of the N-point Gauss-Hermite quadrature formula (cf. [33, p. 325]). Such a procedure
is needed for each of selected pairs (a, ). The recurrence coefficients for k < 20 and @ = f§ = 1 were presented in [35]. The
corresponding Gaussian approximations were tested in double precision arithmetic in two cases: m = 3, n = 6, and m = 10,
n=15.

In this section we give a simple way for constructing the coefficients in the three-term recurrence relation (29), using the
modified method of moments, realized in the MATHEMATICA package OrthogonalPolynomials ([9], [38]) in variable-precision
arithmetic in order to overcome the numerical instability. All that is required is a procedure for numerical calculation of the
modified moments in variable-precision arithmetic. In the same time, we give answer to the problem stated in Remark 2.

In our case we use the first 2N modified moments with respect to the sequence of the monic Hermite polynomials, i.e.,

T Hx)
my =m®P = — kT e*dx, k=0,1,...,2N—1, (30)

V1+ax+px2
in order to get quadrature rules of Gaussian type (27) for each n < N, using the Golub-Welsch algorithm [19]. For the sequence
{Hk(x)}k€N the following recurrence relation Hkﬂ(x) = ka(x) (k/Z)H,< 1(x) holds, with Ho(x) =1 and Hl(x) =x.
First we transform the trinomial in the integral (30) to a canonical form

4B —a?
1+ax+px*= —pP+q?], p=—, q= 1+q*=p),
ax+px*=p[(x—pl+q’], p B 1= g WHT=P)
and then we apply the so-called double-exponential (DE) transformation
x=u(t)=p +qsinh(g sinh t),
in order to reduce the modified moments (30) to
+00
my = m*P = g\/pz T qzj H(u(t)e™ coshedt, k=0,1,...,2N—1. (31)

The crucial point in this DE transformation is the decay of the integrand be at least double exponential (~ exp(—C exp [t|) as
|t] = +00, where C is some positive constant. For integrals of such form of an analytic function on R, it is known that the
trapezoidal formula with an equal mesh size gives an optimal formula (cf. [25, 34, 41, 42, 47, 48, 49]).

For calculating the modified moments (31) we apply the trapezoidal formula with an equal mesh size h, i.e.,

h +00 . .
my[h] = ”7 VP EE Y HuGh)e 0 coshjh, k=0,1,...,2N 1.

j=—00

Since the integrand decays double exponentially, in actual computation of these sums we can truncate the infinite summation at
k =—M and k = M, so that

my ~ m[h; M] = \/p2 +q2 Z Hk(u(]h))e"‘(]h) coshjh, k=0,1,...,2N—1. (32)
=M
Because of some symmetry in the expression for m;[h; M], (32) can be implemented in the following way. Namely, if we put
. . T . .
t;=jh, &= qsmh(a sinh t]-) , ¢;=2cosh(2pg;), s;=2sinh(2p¢&);),
we have u(t;) =p + &, u(—t;) = p— &, u(0) = p, and therefore

m[h; M]= \/p2 Tqe {Hk(p)+2e i cosh(t)) [He(p +&)e % + Hi(p—&; )ez"‘sf]} k=0,1,...,2N—1.

j=1
Lemma 4.1. Let
0P, E) =Hy(p+E)e P + Hy(p—E)e®, 4y (p, &) =Hy(p+E)e P —H(p—&)e®*, k=0,1,....

Then, the following recurrence relations

P8 = Pop O (B O-ERB.E, k=01,..., (3
P8 = PO PO -Eap.8, k=01, (30

hold, where ¢o(p, &) = 2cosh(2p&), o((p, &) = 2sinh(2p&), and ¢_,(p, &) = _,(p,&) =0.
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A proof of this lemma can be done using the three-term recurrence relation of the monic Hermite polynomials.
According to Lemma 4.1 we see that

h — u,
m[h; M]= %¢p2+q2eﬂ’z {Hk(p)+Ze il cosh(r,-)gok(p,g)}, k=0,1,...,2N — 1. 35)

j=1

In the sequel, as an example, we take a = § = 50/13 in the weight function (26) and N = 40. Then we have p = —1/2 and
q = 1/10, which means that the integrands in (30) have quasi-singularites at p + iq in the complex plane.

In order to illustrate the effect of the before mentioned double-exponential decay of integrands, we present the graphics of
integrands for k =0, 1,2, 3 (left) and k = 65 (right) in Figure 5. The values of all integrands in (31), k =0,1,...,79, at t = 2.1,
are:

{1. x 107321 3.x 107320, 7. x 107319, 2. x 107317, 5. x 10—316’ 1.x 107314 4.x 107313, 1. x 107311, 3. x 10731, 8. x 10739,
2.x107%%7, 6. x 10739 2, x 107304, 4. x 10739 1. x 10731, 3. x 107390, 8. x 107, 2. x 10727, 6. x 1072, 2. x 1074,
4.x1072%3, 1.x 10721, 3.x 1072, 8. x 10728, 2. x 107287, 6. x 107280, 2. x 107284, 4.x 107283, 1. x 107281, 3.x 107280,

8.x 107279, 2.x 10727, 6.x 10778, 1.x 10774, 4.x 107273, 1.x 10727}, 3.x 10727°, 7. x 1072%%, 2. x 10727, 5. x 107266,
1.x 107204 4. x 107263, 1. x 107261, 3.x 107200, 7. x 107259, 2. x 107257, 5. x 1072°0, 1. x 1072%%, 3. x 1072%3, 8. x 1072%2,
2.x 10720, 6.x 10724, 2.x 107247, 4.x 10724, 1. x 1072*, 3. x 10724, 7. x 107242, 2. x 10724, 5. x 1072, 1. x 107%7,
3.x107%3% 9. x 10735 2. x 10723, 6. x 107232, 2. x 107230, 4. x 1072%, 1. x 1072¥, 3. x 1072, 7. x 1072%, 2. x 10723,
5.x 107222, 1.x 10722, 3.x 107217, 8.x 10728, 2. x 10726, 5. x 1072!%, 1. x 107213, 4.x 107212, 9.x 10721}, 2.x 10727 },

and their maximal value is 2. x 1072%°, Similarly, the maximal absolute value of all values at t = —2.1 is 4. x 10722,

y y
A
2
10F
i
0.5k n
| ‘
X
‘ \ ‘ . ) 1 1 2
) 21 i 7 & X Uv
-1
_0.5 L
")

Figure 5: (Left) The integrands in mi“’ﬁ) for k = 0 (red line), k = 1 (blue line), k = 2 (brown line), and k = 3 (black line) for a = = 50/13;
(Right) The integrand in mg;’ﬂ) x 10735 for a = f = 50/13

The corresponding MATHEMATICA code, which includes our package OrthogonalPolynomials, can be done in the following
form:

<< orthogonalPolynomials*®
(* Input of parameters alpha, beta, and Nmax *)
alpha = 50/13; beta = 50/13; Nmax = 40;
alphaH = Table[0,{k,0,2 Nmax}]; betaH = Prepend[Table[k/2,{k,1,2 Nmax}],Sqrt[Pil];
HerM[x_] := aMakePolynomial[2 Nmax,alphaH,betal,x,ReturnlList -> Truel;
=-alpha/(2 beta); g= Sqrt[4 beta-alpha~2]/(2 beta);
ult_] := p + q Sinh[Pi/2 Sinh[t]];
fMH[t_,k_] := Pi/2 Sqrt[p~2+q~2] HerM[u[t]][[k+1]1Exp[-ult]~2]Cosh[t];
(* Print values of integrands of all moments at t=2.1 %)
Tp = Table[N[fMH[21/10, k], 1], {k, O, 2 Nmax-1}]; Print[Tpl; Max[Abs([Tp]l]

The following code represents a procedure (DExpT) for calculating all moments (35), using the recurrence relations (33) and
(34), as well as a command for calculating the recursive coefficients in (29), a; and f, k =0,1,...,N —1 (lists alphaM and
betaM), by the Chebyshev methods of modified moments (aChebyshevAlgorithmModified):

Options [DExpT] = {WorkingPrecision -> $MachinePrecision};

DExpT [Pol_,b_,M_,p_,q_,Nmax_,0Ops___] :=

Module [{wp,h,fac,momM,vt,j,xi,cvt,ec,c,s,phiO,phil,phi2,psiO,psil,psi2,k},
{wp} = {WorkingPrecision} /. {Ops} /. Options[DExpT];

Block [{$MinPrecision = wp}, h = b/M; fac = N[Pi/2 Sqrt[p~2+q~2]Exp[-p~2],wpl;
momM = N[Pol[p], wpl; vt = N[Table[j h, {j,1,M}], wpl;
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xi = q Sinh[Pi/2 Sinh[vt]]; cvt = Cosh[vt]; ec
c = 2 Cosh[2 p xil; s = 2 Sinh[2 p xil; phiO =
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c:

phil = p ¢ - xi s; psi0 = s; psil = p s - xi c;

momM [
momM [
For[k
phi2
psi2
momM

Retur:

[1]1] = momM[[1]] + Totallec
[2]1] = momM[[2]] + Totallec
1, k <= 2 Nmax - 2, k++,
p phil - k/2 phiO - xi psil;
p psil - k/2 psiO - xi phil;
[k + 2]1]

phiOl;
phill;

n[momM] ;1;1;

momM[[k + 2]] + Totall[ec phi2];
phiO = phil; psiO = psil; phil = phi2; psil = psi2;]; momM = h fac

Exp[-xi~2] cvt;

>

momM;

momM = DExpT[Function[x,HerM[x]], 21/10, 800, p, q, Nmax, WorkingPrecision -> 52];
{alphaM, betaM} = aChebyshevAlgorithmModified[momM, alphaH, betaH, WorkingPrecision -> 52];

As we can see, in this case, the moment integrals are calculated by the trapezoidal rule, taking M = 800 (positive)
equidistant nodes on the finite interval [0, b] =[0,21/10]. In in order to overcome the numerical instability and obtain the first
N =40 recursion coefficients a; and f; with 40 exact decimal digits, we had used the working precision of 52 decimal digits
(WorkingPrecision -> 52). These recursion coefficients for @ = f§ = 50/13 are shown in Table 3.

=

WO ~NOOdWN-O

-3.

-6.

N

-1.
-1.

~

-1.

-

-1.

-1.

-1

-6.

-3.

-9.
-3.

-2.

-3.

-3.

-3.

-3.

-3.

-2.

-2.

-1.

Table 3: Recursion coefficients for the polynomials {7, (-; w(@P))} o =p=50/13

alpha (k)

056007650989553610006858836445558057864E-01

.091135901172070725048795730904031636823E-01

393650751044613184510213541531714004955E-02

.896093622914383390462496451022656640930E-02

209308423360305534840259415165592137550E-02
718837754000391722650945735332100058077E-03

.750720489169099233811949642062773337494E-03

298438968330839486761114881503272529107E-02

.412241831101624089616484008974666521998E-02

536929634325645177722701317932091457588E-02

.429372116400763580863048010758003995197E-02

371654702276508069074812825473119164151E-02

.176798222770504655068245919798468067142E-02
.047335910809081780000034574295255003176E-02
.340981954066187739248307612282341319947E-03

902153058283111921150338986783630810628E-03

.929945437819196532285480021173326789508E-03

631375626543328827099446310229842010077E-03

.972847873088252308562475996047991553534E-03

382315978354561145269552590737997646937E-04
590681123674328669455571404324200078543E-04

.095358678598460476718502577077385730842E-03

041461679283772492661795151991013174894E-03

.493038018253023527313131199875957019916E-03

127157761850318637784558126478989924399E-03

.331307697373371667460005653852087490994E-03

705066401755012230703476782449637934130E-03

.708472613355638464086302889208344266282E-03

876118282811593232978939167314294489251E-03

.726629521970398538846032669091781797121E-03

739541281204642760970291432757018722020E-03

.481647957368403622687805428236969037966E-03

385493240656504254144846089209709418270E-03

.058077360327979878387310350953018114909E-03

891602583824989303750000660963506068601E-03

.527072773248249037028648170239124387933E-03

321882218704978824348409214597430203417E-03

.946133267460015383516991475529693281566E-03

727043261257568539548073321379504740500E-03

.359884433345210740624392306660577854045E-03

PR RPRRPRPRPRPRRPPRPPEPRPPPEPRPEPRPRPPLPOOOONNTNOOTORDPRWONNRERNNN

beta(k)

.372619381077149609357146735045269999374E+00
.245468863371941107162002605406537898164E-01
.464045492492715756061806875559370152332E-01
.302942897121644523552877231408192507139E+00
.709113932903603587555654516890103590942E+00

309675711077846031637617355708075984524E+00

.711933128251153801071850610620211255924E+00
.295423910768401255759852684415586881992E+00
.727067165030535190750968123128118634984E+00
.276650074098969245628776026578674761372E+00
.743791732695879570081833190100403204112E+00
.259693049405470172104203173535811336196E+00
.757791419391763379586773316034897076418E+00
.246792977846921565057499044107858314470E+00
.767670276167376192729000834886725961325E+00
.238344308003691658560233194861394606057E+00
.773406567159667299886098793924001808522E+00
.233910000676667222653908148429153190199E+00
.775587423340927445076726663037241731381E+00
.232721978517029915230829146365560298491E+00
.775014853263387106715308533241278438528E+00
.023393662540638845246860030635602508313E+01
.077250428073515075650921973182315999394E+01
.123676305795445168215946077180108462115E+01
.176878719309650540780247278527980428697E+01
.224052203413264299811344867071655763280E+01
.276447094822281468910882302771173682594E+01
.324466634505785425765285743005522902919E+01
.376002971186171368411809734326371916264E+01
.424878006310961035489193536070686057143E+01
.475581173402593548748610073608230163091E+01
.525256676562352665482501057345643055499E+01
.575205446688666048604769866201807323007E+01
.625583271515342584196983999075092016028E+01
.674890265429714582600860755968340910384E+01
.725846851667865695915038035877920062809E+01
.774642665450064142184409594060804319341E+01
.826043126925382043488200028053223782116E+01
.874463952401863690524176781475423384354E+01
.926172829906529820447076427312396940827E+01

These recursive coefficients enable us to construct the Gaussian formulas (27) for each N < 40.
We return now to the problem (28) given in Remark 2. Note that the integrand x — H,,(x)H,(x)w(*®)(x) in (28) has m +n
zeros on R and very large oscillations (see graphics in Fig. 6).
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Figure 6: The integrand x — H30(x)H25(x)w(“’ﬁ)(x) fora=p =1 (left) and a = p = 50/13 (right)

Using the well-known Feldheim’s linearization formula for Hermite polynomials (cf. Askey [1, p. 42])

min(m,n)

@, = Y (M)(M)2 b0,

v=0
we can transform (28) to
min(m,n) +o0 min(m,n)

m\/n\ v Ho\roy(x) 2 m\/n v
OB = gmtn ( )( )7 m+n—2v e dx = 2m+n ( )( )7"1((1,/5) ,
m,n ; v v)2v o fl T ax +ﬁx2 ; v v)2v m+n—2v

ie., I,O,‘{,[Z can be expressed in terms of the modified moments (30) or approximatively by m,[h; M], i.e.,

min(m,n)

m\(n\ v!
1P & omin Z (v)(v)amm+"7ZV[h;M]7

=0

with some appropriate h and M.

Table 4: Gaussian approximations Qg:)[)zs of the integral Igoﬁzs for a = =50/13 and N = 25(1)30

N Qs

25 3.898244052558028200823864546757694876758 (+35)
26 | —1.427237521561725565254536466961946087101 (+36)
27 | —3.385708554339398400919137631484156473271 (+35)
28 | —6.866138084691156226517445794601480146019 (+35)
29 | —6.866138084691156226517445794601480146019 (+35)
30 | —6.866138084691156226517445794601480146019 (+35)

Alternatively, I,?{,Q can be exactly calculated (up to rounding errors) by applying the N-point Gaussian formula (27), for a
given parameters a and f3, taking the number of nodes N to be such that m+n < 2N — 1. Thus,

N
L~ Q= ZAVHm(xv)Hn(xv)' (36)

r=1

For example, to calculate I;;f}zs we need N > 28.

Taking recursion coefficients from Table 3 we can evaluate nodes and weights (x, and A,) in the quadrature formula (27)
by the function aGaussianNodesWeights from our MATHEMATICA package OrthogonalPolynomials, in this case, up to
N < 40. The corresponding Gaussian approximations of the integral I 358‘/2153’50/ 13 are presented in Table 4 for N = 25(1)30. As we

can see, the obtained results for N > 28 are exact (up to rounding errors). Results in error are displayed in red.
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Abstract The first 60 coefficients in the three-term recurrence relation for monic
polynomials orthogonal with respect to cardinal B-splines ¢,, as the weight functions
on [0, m] (m € N) are obtained in a symbolic form. They enable calculation of
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1 Introduction

In this paper, we consider quadrature formulae of Gaussian type,
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I with

as well as the corresponding system of orthogonal polynomials {nkm k=0
respect to cardinal B-splines as the weight functions on [0, m] (m € N).

Cardinal B-splines play an important role in many problems in approximation
(e.g., spline interpolation, multiresolution approximation, different methods for solv-
ing initial and boundary value problems, etc.). They can be defined recursively
starting from the cardinal spline of the first order ¢;(-), which is the characteristic
function of the interval [0, 1), i.e.,

1, x €[0,1),
0, otherwise

@1(x) :{

Then, the cardinal B-spline ¢, (-) of order m is defined as the convolution

1
wm(X)z(tpm_l*gm)(X)=/R<0m_1(x—t)<p1(t)dt=/0 Om—1(x —1)dt.

It is supported and symmetric on [0, m], i.e., for each x € [0, m], ¢, (x) = @y (M —x).
On each interval [k, k + 1],0 < k < m — 1, the cardinal B-spline of order m is a
polynomial of degree m — 1 and ¢,,(-) € C™~2[0, m].

The (monic) orthogonal polynomials {nim]}::; (with respect to the weight

function ¢,, () on [0, m]) satisfy a three-term recurrence relation
m 0 = ="M — g ), k=0,1,.., )
[m

Vand By [m] are real resp. positive numbers.
[m] _

with 7" (x) = 1 n[m](x) = 0, where o)

The coefficient ,30 may be arbitrary, but usually, it is appropriate to take
S @m(x) dx.

It is known that the nodes x[m] in the Gaussian quadrature rule (1) are eigenvalues
of the symmetric tridiagonal J acobl matrix (cf. [17, pp. 325-328])

om - [gn 0
/ﬁEm] Olgm] ﬁgm]

Jn(om) = £m] O{gm] .. , 3

[ plm]
'Bn—l
[ plml [m]
L o 'Bn—l @,

and the weight coefficients ALmk] are given by Algmk] = ,30 vk 1k =1,...,n, where

Vk,1 1s the first component of the eigenvector vy (— [vk1 ... Wk, W17 ) corresponding
to the eigenvalue xl k I'and normalized such that vk vi = 1. The most popular method
for solving this elgenvalue problem is the Golub—Welsch procedure, obtained by a
simplification of the QR algorithm [15].

Therefore, if we know the recurrence coefficients o« ,Em] and 8 ,Em] in the fundamental
three-term recurrence relation (2), the problem of constructing Gaussian rules can
be easily solved by the Golub—Welsch procedure. This procedure is implemented
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in several packages including the best known, ORTHPOL, given by Gautschi [11].
According to (3), for constructing Gauss—Christoffel quadratures (1) for any number

of nodes less than or equal to n, we need the first n recursion coefficients a,Em] and

B k=0,1,...,n—1.

In general, the recursion coefficients are known explicitly only for some narrow
classes of orthogonal polynomials, e.g., for the so-called very classical orthogonal
polynomials (Jacobi, the generalized Laguerre, and Hermite polynomials). How-
ever, in the case of the so-called strongly non-classical polynomials, for which their
weight function is given explicitly, or implicitly via moment information, the recur-
sion coefficients must be constructed numerically. Such a problem is very sensitive
with respect to small perturbations in the input data. In the eighties on the last century,
Walter Gautschi developed the so-called constructive theory of orthogonal poly-
nomials on R, including effective algorithms for numerically generating recursion
coefficients (the method of (modified) moments, the discretized Stieltjes—Gautschi
procedure, and the Lanczos algorithm), a detailed stability analysis of such algo-
rithms as well as several new applications of orthogonal polynomials. The basic
references are [10, 12, 18]. An interesting stable recursive technique for the determi-
nation of Jacobi matrices associated with multi-fractal measures via iterated functions
systems was given by Mantica [16].

Some particular cases of the Gaussian quadratures for B-splines of degree 1 or 3
were constructed numerically by Phillips and Hanson [22], who obtained the first 17
coefficients in the three-term recurrence formula for orthonormal polynomials
(rounded to 14 decimal digits). In connection with these results, we mention also that
Gaussian quadrature and orthogonal polynomials for refinable weight functions were
considered by Gautschi, Gori, and Pitolli [9] and Laurie and de Villiers [14]. For
related quadratures with assigned nodes, see a recent work by Calabro, Manni, and
Pitolli [3]. Also, Calabrd and Corbo Esposito [2] considered numerical methods for
integration with respect to binomial measures and gave several numerical tests to
verify the efficiency and accuracy of their methods. A connection between refinable
functions, functionals, and iterated function systems has been described recently in [4].

Recent progress in symbolic computation and variable-precision arithmetic now
makes it possible to generate the recursion coefficients in the three-term recur-
rence relation (2) directly by using the original Chebyshev method of moments.
Respective symbolic/variable-precision software for orthogonal polynomials is avail-
able: Gautschi’s package SOPQ in MATLAB (see Appendix B in [13]) and our
MATHEMATICA package OrthogonalPolynomials (see [7] and [19]), which is
downloadable from the web site http://www.mi.sanu.ac.rs/~ gvm/.

In this paper, we construct the recursion coefficients a)" and g, using the
Chebyshev method (implemented in the package OrthogonalPolynomials)
with the moments

m
M,ﬁ"”:/ *on(x)dy, k=0,1,..., )
0
represented in an appropriate (polynomial) form for each m € N, which is enough

to obtain these coefficients in a symbolic form. Namely, the Chebyshev method can
be represented as the mapping of the sequence of moments into the coefficients of
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the three-term recurrence relation. The algorithm is rational and nonlinear and it can
be realized using the recurrence relation which uses only two basic operations — the
addition and the multiplication (cf. [7]).

The paper is organized as follows. A procedure for calculating the moments (4)
as polynomials in m is given in Section 2, and the symbolic generation of recursion
coefficients a,Em] and ﬂ,Em] and a discussion of the corresponding Gaussian quadra-
tures (1) are given in Section 3. Some applications of these Gaussian quadratures are
illustrated in Section 4. Finally, in Section 5, two interesting conjectures are stated
relating to the recurrence coefficients obtained.

2 Moments

Using the relations for the cardinal B-spline (cf. [5, p. 86], [6, p. 56])

X m—x
(X)) = ——@m-1(X) + ——gp_1(x — 1), m=>=2, 5
m—1 m—1
and
O (X) = Qm—1(x) = Pm—1(x — 1), m =2, (6)

after some simplification, Milovanovi¢ and Udovic¢i¢ [20] have recently obtained the
following differential equation

(m — )@y, (xX) + (m — Dy (x) = mem—1(x), )

and then proposed an effective method for calculating the coefficients of polynomials
defining a cardinal B-spline.

For example,
1,

—x°, 0<x<l,
2

X, 0<x<l, 3

2
—x“4+3x—-—=,1<x<?2,
px)=12-x,1<x <2, p3(x) = 2’

1 9

0, otherwise, —x2—3x+=,2<x <3,
2 2
0, otherwise,

y
10 -
0.8}
P
o6 S| AT
. K /, s ,' \ \
'.' 4 ’)" \\ S,
04r ¢ 7 Y \ AN
J / 4 . \ \
s s 5 N\ ,
02F 4 / % \ AN
» 4 4 s, \, N,
P ’_/’ kY \\~ ’s~~
0.0' 2 amr? 3 F—- - e
1 2 3 4

Fig. 1 Cardinal B-spline ¢, (t) for m = 1 (solid line), m = 2 (dotted), m = 3 (dashed), and m = 4
(dot-dashed)
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etc. In Fig. 1 we display ¢, (¢) form = 1,2, 3, 4.
Now, we want to calculate the moments (4) for each m € N.
Using (7), after multiplying by x* and integrating over [0, m], we get

m m m
[ o= oxtgaxr o= [Catneac=m [, ima
0 0 0
Since, by integration by parts,

/ " m — kgl () dx = (m — 25 g (0) .
0
—/.m[kmxk_1 — (k + Dx*]m () dx
0

= (k+ l)u,(cm) — kmu,(("i)l,

because ¢, (0) = ¢, (m) = 0, we conclude that the moments (4) satisfy the following
recurrence relation

(k + m),u,((m) — km;L/(:"_)1 = m,u,(cm_l), m > 2. (8)
It is not difficult to calculate directly
1
1
[L]({l) = f xk<p1(x) dx = —— (Legendre case shifted to [0, 1])
0 k+1
2(2k+1 -1
(k+ Dk +2)’
3 k+2 k+2
33T —2.282 4 1)
W = / 3 (0) dx = ,
0 (k+ 1)k +2)(k + 3)
4(4kH3 3. 3k+3 1 3. 0k+3 )
(k+ Dk +2)(k+3)(k+4)
etc. These formulae suggest a general formula for an arbitrary m € N,

2
2
) =/ Kor(x)dx =
0

3

4
4
we) = / xa(x) dx =
0

m
w = fo K (x) dx

m(—=)" & m=1\ ime
= N (=1 tmel k=0,1,..., 9
(k+1)mv§( o) ©)
where (p),, is the standard notation for Pochhammer’s symbol
r
Pm=pp+D---(p+m—-1) = % (T is the gamma function).
p

Indeed, (9) can be proved very easily by induction, using the recurrence relation (8).
These moments can also be expressed in terms of the Stirling numbers of the
second kind S(n, m), which are the coefficients in the expansion

X =" S m)(x)"™,

m=0
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where the so-called falling factorial is defined by (x)™ = x(x —1)--- (x —m + 1)
and (x)@ = 1. Precisely, S(n, m) gives the number of ways of partitioning a set of
n elements into m non-empty subsets. These numbers obey the following recurrence
relation

Sm+1,m)=mSn,m)+ Sn,m —1). (10)

Note that S(n, 1) = S(n,n) = 1 and S(n,m) = 0 for m > n, as well as S(n, 2) =
2=l _land Sn,n — 1) = %n(n — 1) (cf. [23]). In general, there is the following
explicit formula (cf. [8, p. 69])

1 m—1 ' | m
S(n, m) = % Z(:)(_])J (’7)(,,” _ ])n — % Z;(_l)m—u <’:l)l)n,
Jj= o

which can be related to (9) by Theorem 1 below. Namely, taking n = m + k, the
above equality becomes

v—1

1 - m—yv M m—1 m+k
S(m—l—k,m)zﬁ;(—l) ;< )v ,

ie.,

Sm +k, m) = (_2:% Z(—l)“('f: f)v’"“‘l. (11)
: v=1

In the sequel, we need the following representation of the moments:

Theorem 1 The moments of the weight function x +— @, (x) on [0, m] can be
expressed in terms of Stirling numbers of the second kind,

m Sm + k, m)
(m) k
Mkm 2/0 X (pm(X)dx:m——i-k’ k=0,1,..., (12)
m

and their exponential generating function is given by

= ( ))Ck Cx —1 mn
2w = ( ) (m € N). (13)
. X

Proof According to (9) and (11), we obtain

m  m!Sm+k,m)
Ky = ——F—""—"~"—
(k+ D

Since (k + 1),, = (k + m)!/ k!, this reduces to (12).
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In order to prove (13), we start with the exponential generating function for
Stirling polynomials of the second kind (cf. [1, p. 30])

(ex o 1)m +oo X"
— = Z S, m)—. (14)

Since the equality (14) can be written in the form

_ 1y ek
u—ZS(m—i-k m)——— or
m! = (m+k)
we conclude that
i"’ (m)xk_+i:'°5(m+k,m)xk_ e —1\"
AT (m+k) A ’
k=0 k=0
m

i.e., the m-th power of the Bose—Einsten function x — (e* — 1)/x is the exponential
generating function for the moments u( ), O

Remark 1 The generating function (13) can be found also in [21].

In order to determine the first n recurrence coefficients oz["] and ,B,E’"], k =
0,1,...,n — 1, in the recurrence relation (2), using our MATHEMATICA package
OrthogonalPolynomials (see [7] and [19]), we only need a procedure for
symbolic calculation of the first 2n moments.

Expanding the exponential generating function (13) in a power series in x, we can
find the moments uk ™) , k > 0, for a fixed m € N. For example, for n = 50 (in our
case this is reasonable), the first 100 moments can be obtained in a symbolic form by
simple commands in MATHEMATICA 11.0.1.0:

ser = Series[((Exp[x] - 1)/x)"m, {x, 0, 99}1 // Simplify;
mommu = Table [k! Coefficient [ser, x, kI, {k, 0, 99}1;
In this way, we obtain ,u(' as polynomials in m of degree k,

2
m
i =1, pm ==, W= —2<3m +1), ug"“ = —(m +1),

>
uim = 240 (15m +30m% + 5m — 2) pdm = 5 (3m + 10m? +5m—2)

pm = 5 <63m 4 315m* 4 315m3 — 91m? —42m+16)

i = 1’;152 (9m 4 63m™* + 105m® — Tm? —42m+16)

ud" = 34560(135;11 +1260m° +3150m" +840m* — 2345m* + 540m” + 404m — 144),
ug" = 650 <15m + 180m® + 630m> 4 448m™* — 665m*> — 100m> +404m—144>
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um = m
10 101376

(99m9 + 1485m® + 6930m” + 8778m° — 8085m° — 8195m™ + 11792m>

—2068m> — 2288m +768)
2
pm = & (9m° + 165m® +990m” + 1914m® — 847m® — 3179m* + 2904m’
+1100m? — 2288m +768)

(m) _ m 11 10 9 8 7
Uiy = 50319360 <12285m + 270270m " + 2027025m” + 5495490m°® + 315315m

—12882870m® + 5760755m> + 14444430m™* — 15875860m>
+2037672m?2 + 3327584m — 1061376> ,

(m) _ m?

M5 = 7741440

(945m“ +24570m'0 + 225225m° + 810810m® + 495495m

—2320890m° —389389m° + 4978974m* — 3383380m°> — 2155608m>
+3327584m — 1061376) ,

(m) __ m 13 12 11 10 9
Wiy = geassso (4osm +12285m'% +135135m! + 621621m'° + 765765m
—1898325m® —2141139m” + 6565559m° — 990990m° — 8790964m*
+8132904m°> — 712672m* — 1810176m + 552960) ,
2
(my _ M 13 12 11 10 9 8
niy = TYVETS (27m +945m'2 4+ 12285m ! 4+ 70161m'° + 135135m° — 190905m

—566137m” + 986843m° + 778778m°> — 2802436m™* + 1477736m>
+1410080m2 — 1810176m + 552960) ,

etc.

Remark 2 1t could be of some interest to investigate properties of the polynomials Py (m) :=

e,

3 Recurrence coefficients and Gaussian quadratures

Using our MATHEMATICA package OrthogonalPolynomials, with the obtained
moments mommu, and executing only the following commands:

<< orthogonalPolynomials"

{alpha,beta}=aChebyshevAlgorithm [mommu, Algorithm->Symbolic] ;
we obtain the first 50 recurrence coefficients for monic orthogonal polynomials

{n,EmJ }2_208 in (2) in a symbolic form,
o™ = % (k=0,1,2,..):
) my m m  Sm—=3 oy 175m?® —315m + 158
= 15 = T~ = 3 = 3
Fo hi o P 30 & 140(5m — 3)
g0 _ 6125m* — 25725m3 + 41965m> — 29547m + 7230
4 7 21(5m — 3) (175m® — 315m + 158) ’
g _ 25(5m — 3)Se(m)
> 132 (175m2 — 315m + 158) Sa(m)’
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where
Sa(x) = 6125m* — 25725m> + 41965m> — 29547m + 7230,
Se(x) = 471625m% — 3678675m> + 12324235m* — 22096305m>
+22009540m> — 11549748m + 2519472,
etc. It is clear that the coefficients oe,({m) are equal to m /2 for each k, because of the

property ¢, (t) = ¢u(m —1t), 0 < t < m. For higher k, the corresponding ,3,5'")

coefficients become quite complicated. Specific values of these coefficients for a
given m (e.g., m = 10 and k < 9) can be obtained directly by the command:

5 47 3627 3286105 168899331365 187763661474877107 28601715426755929240411636

767307 16457 1193283 52442292474 ° 51959406895719290 ~ 7255355039522066602115205

417693338105676571738301453065819850 35496155392982599374674499183256849442993490627
99070749556201898603801123009129259 ° 7984952991477905847393360690681588386530757842

TraditionalForm[Table[betal[k + 111, {k, 0, 9}1 /. {m -> 10}]
Also, numerical values of the first thirty recursion coefficients ,8,5'"), 0 <k < 30,
m = 10, e.g., rounded to 20 decimal digits, can be obtained by

N[Table[betallk + 11], k, 0, 291 /. m -> 10, 20]

{1.0000000000000000000, 0.83333333333333333333,1.5666666666666666667,
2.2048632218844984802, 2.7538354271367311861, 3.2206702529020337274,
3.6136605995467230798, 3.9421524199648285636, 4.2161116169684685200,
4.4453806341585920021, 4.6387745713978611295, 4.8033973772389131640,
4.9445758344946528460, 5.0663654173861162855, 5.1720546573331317560,
5.2643250282396780468, 5.3453418145822515729, 5.4168480119278469826,
5.4802573999449810555, 5.5367328963993764315, 5.5872424476189429104,
5.6325949837650829666, 5.6734665363296058787, 5.7104246096440169106,
5.7439503253769660554, 5.7744545047515811131, 5.8022886980934010953,

5.8277547166249649692, 5.8511129345858539784, 5.8725889108639372690}

All computations were performed in MATHEMATICA, Ver. 11.0.1, on MacBook
Pro Retina, OS X 10.11.6, using the package OrthogonalPolynomials (see
[7] and [19]). The running time for calculating the first 2z moments and the cor-
responding first n recursive coefficients depends on n, and, expressed in minutes
and seconds are given in Table 1. The running time is evaluated by the function
Timing in MATHEMATICA and includes only CPU time spent in the MATHE-
MATICA kernel. This may give different results on different occasions within a
session, because of the use of internal system caches. In order to generate worst-case
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Table 1 Running time for calculating the first 27 moments and n recursive coefficients

Calculations n =30 n =40 n =50
Calculation of the first 2n moments 4" 9" 18”
Calculation of the first n recursive coefficients 19”7 2/ 14" 13" 47"

timing results independent of previous computations, we used the command
ClearSystemCache[].

Remark 3 As we can see from Table 1, the running time for calculating the first n
recursive coefficients increases exponentially with respect to n. We also calculated
the first n = 60 coefficients in a symbolic form and it lasted about 1 h and 7 min.

Finally, we can now calculate Gaussian parameters (nodes and weights) in (1)
very easily for each n < 60 and each m € N, with an arbitrary precision
(prec), because the Golub—Welsch algorithm is fast and well-conditioned. In the
package OrthogonalPolynomials, this algorithm is realized by the function
aGaussianNodesWeights, with obligatory arguments n, alpha, beta, and
two optional arguments for WorkingPrecision and Precision. Usually, we
put WorkingPrecision -> prec+5 and Precision -> prec. Defining

PQ[n_ ,mm_,prec_] :=N[aGaussianNodesWeights[n,alpha/. {m->mm},
beta/.{m->mm},WorkingPrecision->prec+5,
Precision-s>prec], prec];
we can calculate nodes and weights in n-point quadrature with precision prec
for each m (= mm). For example, for n = 12, m = 5, and a precision of 20 decimal
digits (prec = 20), we obtain
{node,weights}=PQ[12,5,20]

{{0.28615439012499870599, 0.59173541249019933863, 0.96214478860900355154,
1.3767311734123912366, 1.8167168862233427683, 2.2707179213614517070,
2.7292820786385482930, 3.1832831137766572317, 3.6232688265876087634,
4.0378552113909964485, 4.4082645875098006614, 4.7138456098750012940},
{0.000075225476023619541079, 0.0017396925219340034584, 0.014170925759385921532,
0.062426717943609193267, 0.16216672426261319389, 0.25942071403643406831,
0.25942071403643406831, 0.16216672426261319389, 0.062426717943609193267,

0.014170925759385921532, 0.0017396925219340034584, 0.000075225476023619541079}}}
The first list of 12 elements represents nodes and the second one the weight

coefficients (Christoffel numbers).
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4 Numerical examples

In order to illustrate the efficiency of the Gaussian quadrature formulae (1), we
consider the behavior of quadrature sums

oMy =" Al £ (xln)).
v=1

more precisely their relative errors

Y = In(f)
Ln(f)

for some selected values of m € N and n = 5(5)50. In the following examples,
we take m = 3,4,5,6 and m = 10. For calculating true solutions 7,,(f), we use
the piecewise polynomial representation of the B-spline functions (see [20]) and
integration in sufficient precision using MATHEMATICA, Ver. 11.0.1.

elml = elml(fy .=

n

<1m(f)= /O f(x)gomoc)dx), (15)

Example 1 In this example, we consider two functions

. o 19x)\? . x
fi(x) =10sinx and fr(x) = <1 — 2sin T) sinh (1 — 5) ,

the graphics of which are presented in Fig. 2 (left). In the same figure (right),0 we
display graphics of ¢s(x) fi (x), k =1, 2.

The relative errors (15) in Gaussian approximations for these functions f1 and f>
are presented in Fig. 3 for n = 5(5)50 and some selected values of m. As expected,
the sequence of quadrature sums {Q,[;"] (f1)}, converges very fast! On the other hand,
convergence for f> is slower. We see also that the rate of convergence is smaller for
larger m.

Fig. 2 (left) Graphics of functions f](x) (dotted line) and f>(x) (solid line) on [0, 6]; (right) Graphics of
functions ¢s5(x) f1(x) (dotted line) and ¢5(x) f2(x) (solid line) on [0, 5]
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Fig. 3 Relative errors in Gaussian approximations Lm]( f1) (top) and QLm]( f2) (bottom) for m =
3,4,5,6,10 and n = 5(5)50

Fig. 4 Graphics of functions ¢, (x) fi, (x) on [0, m] form = 3,4,5,6
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Fig. 5 (left) Graphics of functions @y, (x) f (x) for m = 3,4,5,6 on [0, m]; (right) Relative errors in
Gaussian approximations QLm](fm), n =5(5)50, form = 3,4,5,6, 10

Example 2 Now, we consider Runge’s function (translated from [—1, 1] to [0, m])

10

2 2’
1+16<—x—1)
m

with singularities at (4 £ i)m /8. Graphics of this function multiplied by ¢, (x), for
m = 3,4,5, 6, are presented in Fig. 4. (for details on Runge’s function, as well as
the corresponding interpolation process see [17, p. 60].)

As we expect, the convergence of Gaussian quadrature sums {QE,’"]( Jm)}k in
this case is relatively slow. The relative errors e,[["]( fm) in log-scale, for m =
3,4,5,6, 10, when n = 5(5)50 are presented in Fig. 5.

Jm(x) =

5 Two conjectures

On the basis of the results obtained (for the first 60 recursive coefficients), we can
state the following conjectures:

Conjecture 1 For k > 3, the recurrence coefficients j
form

,gm) can be expressed in the

st,3 (m)q_Yk (m)

(m)
By =Ci———————,
k s> (M5, ()

where {g, }128 is a system of algebraic polynomials in m, with integer coefficients,
of degrees s; = (2k*> — 1 + (=1)¥)/8, and Cy, are rational constants.
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In our computations, we obtained

qso(m) = gs;(m) =1, g5, (m) =5m =3, gqg(m) = 175m% — 315m + 158,
s, (m) = 6125m* — 25725m> + 41965m> — 29547m + 7230,

ss(m) = 471625m% — 3678675m> + 12324235m* — 22096305m>
+22009540m> — 11549748m + 2519472,

Gse(m) = 11802415625m° — 155791886250m® + 931311756375m’
—3260380223100m° + 7287484078875m> — 10710163424730m*
+10297166185537m> — 6207823757520m> + 2111356988868m
—304962099120,

qs,(m) = 8438727171875m'? — 172150034306250m'! 4 1635521768505625m'°
—9486710999766000m° + 37170226215247125m®
—103140503000384850m + 207092542088006575m°
—302311914052408260m° + 317690740984945328m*
—233988179502757680m> + 114592266201395664m>
—33539482979925120m + 4449204584379648,

gss (m) = 718009101418984375m'® — 21540273042569531250m '3
+306466799031377359375m '+ — 2729829574503468937500m '3
+16961867348957379598750m > — 77671409630345446815900m !
+270334750775463299675750m ' — 727653744705777548699040m°
+1527372133343317471965755m% — 2503317024698062132145586m
+3186852942000043203666779m° — 3112364522558715589144980m>
+2281592249060977336852368m* — 1210999506716643802020720m>
+437667158101790582119440m> — 95869567107365446403712m
+9538859825773941438720,

etc. The corresponding coefficients Cy are

c L - DN SN 10
T30 YT T 32 T im0 T 7800 8T sr

c 3 _ a2 T 169 1
T 9044 1T 39900 "M T 3800 T 23 BT 2 "M T g0
etc.
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Conjecture 2 For the recurrence coefficients ,B,Em) (k > 1), the following asymptotic
formula
m _ k k(k—1) 4k(k—D(k—2) 2k(k—1)(k—2)(5k—9)
P =m0y 525m 2625m>

| 2Kk = Dk —2) (5520 — 1279k +255)
1010625m3

holds as m — oo.
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CONSTRUCTION OF GAUSSIAN QUADRATURE
FORMULAS FOR EVEN WEIGHT FUNCTIONS

Mohammad Masjed-Jamei, Gradimir V. Milovanovié*

Instead of a quadrature rule of Gaussian type with respect to an even weight
function on (—a,a) with n nodes, we construct the corresponding Gaussian
formula on (0, a®) with only [(n+1)/2] nodes. Especially, such a procedure is
important in the cases of nonclassical weight functions, when the elements of
the corresponding three-diagonal Jacobi matrix must be constructed numeri-
cally. In this manner, the influence of numerical instabilities in the process of
construction can be significantly reduced, because the dimension of the Jacobi
matrix is halved. We apply this approach to Pollaczek’s type weight func-
tions on (—1, 1), to the weight functions on R which appear in the Abel-Plana
summation processes, as well as to a class of weight functions with four free
parameters, which covers the generalized ultraspherical and Hermite weights.
Some numerical examples are also included.

1. INTRODUCTION

Let P be the set of all algebraic polynomials and P,, be its subset of degree
at most n. In this paper, we consider the Gauss-Christoffel quadrature rules with
respect to the even weight function = — w(z) = w(—=z) on a symmetric interval
(—a,a) for a > 0,

0 " f@w) de =3 wef (o) + Ra(f;w),
voa k=1

where R, (f;w) = 0 for each f € Py,—1 and they are automatically exact for all
odd functions.

*Corresponding author. Gradimir V. Milovanovié¢

2010 Mathematics Subject Classification. 41A55, 65D30, 65D32.

Keywords and Phrases. Symmetric Gaussian quadrature rules, Symmetric weight functions,
Orthogonal polynomials, Jacobi matrix, Pollaczek type weight functions.
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178 Mohammad Masjed-Jamei, Gradimir V. Milovanovi¢

Suppose that the moments py, = ffa xFw(r)da, exist and are finite for any
k=0,1,..., and also pup = jfa w(x)dz > 0. Then the quadrature rules (1) exist
for each n € N as well as the corresponding orthogonal polynomials. It is well
known that pagy1 = 0 for any £ = 0,1,..., and the monic symmetric polynomials
7 () orthogonal with respect to the even weight w on (—a, a) satisfy the three-term
recurrence relation (cf. [12, p. 102])

(2) Tpt1(2) = amp (@) — Bemp—1(z), k=0,1,...,

with 7_1(z) = 0, mo(z) = 1 and 7 (z) =
The recurrence coefficients Sy in (2
terms of Hankel determinants

x.
) can be computed from the moments in

Mo p1oc o PE—1
A=| M e,
,uk.—l HE H2k—2
by
ﬂk:% (k>1)  with Ag=1.
k

Although By in (2) may be arbitrary, it is sometimes convenient to define it as
Bo = po = ffa w(x)dz. By noting the definition

(p.q) = / p@a(eyu(@)dz and |p| = D),

—a

one can prove that the norm of 7, equals to

A,
l7nll = /BoBr - Bn = AH-

For instance, the first few monic symmetric polynomials 7, in terms of mo-
ments are as follows

2 M2
ma(x) = a°— —,
2(z) Ho
Wd(x) = 1;3 - & €,
H2
_ 2
7r4(56) - A 6 1o #4/;2 22+ e 112 H;; 7
Hafto — 13 Haflo — H3
_ _ 2
ms(z) = 25 U2 /16/;4 pEan Hs g Hg T
Hefh2 — [y He 2 — My

A standard method for calculating the nodes xj and the weight coefficients
(Christoffel numbers) wy, in the quadrature (1) is based on their characterization

134



Construction of Gaussian Quadrature Formulas for Even Weight Functions 179

via an eigenvalue problem for the Jacobi matrix of order n associated with the even
weight function z — w(z). Thus, the nodes xj are the eigenvalues of the symmetric
tridiagonal Jacobi matrix (cf. [12, pp. 325-328])

C o va o -
VB 0 VB

3) In(w) = VB2 0

Bn—l
(0] /371,—1 0
and the weight coefficients wy, are given by wy = ,Bov,% L (k=1,...,n), where vy
is the first component of the eigenvector vi (= [vk,1 ... vk.n]T) corresponding to

the eigenvalue zj, normalized such that vak = 1. This popular method is called
the Golub-Welsch procedure [8].

Unfortunately, for many weight functions the coefficients By in (2) are not
explicitly known. In such cases, the corresponding polynomials m; are known as
strong non—classical orthogonal polynomials, and their recursion coefficients must
be constructed numerically from the moment information. Such problems are very
sensitive with respect to small perturbations in the input data. Fortunately, in the
eighties of the last century, Walter Gautschi developed the so-called constructive
theory of orthogonal polynomials on R, with effective algorithms for numerically
generating the first n recursion coefficients (the method of (modified) moments,
the discretized Stieltjes—Gautschi procedure, and the Lanczos algorithm), which
allow us to compute all orthogonal polynomials of degree < n by a straightforward
application of the three-term recurrence relation. A detailed stability analysis of
these algorithms as well as several new applications of orthogonal polynomials are
also included in the previously mentioned theory. The basic references are [6, 7, 15].

Because of w(—z) = w(z) on (—a,a), the nodes in the quadrature sum

w) =Y wif(x)
k=1

in (1) are symmetrically distributed with respect to the origin, and their weight
coefficients are mutually equal for symmetric nodes. Taking only positive nodes, de-
noted by l‘gﬁn) and the corresponding weight coefficients by A,in) fork=1,....,m (=
[n/2]), the quadrature sum can be expressed as

ZAm) &)+ f(—a™)), n—om.
k=1

(4) Qu(fiw) =
A(n)f + ZA(H) (n) + f( (n)))7 n=2m+l1,
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180 Mohammad Masjed-Jamei, Gradimir V. Milovanovi¢

where, in the case of odd n, Aéﬂ') (> 0) is the weight coefficient for the node 0.
Here,
0<m§"> <-o<a™ < and A,i") >0, k=1,...,m.

This paper is organized as follows. In Section 2, we shortly describe a simple
transformation from (—a, a) to (0, a?) and give recurrence coefficients for the corre-
sponding orthogonal polynomials. Section 3 is devoted to the construction of two
quadratures on (0,a?) and their connection with symmetric Gaussian quadratures
on (—a,a). These sections are introductory and record material that is essentially
known (cf. [12], [13]), but needed in subsequent sections. The numerical construc-
tion of Gaussian rules related to the Pollaczek-type weight functions on (—1,1) is
presented in Section 4, together with some numerical examples. Symmetric Gaus-
sian quadrature rules on R, which appear in the Abel-Plana summation formulas,
are considered in Section 5. Finally, a class of symmetric weight functions with
four free parameters that covers many well-known weights on (—1,1) and R are
considered in Section 6.

2. TRANSFORMATION AND PRESERVATION OF
ORTHOGONALITY

Suppose in (1) that z — f(z) is an even function, so that

(5) " f@w() do =2 /O " f@yule) de = /0 NG w(f;) "

—a

On the other hand, according to (1), (4) and (5) we have

(6) 1(501;’11}1) :Aa f(\/i) w(\\[i%) dt:Qn(f;w)“i’Rn(f;wL

where two new functions are defined on (0, a?) as

(7) wi(t) = and  p1(t) := F(V1).

Similarly, we need to define

(8) wo(t) == Viw(Vt) and @o(t) := w

The orthogonal polynomials with respect to the weight functions wy(t) and
wa(t) defined on (0, a?) can be directly expressed in terms of the polynomials 74 ()
which are orthogonal with respect to the symmetric weight w on (—a,a). In fact,
according to Theorem 2.2.11 of [12, p. 102] we have:

(i) pu(t) := w2, (V) are orthogonal with respect to the weight function ws (t) =

w(v/t)/V't on (0,a?), and
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Construction of Gaussian Quadrature Formulas for Even Weight Functions 181

(ii) qn(t) := m2ni1(v/t)/V/t are orthogonal with respect to the weight function

wa(t) = VEw(v/t) on (0,a?).

Also, these (monic) polynomials satisfy the three-term recurrence relations
(Theorem 2.2.12 in [12, p. 102]),

9) Pot1(t) = (t — ay)pu(t) — bypu—1(t), v=0,1,...,
and
(10) ql/+1(t) = (t - Cu)qu(t) - duQufl(t)v v=0,1,...,

with po(t) = 1, p_1(t) = 0 and qo(t) = 1, g—1(t) = 0, respectively, where the
coefficients in (9) and (10) are given by

ap = [7)17 ay = ﬁZu + [7)21/+17 bV = ﬁZu—lﬂZﬁ

and
co=P1+ B2, ¢ = Povt1 + Bovy2, du = BB,
in which By are the same values as in (2). In addition, we can define

2

by := /Oa wi (t)dt = /ja w(z)dx = po

and
2 2

dp := /Oa wg(t)dt:/oa twl(t)dt:/a 22w(z) de = po,

—a
i.C., bo = ﬁo and do = 5051.

In the case of strong nonclassical weights, the coefficients a,, and b, in (9), as
well as ¢, and d,, in (10), must be constructed numerically (cf. [6], [12, pp. 160
166]).

The orthogonal polynomials p, (¢) and their recurrence relation (9) are applied
in constructing Gaussian quadratures with respect to the weight function w(t) =
w(v/t)/v/t on (0,a?), while the polynomials g, (t) and their recurrence relation (10)
are appropriate for constructing Gauss-Radau rules (cf. [12, p. 329]).

By noting these comments and (4), the construction of quadratures (1) will
be significantly simplified. Namely, instead of constructing a quadrature formula
on (—a,a) with n nodes, we construct a quadrature formula on (0,a?) with only
[(n 4+ 1)/2] nodes. In particular, it is very important in the cases of nonclassical
weight functions, when the recurrence coefficients in the three-term relations for the
corresponding orthogonal polynomials must be constructed numerically, before the
procedure for constructing nodes and Christoffel numbers (by the Golub-Welsch
procedure from the Jacobi matrices). In this manner, the influence of numerical
instabilities in the process of construction can be significantly reduced. Also, in
this way, the dimensions of the corresponding Jacobi matrices are halved.
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3. CONSTRUCTION OF TWO RULES OF GAUSSIAN TYPE

We consider now two quadrature formulas for computing the integral I (¢1;w1)
given in (6).

3.1. Gauss-Christoffel quadrature formula with the weight wq (t)

The first formula is a m-point Gauss-Christoffel quadrdture formula with
respect to the weight function ¢ — w1 (t) = w(v/t)/v/t on (0,a?),

(11) I(g;un) = / Yws (t)dt = ZB(m) <m) )+ RGC(g;w1),
Jo
with the nodes 0 < Tl(m) < e <m> < a? and the corresponding weight co-

efficients B]im) (k =1,...,m). The remainder term RGC(g;w;) = 0 for each
9 € Pom—1.

Proposition 3.1. The nodes 7'( ™ (k=1,...,m) in the formula (11), that is, the
zeros of the polynomial py,(t) in (9), are the eigenvalues of the Jacobi matriz

b1 VB152 o T
VBi1B2 B2+ B3 VB3P

I (w1) = VBB BatPBs

V Bam—3B2m—2
L O VBem—3B2m—2  Boem—2+ Bam-1 |

where By are the same values as in (2). Also, the weight coefficients B(m)

given by B( ™ = ﬁovk 1. where vy 1 is the first component of the eigenvector vy, (=

(m)

Vg1 .- vkm]T) corresponding to the eigenvalue 1, and normalized such that

VEV/IC =1.
3.2. Gauss-Radau quadrature formula with the weight w1 (t)

The (m+ 1)-point Gauss-Radau quadrature formula with respect to the same
weight, function wy (£) as before and the new nodes 0 = 65 < 6™ < ... < 65" <
a® and weight coefficients C,(Cm) are given by

2

(12) I(g;wl)z/: g(t)wi(t)dt = C™g(0 +Zc<m> (0™) + RGR | (g;w1).

k=1

It is clear that RGT, (g;w1) = 0 for each g € Poyp.

138



Construction of Gaussian Quadrature Formulas for Even Weight Functions 183

In order to construct the formula (12), we need to introduce a function h,
g(t) = g(0) + th(t), to get

a?

I(g;w1) :g(U)/ wi (t) dt+/()a h(t) tw (t)dt.

0

This means that

2

(13) T{gswr) = og(0) + /0 " h(t)wa(t) dt = Bog(0) + I(h: ws),

because wy(t) = tws (t) according to (7) and (8). To compute the integral I(h;ws)
we can directly construct the Gauss-Christoffel rule with respect to the second
weight function wy(t) = vtw(v/1) on (0,a?) as

2

(14) I(h;we) = /Oa h(t) wa(t)dt = iD)(cm)h(Gl(cm)) + RSC (h; ws),

k=1

where 0 < 9§m) << 0™ < a? and D,Efn) are the corresponding weight coeffi-
cients. Note in (14) that the remainder term RGC(h;ws) = 0 for each h € Pa,y, 1.
Thus, by noting (13) and (14) we first get

Igiwy) = Pog(0)+ > DYVA(O™) + RS (hsw)
k=1
m (m)
m 9(0,"™)) = g(0)
= Bog(0)+ > DM TR + RO (s wa)
k=1 k
S Dl(cm) - Dl(cm) (m) GC
= ﬂO,Z (m) 9(0)+Z m) .‘](gk )+ Ry (hywe),
k=1 ek k=1 ek

and then comparing this with (12), the weight coefficients of the Gauss-Radau
quadrature (12) are

m - y(m) (m)
(m D m D
(15) M =Bo-Y Tk, O = (k=1,..,m),
k=1 ek ek

and RSR, (g;w1) = RGC(h;wo) for h(t) = (g(t) — g(0))/t. This means that the
nodes of the Gauss-Radau quadrature rule with respect to the weight function
w1 (t) are in fact the nodes of the Gauss-Christoffel formula with respect to the
weight function ws(t) = twi(t) on (0, a?).

Proposition 3.2. The nodes 0,(:71) (k=1,...,m) in the formula (12), that is, the
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zeros of the polynomial q,,,(t) in (10), are the eigenvalues of the Jacobi matriz

[ B1+B2  VB2Ps o |
VB2Bs B3+ Bs BaPs
I (w2) = v BaBs Bs + B

V Bam—2B2m—1
L O VBaem—202m-1  PBam—1+ Bom |

where By, are the same values as in (2) and the weight coefficients C’,(cm are given

by (15), where D,(cm> is determined by the first component vy 1 of the normalized
eigenvector vi, (= [vg1 ... vk,m]T) of the Jacobi matriz J,(ws) corresponding to
the eigenvalue Hl(vm), i.e., D,Efn) = 608111,%’1, k=1,...,m.

REMARK 3.3. The quadratures (11) and (12) can be related to the basic quadrature

(1), which allows a much simpler construction of these symmetric quadratures given
in form

(10 " F@)de = Quifiw) + Balfiw),

where @, (f;w) is defined by (4). If we have the recursion coefficients 8y in the
explicit form, in our construction we use Proposition 3.1 for even n and Proposi-
tion 3.2 for odd n. However, in the case of strong nonclassical weights, we first
numerically construct the recursion coefficients a, and b, in (9), and ¢, and d, in
(10), and then the Jacobi matrices Jp,(w1) and J,, (ws) are given by

-a()\/b—l O ]
Vbrar Vb

Jm, (wl) = \/b—2 a2

and

-CO\/d—l O ]
Vdi e Vs

I (w2) = Vds e
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Corollary 3.4. The positive nodes J:,(:') of the symmetric quadrature rule (16)

are given by x \/T,im (n = 2m) and x}c") = Ql(ﬁm) (n =2m+ 1), and the
corresponding weight coefficients by

(n) _
k=

1
1° A‘(,J” =3 B,im) (k=1,...,m) for even n=2m,
and )
20 A0 =™, AW = 50};’” (k=1,...,m) forodd n=2m+1,

where 7',£m> and B](Cm) and O,Sm) and C',(cm) are defined in Propositions 3.1 and 3.2,
respectively.
Corollary 3.5. Let f: (—a,a) — R be an even function and ¢1 : (0,a?) — R and
v : (0,a%) — R be defined by (7) and (8) respectively. The remainder term in (16)
is given by

RSC(p1;un) n=2m,
R (fiw) = {

RGC(paswa)  m=2m+1,

where RSC(-;w,) is the remainder term of the Gauss-Christoffel rule with respect
to the weight function w, (v =1,2) on (0, a?).

REMARK 3.4. Some fast variants of the Golub-Welsch algorithm for symmetric
weight functions in MATLAB have been considered in [13], including numerical
experiments with Gegenbauer and Hermite weight functions.

4. GAUSSIAN RULES RELATED TO THE POLLACZEK WEIGHT

Recently De Bonis, Mastroianni, and Notarangelo [5] have considered Gaus-
sian quadrature rules with respect to the Pollaczek-type weight w(x; A) = e~ (127 R
A >0, on (—1,1) in order to evaluate integrals of the form

1
(17) 143 = [ f@e 0= .

where f is a Riemann integrable function, in particular, f can increase exponen-
tially at the endpoints +1. Also, their rule is useful for approximating integrals of
functions that decay exponentially at 1 (e.g., when f is bounded or has a slower
growth than exponential at the endpoints).

In [5], the authors use the first 2n moments

1
,uk:/ dPwle; N de, k=0,1,...,2n— 1,
-1

in order to construct the first n recursive coeflicients and the corresponding Gaus-
sian quadratures with < n nodes, by the package OrthogonalPolynomials ([1]),
which is downloadable from the web site http://www.mi.sanu.ac.rs/ gvm/.
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Since w(z; A) is even on (—1, 1), in our construction, we can use the following
weight functions on (0, 1)

e (1=
Vit
The weight functions z +— w(z; ) on (—=1,1) and = — w;(z;A) on (0,1) for X =
1/10, A = 1/2 and X = 10 are displayed in Fig. 1, left and right, respectively. Note

(18) wi () = and  wy(t; \) = Vie (17077,

A=1/10

=10 A=12

-10 —(‘)AS ‘ A 0.2 04 0.6 0.8

Figure 1: The weight functions w(z; \) = e~ (=)™ (left) and wq(z; \) (right) for
three parameters A = 1/10, A = 1/2 and X = 10.

that for a very small value of A, the weight = +— w(ax; \) is very close to a constant
value (Legendre weight) in (—1,1) and tends exponentially to zero at the endponts
+1.

According to results of Section 3, to construct Gaussian quadrature rules with
respect to the weight w on (—1,1), for n (or less) nodes, we need the corresponding
Gaussian quadrature rules with respect to the weight function w; (and ws) on
(0,1), but only for [n/2] nodes. Thus, if we want to construct the quadrature sum
Qn(f;w) for even number of nodes < n (= 2m), we should first compute the first
m coefficients a,, and b, for v =0,1,...,m — 1 (see Remark 3.3), starting with the
first 2m moments with respect to the weight function w, i.e.,

1
uH () = / 12020 4 k= 0,1, 2m - 1.
0

As an illustration, we take m = 25 (i.e., n = 50) and A = 10. In this case,
with the moments u§:>(10)7 k=0,1,...,49, calculated with WorkingPrecision ->
80, using MATHEMATICA package OrthogonalPolynomials (see [1, 17]), we get
the first 25 recursive coefficients a,, and b, with maximal relative error less than
3.30 x 10760,

These coefficients enable us to establish the Gaussian quadrature rules (11)
for each m < 25, i.e., the symmetric quadratures (16) on (—1,1) for each even
n = 2m < 50, according to Corollary 3.4.
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EXAMPLE 4.1. For a given function f, defined on (—1,1) by

1

B 3e Vi-s® —2sin(3z) — 22

19 (z
(19) f@) T

we consider the integral I(f;\) (with respect to the Pollaczek weight function),
given by (17). For A = 1/2 and X = 10, the corresponding values are

1 (f %) = —0.1008535784477012537049661323701106088715102790788130235270 . ..
I(f;10) = 0.18289521923348319938801221433094240150942326723262931505276 . . .,
obtained in MATHEMATICA with WorkingPrecision -> 60. Graphics of the func-

tion (19) and the corresponding integrands in (17) are presented in Fig. 2 and
Fig. 3, respectively.

—10L
—15F
200

_25k, . . J
-10 -05 0.0 0.5 1.0

Figure 2: Graphic of the function = — f(z) given by (19)

P T T i 0.6F T T =

/\ ost
0 04F
b 1 03f

02f
—4r 1 oaf
00
ol 1 V4
10 05 00 03 10 -10 ~05 00 05 10

Figure 3: Integrand in I(f;\) for A = 1/2 (left) and A = 10 (right)

Now, let us apply Gauss-Pollaczek quadrature rule with n = 10(10)50 nodes
to the integral I(f;\) and compare the results by ones obtained by the standard
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Gauss-Legendre rules. Here, Q,,(f;w) denotes the Gauss-Pollaczek quadrature sum
defined by (4), and 77 (f; \) shows their relative errors,

Qu(f;w) = I(f;N)
I(f;N) '

Relative errors for A = 1/2 and A = 10 are given in Table 1. Numbers in paren-

i (fiA) =

Table 1: Relative errors in quadrature sums when n = 10(10)50
n [ (f51/2) [ ri(f:1/2) | rF(£:10) [ rh(f510)
10 || 1.66 1.01 4.32(—13) | 3.52(—2)
20 || 2.38(—1) 1.43(-1) 2.94(—24) | 1.21(-3)
30 || 4.54(-2) 1.12(-2) 5.27(—35) | 1.57(—5)
40 || 1.04(-2) 4.87(-3) 1.86(—45) | 2.93(—6)
50 || 2.71(—3) 7.09(—4) 1.09(—55) | 1.82(—7)

theses indicate decimal exponents. The corresponding relative errors in Gauss-
Legendre sums are denoted by rZ(f;\). As we can see, for A = 1/2 both quadra-
tures are slow and have similar behaviour, while for a larger A (= 10) the advantage
of the Gauss-Pollaczek quadrature is clearly evident.

5. A CLASS OF SYMMETRIC WEIGHTS ON R

In this section, we consider symmetric quadrature rules on R which play an
important role in summation formulas of Abel-Plana type, which were intensively
studied by Germund Dahlquist [2, 3, 4] (also see Milovanovié¢ [14, 16]). Such rules
can be constructed in a simpler way if the corresponding formulas on R are first
constructed. By noting the results of Sections 2 and 3, instead of the polynomials
7, orthogonal with respect to  — w(x) on R, we need the polynomials p, and
qv, given by the recurrence relations (9) and (10), respectively. In other words, the
recursive coefficients {a, } and {b,} for polynomials orthogonal with respect to the
weight function ¢ +— w(v/t)/v/t on R, as well as the coefficients {c,} and {d,} for
polynomials orthogonal with respect to the weight function ¢ +— vt w(y/t) on R*
must be computed.

In the sequel, let us mention some important cases of the symmetric weight
x — w(z) on R.

1° In [12, p. 159] three interesting even weight functions on R are given, for
which the recurrence coefficients Sy in (2) are known explicitly. They are respec-
tively known as the Abel weight

A x x
w(z) = wiw) = e™ —e~m  2ginh(nz)’

the Lindeldf weight
1
e fem  2cosh(rx)’
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and the logistic weight

o N e~ T
w(z) = w(z) = A+e )
The corresponding recurrence coefficients are
k(k + 1) k2 =
A _ L _ log __ —
ﬁk - 4 ) ﬁk *Z and ﬁk 74]62—1 (k*l,Z,),

with B¢t = 1/4, B = 1/2 and B8 = 1/x.

We mention also that w'°8(z) = [wl(2/2)]2.

For these weight functions, in the sequel we give the recurrence coefficients in
(9) and (10) for polynomials orthogonal on (0, 00) with respect to ¢ — w(v/t)/\/
and t — w(v/1)V/, respectively.

(i) In the Abel case we compute these coefficients as

2w+ 1)2 1 242 -1
=D eny), pp=l =W D ey,
2 4 4
1 1)(2v +1)2
=2+ 1) (weNo), dfi =, df:% (v €N).

(i) Similarly in the Lindel6f case the corresponding coefficients are

82 +4 1 1 2% -1
afziy +4u+ (v € Np), b§:§, bf:—y(y4 ) (v € N);
812 +12v+5 1 2(2v +1)?
S et OSSR NP S T i ok ) PR N
4 8 4
(iii) Finally, in the case of the logistic weight the recurrence coefficients in (9)
are
3204 +320° + 87 — 1
log _ N
oy (4v — 1)(4v + 3) (v € No),
1 160420 — 1)*
byt ==, boE= eN
o Ve mym o m sy VY

and in (10) they are

3204 + 961 + 10412 4 48y + 7
1602 + 240 + 5
1 160420 +1)*
Ayt = —, dio = N).
=3 Y Tymr ey VeV

log _
¢t =

(V S No),

The first two weight functions appear in the so-called Abel-Plana summation
formulas (cf. [16]). For example, under certain conditions for an analytic function
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n

f in the complex plane, the finite sum S, ,,(f) = Z(fl)kf(k) can be obtained

from the Abel summation formula h=m
Snm(f) = %((—1)7”f(m) +(=D)"f(n+1)) - / h(z; m,n)w? (z) da,
R

where

+(71)nf(n+1+im).—f(n—i-l—i:r).

2ix

mf(m+iz) — f(m —ix)

h(z;m,n) = (1) 2z

2° For other weight functions which also appear in summation formulas, since
the explicit expressions of the coeflicients S are not known, using the MATHE-
MATICA package OrthogonalPolynomials (see [1, 17]) enables us to obtain f in
rational forms.

For instance, consider the Plana weight function
||

w(z) = w’ () = 2rel — 1

which appears in the so-called Plana summation formula (cf. [19], [14])
T (f) — f(z)de = / g(z;m,n)w’ (z) dz
m R

for the composite trapezoidal sum

Tun(f)= 30" F) = Lim)+ 3 1)+ 1)

k=m k=m-+1
where

(20) g(z;m,n) = fln+ ix)m_xf(n —iz)  f(m+ ix)Qi—xf(m —iz) .

This formula holds for analytic functions in the strip €, , = {z ceC:m<
Rez < n}, such that

r+00
/ |f(z+1iy) — f(z —iy)e 1> dy

0
exists, and | ‘lim e~ PPl f(z + iy)| = 0 uniformly in x, for every m < z < n
Yy|—+oo
(m,n € N, m < n).
Using the package OrthogonalPolynomials, we can obtain the sequence of
coefficients {3F }>o in rational forms as
P 1 1 79 p 1205 _p 262445 33461119209

= — P_ - Pp_ 7 = —
Bo =15 P =15 P2=g55 Bs e

T 2094297 7P 18089284070

p _ 361969913862291 p  85170013927511392430
7

Po = 137627660760070 = 24523312685049374477 OO
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When k increases, these values are becoming more complicated (see [16]).
The corresponding weights for polynomials p, and ¢, on RT are

1 t
respectively. It is interesting to mention that at the Helsinki International Congress
of Mathematicians (1978), Nikishin [18] pointed out the importance of some classes
of orthogonal polynomials different from classical ones. In particular, he proposed
obtaining explicit forms of polynomials (if possible) orthogonal with respect to the
weight function w? .

Taking the moments

+oo
P v P _ r+DI(2v +2) _
ﬂl,u—/o twl(t)dt—W7 v=0,1,....2m — 1,
and
too (2v +3)1¢(2v + 4)
“5’”:/0 P () de = by T 01 e,

we can obtain the corresponding coefficients in (9) as

50634486717810987107
8296534235776787390

p 1672667011  p
of =2 . ab =
539062030

p 1 p 871

%:E’ alzmy

p  3241115879498605269828015564949609681
af =

= , etcy
4 320801324751624360801327631933415050 eres

1 P 79 P 1312225 P 2491734801234609
2 3

by = 5. b7 = oo . ,
0 12 ! 2100’ 1441671 512172182993900

WP 27698062380526543547153670700 "
= , etc.,
4 1769555822315229089057426013

as well as in (10),

P 10 P 110200 P _ 239533652610 P _ 31261160632702992474327200

cg ==, € = , Cy = , €3 = s
21 55671 53469214601 3917478728549923835709789

P 20322996172719322878237864291826792460487499568690 .
_ etc.;

‘= 1628454245165190286597605307125063916376617814289

o 1 p 241 5 423558471 5 821210997517832607
= —), l, = —— = , d =
0 71207 ' T 8827 2T 1827228267 ¢ 89904292554749621
p _ 80876419660630210535853917968583415257
= etc.,

a5 =

3206594662841751899714894730399285285

but their explicit expressions (for each index) remains a mystery!
Another interesting summation formula is

> - [

k=m m=1/2

n+1/2
f(z)de = /]Rg(ac;m —in+ %)wM(m) daz,
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where the so-called midpoint weight function is defined by
|z]

w(z) = w (z) = ol2mal 1 1’

and g(x; m— %7 n+ %) by (20). As before, one can consider the polynomials p, and
¢, orthogonal on R™ with respect to the weight functions

t

1
Mgy Mgy
(22) wy(t) = wy' (t) = and  wy(t) = wy' (1) = CrV L

e2mVit 41

and in a similar way, one can obtain the corresponding coefficients in (9) and (10)
in the following the rational forms

7 M 97153 2143300949275717 5, 220953557093736349691768417054261

100" T 82840° 2 T 675664735216120 ° *° T 35800501215823265013355797106040 '

M
ag =

M 13086134692539302585317174640117515705018056399360242497207
oM = , etc.;
+ 1286538803151559855777866179684631498656991773534847212200

Y| w2071 15685119025 5,  5895324568676150049511881
= —, b = N D. = , b = ’
0 247 Tt 33600° 2 15852295536 ° 1170833101982789404702400

pM 919480999258696959661346213448241024976800075 '
= , etcy
4 57654080259790880043758405109730039860100212

M 155 M 654837850 M 49647154589257771035
, ¢ = , €y = 5
294 ! 323155833 2 10966854047350313398

M 54308858122280742671267557574002767329800
6765310743275018623908418926036774608781

M 23838072108838598641060574731766928201727321108514773479969006343251318055
4 = 1902789007849170506061772395575191790930210358707162334205873293472321134

, etc.;

7 A 199849 . 366669459206427

M
dy = =, d = y Qo = o ar 10
960 691488 154646219485472
M = 2644652549156041551189819109731
5 =

286002885915941819991126155408

M 70719511061081626527366043397565453286193455371009119954911 .
= , etc..
4 2782343550785232136311735142019287634629029202932721468080

Unfortunately, we were unable to discover their explicit forms!

6. A CLASS OF SYMMETRIC WEIGHTS WITH FOUR FREE
PARAMETERS

In this section, we consider a special case of symmetric weight functions on
(—a,a) with four free parameters that covers many well-known classical weights
such as Legendre, first and second kind Chebyshev, ultraspherical, generalized ul-
traspherical, Hermite and generalized Hermite weight, i.e.,

w(z) = exp (/ L“) dt) — w(-2),

t(pt? + q
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where p, q,7, s are real parameters and ¢ is a constant in (—a,a).
It is shown in [11] that a special solution of the differential equation

1— (=1
22 (pr® 4 q)®!! (v) + w(ra’ 4 5) @) () — (n(r+ (n—1)p)z?+ # s) D, (x) =0,
is the symmetric polynomial in the form

)

[n/2] [n/2]—(k+1) .
B [n/2] (2i = (=1)"+2[n/2)p+r )\ , o
e e e e E

TS
P q

(23) D, (z) = Sn(

k=0 i=0
whose monic form is given by

[n/2]-1

(2i = (-1)"+2)g+s Sn(T s 'x)

§n(x) = /\n( ; Z 'x) = u (20 — (=)™ +2[n/2))p +r P q

For instance, we have

§z(r y $>:x2+q+s
P q p+r’
~ . 3
S, ros 2) =+ q—i—sr7

P q 3p+r
5 (r s 4 3¢+ s 4 3¢+ s)(g+s)
S —2t 42 ,
4(p q x) T s T prn)(Bp+r)
s (r s 5 5g+s 5  (5qg+s)(3qg+s)
S | =xz"4+2 ;
5(10 q T) T T e )Gt

According to [11], the monic form of these polynomials satisfies the three-
term recurrence relation

(24) §k+l<m>:m§k<m>—ﬁk(; ‘;’)@_m) (k> 1),

where §0(T) =1, §1(T) =z, and

5 (r 5) 7_qu2+((7'—220)!1—(—1)kPS)k+(7'—2P)8(1—(—1)k)/2
"\p a) (2pk + 1 — p)(2pk + r — 3p) '

This means that for the monic polynomials 71 (2) = Si(z), the coeficients
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depend on four parameters p, g, r, s. Moreover, if Sx(p, g,r, s) > 0, the generic form
of the orthogonality relation is as

oo [ )]s
—a p q p q b q

l’) do = (5061 e ﬁn)én,kv

where

ros Tr—2p)t2 +s
27 w =
@ (1’ q ) P </ t(pt? + q)
and

a
ros
= w x| dx.
. 1 (p q )
Without loss of generality, we can assume only a = 1 for finite intervals and

a = oo for the infinite interval.

Regarding [11], the function (pa? + ¢) W

r
p

x) must vanish at © = a

in order to hold the orthogonality relation (26).
In general, there are four main sub-classes of distribution families (27) whose
probability density functions are as follows (see [11])

—20-28-2 2 Lle+B+3) | o N
28 KW T =z (1 -
o (B ) R
for =1 <z <1, and
-2 2a ! _—
_ _ _ —2a
(30) KgW( 20— 28 +2 2« m) _ Fl(ﬁ) : || .
1 ! P(B+a—3)T(-at3) (1422
—2a+2 2 ; _ 1 —2a,—1/z?

for —0o < z < oo, where the values {K;}7; play the normalizing constant role
in relations (28) to (31). Consequently, there are four sub-sequences of symmetric
orthogonal polynomials (23).

According to (28), if (p,q,r,s) = (1,1, —2a — 23— 2, 2a) is substituted into

(23), then
)
[n/2]

Sﬂ(—Qa—Zﬁ—Q 200
/2 [n/2]=(k+1) —2i— (28 +2a+2—(=1)"+2[n/2]) , o
5 ({ ]é ]> il ( (D" +2[0/2]) n-ak.

-1 1
: x
= bl 2i+2a+2—(-1)»
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represents the explicit form of generalized ultraspherical polynomials (GUP). By
noting (24) and (25), the recurrence relation of monic GUP takes the form

Sne) =eSua) - PP ) S,

in which

—2a-28-2 22\ _ (k+(1—(-1)a) (k+ (1 - (—1)")a+28)
(32) B’“( -1 1 )f 2k +20+28—-1)(2k+2a+28+1)

Hence, its orthogonality relation reads as

1
a5 [ 20—-2-2 2
pre _.2\8
J A A (i

5 (2a—-20-2 2a
x)Sm( 1 1

x)dm
1 n

_ 2a 2\8 [ —2a-28-2 2a

7/_1 ‘£E| (1—.’[) dz 1:{52( -1 1 677,,m7

where

T(a+3)TB+1)

! 2 2,8 1
/_1|x\ (- dr=Bla+ 5. 5+1) = e Ee D

The above relation shows that the constraints on the parameters o and § should
bea+1/2>0and +1>0.
The second sub-class is the generalized Hermite polynomials

G (-2 2|, —[nf] /2] [n/2Jﬁk+1> 9 e
"\ 0 1 =\ k it 2+ (1) 42420 ’

satisfying the monic recurrence relation

Skt1(@) = 2 Sp(z) — 5k(_§ 2104) Si-1(x),

with
-2 20\ k 1-(-1)"
(53) a( s o) -

and the orthogonality relation
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provided that a+1/2 > 0. According to Favard’s theorem [7, 12], if 8, (p, q, 7, s) >
0 holds only for a finite number of positive integers, i.e., n = 1,..., N, then the
related polynomials are finitely orthogonal. In this sense, there are two kinds of
classical symmetric finite orthogonal polynomials.

The first finite class is orthogonal with respect to the weight function z +—
|| 72%(1 + 22)~# on (—o0, 00) with the initial vector (p,q,7,s) = (1,1, —2a — 28 +
2, —2a), whose explicit form is as

)

§n(72a72,8+2 —2a

1 1
_ [gé] (n/2] ["/Q]ﬁ’“” 2i+2[n/2+ ()" 42202
=\ k F 2+ (—1)"t1 42— 2a '

and satisfies the recurrence relation (24) with

—2a—2B+2 —2a [k —a+(-DFa] (k— (1 — (-1)F)a —28)
(34) 6’“( 1 1 ) (2k — 20— 2B+ 1)(2k — 20— 28— 1)

Hence, its orthogonality relation takes the form

/°° || 2 5 (—Qa —-28+2 —2a x) 5 (—Qa —26+2 —2a
n m
oo (L4 22)8 1 1 1 1

m)dx
T4 20-28+2 —2a F(ﬁ+a7%)l“(fa+%)5
,112[162( ! . ) ) s

if and only if

o ~ 1 1
571( 20 125+2 fa>>0; 5+a>§,a<§ and (> 0.

In other words, the finite polynomial set {S, (1,1, —2a — 283 + 2, —204;:1:)}Ziév is

orthogonal with respect to the weight function |z|=2%(1 + 22)~% on (—oc0,00) if
and only if N <a+8-1/2,a <1/2 and 8 > 0.

Similarly, the second finite class is orthogonal with respect to the weight
T |x\_2“e_1/"2 on (—oo, 00) with the initial vector (p,¢,7,s) = (1,0, —2a+2,2),
whose explicit form is as

: (—2a1 +2 2 ' I) S ([n}éQ])

k=0

[n/2

1—(k+1)

S [n (=" —2k
IL(i+[5]- 5" etma)em
=0
and satisfies the recurrence relation (24) with

2042 2\ 2(-Df(k—a)+2a
Bk( 1 o) (2k —2a+ 1)(2k — 2a — 1)’

(35)

152



Construction of Gaussian Quadrature Formulas for Even Weight Functions 197

and finally has the orthogonality relation

*t2a /et [ 2004+2 2 5 (2042 2
Lw\x| e Sn< 1 0l® S 1 0l® dx

= ilf[ﬂi<201+2 (2) ) F(a _ %) S

if and only if N = max{m,n} < a — 1/2. This means that the finite polynomial
set {Sn (1,0, —2a+2,2 r)}:zév is orthogonal with respect to the weight function
|x\*2“e*1/3”2 on (—oo,00) if N < a—1/2. The following table summarizes the main
characteristics of the four introduced sub-classes. For other symmetric orthogonal
polynomials see e.g. [9, 10].

Table 2: Four special cases of Sy(p,q,r,s;z)
| Definition ‘ Weight ‘ Br ‘

—2a—-28-2 22a 20 N (kta—(=D*a)(k+(1-(-1)*)a+28)
Sn( 1 1 x) lz[**(1 = 2%) 2k 12at28—1)(2k2a128+1)
-2 2« o —z2 —(—1)k
Sn( 0 1 a:) |z|*>e %Jril (21) @
S —20-26+2 —2a B _ (k—at(=1Fa) (k-(1=(-D*)a—25)
n 1 1 r (1422 2k —2a—2B8+1)(2k—20—25_1)
—2a+2 2 20 —1/22 2(—)F (k—a)+2a
S"’( 1 0 I) || ~2re 1/ @k—2a+1)(2k—2a—1)

In the last column of this table we give the explicit expressions for the re-
cursion coefficients (B in the three-term recurrence relation. We use them in the
construction of the corresponding Jacobi matrices.
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Summation Formulas of Euler-Maclaurin
and Abel-Plana: Old and New Results
and Applications

Gradimir V. Milovanovi¢

Abstract Summation formulas of the Euler—Maclaurin and Abel-Plana and their
connections with several kinds of quadrature rules are studied. Besides the history
of these formulas, several of their modifications and generalizations are consid-
ered. Connections between the Euler—Maclaurin formula and basic quadrature
rules of Newton—Cotes type, as well as the composite Gauss—Legendre rule
and its Lobatto modification are presented. Besides the basic Plana summa-
tion formula a few integral modifications (the midpoint summation formula, the
Binet formula, Lindelof formula) are introduced and analysed. Starting from the
moments of their weight functions and applying the recent MATHEMATICA package
OrthogonalPolynomials, recursive coefficients in the three-term recurrence
relation for the corresponding orthogonal polynomials are constructed, as well as
the parameters (nodes and Christoffel numbers) of the corresponding Gaussian
quadrature formula.

Keywords Summation ¢ Euler—Maclaurin formula ¢ Abel-Plana formula e
Gaussian quadrature formula ¢ Orthogonal polynomial ¢ Three-term recurrence
relation

Mathematics Subject Classification (2010): 33C45, 33C47, 41A55, 65B15,
65D30, 65D32

1 Introduction and Preliminaries

A summation formula was discovered independently by Leonhard Euler [18, 19] and
Colin Maclaurin [35] plays an important role in the broad area of numerical analysis,
analytic number theory, approximation theory, as well as in many applications in
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other fields. This formula, today known as the Euler—-Maclaurin summation formula,

2}0)‘/ﬂﬁw+ (F(0) + 1)
k=0

r

Z (512)\;' 2\1—1)(") _f(2v—1) (O)] + Er(f)’ (M

was published first time by Euler in 1732 (without proof) in connection with the
problem of determining the sum of the reciprocal squares,

1 1
L+ 55+ 4 )
which is known as the Basel problem. The brothers Johann and Jakob Bernoulli,
Leibnitz, Stirling, etc. also dealt intensively by such a kind of problems. In modern
terminology, the sum (2) represents the zeta function of 2, where more generally

1
-+ (s> 1).

1
(o) =145+ 5

Although at that time the theory of infinite series was not exactly based, it was
observed a very slow convergence of this series, e.g. in order to compute directly
the sum with an accuracy of six decimal places it requires taking into account at
least a million first terms, because

+o00
1 1 1
n+1 = Z k_2<;
k=n+1

Euler discovered the remarkable formula with much faster convergence

1

~+o00
— 1002
§(2) =log"2 + sz_—]kz,
k=1

and obtained the value {(2) = 1.644944 ... (with seven decimal digits). But the
discovery of a general summation procedure (1) enabled Euler to calculate {(2) to
20 decimal places. For details see Gautschi [25, 26] and Varadarajan [61].

Using a generalized Newton identity for polynomials (when their degree tends to
infinity), Euler [19] proved the exact result £(2) = m2/6. Using the same method
he determined ¢ (s) for even s = 2mup to 12,

" 26 78 710 691712
(=55 80 =545 ¢®) = Gu5p0 $00 = Grzzz 102 = esiogrs
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Summation Formulas of Euler—Maclaurin and Abel-Plana 431

Sometime later, using his own partial fraction expansion of the cotangent function,
Euler obtained the general formula

22v IBZU 7_[2\1
@v)! ’

where B, are the Bernoulli numbers, which appear in the general Euler—Maclaurin
summation formula (1). Detailed information about Euler’s complete works can be
found in The Euler Archive ( http://eulerarchive.maa.org).

We return now to the general Euler—Maclaurin summation formula (1) which
holds for any n,r € N and f € C*[0,n]. As we mentioned before this formula
was found independently by Maclaurin. While in Euler’s case the formula (1) was
applied for computing slowly converging infinite series, in the second one Maclaurin
used it to calculate integrals. A history of this formula was given by Barnes [5], and
some details can be found in [3, 8, 25, 26, 38, 61].

Bernoulli numbers By (By = 1,B; = —1/2,B, = 1/6, B3 = 0, B4y = —1/30,

..) can be expressed as values at zero of the corresponding Bernoulli polynomials,
which are defined by the generating function

e = *
=Y B~
T ; k(x)k!

Similarly, Euler polynomials can be introduced by

= Z Ek(x)

Bernoulli and Euler polynomials play a similar role in numerical analysis and
approximation theory like orthogonal polynomials. First few Bernoulli polynomi-
als are

¢@v) = (="

Xl

1 1 3

By(x) =1, Bl(x)=x—§, By(x) =x* —x + 5 B3(x) = x° —%—i—g,
1 5 5x°

By(x) = x* — 243 —i—x—% Bs(x)—x—%—l—%—)—;, etc.

Some interesting properties of these polynomials are
1
B (x) = nB,—1(x), B,(1—x) = (—1)"B,(x), / B,(x)dx =0 (n e N).
0

The error term E,(f) in (1) can be expressed in the form (cf. [8])

127rkt + e—127rkt

E() = (- 1)’2/ G
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or in the form

_ " By (x — |x]) (2r)
R e e AL G

where |x| denotes the largest integer that is not greater than x. Supposing f €
C>*10, n), after an integration by parts in (3) and recalling that the odd Bernoulli
numbers are zero, we get (cf. [28, p. 455])

" Bati(x = [x]) 041
E() = [ PSR @

If f € C**2[0, n, using Darboux’s formula one can obtain (1), with

n—1

1
BN = Gy [ B = Bra) (D2 00 e 9

k=0

(cf. Whittaker and Watson [65, p. 128]). This expression for E,.(f) can be also
derived from (4), writting it in the form

n—1

E(f) = IM(Zf(zrﬂ)(kﬂ))dx

~ o @r+i\&
_ 1B/zhuz(x) — 2r+1)
-/ (2r+2)!(;f (k”))dx’

and then by an integration by parts,

1

E.(f) = M nil:f(%ﬂ)(k_i_ )
V= et Y,

k=0
1 n—1
Bory2(x) ( (2r+2) )
— —_— " (k + x) | dx.
/0 2r+2)! ;f ( )
Because of By, 42(1) = Bs,42(0) = Bj,42, the last expression can be represented

in the form (5).
Since

(=1 [Bor42 — Bor42(x)] =2 0, x€[0,1],

and

I
/ [Bar42 — Bara(x)] df = Borg,
0
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according to the Second Mean Value Theorem for Integrals, there exists n € (0, 1)
such that

n—1

B4z @r+2) nBorys 0,49
B0 = G (S0 0) = G0, o<t <n
©

The Euler-Maclaurin summation formula can be considered on an arbitrary
interval (a, b) instead of (0, n). Namely, taking h = (b — a)/n, t = a + xh, and
fx) =f((t—a)/h) = (1), formula (1) reduces to

1Y g+ k) = / P di+ 2 [p(@ + p(b)]

k=0

r 2v
" Z Byyh [w(val)(b) — (p(zvil)(a)] + E(¢), )

— (@)
where, according to (6),
Bor a2 (2r+2)
E(p) = (b— )m &), a<é&<b. 8)

Remark 1. An approach in the estimate of the remainder term of the Euler—
Maclaurin formula was given by Ostrowski [47].

Remark 2. The Euler—-Maclaurin summation formula is implemented in MATHE-
MATICA as the function NSum with option Method -> Integrate.

2 Connections Between Euler-Maclaurin Summation
Formula and Some Basic Quadrature Rules
of Newton—Cotes Type

In this section we first show a direct connection between the Euler—-Maclaurin
summation formula (1) and the well-known composite trapezoidal rule,

n n—1
Tof := ) 'fk) = —f(O) +Zf(k> —f(n), ©)
k=0
for calculating the integral
L= /0 £ d. (10)
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434 G.V. Milovanovi¢

This rule for integrals over an arbitrary interval [a, b] can be presented in the form
n b
hY "o(a + kh) =/ o) dt + E"(p), (11)
k=0 ¢

where, as before, the sign }_” denotes summation with the first and last terms
halved, h = (b — a)/n, and E” (¢) is the remainder term.

Remark 3. In general, the sequence of the composite trapezoidal sums converges
very slowly with respect to step refinement, because of |E” (¢)| = O(h?). However,
the trapezoidal rule is very attractive in numerical integration of analytic and
periodic functions, for which ¢(t + b — a) = ¢(t). In that case, the sequence of
trapezoidal sums

Tu(:h) :=h) "pla+kh) =hY_ g(a+ kh) (12)
k=0 k=1

converges geometrically when applied to analytic functions on periodic intervals or
the real line. A nice survey on this subject, including history of this phenomenon, has
been recently given by Trefethen and Weideman [59] (see also [64]). For example,
when ¢ is a (b — a)-periodic and analytic function, such that |¢(z)] < M in the
half-plane Im z > —c for some ¢ > 0, then for each n > 1, the following estimate

(b—a)M

b
Bl = [T = [ o0 ] = 5om

holds. A similar result holds for integrals over R.

It is well known that there are certain types of integrals which can be transformed
(by changing the variable of integration) to a form suitable for the trapezoidal
rule. Such transformations are known as Exponential and Double Exponential
Quadrature Rules (cf. [44-46, 57, 58]). However, the use of these transformations
could introduce new singularities in the integrand and the analyticity strip may be
lost. A nice discussion concerning the error theory of the trapezoidal rule, including
several examples, has been recently given by Waldvogel [63].

Remark 4. In 1990 Rahman and Schmeisser [51] gave a specification of spaces
of functions for which the trapezoidal rule converges at a prescribed rate as n —
400, where a correspondence is established between the speed of convergence and
regularity properties of integrands. Some examples for these spaces were provided
in [64].

In a general case, according to (1), it is clear that

r

Tnf—lnf=2 BZV
v=1

m [f(ZU—l)(n) _f(ZV—l)(O)] + Ez"(f)’ (13)

where T,f and I,f are given by (9) and (10), respectively, and the remainder term
ET(f) is given by (6) for functions f € C*2[0, n].
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Similarly, because of (7), the corresponding formula on the interval [a, b] is

n , b r B Uh2v . o
h;ﬁﬂ(a-i-kh)—/a p(H)dt = ;ﬁ[w(z l)(b)_ﬁl’(z l)(a)] +ErT(§0),

where E(¢) is the corresponding remainder given by (8). Comparing this with (11)
we see that E7 () = E[ (¢).

Notice that if ¢®*2(x) does not change its sign on (a, b), then E7(¢) has the
same sign as the first neglected term. Otherwise, when ¢**2)(x) is not of constant
sign on (a, b), then it can be proved that (cf. [14, p. 299])

r4+2 12Boria| , ,
[Ef (@) < B*F2 e+ ), | G ()] dr ~ 2 |90(2 ()| dr,

ie., |[ET(p)| = O(h**?). Supposing that fa+°° |2 (x)|dx < +o0, this holds
also in the limit case as b — +oo. This limit case enables applications of the
Euler—Maclaurin formula in summation of infinite series, as well as for obtaining
asymptotic formulas for a large b.

A standard application of the Euler—Maclaurin formula is in numerical inte-
gration. Namely, for a small constant A, the trapezoidal sum can be dramatically
improved by subtracting appropriate terms with the values of derivatives at the
endpoints a and b. In such a way, the corresponding approximations of the integral
can be improved to O(h*), O(h%), etc.

Remark 5. Rahman and Schmeisser [52] obtained generalizations of the trapezoidal
rule and the Euler—-Maclaurin formula and used them for constructing quadrature
formulas for functions of exponential type over infinite intervals using holomorphic
functions of exponential type in the right half-plane, or in a vertical strip, or in the
whole plane. They also determined conditions which equate the existence of the
improper integral to the convergence of its approximating series.

Remark 6. In this connection an interesting question can be asked. Namely, what
happens if the function ¢ € C°°(R) and its derivatives are (b — a)-periodic, i.e.,
@@ D(a) = ¢®~D(b), v = 1,2,... ? The conclusion that T, (¢; k), in this case,
must be exactly equal to fab @(t) dt is wrong, but the correct conclusion is that E (¢)
decreases faster than any finite power of £ as n tends to infinity.

Remark 7. Also, the Euler—Maclaurin formula was used in getting an extrapolating
method well-known as Romberg’s integration (cf. [14, pp. 302-308 and 546-523]
and [39, pp. 158-164]).

In the sequel, we consider a quadrature sum with values of the function f at the
points x = k +3 1 ,k=0,1,.. — 1, i.e., the so-called midpoint rule

n—1

Mf = Zf(k+ )
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Also, for this rule there exists the so-called second Euler—-Maclaurin summation
formula

M,f = If = Z @™ =~ DBy [F2 D) — 27D ©0)] + EX () (14)
n T ot (2‘))' r ’

for which

Q" = DBy2

@12 I, 0<é<n

EY(f) =

when f € C¥712(0, n] (cf. [39, p. 157]). As before, I,f is given by (10).
The both formulas, (13) and (14), can be unified as

2v (7:)

Of = If = Z(z),

[0 ) =D O] + E2p),

where T = 0 for Q, = T,, and t = 1/2 for Q,, = M,,. It is true, because of the fact
that [50, p. 765] (see also [10])

1
&@:&aMB(?:@ﬂ—ww
If we take a combination of 7,f and M,

O = Sif = §(Tuf + 24,0,

which is, in fact, the well-known classical composite Simpson rule,

11 — — 1
Sf =3 [Ef(O) + 0+ 2;]"(1« +3)+ Ef(n)} ,
we obtain

Suf = Inf = Zw[f(z”‘”(n)—f(z”‘”(O)]+E5(f) (15)
3(2v)! e

Notice that the summation on the right-hand side in the previous equality starts with
v = 2, because the term for v = 1 vanishes. For f € C?*2[0, 1] it can be proved
that there exists £ € (0, n), such that

(47" = DBoryr

S _ (2r+2)
E(f) = 3m+mrf (©)-
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For some modification and generalizations of the Euler—-Maclaurin formula, see
[2, 7, 20-22, 37, 55, 60]. In 1965 Kalinin [29] derived an analogue of the Euler—
Maclaurin formula for C* functions, for which there is Taylor series at each positive
integer x = v,

+oo gk+1 _ = 1)k+1

b n
f)dx = K " fOa+ (v = 0)h),
/ 2t 2

k=0

where h = (b — a)/n, and used it to find some new expansions for the gamma
function, the ¥ function, as well as the Riemann zeta function.

Using Bernoulli and Euler polynomials, B,(x) and E,(x), in 1960 Keda [30]
established a quadrature formula similar to the Euler—Maclaurin,

n—1

1
[ rea =1, 4 S A0 472 0] + R,
0

k=0
where
n 2k+2
1 k By Esi43—y
T, = - (_) Ap = k=0.1,....n—1),
n;f n k ; vI2k + 3 —v)ln¥ ( n=1)
and
ol 2B, E
Rn _ (2n+2) 2m2n—2m+-3 0 < <1
f (S)mg:l 2m)!(2n — 2m + 3)In?" O=&=1

for f € C*"*20, 1], where B, = B,(0) and E, = E,(0). The convergence of Euler—
Maclaurin quadrature formulas on a class of smooth functions was considered by
Vaskevic [62].

Some periodic analogues of the Euler—Maclaurin formula with applications to
number theory have been developed by Berndt and Schoenfeld [6]. In the last
section of [6], they showed how the composite Newton—Cotes quadrature formulas
(Simpson’s parabolic and Simpson’s three-eighths rules), as well as various other
quadratures (e.g., Weddle’s composite rule), can be derived from special cases
of their periodic Euler—Maclaurin formula, including explicit formulas for the
remainder term.
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3 Euler-Maclaurin Formula Based on the Composite
Gauss-Legendre Rule and Its Lobatto Modification

In the papers [15, 48, 56], the authors considered generalizations of the Euler—
Maclaurin formula for some particular Newton—Cotes rules, as well as for 2- and
3-point Gauss—Legendre and Lobatto formulas (see also [4, 17, 33, 34]).

Recently, we have done [40] the extensions of Euler—Maclaurin formulas by
replacing the quadrature sum Q, by the composite Gauss—Legendre shifted formula,
as well as by its Lobatto modification. In these cases, several special rules have been
obtained by using the MATHEMATICA package OrthogonalPolynomials (cf.
[9, 43]). Some details on construction of orthogonal polynomials and quadratures of
Gaussian type will be given in Sect. 5.

We denote the space of all algebraic polynomials defined on R (or some its
subset) by P, and by P,, C P the space of polynomials of degree at most m (m € N).

Letw, = wlandt, = 1% v = 1,...,m, be weights (Christoffel numbers) and
nodes of the Gauss—Legendre quadrature formula on [0, 1],

1 m
| rean= 3" urc) + k). (16)
0 v=1
Note that the nodes t, are zeros of the shifted (monic) Legendre polynomial
2y —1
T (x) = ( m) Pn(2x —1).
m

Degree of its algebraic precision is d = 2m — 1, i.e., RG(f) = 0 for each f €
Pom—1. The quadrature sum in (16) we denote by Q,ﬁf, ie.,

Ouf = Y wif(@).
v=1

The corresponding composite Gauss—Legendre sum for approximating the inte-
gral I,f, given by (10), can be expressed in the form

n—1 m n—1
GOf =3 Q% (k+) = > wi > flk+ 9. (17)
k=0 v=1 k=0

In the sequel we use the following expansion of a function f € C°[0,1] in
Bernoulli polynomials for any x € [0, 1] (see Krylov [31, p. 15])

! B . 1
7= [ o wt LERFTW-0) - [ oo
1s)
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where L;(x, 1) = B} (x—1) — B} (x) and B; (x) is a function of period one, defined by
BX(x) = Bs(x), 0<x<1, Bi(x+1)=BIx). (19)

Notice that Bj (x) = 1, B} (x) is a discontinuous function with a jump of —1 at each
integer, and B} (x), s > 1, is a continuous function.

Suppose now that f € C*[0,n], where r > m. Since the all nodes 7, = 77,
v = 1,...,m, of the Gaussian rule (16) belong to (0, 1), using the expansion (18),
with x = 7, and s = 2r + 1, we have

2r
f(w) =Lf + Z # [f(i—l)(l) —f(i—l)(O)]

J=1

G o [ 0L

where I;f = fol f(p)de.

Now, if we multiply it by w, = wY and then sum in v from 1 to m, we obtain

m m 2r m
3 wf(z) = (2 wu)hf D3 (Z vaj(zv)) [19-0(1) = 9D (0)]
v=1 1 j=17" Yv=1

o | f@’*”(r)(ZwULzm(rv,r))

i.e.,

G QG J) (, 1) (j—1) G
Q5f = 05(1) f(r)dr+Z [0 () —7DO)] + ES ()

where
EG (2r+1) t G Lr ) dz.
%0 =~y [ 008 W)
Since
1 l»j = 07
/Bj(x)dxz
0 O»J 2 17
and

" 1,j=0,
Qg(B) = wyBj(t,) =
! Z ! 0,1 <j<2m-—1,

v=1
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because the Gauss-Legendre formula is exact for all algebraic polynomials of
degree at most 2m — 1, the previous formula becomes

1
fo—/o f(dt = Z Q";('B) [F970(1) = f9D0)] + S, (). 20)

Jj=2m

Notice that for Gauss-Legendre nodes and the corresponding weights the
following equalities

Ty + Tn—vt1 = I, w,= Win—v+41 > 0, v=1,...,m,

hold, as well as

Wij(Tv) + Wm—v+lBj(Tm—v+1) = Wij(fv)(l + (_l)j)a

which is equal to zero for odd j. Also, if m is odd, then t(u41)» = 1/2 and
B;j(1/2) = 0 for each odd j. Thus, the quadrature sum

Qan(Bj) = ZWqu(rU) =0

v=1

for odd j, so that (20) becomes

1 r G X
5 — [O fyde=Y" % [F¥=D 1) — & D0)] + ES, (). Q1)

j=m

Consider now the error of the (shifted) composite Gauss—Legendre formula (17).
It is easy to see that

n—1
GWf —If = Z[Qﬁf(kJr')—k

k=0

k+1

f() dti|

._a

n—

[me(k+ )—f flk+ ) dx}

»
O

Then, using (21) we obtain

n—1

Glf —1f =31 % [FO D+ 1) — T W)] + EC, (Flk + )
k=0 |j=m :

Z B (10 ) s O] + £,
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where EC (f) is given by

n,m,r

1

ES =
n.m,r(f) (2}’+ 1)'

1 ,n—1
/0 (Zf(z’“)(k + r)) 05 (Loyy1(+. 1) dt. (22)
k=0

Since Ly, +1(x,t) = B}, (x —1) — B3, (x) and

d
B (1) = Bory1(ry), By (zy—1) = —zr—HEBZH(TU — 1),

we have

0S5 (Lor1(+. 1) = Q4 (B3, (- — 1) — OS5 (B3, 1(+))

1 d

because Q¢ (By,+1(+)) = 0. Then for (22) we get

n—1

1
@r+2)EC, (f) = /O (Z FeD (& + t)) Q¢ (%B;,H(- — t)) dr.

k=0

By using an integration by parts, it reduces to

1
Cr+ DL, () = FOQS (B o=0) | = [ 08 (BraC- =) P

where F(¢) is introduced in the following way

n—1
F() =Y fer+(k+1).

k=0

Since B, , (1, — 1) = B ,(,) = Byy12(1,), we have
FOQG (B (= 0) || = (FO) = F0)0 (B 1)
= QB [ Pl
so that

1
(2r + 1S, (f) = /0 [0F (Byrsa(-)) — O (B — )] F'(1) d1.
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Fig. 1 Graphs of t > gﬁ_r(t), r = m (solid line), r = m+ 1 (dashed line), and r = m + 2 (dotted
line), when m = 1, m = 2 (top), and m = 3, m = 4 (bottom)

Since

gg.r(t) = (_1)r_ng [BZr+2(') - B;+2(' - t)] > 0,

there exists an 1 € (0, 1) such that

(2r +2)1E¢

0<t<l, (23)

1
$ue) = ) [ QG [Barsa() = B (0]

Typical graphs of functions ¢ — g% (1) for some selected values of r > m > 1 are

presented in Fig. 1.

Because of continuity of f?"*2 on [0, n] we conclude that there exists also & €

(0, n) such that F'(n) = nf >+ (§).

Finally, because of fol Q¢ [B;r (= t)] dr = 0, we obtain that

1
(@r + 21ES, () = nf®+2 (&) /0 0 [Boysa(-)] dt.

In this way, we have just proved the Euler—Maclaurin formula for the com-
posite Gauss—Legendre rule (17) for approximating the integral I,,f, given by (10)

(see [40]):
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Theorem 1. Forn,m,r € N (m < r) and f € C¥[0,n] we have

Gy~ 1 = ZQQ()?) [0~V O] + B, (. @8

where G f is given by (17), and QSBy; denotes the basic Gauss-Legendre
quadrature sum applied to the Bernoulli polynomial x — Bs;(x), i.e.,

Q5(By) = Y _wiBy(tl) = —R(By). (25)

v=1

where RS (f) is the remainder term in (16).
Iff € C¥12(0,n), then there exists £ € (0,n), such that the error term in (24)
can be expressed in the form

Q (Bar+2)

o @) (26)

nmr(f)

We consider now special cases of the formula (24) for some typical values of m.
For a given m, by G™ we denote the sequence of coefficients which appear in the
sum on the right-hand side in (24), i.e.,

G = {Qg(sz)};:m = {05 (Bon). 05 (Bon+2). Q5 (Bawta). - - .} -

These Gaussian sums we can calculate very easily by using MATHEMATICA
Package OrthogonalPolynomials (cf. [9, 43]). In the sequel we mention
caseswhen 1 <m < 6.

Case m = 1. Here rIG =1/2 and wlc = 1, so that, according to (25),

07 (By)) = Byj(1/2) = 2'7¥ = 1)By;,
and (24) reduces to (14). Thus,

G“)—{—i 731 127 2555 1414477 57337 118518239
- 127 2407 1344° 3840 337927 5591040 49152 16711680 "~} °

Case m = 2. Here we have

1 1 1 1 1
t?:z(l—%),fzczz(l—i-ﬁ) and W?ngzz,

so that QS (Byj) = 1 (Byj(t{) + Baj(t¥)) = Byj(x{). In this case, the sequence of
coefficients is
1 1 17 97 1291411 16367 243615707

ool L L e e s |
180 189 2160 5346 21228480 58320 142767360
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Case m = 3. In this case

1 1
<0 (5—¢15), =~ rf:—(5+¢15)

~ 10 2’ 10
and
5 4 5
G_ > G_ % G_ >
T M Ty M Ty
so that
G 5 G, 4 G
03 (By) = §B2j(fl ) + §sz(fz)
and

e 1 49 8771 4935557 15066667 3463953717
2800 72000°  5280000° 873600000° 576000000 21760000000" " f

Cases m = 4,5, 6. The corresponding sequences of coefficients are

GW — {_ 1 41 3076 93553 453586781 6885642443 }

441007 565950° 11704875 75631500° 60000990000 117354877500 """

G = { 1 205 100297 76404959 839025422533 }

6985447 29719872° 2880541440 352578272256°  496513166929920" "

GO — 1 43 86221 147502043 1323863797
T 11099088 704365207 21074606784 4534139665440°  4200045163776" [

The Euler—Maclaurin formula based on the composite Lobatto formula can be
considered in a similar way. The corresponding Gauss-Lobatto quadrature formula

1 m+1
/0 f)dx =Y whi(eh) + RL(), @7)

v=0

with the endnodes 79 = t§ = 0, T4 = 1, = 1, has internal nodes 7, = t/,
v = 1,...,m, which are zeros of the shifted (monic) Jacobi polynomial,

2 2\ 1
0 = (" F7) P @i,

orthogonal on the interval (0, 1) with respect to the weight function x — x(1 — x).
The algebraic degree of precision of this formula is d = 2m + 1, i.e., RL (f) = 0 for
eachf € Pyyt1.

172



Summation Formulas of Euler—Maclaurin and Abel-Plana 445

For constructing the Gauss-Lobatto formula
m+1
OL(f) = Y whf(zh), (28)

v=0

we use parameters of the corresponding Gaussian formula with respect to the weight
function x — x(1 — x), i.e.,

1 m
/0 g(0x(1 —x)dx = 3 #9(2%) + RY(e).
v=1

The nodes and weights of the Gauss-Lobatto quadrature formula (27) are (cf. [36,
pp- 330-331])

L __ L _ =G — L —
y=0 =7, (v=1,....m), 71,,,=1,
and
mo o~ ~ m ~
L1 WL wy -1 ro_ 1 wy
WO_E_ =G’ Wv—m (V— ,...,m), Wm-l‘l_i_ l_,\G,
Tv rv Tv TV

v=1

respectively. The corresponding composite rule is

n—1 m—+1 n—1
LOF =" 0hf(k+) = whY flk+1h).
k=0 v=0 k=0
nlt m n—I1
= wh+whi ) D FR)+ Y WY flk+Th). (29)
k=0 =1 k=0

As in the Gauss—Legendre case, there exists a symmetry of nodes and
weights, i.e.,

k=1 wh=wh, >0 v=01,....m+1,
so that the Gauss-Lobatto quadrature sum
m+1
L Lp (L
0h(B) =Y wWBi(rh) =0
v=0

for each odd j.
By the similar arguments as before, we can state and prove the following result.
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Theorem 2. Forn,m,r € N (m < r) and f € C¥[0,n] we have

L(")f —If = i w [f(Zj—l)(n) _f(2j—l)(0)] + E- ) (30)
m ) (2])' n,m,r :
j=m+1

where L' f is given by (29), and Q,Lnsz denotes the basic Gauss-Lobatto quadrature
sum (28) applied to the Bernoulli polynomial x — Byj(x), i.e.,

m+1
On(By) = > whBy(th) = —R%(By).
v=0
where RL (f) is the remainder term in (27).
Iff € C2’+2[O, n), then there exists & € (0, n), such that the error term in (30)
can be expressed in the form

Qm(BZr+2) )
Ey,. () = (2 +2),f ).

In the sequel we give the sequence of coefficients L™ which appear in the sum

on the right-hand side in (30), i.e.,
L™ = {QL(sz)}J it = 10m(Bant2), O (Banta), O (Bamte), - - -} »

obtained by the Package OrthogonalPolynomials, for some values of m
Case m = 0. This is a case of the standard Euler—-Maclaurin formula (1), for

which tf = 0 and =} = 1, with w§ = wk = 1/2. The sequence of coefficients is

1 1 1 1 5 691 7 3617 43867 174611 854513 }

6" 30°42° 30°66° 2730°6° 510 798 ° 330 138

1O —

which is, in fact, the sequence of Bernoulli numbers {sz}j= |
Case m = 1. In this case 77 = 0, 71 = 1/2, and 7, = 1, with the corresponding

weights wh = 1/6, wh = 2/3,and w5 = 1/6, which is, in fact, the Simpson formula

(15). The sequence of coefficients is

1 5 7 425 235631 3185 19752437 958274615

12077 6727 640" 16896 2795520° 8192 8355840~ 52297728

LY =

Case m = 2. Here we have

1 1
L=, rf:E(S—«/g), ‘L'ZLZE(S-F\/E), =1

‘50:

and wh = wh = 1/12, wh = wh = 5/12, and the sequence of coefficients is

2466467 997365619

1 1 89 25003 3179
11953125 623437500° ')

=) - — o
2100 1125 41250 3412500 93750
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Case m = 3. Here the nodes and the weight coefficients are

1 1 1
k=0, rleﬁ(7—\/3l), = > = ﬁ(7+“/31)’ th=1
and

L 49 16, 49 1

200 MT 0 M Tas T a0 T 20

respectively, and the sequence of coefficients is

3 — I 65 38903 236449 1146165227
352807 7244167 119857920° 1548933127 122882027520 "

Cases m = 4, 5. The corresponding sequences of coefficients are

@ — { 1 17 173 43909 160705183 76876739 }
T 5821207 2063880 4167450 170031960 79815002400° 3960744480 °f
16 — 1 4 5453 671463061 1291291631
T 9513504° 68999040 1146917376 17766424811520° 3526568534016°

Remark 8. Recently Dubeau [16] has shown that an Euler—Maclaurin like formula
can be associated with any interpolatory quadrature rule.

4 Abel-Plana Summation Formula and Some Modifications

Another important summation formula is the so-called Abel-Plana formula, but it
is not so well known like the Euler-Maclaurin formula. In 1820 Giovanni (Antonio
Amedea) Plana [49] obtained the summation formula

+00
G
k=0 0

+o0

T f(iy) — f(—iy)

e W (31)

1 .
Fedr= 20 +i [

which holds for analytic functions f in 2 = {z € C : Rez> 0} which satisfy the
conditions:

1° lim e ™ |f (x £ iy)| = O uniformly in x on every finite interval,
[y|—>+o0
+o0

2° If(x +iy) —f(x— iy)|e_|2”y | dy exists for every x > 0 and tends to zero

0
when x — +o00.
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This formula was also proved in 1823 by Niels Henrik Abel [1]. In addition, Abel
also proved an interesting “alternating series version”, under the same conditions,

+o00

1 )
Y DM = 57O +i /0

k=0

+0 f(iy) — f(—iy) q

32
2 sinh 'y (32)

Otherwise, this formula can be obtained only from (31). Note that, by subtracting
(31) from the same formula written for the function z — 2f(2z), we get (32).

For the finite sum S, ,f = Z(—l)kf(k), (32) the Abel summation formula

k=m
becomes

1
Sumf = 5[(—1)'"f(m) + D+ D]

+o00
[ TED 0 + D a0 . 63
—00
where the Abel weight on R and the function ¢,,(y) are given by

x _ f(m+iy) —f(m—1iy)
"~ 2sinh7x and - ¢n(y) = 2iy .

(34)

The moments for the Abel weight can be expressed in terms of Bernoulli numbers as

0, k odd,
[ty = (35)

_1\k/2
(2"Jr2 — 1)% k even.

+2

A general Abel-Plana formula can be obtained by a contour integration in the
complex plane. Let m,n € N, m < n, and C(¢) be a closed rectangular contour with
vertices at m & ib, n £ ib, b > 0 (see Fig. 2), and with semicircular indentations of
radius € round m and n. Let f be an analytic function in the strip £2,,, = {z eC:
m<Rez< n} and suppose that for every m < x < n,

lim e ?f(x+iy)| =0 uniformly in x,
[yl—>+00

and that

+o0o
[f (x + iy) —f(x — iy)|e 7! dy

exists.
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_ib >

Fig. 2 Rectangular contour C(¢)

The integration

f(@)
A . d y
A(s) e—12nz —1 2

with ¢ — 0 and b — 400, leads to the Plana formula in the following form
(cf. [42])

n “+o00
Tof — / £ dx = /_ (6.0) — $u )W) dy, (36)
where
at) = LT g ) = B a7

Practically, the Plana formula (36) gives the error of the composite trapezoidal
formula (like the Euler-Maclaurin formula). As we can see the formula (36) is
similar to the Euler—Maclaurin formula, with the difference that the sum of terms

By
(2))!

replaced by an integral. Therefore, in applications this integral must be calculated
by some quadrature rule. It is natural to construct the Gaussian formula with respect
to the Plana weight function x — w”(x) on R (see the next section for such a
construction).

In order to find the moments of this weight function, we note first that if £ is odd,
the moments are zero, i.e.,

(f(zjfl)(n) —f(zjfl)(m))

[l
I’Lk(WP) = AXkWP(x)MZ /kamdxz 0.
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For even k, we have

—+00 xk+l 2 400 l.k+l
pwhy =2 / A = / da,
0 0

e2rnx _ | (27‘[)k+2 el — 1

which can be exactly expressed in terms of the Riemann zeta function ¢ (s),

2k + D¢k +2) Bi+a
') = L = (R
2m) k+2°
because the number k£ + 2 is even. Thus, in terms of Bernoulli numbers, the
moments are

0, k is odd,
W) = (38)
, k is even.

(— 1)k/2 Bk+2
Remark 9. By the Taylor expansion for ¢,,(y) (and ¢,(y)) on the right-hand side
in (36),

f(m+1y) —f(m —1iy) Z( 1)i—ly2j—2

(2j—1)
2iy - 1! f (m),

Pum(y) =

and using the moments (38), the Plana formula (36) reduces to the Euler—Maclaurin
formula,

Tof [f(x)dx Z 1),u2,-_2<w”> (F%D () — %D m))

B Z é‘j;. (F0 ) = m)

because of poi—o(W') = (—=1Y7'By;/(2j). Note that T,,,f is the notation for the
composite trapezoidal sum

n—1

Toaf 1= f(k) = —f(m) + Y f+ —f(n) (39)
k=m

k=m+1

For more details see Rahman and Schmeisser [53, 54], Dahlquist [11-13], as well
as a recent paper by Butzer, Ferreira, Schmeisser, and Stens [8].

A similar summation formula is the so-called midpoint summation formula. It
can be obtained by combining two Plana formulas for the functions z — f(z — 1/2)
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and z — f((z +m —1)/2). Namely,

T (5 0) = Taasif (= ) = >
k=m

i.e.,

n nt+1/2 +00
S k) - / Fo)dr = / [0 20) — b p YOI dye  (40)
k=m —o°

m—1/2
where the midpoint weight function is given by

Il

W) = w' ) —w'(20) =

(41
and ¢,,—1/2 and ¢, 1/» are defined in (37), taking m :=m—1/2and m :=n+1/2,
respectively. The moments for the midpoint weight function can be expressed also
in terms of Bernoulli numbers as

0, k is odd,

x|
oy = [t
R elmdl 41 (=21 — 2—(k+1))£’_<|__+22, k is even.

(42)
An interesting weight function and the corresponding summation formula can be

obtained from the Plana formula, if we integrate by parts the right side in (36) (cf.
[13]). Introducing the so-called Binet weight function y — w?(y) and the function

y = Ym(y) by

"(m +iy) + f'(m — iy)
3 ,

wh(y) = —% log(1—e Pl and  y,,(y) = ! (43)

respectively, we see that dw?(y)/ dy = —w”(y)/y and

S0 = 0n O = 5 {70 i) =70 = )] [1n i)~ =)
= ¥ (y) — ¥ (),

so that
+o00

+o0
/_ [6,0) — $u )W’ ) dy = / [6,0) — du()](—) WP ()

oo —00

+o00
- /_ [0 — Y O)]WP ) dy.

(o]
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because w(y) = 0(e™>"P) as |y| — +o0. Thus, the Binet summation formula
becomes

n —+00
T — / F()dr = /_ [Va(3) — ¥ () WP () . (44)

Such a formula can be useful when f”(z) is easier to compute than f(z).
The moments for the Binet weight can be obtained from ones for w”. Since

Jew”) = /R PP () dy = /R ) dwP () = (k + D),
according to (38),

0, k is odd,

Fek (WB) - (_ 1 )k/2 Biyo (45)

m, k is even.

There are also several other summation formulas. For example, the Lindelof
formula [32] for alternating series is

Foo +oo dy
YDl = D" fm—1/2 4 iy s, (46)
o0 2coshy
k=m
where the Lindeldf weight function is given by
1 1
wh(x) = 7)

2coshmy ™ 4 e
Here, the moments

X
e (why = Amdx

can be expressed in terms of the generalized Riemann zeta function z +— ((z, a),
defined by

+o00
za)=) (v+a)~
=0

Namely,

oy = 1 © k odd, s
P 2k (k4 1) — ¢ (k+ 1.2)]. keven,
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S Construction of Orthogonal Polynomials and Gaussian
Quadratures for Weights of Abel-Plana Type

The weight functions w (€ {wf, wM, wP, wA wt}) which appear in the summation
formulas considered in the previous section are even functions on R. In this section
we consider the construction of (monic) orthogonal polynomials 7y (= m(w; -)
and corresponding Gaussian formulas

[ ar = 3" as) + R0, 49)

v=1

with respect to the inner product (p, ¢) = [z p(x)g(x)w(x)dx (p.q € P). We note
that R, (w;f) = 0 for each f € P,,_;.

Such orthogonal polynomials {m;}ren, and Gaussian quadratures (49) exist
uniquely, because all the moments for these weights u; (= ur(w)), k = 0,1,...,
exist, are finite, and o > 0.

Because of the property (xp, g) = (p, xq), these (monic) orthogonal polynomials
;. satisfy the fundamental three—term recurrence relation

Ti+1 (%) = xm(x) — frm—1(x),  k=0,1,..., (50)

with my(x) = 1 and 7_;(x) = 0, where {Bi}ren, (= {Br(W)}ren,) i a sequence
of recursion coefficients which depend on the weight w. The coefficient 8y may be
arbitrary, but it is conveniently defined by By = o = [ w(x)dx. Note that the
coefficients o in (50) are equal to zero, because the weight function w is an even
function! Therefore, the nodes in (49) are symmetrically distributed with respect to
the origin, and the weights for symmetrical nodes are equal. For odd n one node is
at zero.

A characterization of the Gaussian quadrature (49) can be done via an eigenvalue
problem for the symmetric tridiagonal Jacobi matrix (cf. [36, p. 326]),

- a0 VB 0 -

VBl @ VB

o = Ju(w) = VB ;
Bn—1

. O \/m Op—1 |

constructed with the coefficients from the three-term recurrence relation (50) (in our
case,ay = 0,k=0,1,...,n—1).

The nodes x, are the eigenvalues of J, and the weights A, are given by A, =
ﬁovfil, v = 1,...,n, where B is the moment g = fR w(x) dx, and v, ; is the first
component of the normalized eigenvector v = [v,; --- vv,n]T (with vav =1)
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corresponding to the eigenvalue x,,,
Jvy =xv,, v=1,...,n.

An efficient procedure for constructing the Gaussian quadrature rules was given
by Golub and Welsch [27], by simplifying the well-known QR algorithm, so that
only the first components of the eigenvectors are computed.

The problems are very sensitive with respect to small perturbations in the data.

Unfortunately, the recursion coefficients are known explicitly only for some
narrow classes of orthogonal polynomials, as e.g. for the classical orthogonal
polynomials (Jacobi, the generalized Laguerre, and Hermite polynomials). How-
ever, for a large class of the so-called strongly non-classical polynomials these
coefficients can be constructed numerically, but procedures are very sensitive with
respect to small perturbations in the data. Basic procedures for generating these
coefficients were developed by Walter Gautschi in the eighties of the last century
(cf. [23, 24, 36, 41]).

However, because of progress in symbolic computations and variable-precision
arithmetic, recursion coefficients can be today directly generated by using the
original Chebyshev method of moments (cf. [36, pp. 159-166]) in symbolic form
or numerically in sufficiently high precision. In this way, instability problems can
be eliminated. Respectively symbolic/variable-precision software for orthogonal
polynomials and Gaussian and similar type quadratures is available. In this regard,
the MATHEMATICA package OrthogonalPolynomials (see [9] and [43]) is
downloadable from the web site http://www.mi.sanu.ac.rs/~gvm/. Also, there is
Gautschi’s software in MATLAB (packages OPQ and SOPQ). Thus, all that is
required is a procedure for the symbolic calculation of moments or their calculation
in variable-precision arithmetic.

In our case we calculate the first 2N moments in a symbolic form (list mom),
using corresponding formulas (for example, (38) in the case of the Plana weight
wP), so that we can construct the Gaussian formula (49) for each n < N. Now,
in order to get the first N recurrence coefficients {al,be} in a symbolic form,
we apply the implemented function aChebyshevAlgorithm from the Package
OrthogonalPolynomials, which performs construction of these coefficients
using Chebyshev algorithm, with the option Algorithm->Symbolic. Thus, it
can be implemented in the MATHEMATICA package OrthogonalPolynomials
in a very simple way as

<<orthogonalPolynomials®
mom=Table [<expression for momentss>,{k,0,199}];
{al,be}=aChebyshevAlgorithm [mom,Algorithm->Symbolic]
paln_]:=aGaussianNodesWeights[n,al, be,
WorkingPrecision->65,Precision -> 60]
xA = Table([pgln],{n,5,40,5}];
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where we put N = 100 and the WorkingPrecision->65 in order to obtain
very precisely quadrature parameters (nodes and weights) with Precision->60.
These parameters are calculated for n = 5(5)40, so that xA[[k]] [[1]] and
xA[[k]1] [[2]] give lists of nodes and weights for five-point formula when k=1,
for ten-point formula when k=2, etc. Otherwise, here we can calculate the n-point
Gaussian quadrature formula for each n < N = 100.

All computations were performed in MATHEMATICA, Ver. 10.3.0, on MacBook
Pro (Retina, Mid 2012) OS X 10.11.2. The calculations are very fast. The running
time is evaluated by the function Timing in MATHEMATICA and it includes only
CPU time spent in the MATHEMATICA kernel. Such a way may give different
results on different occasions within a session, because of the use of internal system
caches. In order to generate worst-case timing results independent of previous
computations, we used also the command ClearSystemCache [], and in that
case the running time for the Plana weight function w” has been 4.2 ms (calculation
of moments), 0.75s (calculation of recursive coefficients), and 8s (calculation
quadrature parameters for n = 5(5)40).

In the sequel we mention results for different weight functions, whose graphs are
presented in Fig. 3.

1. Abel and Lindelof Weight Functions w* and w" These weight functions are
given by (34) and (47), and their moments by (35) and (48), respectively. It is
interesting that their corresponding coefficients in the three-term recurrence relation
(50) are known explicitly (see [36, p. 159])

1 . k41
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1 k>
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Fig. 3 Graphs of the weight functions: (leff) w* (solid line) and w* (dashed line); (right) w" (solid
line), w8 (dashed line) and wM (dotted line)
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Thus, for these two weight functions we have recursive coefficients in the explicit
form, so that we go directly to construction quadrature parameters.

2. Plana Weight Function w* This weight function is given by (37), and the

corresponding moments by (38). Using the Package OrthogonalPolynomials
we obtain the sequence of recurrence coefficients {f }¢>o in the rational form:

79 ge = 1205 gr = 262445 g7 = 33461119209
2107 73T 47209429 75 T 18089284070°

1 1
P _ Pp_ = P _
bo = 12° A 10° P2 1659°

P 361969913862291 p _ 85170013927511392430

b = 137627660760070° b= 24523312685049374477°

1064327215185988443814288995130
236155262756390921151239121153 °

By =

pr = 286789982254764757195675003870137955697117
O T 51246435664921031688705695412342990647850

P 15227625889136643989610717434803027240375634452808081047
107 2212147521291103911193549528920437912200375980011300650

P 587943441754746283972138649821948554273878447469233852697401814148410885
1 71529318090286333175985287358122471724664434392542372273400541405857921 °
etc.

As we can see, the fractions are becoming more complicated, so that already A7,
has the “form of complexity” {72/71}, i.e., it has 72 decimal digits in the numerator
and 71 digits in the denominator. Further terms of this sequence have the “form of
complexity” {88/87}, {106/05}, {129/128}, {152/151}, ..., {13451/13448}.

Thus, the last term A%, has more than 13 thousand digits in its numerator and
denominator. Otherwise, its value, e.g. rounded to 60 decimal digits, is

Bl = 618.668116294139071216871819412846078447729830182674784697227.

3. Midpoint Weight Function w™ This weight function is given by (41), and the
corresponding moments by (42). As in the previous case, we obtain the sequence of
recurrence coefficients {8} };>¢ in the rational form:

999245 v _ 21959166635

2071
1217748 7% 7 18211040276

1 7
Ao 24" A 40° P2 5880° P

108481778600414331 ,,  2083852396915648173441543

M = =
Ps 55169934195679160 = "° 813782894744588335008520 °
i 25698543837390957571411809266308135
7T 7116536885169433586426285918882662
M = 202221739836050724659312728605015618097349555485
§ 7 45788344599633183797631374444694817538967629598
By — 14077564493254853375144075652878384268409784777236869234539068357
o=

2446087170499983327141705915330961521888001335934900402777402200
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etc. In this case, the last term S35 has slightly complicated the “form of complexity”
{16401/16398} than one in the previous case, precisely. Otherwise, its value
(rounded to 60 decimal digits) is

o = 619.562819405146668677971154899553589896235540274133472854031.

4. Binet Weight Function w® The moments for this weight function are given
in (38), and our Package OrthogonalPolynomials gives the sequence of
recurrence coefficients {5 }¢>¢ in the rational form:

1 1 53 195 22999 29944523
B _ B _ B _ 22 B _ B _ B _
Po = 12 A 30° P2 210’ P 371° P 22737° Ps 19733142°
4% = 109535241009 i 29404527905795295658
0 T 482642754620 "7 T 9769214287853155785
g7 = 455377030420113432210116914702
§ 7 113084128923675014537885725485
g5 = 26370812569397719001931992945645578779849
5=

5271244267917980801966553649147604697542

B 152537496709054809881638897472985990866753853122697839
107 24274291553105128438297398108902195365373879212227726

100043420063777451042472529806266909090824649341814868347109676190691

B _
pi 13346384670164266280033479022693768890138348905413621178450736182873

etc. Numerical values of coefficients ,Bf fork =12,...,39, rounded to 60 decimal
digits, are presented in Table 1.

For this case we give also quadrature parameters xf and Af ,v=1,...,nforn =
10 (rounded to 30 digits in order to save space). Numbers in parenthesis indicate the
decimal exponents (Table 2).
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Table 1 Numerical values of the coefficients ﬂf Jk=12,...,39

k| Bf

12 1 9.04066023436772669953113936026048174933621963537072222675357
13 | 10.4893036545094822771883713045926295220972379893834049993209
14 1 12.2971936103862058639894371400919176597365509004516453610177
15 | 13.9828769539924301882597606512787300859080333154700506431789
16 | 16.0535514167049354697156163650062601783515764970917711361702
17 |1 17.9766073998702775925694723076715543993147838556500117187847
18 |20.3097620274416537438054147204948968937016485345196881526453
19 |22.4704716399331324955179415715079221089953862901823520893038
20 | 25.0658465489459720291634003225063053682385176354570207084270
21 | 27.4644518250291336091755589826462226732286473857913864921713
22 130.3218212316730471268825993064057869944873787313809977426698
23 | 32.9585339299729872199940664514120882069601000999724796349878
24 | 36.0776989312992426451533209008554523367760033115543468301504
25 |38.9527066823115557345443904104810462991593233805616588397077
26 | 42.3334900435769572113818539488560973399147861411953446717663
27 |45.4469608500616210144241757375414510828484368311407665782656
28 149.0892031290125977081648833502750872924491998898068036677541
29 |52.4412887514153373125698560469961084271478607455930155529787
30 | 56.3448453453418435384203659474761135421333046623523607025848
31 |59.9356839071658582078525834927521121101345464090376940621335
32 | 64.1004227559203545279066118922379177529092202107679570943670
33 |1 67.9301407880182211863677027451985358165225510069351193013587
34 |72.3559405552117019696800529632362179107517585345562462880100
35 | 76.4246546268296897525850904222875264035700459112308348153069
36 | 81.1114032372479654848142309856834609745026942246296395824649
37 1 85.4192212764109726145856387173486827269888223681684704599999
38 190.3668147238641085955135745816833777807870911939721581625005
39 194.9138371000098879530762312919869274587678241868936940165561

Table 2 Gaussian quadrature parameters xf and Af ,v=1,...,n, for ten-point rule
v xf-i—s (= —xe_,) Af—i—s (=A¢_,)
1 |1.19026134410869931041299717296(—1) | 3.95107541334705577733788440045(—2)
2 15.98589257742219693357956162107(—1) | 2.10956883221363967243739596594(—3)
3 | 1.25058028819024934653033542222 4.60799503427397559669146065886(—5)
4 12.12020925569172605355904853247 2.63574272352001106479781030329(—7)
5 1 3.34927819645835833349223106504 1.76367377463777032308587486531(—10)
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Abstract A class of Fredholm integral equations of the second kind, with respect
to the exponential weight function w(x) = exp(—(x~% + ), a > 0, B > 1,o0n
(0, 400), is considered. The kernel k(x, y) and the function g(x) in such kind of
equations,

+00
£ —n /0 ke y) Fw(ndy = g(x). x € (0, +00),

can grow exponentially with respect to their arguments, when they approach to 07
and/or +o0o. We propose a simple and suitable Nystrom-type method for solving
these equations. The study of the stability and the convergence of this numerical
method in based on our results on weighted polynomial approximation and “truncated”
Gaussian rules, recently published in Mastroianni and Notarangelo (Acta Math Hung,
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142:167-198, 2014), and Mastroianni, Milovanovi¢ and Notarangelo (IMA J Numer
Anal 34:1654-1685, 2014) respectively. Moreover, we prove a priori error estimates
and give some numerical examples. A comparison with other Nystrém methods is also
included.

Keywords Fredholm integral equation - Nystrom method - Weighted polynomial
approximation - Gaussian quadrature formula - Orthogonal polynomials - Truncation -
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1 Introduction

The aim of this paper is to approximate the solution of integral equations of the form

+o00
Jx) = M/O k(x, ) f(Mw(y)dy = g(x), x € (0, +00), (0

with the exponential weight function

wx) = exp[—(xia —i—xﬁ)], a>0, p>1, 2)

and the parameter u € R. The kernel (x, y) — k(x, y) and the function x — g(x)
can grow exponentially with respect to their arguments, when they approach to 0™
and/or +o0.

The weight functions similar to (2) have been considered in statistics. Following
Stoyanov [20, §7.1] we mention here a simple example with the inverse Gaussian
distribution (IG) with “easy” parameters, say (1, 1), i.e., a random variable 6 ~ IG,
with density function

LX73/2CX [—l(x—i—l)] if x>0
wx) =1 /271 P75 x/ I ’
0, if x <0.

In terms of the modified Bessel function of the second kind, its moments can be
expressed in the form (cf. [17])

+o00 2
/ ka(x) dx = e,/ — Ki—12(1), k€ Np.
0 T

Also, this kind of weights on (0, +00) were appeared in a consideration on expansions
of confluent hypergeometric functions in terms of Bessel functions by Temme [21],
as well as in the so-called Laurent—-Hermite—Gauss quadrature rules investigated by
Gustafson and Hagler [5] and Hagler [6].
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Integral equations of the form (1), with proper assumptions on the kernel k and the
function g, can occur in mathematical finance in computing distributions of geomet-
rical brownian motion (see [3,7,8]).

However, as far as we know, the numerical treatment of this kind of integral equa-
tions does not appear in the literature. In this paper we are going to study integral
equations of the form (1) in some suitable function space with weighted uniform met-
ric and to approximate the solution by means of a Nystrom interpolant. We will prove
that this method is stable and convergent in the metric of the considered space. In order
to prove the convergence of the method we will use some recent results on polynomial
approximation with the weight w and related Gaussian quadrature rule, obtained by
the authors in [13-16].

Therefore, the results in this paper are new.

For the sake of completeness, we observe that in the weight w, given by (2), the
C°°—function exp [—x‘“] appears. Therefore one could think to introduce a new
kernel function k(x, y) exp [— y‘“] and, provided the function g fulfills some proper
assumptions, to approximate the solution of equation (1) by using a Nystrom inter-
polant based on Laguerre zeros, as in [10] (see also [4,9,11]). In Sect. 4 we will show
that this procedure is in general more expensive and less precise. This fact is also one
of the motivations of this paper.

The paper is structured as follows. In Sect. 2 we recall some basic facts and give
some preliminary results. In Sect. 3 we introduce our numerical method and prove the
main results. In Sect. 4 we will compare our method with the one based on Laguerre
zeros. Finally, in Sect. 5 we show some numerical examples.

2 Basic facts and preliminary results

In the sequel ¢, C will stand for positive constants which can assume different values in
each formula and we shall write C # C(a, b, ...) when C is independent of a, b, . . ..
Furthermore A ~ B will mean that if A and B are positive quantities depending
on some parameters, then there exists a positive constant C independent of these
parameters such that (A/ B)* <.

Moreover, the symbols || - || and || - || will denote the uniform norm in some interval
I and in (0, +00), respectively.

Finally, we will denote by IP,, the set of all algebraic polynomials of degree at most
m. As usual N, Z, R, will stand for the sets of all natural, integer, real numbers, while
Z+ and R™ denote the sets of positive integer and positive real numbers, respectively.

2.1 Function spaces with weighted uniform metric

Letting

ux)=1+x0Vwkx), §> % (3)
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where
w(x) = e~ (e xP) , a>0, B>1,

x € (0, +00), we introduce the function space

C, = [f € CO(O, +00) : hIng fux)=0= El}rloof(x)u(x)] , 4
with the norm

Iflle, = Ifull="sup |f)ulx)|.

x€(0,+00)
We emphasize that the space C, contains functions, defined on the real semiaxis
(0, 4+00), which can grow exponentially both for x — 07 and for x — +o00. More-

over, C, is a Banach space.
For 1 <r € Z, we define the Sobolev-type spaces

W= W@ ={f e Cut f070 € ACO, +o00), IIfV¢"ull < oo},
with the norm
1A w, = Lful + 1L ull,
P(x) = /x.

In order to define further function spaces, we introduce the following moduli of
smoothness. For each f € C, r > 1 and 0 < ¢ < 1y, we set

2,(f,)u = sup

O<h<t

o (1))

i)

where

_ [21/@+1/2) ¢ ]
Ti(e) = [h ST

¢ > 11is a fixed constant, and
o () = Z(—l)i(Z)f (= Dho() . ¢(x) = V.
i=0

We remark that the behavior of this modulus of smoothness is independent on the
constant ¢ (see [14]).
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Then we define the complete rth modulus of smoothness by

0 = Qg0+ Tl 1 — @) ullg rcmsny

+ inf [|(f — @) ullie~2/06-1 4o0)s
S

with ¢ > 1 a fixed constant.
Forany f € W,.,r > 1 and t < f9, we have (see [14])

2, (f: D =C jinf W19 g, 5)

where C is independent of f and ¢.
By means of the main part of the modulus of smoothness, we can define the
Zygmund-type spaces

Zy:=Z77w) ={f € Cu: Ms(f) < o0},

where

24(f, D
(P—S’ r>s, S€R+,

M (f) = sup
t>0

with the norm

I fllzy = fllp + Ms(f).

We remark that, in the definition of Z;, the main part of the th modulus of smoothness
.Q(Z( f, t), can be replaced by the complete modulus w(’p( f, t)u, as shown in [14].

2.2 Weighted polynomial approximation

Let us denote by
E = inf — P
m(f)u 1 . ||(f ) u ”p

the error of best weighted polynomial approximation of a function f € C,,.
The following Jackson, weak Jackson and Stechkin inequalities have been proved
in [14].

Theorem 1 Forany f € C, andm > r > 1, we have

En(fu < Cw; (fs
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where a;, ~ mYB. Moreover, assuming .Q;(f, u e LI[O, 1],

NVam/m QU (£ 1),
Em(f)ufc/ #dt, r<m.
0

Finally, for any f € C, we get

) (B

1=

In any case C is independent of m and f.

In particular, by Theorem 1 and (5), for any f € W, we get

En(flu <C (@) If e ull (6)

and, for any f € Z;, we have

En(flu =C (%) M (f) - )

Moreover, the following equivalences (see [14])
feCislimwy(f.t), =0« lim E,(f), =0 ®)
t—0 m—0o0

will be useful in the sequel.

2.3 Gaussian rules

Let {pm(w)}n be the sequence of orthonormal polynomials related to w(x) =
e~ "= The zeros of pm(w) are located as follows

Em < X1 <X < <Xy <amy,

where the Mhaskar—-Rahmanov—Saff numbers a,, and ,, fulfill a,, ~ m'/# and ¢,, ~

2/Qa+1
(/am /m)>/ =D,
For any continuous function f the Gaussian rule related to the weight w is given
by
+00 m
SO dx =D (w) f () + e (f) ©)

k=1

where x; are the zeros of p,, (w) and A;(w) are the Christoffel numbers.
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In order to introduce our numerical method for solving Eq. (1), we are going to
consider a “truncated” gaussian rule. Fixed 6 € (0, 1), we define two indexes j; =
Ji(m) and jo = ja(m) as

Em < Eom ijl << Xj < dgm < ap -
To be more precise, with 6 € (0, 1), j; and j, are such that

Xxj = max {xx : X < é&om}, Xj, = min {xx : X; > agm}, (10)
’ 1<k<m 1<k<m

and, if {x; : xx < gom}or {xp : Xk > agn}is empty, we set xj; = X1 O Xj, = Xy,

respectively.
Then we consider the following “truncated” Gaussian rule

+o00 J2
FEWE) dx =D~ xi(w) f(x0) + €5, (f) (11)

i=j1

and for any f € C,> we have (see [15])

les ()] =C {EM(f)u2 1e—em” Hfuz

b (12)

where

M= 0 _(; 1 20 . d
=[G5)m) = (o 5p) e crem . mdesem

In particular, recalling the results in Sect. 2.2, for any f € W, (u?), we get

EXIRT: (@) 1wy

and, for any f € Z; (u?), we have
A
Ja
len ()] <C (7’") 11 2 2)

2.4 Compactness of linear operators in C,

Let A: C, — C, be alinear operator. Then, following the Hausdorff definition, A is
compact in C,, if and only if the limit condition

lim sup En(Af), =0 (13)

M= flie, =1
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holds. Taking into account (8), condition (13) can be rewritten in terms of moduli of
smoothness (see [22, pp. 44, 93-94]) as follows

lim sup wy,(Af, 1), =0.
=0 flic, =1

Coming back to Eq. (1), let us consider the operator K defined by

+00
(Kf)(x) = M/O k(x, y) f(Mw(y)dy, x € (0, +00). (14)

Then, letting k(x, y) = ky(x) = k,(y), since

+oo dy
we(Kf, )y < |ulllfull  sup wy(ky,t) M(y)/ —
! ! y€(0,+00) g o (I+y%

if
u(y)ky € C, uniformly w.r.t. y, (15)
then the operator K in C,,.
In an analogous way, the sequence of operators {A,, },,, in C,, is collectively compact,
i.e., the set
S={AnfeCs:m=1 and |ful <1}

is relatively compact in C,, if and only if the limit condition

lim sup sup En(Apf)u=0
N=>00| fll¢, =1 meN

holds, namely if and only if

lim sup sup wy(An,f, 1)y =0.
=0 fllc,=1 meN

In particular, for the sequence of operators
J2
(K f) (x) = Mzki(w)k(x,x,')f(xl'), (16)
i=J1

obtained by applying the “truncated” Gaussian rule (11) to (K f)(x) given by (14), it
is not difficult to show that the collective compactness follows from the assumption

u(x)ky € C,, uniformly w.r.t. x. (17)
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3 The numerical method

Let us now introduce our numerical method for solving Eq. (1), i.e.,

+00
fx) — M/O k(x, ) f(Mw(y)dy = gx), x € (0,+00),
where u € R,
w(y) = e*yfafyﬁ, a>0, B>1,

the given functions k and g can grow exponentially (w.r.t. x, y) when x — 0T and/or
x — +o0. Denoting the identity operator by / and the integral operator by K, we can
rewrite this equation as

I-K) f=g.

With u given by (3), we are going to study the Eq. (1) in the space C, defined
in Sect. 2.1. Under the assumptions (15), the Fredholm alternative holds true. So, if
ker(I — K) = {0}, Eq. (1) admits unique solution f* € C, for any fixed g € Cy,.

In order to approximate the solution of (1), we are going to use a Nystrom method
based on the “truncated” Gaussian rule defined in Sect. 2.3. To this end, we introduce
the sequence of operators {K,, }u,

J2
(K f) (¥) = . D hi(w)k(x, ;) f (x;) (18)

i=]i

which is obtained by applying the “truncated” Gaussian rule (11) to (K f)(x) given
by (14). Then we are going to solve in C,, the equations

() = (K fm)(x) = g(x), m=12,.... (19)
Multiplying both sides of (19) by u(x), collocating at the quadrature knots and letting

ai = (fnu)(xi), bi = (gu)(x;),i = j1,..., jo,form = 1,2, ..., we obtain the linear
systems of equations

u(xp) . .
ah—uZuw)k(xh x) (h) =bn h=ji.....
i=j1

in the unknowns ay, i.e.,

L w)] . .
D | 8in — mhi (kg xi) ——= o | =t =i Q0)
i=j1
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If (20) is unisolvent and (a;*1 e, a;‘z)T is its solution, then, by (18) and (19) , we can
define the Nystrom interpolant

. B 2 A (w) .
fa@) =pn> 2o KO xal + g() @1)
i=j1 !

which we will be an approximation of the solution f* of equation (1) in C,-metric.

Notice that, due to the choice of the “truncated” Gaussian rule in place of the
ordinary Gaussian rule (9), the matrix of coefficients of the system of equations (20),
in notation V,flj l’jZ), has dimension j, — j; + 1 instead of m and this produces a
reduction of the computational cost.

Let us prove the stability and convergence of our method.
Theorem 2 Let u be the weight in (3). Assume
(1) u(y)ky € C, uniformly w.rt. y;
(i) u(x)k, € C, uniformly w.rt. x;

(iii) g € Cy.

If ker(I1 —K) = {0}, the system of equations (20) is unisolvent and well-conditioned.
Moreover, f; converges to f* in C, and

l(f2 = ful <C sup ux) {EM (f*ke) o+ ”f*kxuz
x€(0,400)

[ es)

where

0 1 200 N N
M={(m)mJ, v=(1—%)2a—+1, C#C(m, f*), ¢c#clm, f*).

Proof As already mentioned in Sect. 2.4, from the assumption (i), i.e., (15), the
compactness of the operator K : C,, — C,, follows. So the Fredholm alternative holds
for Eq. (1) and, if ker(I — K) = {0}, Eq. (1) admits unique solution f* € C,,.

Now, using (12), we have

IKS = Knfyul <C sup  {Ey(fhoo +e7
x€(0,400)

‘ Fhou?

boo@

i.e., the sequence {K,, },, strongly converges to the operator K.
Moreover, since {K,, },, is collectively compact by (ii), i.e., (17), it follows that

lim [[(K = Kn)Knllc,~c, =0
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and, using [1, Theorem 4.1.1] or [19, Theorem 2.1], for m > my, the operators
(I — K,,)~" exist and

_ 1+ 1 — K) Mo, IKmlic,—c,
I = Km) Me,»c, < — e
1= = K) " e,»c K — Km)Kmllcu—c,
<C < +o0.

Then, proceeding as in [1, pp. 112-113], we deduce that the matrix V,,(/ 12) of the
coefficients of system (20) is well conditioned, i.e.,

cond (v,,ﬁf“j”) <cond(I — K,) <C <oo0, C#C@m).

Finally, the error estimate (22) immediately follows by (23). O

From (22) we deduce that the order of convergence of our method depends on the
smoothness of the kernel k and the solution f* of Eq. (1). Now, we want to show a
more explicit error estimate, depending on the smoothness of the known functions k
and g. In particular, from Theorem 2 we deduce the following corollary.

Corollary 1 Let the assumptions of Theorem 2 be replaced by

(@) u(y)ky € W.(u) uniformly wrt. y;
d) u(x)ky € Wi(u) uniformly w.rt. x;
(©) g € Wr(u).

Then, for m sufficiently large, we have

I = oyl =0 (%) )

where the constants in “O” are independent of m and f*.

Proof We note that the assumptions on the given functions imply f* € W,(u) and
then f*k, € W, (u?). Hence, by (22) and (6), we get (see for instance [12, Theorem
3.2])

=¢ sup u] ful En G + kel B (),

|(fom = f)ul =€ sup u(x){EM (f*ks) 2+ Hf*kqu
x€(0,400)

x€(0,400)
+ e | 7 Weaul .
with n = | M /2] and the corollary follows from (6). O

We note that, by (7), an analogous corollary holds if we replace the Sobolev spaces
W, by the Zygmund spaces Zj.
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4 Comparison with the Nystrom method based on Laguerre zeros

The following observation is crucial. The integral

+00

FEOwx) dx = / - Fe™ = dx (24)
0

can be evaluated by means of the Gaussian rule related to the weight w(x) = e ¥ ’ ,

i.e.,

Gu(w, f) =D h(w) f(x),

k=1

as described in Sect. 2.3. On the other hand, this integral can be rewritten as

/O Trme e = /0 T[rwe o

and evaluated by using the Gaussian rule related to the Laguerre-type weight o (x) =

—X

e ', ie.,

Gn(0.8) =D hl0)g(te) = D Milo) f(t)e ™,

k=1 k=1

where g(x) = f (x)e_xfa, tr = ty k(o) are the zeros of the mth Laguerre-type
polynomial p,, (o), satisfying

2fl/ﬂ§t1<~--<tm<Cm1/ﬁ,
m

and 1x (o) are the corresponding Christoffel numbers (see, e.g., [9,11]).
Now, considering the coefficients of the two Gaussian rules, we observe that for
the first term of G, (w, f) we have
a28—1)

X o—mPETD

Mw) ~wx))Ax) ~e 1 Axp ~

’

whereas the first term of G, (o, g) fulfills

a@p-1)
- - -
M@ ~ o) Ane ™ ~ Anet T ~em P

This last quantity is much smaller than A (w) for large values of m and also smaller
than the ordinary tolerance usually adopted in computation. Therefore a certain number

n = n(m) of summands of G,,(c, g) do not give any contribution. So, if G,,(w, f)
computes the integral with a certain error, one could obtain the same precision using
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Table 1 Relative errors

m Relative error of G, (0, ) Relative error of G, (w, f)
3.077 x 1071 5.891 x 107©

7 1.222 x 1072 1.256 x 10710

30 9.005 x 1077 -

60 1.584 x 10~ -

110 6.984 x 10716 -

the Laguerre-type rule for larger values of m and with more evaluations of the function
f. The following example confirms this fact.

Example 1 We apply the Gaussian quadrature rules w.r.t. the exponential weight
w(x) =e 1/ =2 and the Laguerre weight o (x) = e~ for calculating

+o00 1
/ arctan( —i_x)e_l/xtx3 dx,
0 4

with f(x) = arctan (%) and g(x) = arctan (%) e~/*’ This integral can be

evaluated with a high precision using the Mathematica function NIntegrate.

In Table 1 we compare the relative errors obtained applying the two rules for
increasing values m, working in double arithmetic precision. We note that underflow
phenomena occurred in the case of Laguerre weights, while in the case of w the symbol
“~” means that the required precision has already been obtained and the relative error
is of the order of the machine epsilon.

We also want to observe that a similar argument applies a fortiori if we compare
the two truncated Gaussian rule related to w and o. In fact, in G, (w, f) we can drop
some terms related to the zeros close to € (w) and some other terms related to the zeros
close to a,, (w), but in G, (o, g) we can drop only some terms related to the largest
zeros without loss of accuracy (see [11]).

Let us now compare the convergence of the two Gaussian rules. To this aim, letting

@) =+ 0w =1+l 551,

x € (0, +00), we introduce the function space
C, = [f € CO(O, 400): lim f(x)v(x) =0= lim f(x)v(x)] ,
x—0t x——+00

with the norm

Iflle, = lfel= sup [fx)v(x)].

x€(0,400)
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For more regular functions, we define the Sobolev-type spaces
WEw) = {f € Cus f770 € AC0, +00), 177¢"v]| < oo},

with the norm || flweoy = | fvll + 1 f @ v]l, where ¢(x) = V/x.
Then it is known that for any f € C,, the Gaussian rule G,,(w, f) converges to
the integral (24). Moreover, if f € W>(v), »r > 1, we have (see [14,15])

Gm(w,f)—/O Jf()w(x) dx

< — 00 .
= (i any I f llwee )

The Laguerre—Gaussian rule deals with functions belonging to the space
Cj := {g € €0, 400) : lim g(x)v(x) =0},
X— 400

with 5(x) = (1 + x)%e", 8 > 1,

lglcs = Ifoll=sup [f(x)v(x)],

x€(0,400)

and/or to the Sobolev-type space
WE@) =g e Ci g7 € ACO, +00), 187"l < o0},
with
Iglwee@ = llgvll + 8¢ vl

@(x) = 4/x and r > 1. In analogy with the first Gaussian rule one has (see [9,11])

(Vg € Cy) Gp(o,8) — / gx)e™ dx, m — o0, (25)
0
and
_ +o0o 5 C
— —X - 0 .
‘Gm(a, g) /0 gx)e™ dx| < (ml—l/(zﬂ))’ llgllwee w) (26)

Nevertheless, if g(x) = f(x)e_x_a with f € C, (i.e., in the case under consid-
eration), the convergence relation (25) is true while the error estimate (26) is false in
general. In fact, f € C, implies g € Cy, but the norm || g || we () can be unbounded for
f € W2(v) (so, although inequality (26) holds). Therefore, the order of convergence
of the Laguerre-Gaussian rule Gn(o, g) is lower than the one of the rule G, (w, f).
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From the previous observations we deduce that the Nystrom interpolant obtained
by approximating the integral

+o0 a P
| [resroe ] ay

by means of the Laguerre-Gaussian rule G,, (o) will have a much larger number of
summands with respect to the method proposed in this paper. This fact implies that
the corresponding linear system will have a much larger order than the one in (20). We
also want to emphasize that considering a “truncated” version of G,, (o) would not
solve this problem, since it is due to the exponential behaviour of the integrand close
to 0 and the “truncated” rule wold drop only the terms related to the largest zeros.

In conclusion, solving integral equations of the form (1) by using a Nystrom method
based on the Laguerre—Gaussian rule would require a larger computational cost (with
possible underflow/overflow phenomena) and a lower order of convergence, as shown
in the next section.

S Numerical examples

In the following examples the exact solutions are unknown and the correspond-
ing tables show only the behaviour of the Nystrom interpolants. As in Sect. 4, all
computations were performed in MATHEMATICA, Ver. 8.0. In particular, for construct-
ing the corresponding Gaussian rules (9) we use a procedure given in [15] and the
MATHEMATICA package OrthogonalPolynomials (cf. [2,18]), which is freely
downloadable from the Web Site:

http://www.mi.sanu.ac.rs/~gvm/.

For the sake of brevity we omit the description of the numerical procedures for
the computation of the zeros of p,,(w), the Christoffel numbers and the Mhaskar—
Rahmanov-Saff numbers ¢,, and a,,. The interested reader can find all the details
about these procedures in [15, pp. 1676-1680].

Example 2 We consider the Fredholm integral equation of the second kind
1 [t y+1 3.3 )

fx)—— cosh{ —— ) f(y)e™ 77 dy =sinh(x + 3), x € (0, +00),
10 0 x+1

with k(x, y) = cosh((y + 1)/(x + 1)), w(x) = e* ", and g(x) = sinh(x + 3).
By (3) we choose the weight u(x) = (1 + x) e_(’f}“})/2 and consider the equation
in the space C, given by (4). Since || K |c,—c, < 1 this equation admits a unique
solution in C,,.

On the other hand, if we consider the weight the Laguerre-type weight ii(x) =
14+ x) e=*"/2 and the associated function space Cj, this equation admits a unique
solution also in Cj. In Table 2 we compare the two associated Nystrom methods,
showing the correct decimal digits obtained in the Nystrom interpolants at given points
for the same values of m.
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Table 2 Values of Nystrom interpolants at x = 0.5, x = 1 and x = 5, for m = 5(5)20

m f5(0.5) — exponential weight u fm(0.5) — Laguerre weight i
5 17.067206691704378 17.060042557600486
10 17.067206693043214 17.06792305565905

15 17.067206693043214 17.06715565208371

20 17.067206693043214 17.067200301955914

m fis(1) — exponential weight u fm (1) — Laguerre weight i
5 27.676749186738305735 27.6713848546487190
10 27.676749187388134070 27.6773392594205800
15 27.676749187388135357 27.6767086020279940
20 27.676749187388135357 27.6767435168185499
m fr(5) — exponential weight u fm (5) — Laguerre weight i
5 1490.731036304753920402 1490.7275135882654744
10 1490.731036305188948542 1490.731492523212215

15 1490.731036305188949804 1490.73100663711270

20 1490.731036305188949804 1490.7310314344204

Using one of the two the Gaussian rules we obtain the corresponding Nystrom inter-
polants f*(x), given by (21), and fin. In Table 2 we give values of these interpolants
at the points x = 0.5, x = 1 and x = 5. The same digits in f,;(x) and f55(x) for
m = 5(5)20 are bolded.

Since the kernel and the solution in this case are very smooth, we see a very fast
convergence of Nystrom interpolants f;:(x), so that f35(x) can be taken as a very well
approximation of the exact solution f*(x). On the other hand, the Nystrom interpolant
based on Laguerre-type nodes converges more slowly.

In both cases the matrices of the related linear systems are well-conditioned. For
instance the condition numbers of the matrices in (20) V,, = v,f,f 1’]2), with j; =1
and j» = m,form =5, 10, 15, 20 (in the infinity-norm) are 1.0218, 1.0260, 1.0271,
1.0284, respectively.

Example 3 'We consider the Fredholm integral equation of the second kind

oo —3_3 2
fx) _/ cos(x +y) f(y)e™ T dy=e'T, x e (0,+00),
0

x3—x

with k(x, y) = cos(x + y), w(x) = e~ 3, and g(x) = el/x? By (3) we choose
the weight u(x) = (1 + x)e~®"+*/2 and consider the equation in the space C,,
given by (4). Since ||K||c,—c, < 1 this equation admits a unique solution in C,,.

In this case the function g increases exponentially for x — 07, so it does not belong
to function spaces associated to generalized Laguerre weights. On the other hand, if

we multiply both sides of the equation by e~!/ x?

, we obtain the equivalent equation
@ Springer
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Table 3 Values of the approximate solution at x = 0.5, x = 1 and x = 5, for m = 10(20)70

f(0.5) - e* — Laguerre weight i

m f5(0.5) — exponential weight u

10 54.62464753294463 54.62349877451629

30 54.62466842772536 54.62466806769319

50 54.62466842781927 54.62466843181872

70 54.62466842781927 Underflow occurred in computation
m (1) — exponential weight u F2(1) - e — Laguerre weight i

10 2.6340588382504633 2.6337766902545059

30 2.6340654174597524 2.6340656449192323

50 2.6340654174976796 2.6340654201667359

70 2.6340654174976796 Underflow occurred in computation
m [k (5) — exponential weight u f,;‘; (5) - 004 _ Laguerre weight i
10 1.2543661133492144 1.2531280168491409

30 1.2543856822837072 1.2543846501698619

50 1.2543856823546275 1.2543856832259046

70 1.2543856823546275 Underflow occurred in computation

+o00
Foo= [ Jeoste e T Foe dy = 1 x e 0,400,
0

with f x) = f(x)e V ** This last equation admits a unique solution in the space
Ci, with i (x) = (1 + x) e=**/2 Tn Table 3 we compare the two associated Nystrom
methods, showing the correct decimal digits obtained in the approximate solution at
given points for the same values of m.

The method proposed in Sect. 3 is stable and the condition numbers of the matrices
in (20) V,, = V" with j; = 1 and j» = m, form = 10, 30,50, 70 (in the
infinity-norm) are 1.0955, 1.1066, 1.1110, 1.1134, respectively. On the other hand,
the method based on Laguerre zeros is less precise and applicable only for small values
of m.

Example 4 Now we consider the equation

400 s s (7 +8)/(4x)
f(x)—/ cosGe+ WA Fe? Y dy = S x e (0, +00),
0 x+4
with k(x, y) = | cos(x + )[4, w(x) = e=* "=, and
e (1 +8)/(4x)
$O=Ta
@ Springer

209



584 G. Mastroianni et al.

Table 4 Absolute errors of the weighted Nystrom interpolants f,’nk (x) atx = 1/2,1,4,8, form = 10,
m = 100 and m = 200

m (1, j2) cond(Vi1?y  x=1,2 x=1 x=4 x=38

10 (1,6) 1.166 LIS(—4)  793(—4)  242(—6)  851(=17)
100 (7,45 1212 359(=5)  660(=5)  L11(=7)  1.61(=17)
200 (11,900 1217 690 (~7)  378(—6)  L16(=8)  9.61(—19)

Table 5 Values of Nystrom
interpolants f% (x) at
x=1/2,1,4,8, form = 10,
m = 100 and m = 200

m x=1/2 x=1 x=4 x =38

10 12.98424 1.990655 11.32452 950832.875282
100 12.98468 1.991643 11.32594 950832.875892
200 12.98488 1.991728 11.32602 950832.876026

100+

0 2 21 é é 1b 1.0 1.‘5 2.‘0 2.‘5 3.‘0
Fig. 1 The Nystrom interpolant f,’,kl (x) for 0 < x < 10 (left) and for 1 < x < 3 (right), when m = 300,
J1=15, jp =134

We consider this equation in C,, where u(x) = (1 + x) e~ @ HD/2 Since
IK|lc,—c, < 1 this equation admits a unique solution in C,. By Theorem 2 and
Corollary 1, since u(y)ky € Zs;4(u) uniformly w.r.t. y, u(x)k, € Zss4(u) uniformly
w.r.t. x, while g is a smooth function, we have

m

0zl = o ((42) ) = 0 (1519

taking into account that a,, ~ m'/?.

Now, we apply the Gaussian quadratures for m = 10(10)50 and m = 100(50)300,
with the corresponding truncation as in Example 8.2 in [15]. Following Table 2 from
[15], we present here in Table 4 the indices j» and j, in “truncated sums” in (18)
and (10) for & = 1/20, as well as the condition numbers of these reduced matrices
V,,(f 1) Their dimensions are Jj2 — Jj1 + 1 instead of m as in the case of Gaussian
formulae, dropping ¢ m? terms, ¢ < 1, in the matrix of coefficients in the system of
linear equations.

@ Springer
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The absolute errors of the corresponding weighted Nystrom interpolants at some
selected x are also given in the same table (we have considered as exact the approx-
imated solution obtained for m = 300). Numbers in parentheses indicate decimal
exponents, e.g., 1.15(—4) means 1.15 x 10~*. Moreover, the values of the corre-
sponding Nystrom interpolants at the same selected points x are given in Table 5.

The Nystrom interpolant f3,,(x) obtained with j; = 15 and j, = 134, for 0 <
x <10and 1 < x < 3is displayed in Fig. 1.
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OPTIMAL QUADRATURE FORMULAS FOR
FOURIER COEFFICIENTS IN W™ ") SPACE
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Gradimir V. Milovanovi¢>! and Kholmat M. Shadimetov!

Abstract This paper studies the problem of construction of optimal quadra-
ture formulas in the sense of Sard in the W,}’"*'"‘l)[o, 1] space for calculating
Fourier coefficients. Using S. L. Sobolev’s method we obtain new optimal
quadrature formulas of such type for N +1 > m, where N + 1 is the num-
ber of the nodes. Moreover, explicit formulas for the optimal coefficients are
obtained. We investigate the order of convergence of the optimal formula for
m = 1. The obtained optimal quadrature formula in the Wémm*l) [0, 1] space
is exact for exp(—z) and Pp—2(x), where P,,_2(z) is a polynomial of degree
m — 2. Furthermore, we present some numerical results, which confirm the
obtained theoretical results.

Keywords Fourier coefficients, optimal quadrature formulas, the error func-
tional, extremal function, Hilbert space.

MSC(2010) 65D32.

1. Introduction

Numerical calculation of integrals of highly oscillating functions is one of the more
important problems of numerical analysis, because such integrals are encountered
in applications in many branches of mathematics as well as in other science such as
quantum physics, flow mechanics and electromagnetism. Main examples of strongly
oscillating integrands are encountered in different transformation, for example, the
Fourier transformation and Fourier-Bessel transformation. Standard methods of
numerical integration frequently require more computational works and they cannot
be successfully applied. The earliest formulas for numerical integration of highly
oscillatory functions were given by Filon [11] in 1928. Filon’s approach for Fourier
integrals

b
Imm:/emﬂmw

is based on piecewise approximation of f(x) by arcs of the parabola on the integra-
tion interval. Then finite integrals on the subintervals are exactly integrated.
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Afterwards for integrals with different type highly oscillating functions many
special effective methods such as Filon-type method, Clenshaw-Curtis-Filon type
method, Levin type methods, modified Clenshaw-Curtis method, generalized quad-
rature rule, Gauss-Laguerre quadrature are worked out (see, for example, [4, 15,20,
40], for more review see, for instance, [21,23] and references therein).

In [22] the authors studied approximate computation of univariate oscillatory
integrals (Fourier coefficients) for the standard Sobolev spaces H® of periodic and
non-periodic functions with an arbitrary integer s > 1. They found matching lower
and upper bounds on the minimal worst case error of algorithms that use n function
or derivative values. They also found sharp bounds on the information complexity
which is the minimal n for which the absolute or normalized error is at most €.

In the work [29] the weight lattice optimal cubature formulas in the periodic
Sobolev’s space Eém) () were constructed. In particular, from the result of the work
[29], in univariate case when the weight is the function exp(icx) (where x € [0, 27|
and o is an integer), the Babuska optimal quadrature formula for Fourier coefficients
was obtained [3].

Recently, some optimal quadrature formulas for Fourier coefficients in the Sobolev
space Lg_,m) (0,1) of non-periodic functions have been constructed in [6].

This paper is devoted to construction of optimal quadrature formulas for approx-
imate calculation of Fourier integrals in a Hilbert space of non-periodic functions.
Precisely, we study the problem of construction such optimal formulas in the sense
of Sard in the ng’m‘”[o, 1] space.

We consider the following quadrature formula

1 N
[ e pw)dn =Y Copns) (L.1)
Jo 5=0
with the error functional
) N
(x) = ™% yy(x) = > Cpd(x — hB), (1.2)
B=0

where Cj are the coefficients of formula (1.1), h = 1/N, N € N, i2 = -1, w € Z,
€[0,1)(x) is the indicator of the interval [0, 1] and d(x) is the Dirac delta-function.

Functions ¢ belong to the space Wz(m’mfl) [0, 1], where
w0, 1) = {<p :0,1] > C ‘ ©m=1 € AC[0,1] and ™ € Ly[0, 1]}

is the Hilbert space of complex valued functions and in this space the inner product
is defined by the equality

—(m—1)

() = / (¢ @+ V@) (5@ + 2" @) e, (1)

where 1) is the conjugate function to the function ) and the norm of the function
¢ is correspondingly defined by the formula

el W™ ™ D0, 1] = (g, )/
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and
'/01 (#™@) + ™ (@) (7 (@) + 7" () ) da < .

We note that the coefficients Cg depend on w, N and m, i.e., Cg = Cg(w, N,m).

It should be noted that for a linear differential operator of order m, L =
P,,(d/dx), Ahlberg, Nilson, and Walsh in the book [1, Chapter 6] investigated
the Hilbert spaces K2(P,,) in the context of generalized splines. Namely, with the
inner product

(o) = / Lo(z) - Li(x) da,

Ks(P,,) is a Hilbert space if we identify functions that differ by a solution of Ly = 0.
Also, such a type of spaces of periodic functions and optimal quadrature formulas
were discussed in [8].

The difference

o)

1 N
)= [ @eroa)de = 3 Caplan) = [ twpplwyds (1)
0 =0 —oo
is called the error of the quadrature formula (1.1). The error of the formula (1.1) is
a linear functional in W2<m’m_1)*[0, 1], where WQ("n"'n_l)*[O7 1] is the conjugate space
to the space Wém’m*l)[o7 1].
By the Cauchy-Schwarz inequality

m,m—1 m,m—1)x
1(€.0)] < llelWs™™D10,1]] - W™ ™" [0,1]

So, the error (1.4) of formula (1.1) is estimated by the norm

,m—1)%*
[[ewsm™m D" [0, 1]|| = sup (¢, 0)|
llelwg™ ™= 10,1]=1

of the error functional (1.2).

Thus, the estimation of the error of the quadrature formula (1.1) over functions
of the space Wz(m"m*l) is reduced to finding the norm of the error functional ¢ in
the conjugate space Wém’mfl)*.

Clearly the norm of the error functional ¢ depends on the coefficients Cz. The
problem of finding the minimum of the norm of the error functional ¢ by coefficients
Cjs when the nodes are fixed (in our case distances between neighbor nodes of
formula (1.1) are equal, i.e., zg = hf, 8 =0,1,...,N, h = 1/N) is called Sard’s
problem. And the obtained formula is called the optimal quadrature formula in the
sense of Sard. This problem was first investigated by A. Sard [24] in the space Lgm)
for some m. Here L(zm) is the Sobolev space of functions which (m — 1)-st derivative
is absolutely continuous and m-th derivative is square integrable.

There are several methods for constructing of optimal quadrature formulas in
the sense of Sard such as the spline method, the ¢-function method (cf. [5], [25])
and Sobolev’s method. Note that Sobolev’s method is based on the construction of
a discrete analogue to a linear differential operator (cf. [37-39]). In different spaces
based on these methods, the Sard problem was investigated by many authors (see,
for example, [2,5,7,9,10, 14, 16-19, 24-28, 30, 31, 33, 36-39, 41, 42] and references
therein).
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The main aim of the present paper is to solve the Sard problem for quadrature
formulas (1.1) in the space Wém’m*l) [0,1] using S. L. Sobolev’s method with N+1 >
m, i.e., to look for the coefficients Cs that satisfy the following equality

HZ‘WQ(m,m—l)*[Q 1} || _ g}fHZ W[/-Q(m,m—l)»s[07 1} H (1.5)

Thus, to construct Sard’s optimal quadrature formula of the form (1.1) in the
space WZ(m"mfl) [0,1], we need to solve the following problems.

Problem 1. Find the norm of the error functional ¢ of quadrature formulas (1.1)
(m,m—1)*

in the space W, [0,1].
Problem 2. Find the coefficients C'z that satisfy equality (1.5).

It should be noted that Problems 1 and 2 were solved in [34] for the case w = 0,
i.e., in the work [34] the optimal quadrature formulas of the form

1 N
/0 (@) do = S Cop(hf)

B=0

in the sense of Sard were constructed. In the sequel we will solve Problems 1 and 2
in the cases when w € Z and w # 0.

The paper is organized as follows. In the second section the extremal function,
which corresponds to the error functional ¢, is given and, with its help, a repre-
sentation of the norm of the error functional (1.2) is calculated, i.e., Problem 1 is
solved. In Section 3 we obtain the system of linear equations for coefficients of the
optimal quadrature formulas in the space Wz(m’mfl)[(], 1]. Moreover, the existence
and uniqueness of the solution of this system are discussed. In Section 4, in the
cases m > 2, the explicit formulas for the coefficients of the optimal quadrature
formulas of the form (1.1) are found, i.e., Problem 2 is solved in the cases m > 2.
The obtained optimal quadrature formulas are exact for any polynomial of order
< m—2 and for the exponential function exp(—x). In Section 5 we solve Problem 2
in the case m = 1 and we calculate the norm of the error functional of the optimal
quadrature formula in the W2(1’0) [0,1] space. The obtained explicit formula for the
norm of the error functional shows dependence on w and h of the error of the optimal
quadrature formula of the form (1.1) in W2(1’0> [0,1] space. Finally, in Section 6 we
present some numerical results which are confirm the obtained theoretical results
of the present work.

2. Extremal function and norm of the error func-
tional

To solve Problem 1, i.e., to get the explicit expression for the norm of the error
functional (1.2) in the space W{™™ V%[0, 1], we use the concept of the extremal
function. The function v, is called the extremal function for the functional ¢ (see,
[37]), if the following equality holds

(6 1pe) = ||e] W™D 10, 1] - ||we | W™ ™ V10, 1]]]- (2.1)
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Since Wr_,(m"m_D[O7 1] is a Hilbert space, then the extremal function 1) in this
space, is found with the help of the general form of a linear continuous functional
on Hilbert spaces given by the Riesz theorem. Then for the functional ¢ and for
any ¢ € Wém’mfl)[(), 1] there exists the function v, € Wém’mfl)[(), 1] for which the
following equation holds

(4, 0) = (e, ), (2.2)

where

—(m—1)

oo = [ LE@ 5 @) (@) + e V@) de (23)

is the inner product defined in the space WQ(m’mfl)[O, 1].
From (2.2) taking into account (2.3) for the extremal function 1, we get the
following boundary value problem

P () — " (@) = (-1)"M(z), (2.4)

( 2”L+S)(£L’) _ wém-%—s—Z) (.’L)) ‘jz(l) =0, s=1,m—1, (2.5)
=1

(,wém)(x) +w§m—1)(l,)> e 0, (2.6)

where £ is the conjugate to /.

Theorem 2.1. The solution of the boundary value problem (2.4)(2.6) is the ex-
tremal function vy of the error functional £ and has the following form

Ye(x) = (—=1)™0(2) % G () + Pr_o(x) +de™™,

where

_ sguw e’ —e 7 x=r
Gm(@) = =5 ( 2 _Z(Qk—l)!> 27)

is a solution of the equation
Gam(a) =GR (@) = 6(x), (2.8)

d is any complex number and Pp,_o(x) is a polynomial of degree m — 2 with complex
coefficients, and * is the operation of convolution.

Theorem 2.1 can be proved as Theorem 2.1 in [34].

For the error functional (1.2) to be defined on the space W2<7n’7"71)((J7 1) it is
necessary to impose the following conditions

(6, 2%)=0, a=0,1,2,.... m—2,  (£,e"%)=0. (2.9)

Hence, it is clear that for existence of the quadrature formulas of the form (1.1) the
condition N + 1 > m has to be met.

The equalities (2.9) mean that our quadrature formula is exact for the function
e~ ” and for any polynomial of degree < m — 2.

Now, using Theorem 2.1 we will get the representation of the square of the norm
of the error functional (1.2).
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We recall that a convolution of two functions is defined by the formula
oo

@) v = [ ee-pudn= [ ewie-ay

J —oo

Taking into account the definition of convolution and equality (1.2) we calculate

the convolution £(z) * G, (2), i.e.,

oo 1 N
(@)<Gne) = [ W)Gmla-)dy = [ €26, (a-9)dy=3 CaGin(o-h),

—o0 0 =0
where £ and Cj are conjugates to £ and Cjp, respectively. Then keeping in mind

(2.2), (2.3) and Theorem 2.1, we have

o 0O

U(x) () da = (—l)m/ U(z)-(U(z) * G (2)) da,

—o00

eI = (€,160) = (e, ) = /

—o00

ie.,

e = v [ ([O] (@) = 3" Codlo— hﬁ))

—o =0

1 N
X (/ e ™G (x —y)dy — Z C,Gp(z — hry)) dz.
0

=0
Hence we obtain

HZHZ = (_1)m{ Z Zcﬁéme(hﬁ —hv)

B=0~=0
_ Z/ (CBeZmu)x + Cﬂe—%nwz) Gm(l’ _ hﬂ) dz
p=0""0

11
+ / / eFriwee 2Ty (1 — ) da dy}. (2.10)
JOo JO

Now we show that the right hand side of (2.10) is real. Really, let Cg3 = C?«HC/;

i2 = —1, where C’g and C/I, are real. Using Euler’s formula e?™“* = cos 2nwz +

isin 2rwx, we get the following equalities

N N N N
D> CC,Gm(hB—hy) =D > (CFCE 4+ CLCE) G (BB — hy),
B=0~=0 B=0~=0

Ce®™™ + Cge ™% = 2C [ cos 2nwa + 20} sin 2w,

11 11
/ / erriwre=mivyc (p — y)dady = / / cos2mw(x — y)|Gp(x — y) da dy.
o Jo o Jo
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Keeping in mind the last three equalities, from (2.10) for the norm of the error
functional we have

N N
e = <1>m{zz<o§cf+c§ci> G5 — )

B=0~v=0
N 1
-2 Z C’[;/ cos 2wz G, (x — hB) dx
#=0 0
1
Jo

N
-2 Z C’é / sin 27wz G (x — hB) dx
5=0

1ol
+/0 /0 cos[2nw(z — y)] Gm(z —y)dzdy|, (2.11)

and from (2.9), we have the following equalities

N 1
ch(hﬁ)o‘ :/ z%cos2rwrdr, a=0,1,2,...,m—2, (2.12)
s=0 0
N 1
Z C’ffe_hﬂ = / e ¥ cos 2nwaz dr, (2.13)
#=0 0
N 1
Z(Jé(hﬂ)“ = / zsin2rwrdr, a=0,1,2,...,m—2, (2.14)
5=0 0
N 1
Z C’ée’hﬂ = / e "sin 2rwa dz, (2.15)
A=0 0

Thus, Problem 1 is solved. Further in Sections 3 and 4 we solve Problem 2.

3. The system for coefficients of optimal quadrature
formulas (1.1) in the space W™ V[0,1]
To find the minimum of the expression (2.11) under the conditions (2.12)—(2.15) we

apply the Lagrange method.
Consider the function

\II(C({{P"7C§7Cév"'7cjl\l7a(?a’"70‘7%—270’(1)7“’7a71n—27dR7d1)
m—2 1 N
=|le® —2(-1)™ Z alt / % cos 2mwz dz — Z Cg(hﬁ)a
a=0 0 5=0
m—2 1 N
-2(=n™ al / 2% sin 2rwz do — ZCé(hﬂ)"
a=0 0 5=0
1 N
—2(=1)md" / e~ " cos 2rwr dor — Z Che 18
0
6=0
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1 N
—2(—1)md! / e " sin 2rwx dx — Z Cée*hﬁ
0

B=0

Equating to 0 the partial derivatives of ¥ with respect to C&, CL, (3 =0,N), a
al, (a =0,m —2), d?, and d!, we get the following system of linear equations, for

a=0,1,....m—2and f=0,1,..., N,

N m—2 1
> CEG (BB —hy)+ > ali(hp)™ + dRe P = / cos 2wz G (x — hB) dz, (3.1)
~=0 a=0
1
ZC (hy)* / % cos 2rwz dx, (3.2)
0

—

e~ cos 2rwz dz, (3.3)

ZcR —hy

Zcf (hB—hy)+ > al(hB)* +d'e™"?

—

J
/sm27rw:cG (x — hp)dz, (3.4)
0

—-

ZC’ hy)“

/ “ sin 27wz dx, (3.5)
0

CI —hr = ¥sin 27wz da. (3.6)

\

Now, multiplying both sides of (3.4), (3.5), and (3.6) by i and adding to both
sides of (3.1), (3.2), and (3.3), respectively, using notations Cy = CF +iC} (8 =
0,N), an = af +ial, (o« = 0,m —2), and d = d® + id?, for the coefficients of
the optimal quadrature formulas of the form (1.1) we get the following system of
N + m + 1 linear equations, for a =0,1,...,m—2and §=0,1,..., N,

N m—2
> CLGm(hB=hy) + Y aa(hB)* +de " = f,.(hB), (3.7)
=0 a=0
N 1
Z Cy(hy)* = / Q2T 0 g, (3.8)
=0 v
N 1
Z Ce M = / 2T (g (3.9)
7=0 0
where G, () is defined by equality (2.7),
1
fm(hB) = / ermwrq (x — hpf) da. (3.10)
0

We note that the system (3.7)—(3.9) has a unique solution when N +1 > m and
this solution gives the minimum to ||¢||*> under the conditions (3.8) and (3.9). The

uniqueness of the solution of this system is obtained from Theorems 3.1 and 3.2
of [34].
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From (2.11) and these theorems from [34], it follows that the square of the norm
of the error functional ¢, being a quadratic functions of the coefficients Cg has a
unique minimum in some concrete value of Cg = é’g.

As it was said in the first section, the quadrature formula with the coefficients
Cu’/; (8 = 0,N), corresponding to this minimum, is called the optimal quadrature
formula in the sense of Sard, and ég (8 =0,N) are called the optimal coefficients.

Below, for the purposes of convenience, the optimal coefficients é[—} will be de-
noted as Cjg.

4. Coefficients of optimal quadrature formulas (1.1)

In the present section we solve the system (3.7)—(3.9) and we find the explicit
formulas for the optimal coefficients Cg. Here we use a similar method to the one
suggested by S. L. Sobolev [38] for finding the coefficients of optimal quadrature

formulas in the space Lém)(O7 1). Here the main concept used is that of functions of
discrete argument and operations on them. Theory of discrete argument functions
is given in [37,39]. For the purposes of completeness we give some definitions about
functions of discrete argument.

Suppose that ¢(x) and ¥(x) are real-valued functions of real variable and are
defined in real line R.
Definition 4.1. A function ¢(hg) is called function of discrete argument if it is
defined on some set of integer values of /.

Definition 4.2. We define the inner product of two discrete functions p(hj3) and
1 (hB) as the following number

0o

[o(hB), ¥ ()] = Y @(hB)-¥(hB),

B=—00
if the series on the right hand side of the last equality converges absolutely.

Definition 4.3. We define convolution of two discrete functions ¢(h83) and ¥(hf3)
as the inner product

o]

@(hB) xp(hB) = [p(hy), p(hB =] = > @(hy) - p(hB — Iry).

y=—00

Now, we return to our problem.
Suppose that Cg = 0 when f < 0 and 8 > N. Using the above mentioned
definitions, we rewrite the system (3.7)—(3.9) in the following convolution form

Gm(hB)* Cg + Ppa(hB) +de™ " = f,,(hB), B=0,1,...,N,  (41)

N
> Cs-(hB)* =ga, a=0,1,....,m =2, (4.2)
B=0

N -1

-1
N R R — (4.3)
=0

2miw — 17
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m—2

where P, _o(hB) = > )" aq(hB)* is a polynomial of degree m — 2,

fm(hB) = /01 ewrq (x — hf) da, (4.4)

! TiwT .o 1 i ala—1)---(a—k+1
ga:/o e? z%dx = +Z:(_1)k ( ) ( ) (4'5)

27iw (2miw)k+t

fora=1,2,....,m—2, go =0, d is a constant, and G,,(z) is defined by (2.7).
Consider the following problem:

Problem 3. Find a discrete function Cg, a polynomial P, _5(h/j3) of degree m — 2
and a constant d which satisfy the system (4.1)-(4.3) for the given f,,(h3).

Further we investigate Problem 3 and instead of Cs we introduce the functions
v(hfB) = Gp(hfB) x Cs and  u(hB) = v (hf) + Pp_a(hB) +de P, (4.6)

In this statement it is necessary to express the coefficients Cg by the function w(hf3).
For this, we need such an operator D,,(h8) which satisfies the equality

Dm(hB) * Gm(hB) = 5d(hﬂ)’ (4'7)

where dq(hf3) is equal to 0 when /3 # 0 and is equal to 1 when 5 =0, i.e., dq(h3) is

the discrete delta-function.
2m d2m— 2

d
In [32,35] the discrete analogue D, (hf3) of the operator Qo Qg2 which

satisfies equation (4.7) is constructed and its some properties are investigated.
The following results are proved in [32,35].

2m d2m—2

Theorem 4.1. The discrete analogues to the differential operator TP dgzm 2

satisfying the equation (4.7) has the form

m—1
AN sz,

m—1
h —
D (hfB) = “Gm—2) —2e" 4 1;::1 A, 1Bl=1, (4.8)
2m—2 m—1 Ak
20+ >~  B=0,
=1 Ak

where

2m—2

Chp(er/n—fS)
(2m—2) ’
Pam—2

C =14 2m—2)e" +e* +

L 202 4 1) — e OF + Do
' M Ph-2() ’
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and

2m—2

PQTVL*Z()\) = Z p£‘2m72))‘3 (49)
s=0

= (1= =2)?"2 =2\ +1) —e"(A2 + 1))

h‘g(l — )\)27”76E2(>\) h2m73E2 ,4()\)
1 y)2m—1 L m
x [p -ty 31 HR R Y ]

Here, p(Z,Q,T_TZQ) and p(ZZV,T;l_EQ) are the coefficients of the polynomial Poy,—2(A) defined
by equality (4.9), A\ are roots of the polynomial Popm—2(N), |Ak| < 1, and Ey(X) is

the Euler-Frobenius polynomial of degree k (see [39]).
Theorem 4.2. The discrete analogue D, (h3) of the differential operator

d2m d2m72

dz2m - dz2m—2

satisfies the following equalities
1) Dy, (hB) = e =0,
2) Dy (hB) xe™"? =0,
3) Dy, (hB) * (RB)" =0, n < 2m — 3,
4) Dy (hB) * Gm(hB) = da(hB).

Here, G, (hp) is the function of discrete argument corresponding to the function
Gm(z), defined by equality (2.7) and 64(hf3) is the discrete delta function.

Then taking into account (4.6), (4.7) and Theorems 4.1 and 4.2, for the optimal
coefficients we have

C = Dyn(hB) % u(hB). (4.10)

Thus, if we find the function u(h/3), then the optimal coefficients can be obtained
from equality (4.10).

To calculate this convolution, it is required to find the representation of the
function u(hp) for all integer values of 8. From equality (4.1), we get that u(hf) =
fm(hB) when hj € [0,1]. Now we need to find the representation of the function
u(hf) when 8 <0 and 8 > N.

Since Cg = 0 when hf ¢ [0,1] then Cg = Dy, (hJ3) x w(hB) =0, h3 ¢ [0, 1].

Now, we calculate the convolution v(hf3) = G,,(hf3) x Cg when hf ¢ [0, 1].

Suppose 8 < 0 then, taking into account equalities (2.7), (4.2), (4.3), we have

v(hB) = G (hB) * Cp

1Y ehB—hy _ g=h+hy L] (hB3 — hy)?*!
e,

- 1)
2 = 2 et (2K 1).
el el —1 h
= —h6 I .
4 2miw—1 + De + R2m—3(h6) + Qm—2(hﬁ)7 (4 11)
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where
(#1261
1 (hB)" 1= (~1)°
m—3(hB) = = A A .
Ban—a(hB) =3 | 2. > 2k —1—a)lal 7
k=1 a=0
-1 m-=2
hﬂ)% 1— a( 1)a
+ 2k —1—a)al % (412)
k:[m;l a:o
is a polynomial of degree 2m — 3 in (hf3),
m—1 2k—1 hﬁ 2k 1— a a
Qm 2 hﬂ Z Z mzc h’}/ (4.13)
k [ 7l2+1 a=m-—1
is an unknown polynomial of degree m — 2 also in (h3), and
1
= Z;) Ceh. (4.14)
o

Similarly, in the case f > N, for the convolution v(h3) = G,,(hB) x Cs, we

obtain
ehf =1 1

U(hﬂ) = T 2w — 1 - De—hﬁ - RZHL—ZS(h‘B) - Q'"L—Z(h/B)' (415)

We denote
Q25 (hB) = Pru—o(hB) + Qm-2(hB), o~ =d+D, (4.16)
QUL (hB) = Po_s(hB) — Qu_s(hB), aT =d— D, (4.17)

and, taking into account (4.11), (4.15), (4.6), we get the following problem.
Problem 4. Find the solution of the equation

Dy (hB) xu(hfB) =0, hp ¢[0,1], (4.18)
having the form
L e 4 Ry o(h9) + Qa(hB), B <0,
4 27w —1
u(hB) =4 fm(hB), 0<B<N,
e el —1

a1 Tt = Rana(h®) + QU5 (h8), B> N

Here, Q( 5(hpB) and QH) (hf) are unknown polynomials of degree m — 2 with
respect to (hf3), a and a™ are unknown constants.

If we find Qm 5(hB), QH) (hB), a= and a*, then from (4.16), (4.17) we have

m—2

Pra(0) = 5 (Q52(08) + Q25(h8)) , d= J(a™ +a¥),

226



Optimal quadrature formulas for Fourier coefficients 1245

Qua(hB) = 5 (@7a(h8) — @SFa(08) ), D = S(a™ —a¥).

Unknowns Q( ) 5(hpB), Q<+) (hB), a~ and a™ can be found from the equation
(4.18), using the functlon D,,L(hﬂ). Then we can obtain the explicit form of the
function u(hB) and find the optimal coefficients Cs. Thus, Problem 4 and, respec-
tively, Problem 3 can be solved.

But here we will not find Qg;lz(h[ﬁ), Qﬁ:lz(hﬁ), a~ and a*. Instead of them,
using D,,,(h3) and u(hf), taking into account (4.10), we find now the expressions
for the optimal coefficients Cs when f=1,..., N — 1.

‘We denote
Ap e M el -1
= YA o1 m— —h
o /\kp,; "( 1 om 1 T Fem-s(=h7)
Qm 2( h'Y) + (Z_eh’Y _ frrm(fh’\/))a (419)

A & hy+1 -1 _ 1
k (e ¢ - R2m—3(1 + h’y)

b= —2 NN =
k /\kpz M\T4 27miw 1
y=1

+QU (14 hy) +ate M — (14 hw)>, (4.20)

where \;, are roots and p is the leading coefficient of the polynomial Pay,—2(X) of
degree 2m — 2 defined by (4.9) and |Az| < 1. The series in the notations (4.19),
(4.20) are convergent.

The following statement holds:

Theorem 4.3 (Theorem 3, [31]). The coefficients of optimal quadrature formulas
in the sense of Sard of the form (1.1) in the space Wém’mfl)[O, 1] have the following
form

m—1

Cp = Dy (hB) * fm(RB) + (akA/,j +bkAﬁ*5), B=1,2,...,N—1, (4.21)
k=1

where ay, and by are unknowns and have the form (4.19) and (4.20) respectively,
A are the roots of the polynomial Pay,—2(N) which is defined by equality (4.9) and
|)\k‘ < 1.

From Theorem 4.3, it is clear that to obtain the explicit forms of the optimal
coefficients Cj in the space W™ (0,1] it is sufficient to find a; and by, (k =
1,m —1). But here we will not calculate series (4.19) and (4.20). Instead of that
substituting equality (4.21) into (4.1) we obtain the identity with respect to (hf3).
Whence, equating the corresponding coefficients in the left and the right hand sides
of equation (4.1) and using (4.2) when av = 1,2,...,m — 2, we find a; and by. The
coefficients Cy and Cy can be found from (4.2) when a = 0 and (4.3), respectively.
Below we do it.

In the present section we solve the system (4.1)—(4.3) for any m > 2 and for
natural N that N +1 > m. As it was mentioned above, it is sufficient to find ay
and by (k=1,m —1) in (4.21).
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The case m = 1 we consider in the next section. In the case m > 2 the following
results hold:

Theorem 4.4. The coefficients of optimal quadrature formulas of the form (1.1)

with the error functional (1.2) and with equal spaced nodes in the space Wz(m’m_l) [0,1]
when m > 2, N+ 1>m and wh € Z are expressed by formulas

O — Keimiwh 27iw(1 —e) — 1
07 (e2riwh — h)(e2miwh — 1) " 2riw(1 — 27iw) (1 — ch)
+’"Zl axA2 N DAY
1 — /\k eh — )\k) (1 — )\k)(l — )\keh) ’
) m—1
Cp =K 4+ 3 (el +0A 7)), B=TN-1,
k=1
Cn = Keh 2miw(e — 1) —e”

(e2miwh — eh)(e2miwh — 1) 2miw(1l — 27iw)(1 — eh)
m—1
ak)\k bk/\%
e Z ( =)@ =) T A=) = e )

where ay, and by, (k= 1,m — 1) are defined by the following system of 2m — 2 linear
equations

m—1 b )\N+1

m—1
Ry kA
Z v DO —oh) © ; O — Dweh — 1)

=1

1 Ke27riwh
Smic(1 — 2miw)(1 — o) | (eZmih — oh)(1 — o2miwh)’

’f apAN* N ! bk
Pt )\k — 1 )\k — eh) e )\k — 1 )\keh — 1)

1 KeQﬂ'iwh
= omiw(1 — 2miw)(1 — o) | (eBmwh — oh)(1 — o2riwh)’

1

m

m—1 J /\N+tAtOJ

W\
akZ . 1)t Z bkz W

k=1 t=1 .
- (%ii!:)m ’Z (gffhwi?;?il j=T.m—2,
and
mzl Ak |:h] 2]: Al 0t+1 Z h’C’ 21: /\Jii\f)tgl}
t=1 i
+mzl b {hﬂ J iNTffffl ih <. i AAICA;?M}
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j-1 d

- LU (

P (2miw)F+T vt  (1- 2miwh)i+1

27riwhtAtoi

for j=1,m — 2, where

m—1
L 245 1 — A cos(2mwh) Ak
K= _— —4¢h 2nwh)+2C
P2 { Z { M A2 41 -2\, cos(2nwh) A ¢" cos(2mwh)+

B 1 m—1 1

T @riw? -1 & (2riw)?

A are the roots of the polynomial (4.9), [\g| < 1, and péi?"_}z), Ay and C are defined
in Theorem 4.1.
Theorem 4.5. The coefficients of optimal quadrature formulas of the form (1.1)

with the error functional (1.2) and with equal spaced nodes in the space Wz(m’m_l) [0,1]
when m >2, N+1>m and wh € Z, w # 0, are expressed by formulas

2miw(l —el) — 1 ap)? b AN }
Co =

2rieo(l — 2miw) (1 — &) | 2 {(1 VS TP v R R W TR W

m—1

=3 @mf +bk)\,]f’ﬁ> . B=1,N_1,
k=1

m—1

2miw(e — 1) — " A brAZ
Cy = .Wlw(e ' )—e : 4o Z ak kh n kAL |,
27w (1l — 2miw) (1 — eh) bt (T=p)(em = Ag) (1= Ap)(1 — Mgel)

where ap and b, k =1, m — 1, are defined by the following system of 2m — 2 linear
equations

m—1 m—1 N+1
b 1

ak)\k _
k; (M — 1)\ —eh) kg (A — D)(Ageh — 1)~ 27iw(1 — 27iw) (1 — eh)’

"‘Z’l a ’”Z’l b B 1
P M — DA —eh) = (A — D (eh —1)  2miw(1 — 27iw) (1 —eh)’

m—1 J m—1 J N+t At .
ARALOT AT AN jlh o
w2 G e -t 2 hd " A~ @mwhpr J=hmo R
k=1  t=1 k=1 t=1
and

m—1 J i i )\NthAtOi
Z“k[f”z G thzmm}
k=1

2 AN“NOJ d LA
Sy N Sy e

RIG—1) -G —k+1)
(2miw)k+1 ’

j=1m-2.
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Here, Ay, are the roots of the polynomial (4.9) and |A\g| < 1, Ay and C' are defined
in Theorem 4.1.

In order to prove Theorem 4.4 we use the following formulas (cf. [13], [12])

n—1 1 k q i q" k q i
YAk — Aiok_ Az k
Z::qy 1fq;<1*q> 1*(1;<1*q> e

k41 (4.22)

k! B,
Z” "o

where A0 = Z (—1)"=¢C4F, Aiy* is the finite difference of order i of 4*, and
=1
By 11— are the Bernoulli numbers, as well as

A% =3 CEACOPa P (4.23)

p=0

Proof of Theorem 4.4. Using the binomial formula in equality (4.4), for f,,(hf3)
we deduce

m—1

et+1)e ™ (1+e 1) riwh 1 1
fm(hﬁ): ( ) _( p ) + Zmiwhf N2 _Z i) 2k
427w +1) 427w — 1) (2miw)? — 1 = (2miw)

[

)

J=12k-1 hﬁ 2k—1— a( )

m—L mz hﬁ 2k—1— a( 1)a
+ 2(2 —a) 'a' [Z Z —a)la! Jo

k=1 a=0 ] =

m—1 m—2
hﬁ 2k—1— a( 1)04
+ :; 2k7170z)'a'g

k:[m;l a

(4.24)

Then, using (4.24), Definition 4.3 and Theorems 4.1 and 4.2, after certain calcula-
tions for the convolution D,,(hf) * fim(h3) we get

() * fn(hB) = Dn(hB) = {eww <(2mw - @ )}

1

k=
1 m—1 o
— p2miwhp _ D 27riu.1h’7
¢ [(2m‘w)2—1 Z (2miw)? } Z m(

27iwh,
:Kewuﬁ7

where K is given in Theorem 4.4.
Therefore, from Theorem 4.3, taking into account the last equality, for coeffi-
cients Cg, f =1, N — 1, we have

m—1

Cp = Ke?™whb | <akA§ + bkAkN*ﬁ) . B=1,2,...,N—1. (4.25)
k=1
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For the convolution G, (h8) * Cg of equality (4.1) we have
hB3 _ —hﬁ m 1 , 2k 1
S(hB) = Cy (e - Lﬂ ) +Si(hB) + Sa(hB),  (4.26)
where
A1 ehB—hy _ ghy—hp M1 (hB — hry)2E-1
Si(hB) = C, 5 - T
=1 k=1
N m—1
1 h[i hy _ h'y hj3 hB hv 2k 1
5:08) = =3 2y ( ]; ).

Then, using (4.25), (4.22), (4.23) and taking into account that \j are roots of the
polynomial (4.9), after some simplifications, we get

. Kel K
__ 2miwhp
Si(hp) =e=m " [Q(CHW}L —eh)  2(eht2mieh 1)

Ke2miwh M=l pai-1 20-1 Atg2-1
eQwiwh —1 = (2l _ 1)! — (e27Tith _ 1)t

ﬁ KCQwiwh N m—1 ak)\k bk)\N
2 e2miwh _ oh = )\k _ eh 1— )\keh

+ 2 eh+2miwh _ + )\kCh -1 /\k

o—hB { K e2miwh+th m— 1< apApeh bkAkNeh)}
k=1

+ e2miwh _ eZTrluJ}L

Ke?ﬂiwh m—1 hl 1 201 20-1 AtoZl 1—j
J
2 @ G X -
7=0

m—1 2[ 20—1 m—1 20— 1At02p 1—j

_ 1
akAk
C J
m—1 20—1 m—1 20—1 t
h2£ 1 bk)\N )\k L
+ .ch M Z(Hk) A,
t=0 §

(=1
(4.27)

—_

Now, using the binomial formula and equalities (4.2) and (4.3), we obtain
1 (et = —ng N
S2(hf) = 2{ 2(27nw
m—1 m— Q(hﬁ 2U—1— u( 1)11

hﬂQk -« a
Z Z((Qli—(wga+ Z Zm!]a

k=1 a=0 m+1} a=0

m—1 2k—1 hﬁ 2k 1— a a N

k= [ ;l]u m—1
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Taking into account (4.27), (4.28) and putting (4.26), (4.24) into (4.1), we get
the following identity with respect to (hj3):

S(hf) + Pp_o(hB) +de ™" = f,.(hB). (4.29)

As it was said above, equality (4.29) is the identity with respect to (k). Keeping
in mind (4.27), (4.28), (4.24), equating the coefficients of e"® and the terms which
consist of (h5)*, & = m — 1, 2m — 3 in both sides of (4.29), we get the following
equations for a, and by

- Ak — /\NH Ak — A;CVH _
E:{ )U-M)+6(Awh—1x1—A@}“Q (4.30)

m— { (hB)2-1 20-1 (hB)IR2—i=1 20-1—-j Ke2miwh At2l—1—j

>

Pt M VI T T RV S Co e
20—1 hﬁ ‘]hQV j—1 m— 1 20— 1A Atoz[ 1—j
+];1 (20-1-j)lj! 4 Ok O — )it
20—-1 m—1 20—1
h2[ j—1 )\N-HAfO?ﬁ 1—j
h > =0. 4.31
t 2 O g g Sl G

Unknown polynomial P,,_2(h/j3) and the coefficient d can be found from (4.29)
by equating the corresponding coefficients of (h3)® when o = 0,1,...,m — 2 and
e "8 respectively.

Now, from equations (4.2) when o = 0 and (4.3), taking into account (4.25),
using identities (4.22) and (4.23), after some simplifications for the coefficients Cy
and Cl, we get the following expressions

2miwh
Co= B 1

e2miwh _ o

27w — 1

(e —1)(1 = Ap)(e" — M)

A — o)+ AN (e — 1) + Ak(1 — ") } (4.32)

+T"Zl{ A€ — ) + A2(e — 1) + ANF1(1 —¢h)

+bi,

(e — ].)(/\)€ — 1)(/\keh — 1)

and
Keh 1

—  —
eh — e2miwh © iy — 1

+Z{ Mi(e — 1) AN ("1 —eh) + AT (el —e)

Cn =

(e =11 = Ax)(e" = Ax)

AT (e — eh ) 4 X2 (ehH! —ef) + Ay (e —e) } (4.33)

o e (1= ) (1 = eh)

respectively. Then, from (4.31), using (4.32), grouping the coefficients of same
degrees of (hf) and equating to zero, for a and by, we obtain the following m — 1
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linear equations:

"‘Z*l XJ: B2 T2 NANME M (e —e) + AR (e — 1) + ANTH(1 — M)
“ _
F (20— 2)l = (A — 1) (e — 1)\ — 1)(Ag —eh)

m—1 j _ 21—-2 <
bk|:i p2i=2 ANFEA2I-2 /\k(l—eh)—k—/\kN(e—l)—}—)\kN“(eh—e)}

@ -2 e (1= ) (e — 1) — D(Ageh — 1)
B i 1 B h2172 20-2 KeZWiwhAto2l72 B KeQwiwh B 1
B | @2miw)? =t (20 2)1 £ (e2miwh — 1)t e2miwh _eh  27iwh — 1’

J 21—1 201 t2l—1 m—1 J 21—1 2=l \ N+t Ai20-1
h AL A0 h ANFEATQ
> ey 2 e S 3 e 3

J 1 p2i-1 2=l poemieh Atg2l-1
=2 @2riw)2 ~ (20—1)! ; (e2miwh — )i |

for j =T, [om = 1)/3].
Further from (4.2) when o = 1,...,m — 2, using equalities (4.25), (4.33) and
identities (4.22) and (4.23) for aj, and by, we have the following m—2 linear equations:

m—1 i N+i Jj—1 ! N+i adipl
AL = A ing . A, A0
S aefw 3 N - Sy 3 A

=0 =0

Jr)\k(e—eh’“) AN (Mt — ey AN —e)
(e = 1A = 1)(Ax —e?)

m—1 N+1 j—1 l inl
AN ARAI0

PN AT A N N e § A0

N Z b’“{h O -1y Y ;h o ; (A — 1)t

+/\kN+1(e — M) £ Ap(eh —e) + A2 (el —eh)
e~ 0w —D0wer = 1)

j—1

1 JG-1DG=2)---G-1l+1) Ke!
= —1)! _ i
2miw * ;( ) (27Tiw)l+1 eh _ @2miwh

L l eZ‘rriwthAtol
27r1w +th CJZW?

where j =1,m — 2.
Finally, after some simplifications in (4.30) and the previous systems of equations
for a; and by, we get the system which is given in the assertion of this theorem. [J

The proof of Theorem 4.5 is similar to one of Theorem 4.4. Only one difference
is that Dy, (hB) * fm(hB) = K = 0.

For m = 2, m = 3 and m = 4, from Theorem 4.4 we have the following results:
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1252 N. D. Boltaev, A. R. Hayotov, G. V. Milovanovi¢ & Kh. M. Shadimetov

Corollary 4.1. The cocefficients of optimal quadrature formulas of the form (1.1),
with the error functional (1.2), and with equal spaced nodes when wh & 7 in the
space WZ(Z’I)[O7 1], are expressed by formulas

Ketrivh 2miw(l —el) — 1
(e2miwh — eh)(e2miwh — 1) 27iw(1 — 2miw) (1 — e”)

1 A2 biAY
+ nAa_
].—>\1 e"—)\l 1—/\16h

CB _ eQ‘/riu.thK + al)\f + bl)\fl\f*ﬂ7 [.3 =1,N -1,

Co =

Keh 2miw(e® — 1) —
(e2miwh — eh)(e2miwh — 1) 2iw(l — 2miw) (1 — eP)

+ Ch al)\{v + bl/\%
1*/\1 Ch*)\l 1*)\1Ch ’

Cy =

where
G )\1) 1 L et et
“= Ar(eh = DAY +1) | 2miw(2miw — 1) (el — e2miwh)(1 — e2miwh) |
b — (1 —e"A)(1—)) 1 N Ke2miwh(1 — eh)
PO = 1)WY 1) [2miw(2miw — 1) | (eh — e2riwh)(1 — 2riwh)
N —1)y/B2 (e + 1)% + 2h(1 — )
e 1 —e?h + 2heh
L 2A1 1-— )\1 Ccos (27TUJ}L) A1
= —|=—"- - — —4 2nwh) + 2C
o0 [ T D cos (mah) e cos(2muh) +
L= 1 A — 2()\1—1)()\16 —1)(8 —)\1)
rw)?((2rw)2 +1)" M +1 ’
A2 4+1
p(22) =1-e%"+ Qheh, C= (1 + eh)2 — ehil;_ .
1
Remark 4.1. For A; in Corollary 4.1 the following expansion
2v/3 -3 3v3—1
A =V3-2 n* — ht hS
1=V3-24 T 2oy " HOW)

holds.
Corollary 4.2. The coefficients of optimal quadrature formulas of the form (1.1),

with the error functional (1.2), and with equal spaced nodes when wh & 7Z in the
space Wz(s’z) [0,1], are expressed by formulas

Kelmiwh 27iw(1 —e) — 1
(e2miwh — eh)(e2miwh — 1) 27iw(1 — 27iw) (1 — eh)

a2 AN
+Zl*)\k{ )\k+17/\k€h}7

Cy =
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2
Cﬁ = Ke2miwhs + Z <ak)\£ + bk/\g_ﬁ> s

k=1

Keh 27iw(eh —

Cy =

B=1,N—1,

1) —eh

(627riwh _ eh)(e2ﬂ'iwh

_1)+

27riw(1 — 27iw)(1 — eh)

AR b AR

+ehzl_)\k

where ay and b, (k =1,

e J

)\k 1-— )\keh

) are defined by the following system of linear equations

2)]7

22: Ak N 22: AN 1 B 1
— (A =Dk —eh) (= 1)(ke! — 1) - 2miw(l — 2miw) (1 — eh)
KeQﬂ'iwh
+ (C27riwh _ Ch)(l _ C27‘riwh,)’
i apAN+! N i bk B 1
— (A =Dk —eh) = (= )(eh — 1) 2miw(1 - 2miw)(1 — eh)
Ke?wiwh
+ (621riwh _ eh)(l _ eZ’rriwh)’
22: apg N XZ: bk/\N+1 h B KCZwiwh ‘
(1) = (- 1)? T (2miwh)?  (e2mwh —1)2
i a i bhe  h Kol
k:l (A —1)2 = A\ —1)2 (2miwh)?  (e2riwh — 1)2°
Here A\, k= 1,2, are roots of the polynomial
h3
Pi(N) = (1—eM) (1 =N —2[A®" +1) —e" (A +1)] [A(1— M) + A+
for which [A\g| <1,
24 1 — A\ cos(2mwh) Ay

>

2
K—L{

Pt ( e A7 + 1 — 2\ cos(2mwh)
1

- { .

and Ay and C are defined in Theorem 4.1.

Ak

2

Z 27r1w

1

) — 4e cos(2mwh) + QC} ,

Corollary 4.3. The coefficients of optimal quadrature formulas of the form (1.1),
with the error functional (1.2), and with equal spaced nodes when wh ¢ 7 in the
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1254 N. D. Boltaev, A. R. Hayotov, G. V. Milovanovi¢ & Kh. M. Shadimetov

space W2<4’3> [0,1], are expressed by formulas

Co = Keftmiwh 2miw(l —e) — 1
07 (eZmiwh —gh)(e2miwh — 1) " 2niw(1 — 2miw)(1 — eh)
2 N
: brAD
k k
+Zl—)\k{ )\)€—~_:|.—)\IC(E}L}7
3
Co = MK 4 3 (@l +0eAY ), B=TN -1,
k=1
c Kel 2miw(eh — 1) —eh
N =

(e2miwh — eh)(e2miwh — 1) 2miw(l — 2miw) (1 — e?)
apAY bpA?
h k kg
+ezl—)\k{ /\k+1—>\keh}’

where ay, and by, (k= 1,3) are defined by the following system of linear equations

23: ar\i N z": b AN+ B 1
— (M =Dk —eh) = (A = 1)(Aeh —1)  27iw(1 — 27iw) (1 — eh)
K627riwh

+ (627riuh, _ eh)(l _ eZ‘rriuh,) ;

23: ap A+ N 23: bk B 1
— (A = DA — eh) = (-1 (Ageh —1) — 2miw(1 — 27iw)(1 — eh)

KeZWiwh,
+ (e2miwh — gh)(1 — e2miwh)’

b )\N+1 h Ke?ﬂ-iwh
O — 12 (2miwh)?  (e2miwh — 1)2’

23: a b\ h Kemeh

e —12 = (- 1)2 Qriwh)? (e2mieh —1)2
23: K\ +Z‘: A I Y Coa
-1 (=) (@riwh)® T 2(2miwh)? (e2mieh —1)37

i ak)\%(l - )\kN) i bk)\k(/\kN -1 (1- 2h) K e?miwh

(1—Xg)3 (=13 2p2(e2mwh — 1)

k=1 k=1

Here N\, k =1,2,3 are the roots of the polynomial
Ps(A) = (1 —e?)(1 = N)° —2[A(e* +1) —e" (A2 +1)] [h(l -\

h3
6

(1= N2(1+4A+22) + }‘20(1 + 26X + 6672 + 2673 +/\4)],
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for which [A\g| < 1,

3
L 24, 1 — Ak cos(2mwh) Ap A
K= =k — 28 4l cos(2mwh) + 20},

»© {;( N N1 DycosEmah) | ) A cosEmen w20

3
L f—
(27r1w Zl 27r1w 2k°

péﬁ) is the leading coefficient of the polynomial Ps(\), and Ay and C are defined in
Theorem 4.1 for m = 4.

Now from Theorem 4.5 for m = 2, m = 3 and m = 4, we have the following
corollaries:

Corollary 4.4. The coefficients of optimal quadrature formulas of the form (1.1),
with the error functional (1.2), and with equal spaced nodes when wh € Z and w # 0

in the space 1/1/2(2"1)[07 1], are expressed by formulas

27iw(1 —e) — 1 1 { a1 \? biAY }
0 =
e

27iw(1 — 27iw) (1 — eh) Tz A1 - A1 1= )eh
Co=a N +0, 0P =T N—1,

O — 27iw(el — 1) — e? el { a \Y b1 A2 }
e

© 2miw(1 — 27iw) (1 — eh) Tz A\ — A 1= el
where
L (" = X)(1 = A)
! 27w (2miw — DAL (e — DAY + 1)’
by — (1 — eh/\l)(l )\1)
L 2w (2miw — DA (el — (AN +1)°
and
h(czh + 1) e2h +1— \/h2 el + 1) + 2h(1 _ CQh)

A\ =
! 17c2h+2hch

Corollary 4.5. The coefficients of optimal quadrature formulas of the form (1.1),
with the error functional (1.2), and with equal spaced nodes when wh € Z and w # 0

in the space W2<3"2) [0,1], are expressed by formulas

2miw(1 — ap)? b\
_ miw(l — eh +Z L 7
2miw(1 — 2miw) 1 — eh 1-— )\k el — X\, 1= )\eh

2
Cp=3 (X +0eX) ), B=TN-1,

k=1
. 2
Cn = ?mw(eh - 1) —eh e Z 1 ak/\IkV biA?
27iw(1 — 27iw) (1 — eh) 1—Ag — A 1= Dgeh

k=1

237



1256 N. D. Boltaev, A. R. Hayotov, G. V. Milovanovi¢ & Kh. M. Shadimetov

where ay, and by, (k= 1,2) are defined by the following system of linear equations
2 2 N+1
A A 1
D A A P
M — 1) (A —eh) = (M — D)(Aeh —=1)  27iw(l — 27iw)(1 — eh)

k=1

Za )\N+1 N Zb A B 1
FOw = DA — ) FOw = D(Oweh — 1) 2miw(1 — 2miw) (1 — ei)’

> Ak 2 AN h

- b — N
W - 1)2 +k§ FOw - DZ  (2riwh)?’

k=1

i AN+ +2b N  h
. O — 1)2 = FOw =12 (2miwh)?’

Here M\, k = 1,2, are roots of the polynomial
3
Pi(A) = (1—e) (1= N —2[Ae®" +1) —e" (A2 +1)] [(1 = N)? + %(1 +4X+ %))

for which [A\g| < 1.

Corollary 4.6. The coefficients of optimal quadrature formulas of the form (1.1),
with the error functional (1.2), and with equal spaced nodes when wh € Z and w # 0

in the space W2(4"3) [0,1], are expressed by formulas
2miw(l —eh) — 1 A A2 AN
Co= 'TI'UJ( ~) h+z l?kk"' kkh7
27iw (1l — 27iw) (1 — eh) L= leh = 1= e
3

= (akxﬁ +bk,Afj*ﬂ) . B=T,N—T,

k=1

2miw(e? — 1) o apAy biA?
Cy = ,
N 27iw (1l — 27iw) (1 — eh Z 1— )\k { — A\ * 1—Ageh |’

where ay, and by, (k= 1,3) are defined by the following system of linear equations

3 /\N+1 1
kz:: v —1) )\k —y T Zbk DOweh — 1) 2riw(l — 2miw)(1 — et)’
3 N+1
AD A 1
kZ e — 1)()\k —e t Z FOw = D(weh — 1) 2miw(1 — 2miw) (1 — el
3 N+1
A AN h
2 =1 Zb’“ O — 12 riwh)?’
3 a 7)\5“ + 3 b A = h
— -2 T e 12 (2miwh)?
3 3 N+2
A AL h h
;a" ow—17 F Zb’“ (IT= )3 (2miwh)®  2(2riwh)?’
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3
)\N+2

2

k=

)\N+1 )\k

Zbk =0.

Here \,, k =1,2,3, are roots of the polynomial

Po(A) = (1 —e®)(1 =N —2[Ae*" +1) —e"(A\? +1)] {h(l -\

3 5
+%(1 N2 +H4N+ 2% + 1%0(1 + 26 + 6617 + 2673 + m},

for which [A\g| < 1.

5. Coeflicients and norm of the error functional of

optimal quadrature formulas (1.1) in W2(1’0) [0, 1]

Here we get the explicit expressions for coefficients and calculate the square of the
norm of the error functional (1.2), of the optimal quadrature formula (1.1), on the
(1,0)
space W5 [0, 1].
For m =1 the system (4.1)-(4.3) takes the form

N
3 C,Gi(hB — hy) +de " = fi(hB), B=0,1,...,N, (5.1)
v=0
ZG e hB — g (5.2)
6 2miw — 1’

Gl(‘T) — Sign (I) (ez _ 671),

4
ehgfj’ eQTriwfl +1 efh,ﬂ eQTriu+1 +1 eZﬂiuhﬂ
fi(hB) = - ( - )+ ( - )+ - , , (5.3)
427w — 1) 4(27iw + 1) (2miw + 1)(2miw — 1)
and Cg (8=0,1,...,N) and d are unknowns.
In this case Problem 4 is expressed as follows:
Problem 5. Find the solution of the equation
Di(hB) < u(hB) =0, hB & [0,1], (5.4)
having the form
ehf el 1 A
- —o—hB 0
P ame—1 e A<
u(hB) =9 f1(hB), 0<B<N, (5.5)
ehf el 1

= +,—hB N
Tomm_1 % B>N

where fi(h3) is defined by (5.3), @~ and a™ are unknowns.
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1258 N. D. Boltaev, A. R. Hayotov, G. V. Milovanovi¢ & Kh. M. Shadimetov

For m = 1, from Theorem 4.1 for Dy(hf3), we obtain

0, 18] = 2,
1
1 — e2h

Di(hB) = 2", 18] =1, (5.6)

2(1+e2h), B=0.

Now, taking into account (5.6), for the convolution Cz = D1 (hf) * u(hpj), we
have
D1 (hB) *u(hB) = Dy(h)(u(hB — h) + u(hB + h)) + D1(0)u(hB).

Hence, keeping in mind (5.4) for 8 = —1 and 8 = N+1, we get the following system
D1 (h)(u(—2h) + u(0)) + D1(0)u(—h) = 0,
Dy (h)(u(Nh) + uw(Nh+ 2h)) + D1(0)u(Nh + h) = 0.
Whence, taking into account (5.5), (5.6) for a~ and a™, we have

e—1 e—1
- _ +_
T iriw 1) A2miw+ 1) (5:7)

Then, using (5.7), from (4.16) and (4.17) we obtain

e—1

4(2miw + 1) (58)

cl:%(cf-ﬁ—cﬁ):o7 D:%(a*—cﬁ):

Substituting (5.7) into (5.5) for u(hB) we have the following expression

ﬁeflfl_i_e*h[a e—1
4 27w —1 4 2riw+ 17

u(hB) = fi1(hp), 0<B<N, (5.9)

ehf o=l 1 e e—1
4 2miw —1 4 2miw+1’

5<07

B> N.

Using (5.9) and (5.6), taking into account (5.3), by direct calculations for optimal
coefficients Cg = Dy (hf) xu(hf) (8 =0,1,...,N) we obtain the following result:
Theorem 5.1. Coefficients of the optimal quadrature formulas of the form (1.1) in
the sense of Sard in the space Wél’o) [0,1] have the form

1+ C2h _ 2027riwh.+h _ 27!'1(/.1(1 _ C2h)

Cy =
0 (2 —1)(dm2w? + 1) ’
2(1 + e — 2" cos 27wh) 4o
_ Tiwhf _
Cp = (e2h — 1)(4m2w? + 1) e p=12,....,N -1,
c 1+ e?h — 2eh=2miwh 4 omi(1 — e2h)
N =

(e2h —1)(4m2w? + 1)
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Note that, in Theorem 5.1, the formulas for the optimal coefficients Cz are
decomposed into two parts — real and imaginary parts. Therefore, from Theorem
5.1 we get the following results:

Corollary 5.1. Cocfficients for the optimal quadrature formulas of the form

N

1
/ p(x) cos 2wz da = Z C’L};{tp(hﬁ)
0

B=0
in the sense of Sard in the space Wz(l’o) [0, 1] have the form

1+ e — 2eh cos 2mwh g L+e?h —2eh cos2mwh

cF = , Cy= )
(e2h —1)(4m2w? + 1) (e2h —1)(4m2w? + 1)
2(1 4 e*" — 2¢” cos 2mwh)
R S —
Cy = @ — 1At 1 1) cos2nwhf, pf=1,2,...,N—1.

Corollary 5.2. Coefficients for the optimal quadrature formulas of the form

1 N
/ p(x) sin 27wz da = Z Céga(hﬂ)
0 5o

in the sense of Sard in the space WQ(I’O) [0, 1] have the form
ol — 27w (e?h — 1) — 2¢” sin 27wh
o= (e — 1)(4m2w? + 1)
2(1 + e — 2e" cos 2mwh)

I _ " _
Cyz = @ — 1)@ 1 1) sin2nrwhfp, pf=1,2,...,N —1.

271w (e?h — 1) — 2e" sin 2mwh
(e2h — 1)(4m2w? + 1)

I
) C"N:7

Remark 5.1. When w = 0, Theorem 5.1 reduces to Theorem 4.4 from [34].

Theorem 5.2. The square of the norm of the error functional (1.2), of the optimal
quadrature formula (1.1), on the space WQ(LO) [0,1], has the form

1

—
1™ = G 5oy

(5.10)

(47r2w2 1 2(e®" + 1 — 2¢" cos 27rwh))

h(e2h —1)

Proof. For m = 1 we rewrite the equality (2.11) in the following form

N N 1
)2 = — [Z C/f‘ <Z C’fGl(hB —hy) — / cos 2wz Gi(x — hp) dx)
B=0 7=0 0

N N 1
+ Z Cé (Z CiG’l(hﬁ —hy) — / sin 27wz Gy (x — hpB) d;r:)
~v=0 0

B=0

N 1 N 1
- Z Cg/ cos 2rwz Gi(x — hf)dr — Z Cé/ sin 2wz Gh(x — hB) dx
B=0 0 520 0

+ /0.1 /01 cos[2mw(z — y)|G1(z — y) dz dy} )
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1260 N. D. Boltaev, A. R. Hayotov, G. V. Milovanovi¢ & Kh. M. Shadimetov

where G1(z) is defined by (5.3).
Taking into account (5.8), from (5.1) we get

N 1
> CEGy(hB — ) - / cos 2mwr Gy (x — hfB)dz =0
0

=0
and

N 1
> Gy (hB — hy) - / sin 2rwz Gy (z — hf3) dz = 0.
0

v=0

Then, using the last two equalities, for ||£]|?> we obtain

N 1 N 1
l1€))? = Z cl /0 cos 2nwx Gi(x — hfP)dx + Z c} /0 sin 2wz G1(xz — hB)dz
g=0 p=0

_ /01 /0.1 cos[2nw(z — y)]Gy (z — y) dz dy.

Finally, calculating these integrals and using Corollaries 5.1 and 5.2, after some
simplifications, we get (5.10). O

Remark 5.2. When w = 0, Theorem 5.2 reduces to Theorem 5.1 from [34].

6. Numerical results

In this section we give some numerical results of the upper bounds for the errors
in the optimal quadrature formulas of the form (1.1), as well their analysis in the
cases m =1 and m = 2.

According to the Cauchy-Schwarz inequality, in the space Wz(m’m_l) [0, 1] for the
absolute value of the difference (1.4) we get

(G )] < llell - el

where HEH is the norm of the optimal error functional which corresponds to the
optimal quadrature formulas (1.1).

1° First we consider the case m = 1.

Using Theorem 5.2, for [|{[W{""*[0,1]]|, when N = 1,10,102,10%,10% and w =
1,11,101,1001,10001, we get numerical results which are presented in Table 1.
Numbers in parenthesis indicate the decimal exponents. From the first column of
this table we see that order of convergence of our optimal quadrature formula is
O(N 1) and from the first row of Table 1 it is clear that the quantity ||¢|| converges
as O(Jw|™1). From other columns and rows of Table 1 we conclude that order of
convergence of our optimal quadrature formula in the case m = 1is O((N +|w|)1).
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Table 1. The numerical results for HéH in the case m = 1 when N = 10*, k = 0,1,2,3,4, and
w=1,11,101, 1001, 10001.
N w=1 w=11 w =101 w = 1001 w = 10001
1 1.5537(—1) 1.44657(—2) 1.5757878(—3) 1.589959433(—4) 1.5913902915020(—5)
10 | 2.8664(—2) 1.44078(—2) 1.5757130(—3) 1.589958665(—4) 1.5913902838027(—5)
10% 2.8865(—3) 2.86386(—3) 1.5757104(—3) 1.589958638(—4) 1.5913902835341(—5)
10% | 2.8867(—4) 2.88652(—4) 2.8674495(—4) 1.589958638(—4)  1.5913902835314(—5)
10* 2.8868(—5) 2.88675(—5) 2.8865576(—5) 2.867790858(—5) 1.5913902835314(—5)

Now, as an integrand we take the function ¢(z) = e?*. Then for the actual error
Ry (w) of the optimal quadrature formula (1.1) we have the following estimate

1 N
/ o2miwT 2T 4, Z Cge2hﬂ

0 =0

Ry(w) = |(6,¢*)] =

IN

e w510, 1) - 1€ w5 [0, 1]

3 a *
5 Vet =1 [1£[w5" [0, 1]].

For the same values of N and w, using formulas for the optimal coefficients C's from
Theorem 5.1 and formula (5.10), we get the numerical values for the actual error
Ry (w) and for the bound By (w) on the right hand side in the previous inequality.
These results are presented in Table 2.

Table 2. Numerical values of Ry (w) = |(¢,¢**)] and By (w) = [|e*|[||€]| in the case m = 1 for some
sclected values of N and w.
N w=1 w=11 w =101 w = 1001 w = 10001
Ry(w) Byw) | Rv(w) By(w) | Ry(w) By(w) | Ry(w) By(w) | Ry(w) By (w)
T [21(=1) 17(0) | 1.9(=3) 1.6(—1) | 2.2(=5) L.7(-2) | 23(—7) L7(-3) | 2.3(—9)  1.7(—4)
10 | 24(=3) 3.1(=1) | 53(=4)  1.6(—1) | 6.9(—6) 1.7(=2) | 7.1(=8)  1.7(=3) | 7.1(=10) 1.7(—4)
102 | 24(=5) 3.2(~2) | 2.3(—6)  3.1(=2) | 7.1(=6)  L7(=2) | 7.3(=8)  1.7(=3) | 74(—10) 1.7(—4)
10° | 24(=7) 3.2(-3) | 23(-8)  3.2(-3) | 25(-9)  3.1(=3) | 73(~8)  17(=3) | 7.4(~10) 1.7(—4)
104 | 24(=9) 3.2(—4) | 2.3(=10) 3.2(—=4) | 25(=11) 3.2(—4) | 2.6(—12) 3.1(=4) | 74(=10) 1.7(—4)

These numerical results confirm our theoretical results obtained in the previous
sections.

2° Now we consider the case m = 2.

From (2.11), taking into account (2.7), after some calculations for the norm of
the error functional of the optimal quadrature formula (1.1) we get the following
expression

. LA sgn(hf — hy)
12 =33 (chot + céci)% [sinh (hB — hy) — B3 + hy]
B=0~=0
4miw? 42 (et +1)eh?

cos(2nwh3)
2m2w?(4m2w? + 1)

sin(2rwh3) @}

22w (Am2w? + 1) w

+ 4Am2w?(4mw? + 1)

N
_ Z Cé {
B=0

2(4m2w? + 1)

N
->or|
B=0

mw(e™t + 1)e?
Ar2w? 41

(6.1)
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Hence, using the formulas for the optimal coefficients C'g which are given in Corol-
lary 4.4 when N = 1 and w = 1,11,101, 1001, 10001, we get the results which are
presented in the first row of Table 3. Using the formulas of the optimal coeffi-
cients Cg, which are given in Corollary 4.1, when N = 10,100, 1000, 10000 and
w = 1,11,101,1001, 10001, we obtain the numerical results presented in other rows
of Table 3. From the numerical results of the first column of Table 3 we see that
order of convergence of the optimal quadrature formula (1.1) is O(N~2). And from
the results presented in the first row of Table 3 we conclude that order of conver-
gence is O(|w|™2). From the results which are given in other columns and rows
of Table 3 we have that order of our optimal quadrature formula in this case is
O((N + |w])?).

Table 3. The numerical results for HéH in the case m = 2 when N = 10*, k = 0,1,2,3,4, and
w =1,11,101, 1001, 10001.
N w=1 w=11 w =101 w = 1001 w = 10001
1 3.5377(—2) 2.96022(—4) 3.5116561(—6) 3.575090999(—8)  3.581528459606(—10)
10 4.3982(—4) 2.15172(—4) 2.5538002(—6) 2.599946583(—8)  2.604628302387(—10)
10% | 3.7819(—6) 3.99301(—6) 2.4902722(—6) 2.535258220(—8)  2.539823327481(—10)
10° | 3.7322(-8) 3.73427(—8) 3.9122983(— 8) 2.528700745(— 8) 2.533254031754(—10)
10* | 3.7273(—10)  3.72734(—10 3.7291046(—10)  3.904339277(—10) 2.532596167387(—10)
2

Now we consider the function ¢(z) = x? as an integrand. Then for the error of
the optimal quadrature formula (1.1) we have

2wy P10, 1)1 - 1€ W™D [0, 1]]|

IN

‘(i’r2)| _ / 2miwe 2dI‘*ZCﬂ hﬂ
0 =0

IN

2 - *
V2L 16w o, 1)).

Using formulas for the optimal coefficients Cs which are given in Corollary 4.4 and
formula (6.1) for the left and the right hand sides of the last inequality, respectively,
when N =1 and w = 1,111,101, 1001, 10001, we get the numerical results given in
the first row of Table 4. The numerical results which are presented in other rows of
Table 4 are obtained by using Corollary 4.1 and formula (6.1).

Table 4. Numerical values of Ry (w) = |(£,2?%)| and By (w) = ||«2||[|f|| in the case m = 2 for some
selected values of N and
N w=1 w=11 w =101 w = 1001 w = 10001
Ry (W) By(w) [Rn(w) Byw) [Rn(w) ByW) Rw (w)  By(w) | Rv(w)  Bny(w)
T | 75(-2) Li(-1) | 63(—4) 9.0(—4) | 74(—6) L1(-5) | 7.6(—8) LL(—7) | 7.6(—10) L1(-9)
10 | 15(=4)  1.3(=3) | 3.6(=5) 6.6(-4) | 43(=7) T7.8(=6) | 4.3(=9) T.9(~8) | 43(~11) 8.0(~10)
102 | 1.4(=7)  12(=5) | 15(=7)  1.2(=5) | 4.4(=8)  7.6(—6) 4( 10)  7.7(=8) (~12)  7.8(~10)
10° | 1.4(=10) 1.1(=7) | 14(=10) 1.1(=7) | 1.5(=10) 1.2(=7) | 4.5(=11) 7.7(=8) | 4.4(-13) 7.7(-10)
10 | 14(=13) 1.1(=9) | 1.4(-13) 1.1(-9) | 1.4(-13) 1.1(=9) | 1.5(~13) 1.2(-9) (-14) 7.7(-10)

Finally, for the function z — ¢(x) = x2e~%, we consider an example of calcu-
lating Fourier coefficients fol e?™wT (1) do using the optimal quadrature formula in
the space W2(24,1). The real part of this integrand, cos(2rmwx)p(z), for w = 80 is
presented in Figure 1 (left).

The exact value of the corresponding Fourier integral can be obtained in an
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Figure 1. Graphics of the integrand z > cos(2rwz)p(x) for w = 80 (left) and w — R{I(w)} for
w € [10,130] (right).

analytic form,

_ 2e+ P (=5 + SiwT + dw?r?)
B e(1 — 2iwr)3 '

1
I(w) = / ¥ (1)

0
and therefore, we can calculate the actual relative errors

Qn(w) — I(w)

erry(w) = )

N
in our optimal quadrature sums Qn(w) = > Czp(hp).
5=0

erry(w)

: : : : > w
1 10 100 1000 104
Figure 2. Relative errors w + erry(w) for N = 10,100, 1000.
The real part of the integral I(w) is displayed in Figure 1 (right) for w € [10, 130].

Graphics of w + erry(w) for N = 10,100, 1000, when w runs over [1,10%], are
presented in Figure 2 in log-log scale.
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Performance of SIM-MDPSK FSO Systems
With Hardware Imperfections
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Abstract— This paper studies the error performance of free-
space optical (FSO) systems, employing subcarrier intensity
modulation (SIM) with Me-ary differential phase-shift key-
ing (MDPSK). Novel analytical expressions for the symbol error
probability are derived, based on the Fourier series approach.
The irradiance fluctuations of the received optical signal are
modeled by considering both Gamma-Gamma atmospheric tur-
bulence and pointing errors. In addition, hardware imperfections
of DPSK demodulator, as the phase noise of local oscillator at the
receiver, are considered. It is illustrated that the phase noise sig-
nificantly degrades the system performance, especially when the
optical signal transmission is impaired by weak atmospheric tur-
bulence and weak pointing errors effect. Furthermore, the phase
noise results in an unrecoverable error-rate floor, which is an
important limiting factor for SIM-DPSK FSO systems.

Index Terms— Atmospheric turbulence, free-space optics
(FSO), Gamma-Gamma distribution, differential phase-shift key-
ing (DPSK), phase noise, subcarrier intensity modulation (SIM),
symbol error probability (SEP).

I. INTRODUCTION
ESIDES the main advantages, as high data rate, wide
bandwidth and license-free transmission, free-space opti-
cal (FSO) systems are also characterized by low-power and
low-cost transmission, as well as easy and simple instal-
lation. Intensity-modulation/direct detection (IM/DD) with
on-off keying (OOK) is usually employed in commercial
FSO systems. However, in order to improve the system
performance subcarrier intensity modulation (SIM) was pro-
posed, where the radio-frequency (RF) subcarrier signal is
firstly premodulated by the data sequence bearing information,
and then it is used to modulate the intensity of the laser
source [1]-[4].
Several well-known modulation techniques from the field
of RF communications, were used to modulate a subcarrier
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signal in FSO systems. The SIM based FSO system employ-
ing quadrature amplitude modulation (QAM) were analysed
in [5]-[9], while SIM with M-ary phase-shift keying (MPSK)
was investigated in [4] and [9]-[14]. Furthermore, practi-
cal wireless communication systems also employ differential
phase-shift keying (DPSK), which does not require the carrier
phase estimation at the receiver. The performance of FSO sys-
tems with coherent detection and binary DPSK (BDPSK)
was analyzed in [3] and [15]-[19], while the case of SIM-
BDPSK was investigated in [20]-[26]. Furthermore, in order
to increase the capacity (or the system throughput), an FSO
system based on SIM and higher-order DPSK modulation was
also proposed and analyzed in [12], [13], and [27]. Specifi-
cally, an expression in integral form for the bit error rate (BER)
was presented in [12] and [13], while [27] compares the per-
formance of different modulation formats, including BDPSK
and quaternary DPSK (QDPSK), when space diversity is used
at the reception.

The FSO system performance can be notably degraded
due to the hardware imperfections. For example, the effects
of the imperfect reference carrier signal phase recovery on
error performance of SIM-MPSK FSO systems were examined
in [28], considering weak atmospheric turbulence modeled by
log-normal distribution. The effect of noisy reference signal
extraction on error rate degradation of coherent BPSK FSO
system in strong turbulence conditions was examined in [29].
Although the DPSK receiver does not require a carrier phase
estimation, the hardware imperfections of the DPSK demod-
ulator can seriously degrade the system performance. After
optical-to-electrical signal conversion in SIM-DPSK receiver,
it is necessary to down-convert the received DPSK signal.
In other words, a local oscillator, used in DPSK receiver for
down-conversion, generates signal, which is not ideal, in the
sense that phase of this signal is a random process fluctuating
over time. These fluctuations, which are in the same fre-
quency band with the useful signal, have the influence on the
detection process. This undesired phase is known as a phase
noise [30], [31].

Scanning the open literature, to the best of the authors’
knowledge, the effect of hardware imperfections as the phase
noise on the performance of the FSO system employing
SIM-MDPSK, has not been investigated so far. In this
paper, we derive novel analytical expressions for the sym-
bol error probability (SEP) of the SIM-MDPSK based FSO
system, when hardware imperfections are considered, using
the Fourier series method (FSM) [32]-[35]. The impact of
hardware imperfections is represented through the phase noise,

1536-1276 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Input
data DPSK | () e Atmospheric
modulator turbulence
DC bias
Pointing errors
Fig. 1. Block diagram of a SIM-MDPSK FSO system.

which is modeled by the Tikhonov distribution [36]—[38],
and is generated by the local oscillator of DPSK demodu-
lator [30], [31], [36], [39], [40]. The intensity fluctuations
of the received optical signal are assumed to originate from
the combined effect of the Gamma-Gamma atmospheric tur-
bulence and the pointing errors [16], [41]-[45]. The derived
SEP expression is given in the convergent series form, whose
upper bound for the truncation error is estimated. Furthermore,
the derived expressions are simplified, when the pointing errors
effect can be neglected. Finally, numerical results are presented
and validated through Monte Carlo simulations.

The rest of the paper is organized as follows. Section II
describes the system and channel model, while the error
analysis is provided in Section III. Numerical results with
discussion are presented in Section IV and some concluding
remarks are given in Section V.

II. SYSTEM AND CHANNEL MODEL

The block diagram of the SIM-MDPSK FSO system is
presented in Fig. 1. The information data are differently
encoded and PSK is applied in an RF domain [46, p. 333].
DC bias is added to avoid clipping and distortion, and resulting
signal modulates the laser output, by using SIM. The radiated
optical power is given by

P(t)y=P (1+ms()), (1)

where P; represents the transmitted optical power and m
denotes the modulation index (0 < m < 1). The optical
transmission via free space is influenced by atmospheric
turbulence and pointing errors. At the receiver, direct detection
is performed, DC bias is removed and an optical-to-electrical
conversion is applied via a PIN photodetector. The electrical
signal at the input of DPSK demodulator is expressed as

re (t) = InPms (t) + n(t), (@)

where I is a random variable (RV), which follows Gamma-
Gamma distribution and represents atmospheric turbulence
and pointing errors, # denotes an optical-to-electrical con-
version coefficient and n(f) is an additive white Gaussian
noise (AWGN), with zero mean and variance, a . Finally,
the electrical signal, r, (), is recovered by the DPSK demod-
ulator, presented in Fig. 1, assuming that hardware imperfec-
tions exist.

A. Modeling the Combined Effect of Atmospheric
Turbulence and Pointing Errors

The well-known Gamma-Gamma distribution is used for
describing the effect of atmospheric turbulence [41], while the
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0 (')dt ~ Decision
’ 1 output
(k-1 t=kT data
Phase
Delay by T
=kT ’ comparator
sin(o+¢) T \l/
(o
(k=nT

pointing errors effect is described by the distribution which
assumes the radial displacement of laser beam at receiver
experiences Rayleigh distribution, with the jitter variance 052
[42, eq. (11)].

Based on (2), the instantaneous SNR is defined as
y = I*p*P>m?/(26?2). The probability density func-
tion (PDF) of y is [5]

& §2+|) 3
sray O (5 [d0) @

where G2 () is the Meijer’s G-function [47, (9.301)], and
u represents the average electrical SNR per symbol. The
relation between u and the average electrical SNR per bit,
Hp, is 4 = uplogyM. The average electrical SNR per
bit is defined as up = nzP,zmzsz(z)Ilz/(Zonz), with
K =2 / (&% + 1) [5]. The atmospheric turbulence parameters
are denoted by a and S, while & and Ao represent the pointing
errors parameters.

Assuming Gaussian plane wave propagation and zero
inner scale, the parameters a and p are defined as
o = (exp[0490%(l +1.11c 12/5) 761 — 1)~! and
p = (@pl051oF(1+0.69 A23)=5/61— 1)=1 [1], [41], with
the Rytov variance 01% =1 23C2k7/6L”/6. The wave-number
is k = 2z /4 with the wavelength A, L is the propagation
distance, and the refractive index is denoted by C2.

The pointing error represents the misalignment between the
transmitter laser and the receiver photodetector. The parame-
ter ¢ is defined as the ratio between the equivalent beam
radius at the receiver, wr,,, and the pointing error (jitter)
standard deviation at the receiver as { = wr,, /Q2os).
The parameter wy,, depends on the beam radius at dis-
tance L, wy, as wzeq = w%ﬁerf(v)/(Zv exp (_02)),

v=./ma / (ﬁwL
detector aperture, erf (-) is the error function [47, (8.250.1)],
and Ay = [erf (1))]2. Next, the parameter wy is related with
the beam radius at the waist, wq, and the radius of curvature,
Fo, by wr = wo((@ + Ag)(1 + 1. 6307 A1))'/2, where
@, = 1—L/Fy, Ay =2L/(kw}), Ay = 0/(@)2 A2) [44].

f}' )=

) [42], where a is the radius of a circular

B. Phase Noise

After signal conversion from optical-to-electrical domain,
classical signal detection is performed in electrical domain.
During the process of down-conversion, electrical signal is
multiplied by local oscillator output signal. The phase of
the local oscillator signal (also known as a phase noise)
is a random process fluctuating over time. Frequently local
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oscillator is embedded in frequency syntetyzator contained
phase locked loop (PLL). The phase noise generated by PLL is
well known to have a Tikhonov PDF [37, Ch. 2], [38]. Hence,
the phase noise, ¢, of the local oscillator is assumed to be a
RV which follows Tikhonov PDF given by

exp (bcos ()

2ely(b)
where I,(-) is the nth order modified Bessel function of the
first kind [47, (8.431)], b = 1/05, and 17,3 is the variance of
the phase noise.

Here, we use the Fourier series expansion of Tikhonov PDF,
because Fourier series form is tractable for integration that will
be necessary in mathematical derivations of SEP. We start with
the Fourier expansion [48, (9.6.34)]

Jo () = lpl <, @

oo
PO = Ig(b) + 2> Ly (b) cos(ng), gl <x, (5
n=1
for a fixed b > 0.
Based on the expansion in (5), it is clear that Tikhonov PDF
given by (4), can be expressed in the Fourier series as

l [o¢]
fo(9) = 5+ 2 cacoslng), lpl <z, (6)
n=1
where
L)
T oaly () ™

Proposition 1: The series in (6) is convergent. For the
truncation error

o0
En(p:b)= D cacos(ng), lp| <, ®)
n=N+1

the following estimate
|En(p;: D) < En(0;0) < By ()

holds, where

00
By = By(b) = L (1N+|(b) +/ 1, (b) dv). (10)
L2010)) N+1
Proof: See Appendix A.

In Fig. 2, we present the bounds By of the truncation errors
for N < 40 and different values of o,. If we take a threshold
for the errors, e.g., ¢ = 10-8 (black line in Fig. 2), so that
By < &, we see that the corresponding number of terms should
be N =35, 18, 13 and 10 for 6, = 10°,20°, 30° and 40°,
respectively.

III. ERROR PERFORMANCE
Since the decisions of the DPSK receiver are taken based
on the composite phase difference between signals received
during two consecutive symbol intervals, the decision variable
of differential detector can be written as

)

where w41 and w; are the composite phase of con-
secutive received signals, bearing the information at the

2= [yks1 — wi] mod 27,
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Fig. 2. Upper bound of truncation errors for o, = 10° (red), g, = 20°
(blue), ap = 30° (green), and o, = 40° (brown) when N < 40.
(k+1)-th and the k-th interval, respectively. The local oscilla-
tor imperfections are represented through the phase noise @41
and ¢ at the (k 4 1)-th and the k-th intervals, respectively.
Then, the decision variable of the differential detector is

L= [(wrs1 = gra1) — (wx — 91)] mod 27
= [(was1 = vi) = (prs1 — px)] mod 27

The term, (wx+1 — i), represents the difference of the com-
posite phases, while, (px+1 — @), denotes the impact of the
phase noise.

On the contrary to the situation at the transmitter, where the
phase of RF carrier is constant, the composite phase of total
received signal is a RV. The PDF of the resulting phase, y,
of received signal in a signaling interval is presented in the
Fourier series form as [32]-[34]

12)

o0
o) = o+ 3 bacostuy), (13)
n=1
where b, represents the Fourier coefficient for the FSO chan-
nel influenced by the Gamma-Gamma atmospheric turbulence
and pointing errors. In order to derive the Fourier coefficient
for the considered scenario, the PDF of the received signal
composite phase is written as

fww=/ﬂmmnm® (14)
0

where f), (y) is the PDF of the instantaneous SNR given in (3).
The conditional PDF is defined through a Fourier series form
of the received signal composite phase due to additive noise
as [32]-[34]
1 o0
ﬂmm:g+2%Mwmm (1)
n=

where a,(y) denotes the Fourier coefficient for AWGN chan-
nel defined as [34]

I (3+1)

n n
an(y) = nz'” VZeXP(—V)lFl(E'H;n-FlW), (16)
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where 1Fi (-; ;) is the confluent hypergeometric function
[47, (9.21)].

Proposition 2: After substituting (3), (15) and (16)
into (14), the PDF of the phase y is given as

1 X ppetp-4g2
fv (w) = E+;7n2r @B cos (ny)
2p2,.2

X G366l L
’ 16u

2
S22
1=5, 145, 5=
2 g atl f Bl

20272 22 2

). a7
0
Proof: See Appendix B.
Based on (13) and (17), the Fourier coefficient for
FSO channel influenced by Gamma-Gamma atmospheric tur-
bulence and pointing errors is determined as

n2a+/374€‘:2
by=—— =
" (@) T (B)
o1 (BT gy, S
Gss 16 2 g atl B gL o) (18)
A S P A D e

When the considered scenario assumes the pointing errors
to be very small, it can be neglected (¢{ — 00). In this
case, the optical link suffers only from atmospheric turbulence,
and the Fourier coefficient can be found by taking the limit
of (18) for ¢ — oo. After applying [49, (07.34.25.0007.01),
(07.34.25.0006.01) and (06.05.16.0002.01)], the Fourier coef-
ficient can be derived as

n2e+p=3
72T (@) T (B)
G5! a’p?
2,5 16 P
For further analysis, it is required to find the PDF of the
decision variable A, defined in (12). Firstly, we will introduce
the following rule related to the PDFs presented in the Fourier
series form.
Proposition 3: 1f the variables x| and x, are RVs with the

PDFs given in the Fourier series form, with coefficients zj,
and zp,, respectively, as

b = lim b, =
=00

20 2

1-5,1+5
2> 2
¢ atl f f31 0)~ 19)
.

1 o0
fo () = +Z}Z‘" cos (nx), |x| ==,
=

1 o0
o () = 5— +}§m cos(nx), x| <z,  (20)
then, the PDF of y = [x] — x2] mod 27, is
1 (o]
fy0) =5+ D mamamcos(y), Iyl <7 Q1)

n=1

Proof: The proof can be found in [36], [50], and [51].

A. Error Analysis Without Considering
Hardware Imperfections

If no hardware imperfections are assumed, the decision
variable A’ is defined in (11). Based on Proposition 3, after
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replacing x; and x, with w1 and g, respectively, and both
Z1n and 72, with b, the PDF of /1’ can be easily obtained as

1 o0
FrO)y = ot > wbycos(ni), [V <z = (22)
n=1

The detection is performed in the manner to find the closest
possible transmitted phase compared with received composite
phase A’. The probability of wrong symbol detection is given
by

/M
Pi=1- for (A) dA'.
/M
By substituting (22) into (23), the average SEP can be found
as

(23)

1 o b,% . /nmw

Po=1-— Zl - sm(M). 24)

In [13], an expression for the average BER was derived in
integral form, assuming that the intensity fluctuations of the
optical signal are modeled by the log-normal and Gamma-
Gamma distributions. In the region of high average electrical
SNR values, the bit error probability could be approximated
by BER ~ Ps/logzM [40, p. 271]. By using this approxi-
mation and SEP in (24) with the Fourier coefficient of (19),
the numerical results from [13, Fig. 2] can be obtained.

B. Error Analysis in the Presence of Phase Noise

In the presence of the phase noise, the decision vari-
able 1 is defined as in (12). The PDF of the variable,
0 = @r+1 — @k, can be found by utilization of Proposition 3.
Since the Tikhonov PDF of the phase noise is given in the
Fourier series form by (6), the PDF of the variable ¢ is found
as

1 [ee]
f5®) =~ +§nc5 cos(nd), o<z, (29
with the Fourier coefficient ¢, previously defined by (7).

Taking into consideration that the variables y and ¢
are statistically independent, based on (22) and (25), and
Proposition 3, the PDF of 1 is

1 o0
£,0) = 5t > wbjercos(ni), |Al <z (26)
n=1
When the Gamma-Gamma atmospheric turbulence, pointing
errors and phase noise are assumed, the average SEP of the
SIM-MDPSK FSO system can be written as

/M
Py

—

Ji(2) d2

1 0 273b2c2
G G () )

where the Fourier coefficients b, and ¢, are previously defined
in (18) and (7), respectively.
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Fig. 3. Upper bound of truncation errors for o, = 10° (red), o, = 20°

(blue), 0y = 30° (green), and o, = 40° (brown) when N < 25.

Proposition 4: The series in (27) is convergent and the
following estimate

N
1 2130232 nm
Pi—1+— ——" " gin (—)
sty 2 n M
n=1
holds, with the bound of truncation error

L (11\/+1(b)2 /°° lu(b)zd
SEP —

< E}SVEP

(28)
Io(b)? N+1

v). (29)
Proof: See Appendix C.

This truncation error is illustrated in Fig. 3. To achieve the
given truncation error, the higher number of terms in sum-
mation is required if the standard deviation is lower. In order
to achieve truncation error less than 1078, for 4 = 10 dB
the required number of terms in summation is N = 18, 10,7
and 6, when o, = 10°,20°,30° and 40°, respectively.
In addition, the convergence rate decreases with increasing the
electrical SNR. In other words, the proposed series expression
converges better in low electrical SNR regime compared to
high electrical SNR regime.

As it will be shown in the next Section, the existence of the
phase noise results in the unrecoverable error-rate floor, which
is a meaningful limiting factor in SIM-DPSK based FSO
systems. This error-rate floor represents the constant value of
the average SEP, which occurs at the high average electrical
SNR. With a further increase in the transmitted optical power,
the improvement of the SEP performance will not be achieved.

Proposition 5: The unrecoverable error-rate floor can be
expressed as

£l 1 . 2xc? nmw
P; "‘”:l———z "sin(—).
M n=1 n M

Proof: See Appendix D.
It can be noticed that the SEP floor is independent on
the FSO channel state (atmospheric turbulence and pointing
errors). On the other hand, the value of the SEP floor depends

N+1 VY

(30)
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Fig. 4. SIM-QDPSK SEP versus average electrical SNR for different

values of the phase noise standard deviation in various atmospheric turbulence
conditions.

on the phase noise standard deviation and order of DPSK
modulation, as it will be presented in the next Section.

IV. NUMERICAL RESULTS AND DISCUSSION

Based on derived expressions for the average SEP, numer-
ical results are obtained and validated by Monte Carlo
simulations. Monte Carlo simulations have been performed
using MATLAB® software package. Since intensity fluctua-
tions originate from both atmospheric turbulence and pointing
errors, the resulting optical signal intensity, /, is obtained
as a product of two different RVs, ie., I = I, x I. The
intensity fluctuations, [,, due to atmospheric turbulence are
modeled by Gamma-Gamma distribution. The correspond-
ing RV, I,, is generated as a product of two independent
Gamma-distributed RVs with shaping parameters o and f.
Command for generating Gamma-distributed RV is built-in
into MATLAB®. The RVs relating to the pointing errors, / P
are generated based on [42, (9)], employing built-in command
for generating Rayleigh RV. The Tikhonov-distributed sam-
ples of phase noise are generated using the modified accep-
tance/rejection method, explained in [52, p. 382]. Modulation
and demodulation is simulated based on [46, p. 333-335].
The average SEP values are estimated using 107 transmitted
symbols.

In order to obtain the numerical results, the atmospheric
turbulence strength is determined by the refractive index
structure parameter as: C,% =6 x 10715 m2/3 for weak,
c? = 2 x 107% m™23 for moderate and
C; = 5x 107" m™2/3 for strong turbulence conditions.
The impact of the phase noise is specified by the phase noise
standard deviation.

The average SEP dependence on the average electrical
SNR of the FSO system employing SIM-QDPSK is presented
in Fig. 4, assuming different atmospheric turbulence conditions
and phase noise standard deviation ¢, = 5° or o, = 15°.
Lower values of the phase noise standard deviation correspond
to the weaker phase noise and better system performance.
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Fig. 5. SIM-QDPSK SEP versus the phase noise standard deviation

for different values of the normalized jitter standard deviation, in various
atmospheric turbulence conditions.

Furthermore, the impact of the atmospheric turbulence con-
ditions is stronger when the value of o, is lower. On the
other hand, when the effect of phase noise is very strong,
the atmospheric turbulence conditions has minor influence
on the SEP performance. In addition, the existence of the
unrecoverable error-rate floor is noticed in Fig. 4, meaning that
the DPSK hardware imperfections presented through phase
noise are an important limiting factor for SIM-DPSK systems.

This SEP floor appears at lower values of average electrical
SNR in weak atmospheric turbulence, as well as when the
value of o, is greater (stronger impact of the phase noise).
The SEP floor results based on (30) for o, = 5° are not
visible in Fig. 4 due to very low value. It can be concluded
that the SEP floor is not dependent on atmospheric turbulence
conditions, which is in agreement with mathematical deriva-
tion (see (41) and (30)).

Fig. 5 presents the SIM-QDPSK SEP dependence on the
phase noise standard deviation for different values of the
normalized jitter standard deviation, in various atmospheric
turbulence conditions. It can be observed that lower values
of the normalized jitter standard deviation reflects in better
system performance. It means that the positioning of the
FSO apertures is better and the pointing errors effect is
weaker. Also, the pointing error effect is stronger in weak
compared to moderate and strong atmospheric turbulence.
When the optical signal transmission suffers from very strong
atmospheric turbulence, the pointing errors effect has less
impact on the SEP performance.

In addition, the results for the FSO system when the point-
ing errors effect is neglected, obtained by using (27) and (19),
are also presented. These results are in agreement with those
when og/a = 1. Hence, very low values of the normalized
jitter standard deviation means that the pointing errors effect
is very weak and can be neglected.

When the DPSK demodulator hardware imperfections are
dominant, and the phase noise is quite strong, the value of
o, is large. In that case, the FSO channel state (atmospheric
turbulence and pointing errors) does not play a major role
in the SEP performance. When o, — 0, the impact of the
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Fig. 7. SIM-MDPSK SEP versus average electrical SNR of the FSO system
without hardware imperfections.

phase noise is very weak and can be neglected. For these
phase noise standard deviation values, the SEP takes constant
values, which are approximately the same as the SEP values
for the FSO system without phase noise. Also, atmospheric
turbulence and pointing errors have very strong impact on the
SEP performance, when g, is low.

Fig. 6 represents the SIM-MDPSK SEP dependence on
the phase noise standard deviation. The impact of the phase
noise on SEP is stronger when higher order SIM-MDPSK is
employed. For example, for o5/a = 1, in the case of M = 2,

the SEP is independent on phase noise up to g, = 10°,
while for M = 8, SEP drastically increases even starting
from o, = 2°. In addition, the weaker the pointing errors,

the stronger is the effect of phase noise on SEP. It can be
observed that the efect of DPSK order has minor influence on
the SEP performance when the impact of the phase noise is
very strong.

The SEP dependence on the average electrical SNR of
the FSO system without hardware imperfections is presented
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in Fig. 7. The results are obtained based on (24) with the
Fourier coefficient in (18), or in (19) when the pointing
errors are neglected. Different DPSK formats are observed:
SIM employing BDPSK, QDPSK and 8DPSK. As it is
expected, FSO system based on SIM-DPSK with higher mod-
ulation format has worse SEP performance, but the larger
amount of information can be transmitted. Also, consistent
with previous conclusions, greater value of the normalized
jitter standard deviations means worse system performance
due to stronger pointing errors. Agreement of the results based
on (18) for o;/a = 1 and (19) is noticed, meaning that very
low jitter standard deviation leads to weak pointing errors.

V. CONCLUSION

‘We have derived novel analytical expressions for the average
SEP of FSO system employing SIM-MDPSK. The irradiance
fluctuations at the received signal originate from the Gamma-
Gamma atmospheric turbulence and pointing errors. Based
on derived SEP expressions, numerical results have been
presented and confirmed by Monte Carlo simulations.

From the illustrated results, we have found that the hard-
ware imperfections result in the significant deterioration of
the FSO system performance. The phase noise is dominant
system factor, which causes the SEP performance damaging,
especially when optical signal transmission is influenced by
favorable conditions (weak atmospheric turbulence and weak
pointing errors effect). Similarly, when the impact of the phase
noise is very strong, atmospheric turbulence and pointing
errors effect has minor effect on the system performance.
Furthermore, the SIM based FSO system with higher DPSK
format is more sensitive to the existence of the phase noise.
Further, the existence of the phase noise leads to the unre-
coverable SEP floor, being meaningful limiting factor for
SIM-DPSK systems. It is observed that the SEP floor is
not dependent on the FSO channel state, but it is highly
dependent on the phase noise standard deviation and the DPSK
modulation order.

APPENDIX A
PROOF OF PROPOSITION 1

The series in (6) is a uniformly convergent series, because
the numerical series with positive terms,

> L),

n=1

€2V

is convergent, which can be proved using the inequality [53]

(1+ g) Lt (b)) < L) W=—1,b>0. (32

Namely, the series (31) is convergent if for a fixed m = [b]

([x] denotes the smallest integer greater than or equal to x)
[2°]

the series > I,(b) converges. According to (32), for n > m

n=m
we have

Infl(b) Infl(b) <

In (D)
1+ (- 1)/b 2 =

on—m’

I,(b) <

(33)
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so that

> 00 < n®) Y 5 = 2Un0).

n=m n=m

o0
wherefrom we conclude that the series > 1,(b) and (31) are
n=m

convergent. The sum of (31)is S = %(e"— Io(D)) [54, p. 254].
According to Cauchy’s integral test (cf. [55, p. 120] or
[56, p. 159]), for the numerical series (31) we can give the
following estimates for the remainder term
0 00
> Lo =G+ [ Lo,
N+1

n=N+1

(34

where v > 1, (a) is a decreasing positive continuous function
on (0, c0) [53].

Thus, for the truncation error Ey(¢; b) given by (8) we
obtain |Ex(p; b)| < En(0;b) = (xlo(0)™" 2o n sy In(b),
i.e., (9), where By is given by (10), because of (34).

APPENDIX B
PROOF OF PROPOSITION 2

After substituting (3), (15) and (16) into (14), the PDF of
the phase y is re-written as
5+1) &2
nlr 2T ()T (P)

cos (ny)

mm——+z

n=1

o0
n_ n
X/yz Yexp (=) 1Fi (f

2
Gf;(aﬂ\/»;H) .

Based on [49, (07.20.26.0015.01)], the product of exponential
and confluent hypergeometric function is presented in terms
of the Meijer’s G-function as

+l;n+1:y)

(35)

exp (oG + i 1) =GO [37)
2

(36)

After substituting (36) into (35) and applying [49,
(06.05.16.0002.01) and (06.05.03.0001.01)], the PDF of the
phase v is

o0

fy (W) = 2477t1"?a)1"(ﬂ) cos (ny)
x/ -1 ( ‘(ijn 3"(aﬁ \f fif;‘ﬁ)dy. 37)
0

The integral in (37) can be evaluated in closed-form by
using [49, (07.34.21.0013.01)], so the PDF of the phase v is
derived as

X peth- 4 2

fy ) = +Z 2r(a)r(ﬂ) cos (ny)
252 2 T 241 242
x G 2y 2 . (38
“’7( 164 f——”o) o

257



PETKOVIC et al.:

After the permutation of the parameters via
[49, (07.34.04.0003.01) and (07.34.04.0004.01)], and
the transformation of the Meijer’'s G-function by

[49, (07.34.03.0002.01)], the final form of the PDF of
the phase y is presented in (17).

APPENDIX C
PROOF OF PROPOSITION 4

We observe the series in (27) given by

0 3122
27 bic nm
s= 3 b gy (1),
n st M

n=1

(39)

for which we can prove its absolute convergence. As in
APPENDIX A we use the inequalities (32) and (33) and

b2c? [b]. Since

consider the series Z 273 b2c2

n=m
b, is a decreasing sequence, we can write

2277.'3176 23h22—2
n=i

n=m
Now, using (33) we conclude that

zI(b) < In(b)? Z

/n, where m =

27 b2,
Io(b)?

o I (b)?
>

n=m

1 4hxbf
n4n—m 3m ’

2 b22
Z”n

n=m

87b2 [ Ln(b)\>
- D, m() < +oo.
3m \ Io(b)

Thus, the series (39) is absolutely convergent, and also conver-
gent. For its truncation error we obtain the following estimate

o0 oo
Z 273 b2c? sin (E) - 273 b2c2
n=N+1 n M n=N+1
277'-b12\/+1 i In(b)z
Io(b)? n

n=N+1
Based on Cauchy’s criteria, as in APPENDIX A, it follows
i L)y _ Ina®)? /°° L®)?
ww - N+1 N4l V

so that we get (28), with (29).

APPENDIX D
PROOF OF PROPOSITION 5

In order to determine the value of the SEP floor, it is
necessary to take the limit of (27) for u — oo, i.e.,

3 )

(40)

U—>00

Since the Fourier coefficient b, is the only term in (27),
which depends on the average electrical SNR, after following
derivation in this Appendix, the limit of b, for 4 — oo is
derived as

1
BT = lim by = —. A1)

U—>00
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The term by~ is derived by following

n2a+ﬂ74§2
lim b, = lim ————
H—>00 H—>00 77:2r (a) r (ﬁ)
IRY o el R SR
Gis\ e, |2 1
61 |95, 4. 4500
n2(x+ﬁ—4¢«2
= lim 5————
z—0 nzl"(zx)F(ﬂ)
o2 gn, 2
Xijﬁ'(z o ) 42)
7255070
The first step in finding lim b, is applying [49,
HU—> 00

(07.34.06.0001.01)] to represent the Meijer’s G-function
in (42) in series form. Since z — 0, higher order terms in the
series representation of Meijer’s G-function can be neglected,

and b4~ is determined as
1
=00 _ 1 ~
b /llimm by 1.2
1
rrgren) (@)
X .
I (o) L)
After utilizing [49, (06.05.03.0002.01)

and (06.01.16.0006.01)], it is proved that holds

2T,

44
e (44)
so the final form of b% ~* is derived as
1
bT® = — (45)
T
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1. Introduction and Preliminaries

The special polynomials and numbers play an important role in many branches
of mathematics and their development is always actual. Many papers and
books were published in this very wide area. We mention only a few books
connected with our results in this work (cf. [4,7,27,28]).
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Arts (No. ®-96) and by the Serbian Ministry of Education, Science and Technological
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In this paper we consider some new families of numbers and polynomials,
including their generating functions, several interesting properties, as well as
their connections with other polynomials and numbers of the Bernoulli, Eu-
ler, Apostol-Bernoulli, Apostol-Euler, Genocchi, Fibonacci and Lucas type.
In order to give our results, we need to mention several special classes of
polynomials and numbers with their generating functions.

1° The Bernoulli polynomials of higher order B((ih) (x) are defined by
means of the following generating function

o0

Fpn(w,t;h) = ( fe? ) Z BM(a (1.1)

For h =1, (1.1) reduces to the generating function of the classical Bernoulli
polynomials, Bc(ll)(x) = Bg(z). Furthermore, for = 0, this gives the well-
known Bernoulli numbers B; = By(0). For details see [1-7,13-22,29].

2° The Apostol-Bernoulli polynomials were introduced in 1951 by Apos-
tol [1] by means of the following generating function

te:l:t e td
Fap(w,t;)) = 15— = st(m,x)a, (1.2)
d=0 )

where |t + log A| < 27 (for details see [1-7,13-22,29]). Several their interest-
ing properties, formulas and extensions have been obtained by Srivastava [20]
(see also the recent book [27]). Using the suitable generating functions sev-
eral authors have obtained different generalizations and unifications of these
numbers and polynomials (cf. [2,5,13,14,16,17,22,29]).

Substituting = 0 in (1.2), for A # 1, we get the Apostol-Bernoulli
numbers Bg(A),

Ba() = Ba(0, ), (1.3)

and they can be expressed it terms of Stirling numbers of the second kind [1,
Eq. (3.7)]. Setting A = 1 in (1.2), we get the classical Bernoulli polynomials
Bd(x) = Bd(xa 1)

Alternatively, the Apostol-Bernoulli numbers can be expressed in the
form

Maz(V) oy (1.4)

Bo) =0, Bald) = ()" TG,

where () are monic polynomials in A and of degree k and ¢ (0) = 1. Using
the generating function (1.2) for 2 = 0 and (1.4), it is easy to prove that the
polynomials ¢ ()\) are self-inversive (cf. [20, pp. 16-18]), i.e., \¥pr(1/N) =
wr(A). Also, we can prove that

k
== a3 (P a- e, kze 09
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as well as the following determinant form

~1/A 0 0o - 0 1
G a0 o

(1€ (5) ~1/x -0 ¢

(e (e (et o —1a et
(k-{-l)gkfl (k;1)£k72 (k-?i)-l)gkf?) . (k-]ic-l) fk
where £ =1 — \. For example, we have

poN) =1, @r(A) =A+1, pa(\) =N +4r+1,

03(N\) = AP+ 1IAZ 1IN+ 1, @u(\) = A 4+ 260% + 6617 4 261 + 1,
©5(\) = A% 4+ 570" 4 302)3 + 30207 + 57\ + 1,

06(A) = A% 4+ 1200\° + 1191A* + 241673 + 119107 + 120\ + 1,

etc. Using (1.5) we can conclude that ¢ (1) = (k+ 1)L
3° The Apostol-Euler polynomials of the first kind E4(x, A) are defined
by means of the generating function

et e td
d=0 ’

where |2t +log A| < 7 (cf. [1-7,22,29]). For A # 1, substituting = 1/2 in
(1.6) and making some arrangement, we obtain the Apostol-Euler numbers.
Setting A = 1 in (1.6), we get the first kind Euler polynomials E4(z) =
Ea(x, 1).

4° The Apostol-Euler polynomials of the second kind are defined by
means of the generating function

2

x > * td
e re LD SUHC (.7
d=0 ’

(cf. [25]). A special kind of these polynomials for A = 1 is denoted by &£j(z) =
E%(x, 1), and the corresponding numbers by £; = £;(0). By using (1.6) and
(1.7), for x = 0, we have the following relation

1
E5(0,0) =297\&, (2, A2) .

The second kind Euler numbers £ are defined by the special case of the first
kind Euler polynomials, E% = 2¢E, (1/2).

5° The Euler polynomials of higher order E((ih)(m) are defined by means
of the following generating function

907t h o] ) 4d
Fgp(x,t;h) = = ZEd (x)a, (1.8)

t
et +1 =

so that, obviously, E((il)(x) = Eq(x).
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6° The Genocchi numbers and polynomials and their generalizations.
The Genocchi numbers G4 are defined by the generating function

2t e
= ;Gda’ (1.9)
=0

Fg(t) =

where |t| < m (cf. [13,16,22,29]).
In general, for these numbers we have Gy = 0, G; = 1, and G441 = 0 for
d € N. Some relations between the Genocchi, Bernoulli and Euler numbers
are given by Gag = 2(1 — 22d)B2d and Gy = 2dE54_1. The sequence of
Genocchi numbers is
{ga}aso0 = {0,1,-1,0,1,0,-3,0,17,0, —155,0,...}.

The Genocchi polynomials G4(x) are defined by the following generating
function

Fy(z;t) = ZGd d', (1.10)

where [t| < m. Using (1.10), it is easy to see that

Ga(z) = Zd: (Z) Grad=*

k=0
The first seven Genocchi polynomials are
Go(x) =0, Gi(z)=1, Ga(z)=2x—1, Gs(r)=3z*— 3,
Gy(x) =423 —62° + 1, Gs(x) = 52* — 102% + 5,
Ge(x) = 62° — 152 + 1522 — 3.

The Apostol-Genocchi polynomials ggq(z, A) are defined by the generating
function

where |2t 4+ log A| < 7. Setting A = 1 in (1.11), we get the classical Genoc-
chi polynomials G4(z) = G4(x,1), which reduce to the classical Genocchi
numbers Gy = G4(0) for x = 0.

Substituting = 0 in (1.11), for A # 1, we obtain the Apostol-Genocchi
numbers Gg(A\) = G4(0, A). For some details, properties and other general-
izations see [11,13,16,22,26,27,29].

7° The Stirling numbers of the second kind Sa(n,k; ) are defined by
means of the following generating function (cf. [3,24 26])'

Fs(t,k;\) = (Ae — 1 ZSQ n, k; A (1.12)

where k € Ny and A\ € C.
The generalized Stirling numbers and polynomials have been defined by
means of the following generating function (cf. [3]):

Mem = i S(a)(mk)ﬁ. (1.13)

k! n!
n=0
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Several combinatorial properties of these polynomials have been proved in
[3].

Simsek [24] has modified the generating function (1.13), defining the
so-called A-array polynomials S7(x;\) by means of the following generating
function

Fa(t,z, k; \) = (Aei_l Zsk ; )\ (1.14)

where k € Ny and A € C. Substituting A =1, the )\—array polynomials reduce
to the array polynomials, S(® (n, k) = SP(a;1) (cf. [3,24]).

8° The Humbert polynomials {11}, ,,, }7>, were defined in 1921 by Hum-
bert [12]. Their generating function is

(1 — mat + ™)~ ZH (1.15)
n=0

This function satisfies the following recurrence relation (cf. [7,18,19] and
references therein):

A special case of these polynomials are the Gegenbauer polynomials given as
follows [8]:

Cp(x) =113 ()
and also the Pincherle polynomials given as follows (see [12,23]):
Pa(@) = 10,5(2).

Later, Gould [9] studied a class of generalized Humbert polynomials,
Pn(maxvyvpa C)a defined by

(oo}
(C — mat + ytm)p - Z Pn<m7xayap7 C)tna
n=0
where m > 1 is an integer and the other parameters are unrestricted in
general (cf. [7], [10]).
Some special cases of the generalized Humbert polynomials,
P,(m,z,y,p,C), can be given as follows (cf. [12]):

1
p, (2,:1:7 1, —3 1) =P,(z) Legendre (1784),
P,(2,z,1,—v,1) = Cy(x)  Geganbauer (1874),
1
P, (3,33, 1,— 2,1 Pn(xz)  Pincherle (1890),

Py(m,x,1,-v,1) = h;, () Humbert (1921).

9° The Fibonacci-type polynomials in two wvariables (x,y) — G;
(x,y; k,m,n) has been recently defined by Ozdemir and Simsek [21] by the
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following generating function

1

o0
H(t;,y;k,mn) = > Gj(x,y;k,myn)t = T2kt — grgmtn

Jj=0

(1.16)

where k, m,n € Ny. An explicit formula for the polynomials G;(z,y; k, m,n),
j=0,1,..., can be done in the following form [21]

)

[#] .
J— C(?TL—FTL - 1) me, . jk—mck—nc
Gk = 3 (17 ) et

c=0
where [a] is the largest integer < a.

In this paper we give some new identities for the previous classes of poly-
nomials and investigate some new properties of these polynomials. Moreover,
by using their generating functions, we give some applications which are as-
sociated with the Fibonacci-type polynomials of higher order in two variables

The paper is organized as follows. Fibonacci-type polynomials of higher
order in two variables and a new family of special polynomials (z,y) —
Ga(z,y; k,m,n), which includes several special cases, are introduced and
studied in Sects. 2 and 3, respectively. Finally, Sect. 4 is devoted to a class of
polynomials and corresponding numbers, obtained by a modification of the
generating function of Humbert’s polynomials.

2. Fibonacci-Type Polynomials of Higher Order in Two
Variables

In this section we give a new generalization of the Fibonacci-type polynomials
in two variables.

Definition 2.1. Two variable Fibonacci-type polynomials of higher order
(z,y) — gj(.h) (z,y; k,m,n) are defined by the following generating function
= : 1
> 6 @,y kmon)t =

Jj=0

2.1
(1 _ x’“t _ ymthrm)h’ ( )

where h is a positive integer.
Observe that
G\ (w,yskym,n) = Gj(w, ys k,m,n).

We give now a computation formula of two variable Fibonacci-type polyno-
mials of higher order h in the following statement.

Theorem 2.2. We have

J
G (s kymyn) = Y G (@ yskom, )G (2, g komon).(2.2)
£=0
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Proof. Setting h = hy + hy into (2.1), we start with

o0
hi+hs) ; 1 1
ST @y km, )t = : :
— okt — TmYh — kg Tm\hs

= (1 xkt ymtn m) 1 (1 xkt ymtn m) 2
and then, using again (2.1), we get s _
S G @y mon)t =" G (@ gk m ) G (b m, )
j=0 3=0 3=0

Now, by using the Cauchy product in the right-hand side of the above equa-
tion, we obtain

oo

o J
oG @ gk mn)t =3 S G @,y km,n) G (@, y km )t
j=0 j=0 ¢=0

Finally, comparing the coefficients of ¢/ on both sides in the previous equality,
we arrive at the desired result (2.2). O

Remark 2.3. Setting hy = he = 1 in (2.2), we obtain the following formula
for computing two variable Fibonacci-type polynomials of the second order,
J
G (x,y kym.n) = Gelw,yi kyman)Gy—e(w, y; k,m,n).
(=0
If we take x ;== ax,y=—-1, k=1, m=1,n=a—1, (2.1) reduces to

1

(h) . J—
E : 1;1,1 Dt =
9j (o2, ~1;1,1,a 1) (1 — axt + t*)h

j=0
=y 1), (o).

Comparing the coefficients of ¢/ on both sides of the above equality, we
obtain the following result.

Corollary 2.4. A relation between two variable Fibonacci-type polynomials of
higher order g§h) (z,y; k,m,n) and Humbert polynomials Hgm(x) s given by

(h) . _ 11h
g; (ax,~1;1,1,a — 1) =11} ,(x).

3. Special Polynomials Including Two Variable Fibonacci-Type
Polynomials and Bernoulli and Euler-Type Polynomials

In this section, in order to introduce a new family of polynomials, we mod-
ify and unify the generating functions of the Fibonacci-type polynomials in
two variables. By using these generating functions, we derive some relations
and identities including the Apostol-Bernoulli numbers, the Bernoulli-type
polynomials, the Humbert polynomials and the Genocchi polynomials. These
relations and identities also include the Fibonacci-type polynomials in two
variables.
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Now, we introduce the generating function for these new special poly-
nomials in two variables (z,y) — Gg(x,y; k,m,n), d > 0, with the three free
parameters k, m, n.

Definition 3.1. The polynomials G4(z, y; k, m,n) are defined by means of the
following generating function

1— iL’k _ ym
1— xkez _ mez(m+n)

B (Gda:y,kmn) z d
72 <1_$k_ym) . (3.1

d=

F(z;2,y; k,m,n) =

A recurrence relation for the polynomials G4(x, y; k, m,n) can be proved.

Theorem 3.2. Let Go(z,y;k,m,n) =1 and d be a positive integer. Then we
have

d
Gd(xay; kam7n) = xk Z <;l>GJ(xayvk7mvn)(1 - xk - ym)d—j

7=0
d _ .
+ym Z <]) GJ(I, Y; k,m,n)(m + n)dij(l—xk—ym)dfﬂ'

Proof. By applying the umbral calculus methods to (3.1), we get

2d

oo
ok _,m _ .
1 z Yy ZGd(w,y,k;m,”) (17$k 7’y7”)dd!

d=0

»d

— 2" (G(z,y;k,myn) + 1 —2* — ym)‘im

d=0

—y™m i (G(w,y;k,m,n) + (m+n) (1 _ak ym>>d
d=0

Ld

(1 —ak —ym)dq’

with the usual convention of replacing G¢(z,y; k,m,n) by Gg(z,y; k, m,n).
Comparing the coefficients of z% on the both sides of the previous equality,
we arrive at the desired result. ]

A few first polynomials are

Golz,y;k,m,n) =1, Gi(z,y;k,m,n) =" + (m +n)y™,
2 k. m

Gg(x,y;k,m,n):[xk+(m—|—n)ym]2—(m+n—1)J:y + 2" + (m+n)%y™,

etc.

Now we consider special cases of the polynomials G4(z,y; k, m,n). By
using the generating function from (3.1), we derive some new identities and re-
lations, which include the polynomials G4(z, y; k, m, n), the Apostol-Bernoulli
and the Apostol-Euler polynomials and numbers, as well as the classical
Bernoulli, Euler and Genocchi polynomials and numbers.
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Theorem 3.3. Let d > 1. The polynomials Ga(x,y; k,m,n), d > 1, are con-
nected with the Apostol-Bernoulli numbers Bg(\) in the following way

(1= -y
d

Proof. First, according to (3.1) and (1.2), we have the following relation

Gd,1(1'7y7k,1,0) = Bd(l'k—’_y)v dZ L. (32)

1—ak -
F(za,y:k,1,0) = ——— Y Fu5(0, 22% 4 y),
zZ

ie.,

> Gy(x,y; k,1,0) 24 1—2k —y & & 29
Ay Y2 2T Ty B Z
= (1—ak —y)d dl z dz:% al@® +y) d’

where we also used (1.3). However, since

z i Ga(z,y;k,1,0) 24 i (d+ 1)Ga(x,y; k, 1,00 2%F!
1—aj’f—yd:0 (1 —ak —y)d d!idO (1 — b —y)dt+t (d+1)!
_Zde lxyak7170) id
(1 —xk —y)d dl’
we have
2 dGy_1(x,y; k,1,0) 2z¢ B > & 24
; (1 — gk _ y)d dr - ZBd(x + y) d’ (33)

d=1
because By(A) = 0.

Comparing the coefficients of 2?/d! on both sides in (3.3), we obtain
(3.2). O

By using the Apostol-Bernoulli numbers and the equality (3.2) we get
another computation formula for the polynomials G4(x, y; k, m,n). Thus,

1= 2k — )2
(Gh(x,y;k,l,O) = _%BQ(ZU]C +y) == l’k —|—y,
k. \3

Ga(x,y;k, 1,0) = fw&(z‘“ +y) =2+ 2ty +at ol +y,

(1 wk—y)4 k k k 2 k
Ga(@,yik,1,0) = ——— I B +y) = (" + )" + ) + 46" +y) + 1,

1— k
G4($7y;kj,1,0) = %65(1‘ +y)

= (@ + )" + )’ + 11" +y)* + 11" +y) + 1], ete.

Theorem 3.4. Let d > 0. The relation between the polynomials
Ga(z,y; k,m,n) and the Apostol-Bernoulli polynomials Ba(x, \) is given by

pd—1-j
Ba( ——dZ( )HWG (z,0; k,m,n). (3.4)
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Proof. Starting with (1.6) and (3.1) for y = 0 m # 0, we conclude that

1—zk

T ohe = (@ = DFEap(e,z2%), (35)

2"*F(z;x,0; k,m,n) = ze**

ie.,

X (22)? & G (z,0;k,m,n) z¢ > i 28
ZZ dl Ryd+1 !:—ZBd(x7x )57
d= =0 d=0

after replacing by the correspondlng series representations. Now, using the
Cauchy product on the left-hand side of the above equality, we obtain
(2,05 k,m,n) z4+1
3 () SN S st
d=0 j=0

ie., (3.4). O

Remark 3.5. By using (3.5), the equality (3.4) can be also given in the fol-
lowing form:

d
z, 2k = — d dﬂGa 1(z,0;k,m,n)
Bd( ) ) ;(j) (1 $k) .

Theorem 3.6. The Euler polynomials E4(x) can be expressed in terms of the
polynomials Gy(x,y; k,m,n) as

d
B d de(lO,l,mn)
Eie) =3 (1) 2] (3:)
7=0
Proof. As in the proof of Theorem 3.4, we assume that m # 0 and start with
a special case of the generating function in (3.1), with z = —1, y = 0 and
k=1, i.e.,

F(z;—1,0;1,m,n) = Far(0,t;1).

Then, by the generating function of the Euler polynomials E4(z) given by
(1.8) (for h = 1), we conclude that

e"*F(z;—1,0;1,m,n) = Fgp(x, z; 1),

ie.,

2 (22)4 X Gyl 10,1,mn)zd = P

DRSS 7= 2 Pa@) g

d=0 d=0 d=0
or

—1,0;1,m,n)
3 (s BE L S
d=0 j=0

from which we obtain (3.6). O
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Theorem 3.7. The relation between the polynomials G4(x,y; k,m,n) and the
Genocchi polynomials Gy(x) is given by

d—1
1 Gi(—1,0;1
J)) _ dz (d] >$d_1_] GJ( 78; 7m7n). (37)
§j=0

Proof. Assuming that m # 0 and using (3.1) and (1.10), we have

2e"*F(z;—1,0;1,m,n) = Fy(x;t),
ie.,

d

Zi x;' i@d 10,1,mn 4 ZGd

d=0 d=0

Since Go(x) = 0, after some standard manipulations, we obtain

d—1 0
1:G(=1,0;1,m,m) | 24 24
d—1 J s Yy Ly 1 o
S (1) o B ) 2 S,
=1

ie., (3.7). O

Remark 3.8. The relation (3.7) can be also expressed in the following form

Zd (d) 433 Gj=1(=1,0;1,m,n)
= .| T N .
J y-1

Jj=1

4. Modified Humbert Polynomials

In this section we modify the generating function of the Humbert polyno-
mials in order to obtain the generating functions for some other families of
special polynomials and numbers. We investigate certain properties of these
generating functions and derive a few identities and relations which include
the Apostol-Bernoulli and the Apostol-Euler numbers and polynomials, as
well as the Bernoulli numbers of higher order, the array polynomials, and
some other special numbers and polynomials.
First, we introduce a two-parameter family of the numbers {Y;,(\; a) } >

by a generating function obtained from one of Humbert polynomials (1.1 )
by the substitution (m,z,t,A\) — (a, A, e*,1).

Definition 4.1. A family of the numbers {Y,,(\; a)},>0 is defined by

1 = z"
n=0
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4.1. Computing Some Special Values of the Numbers Y,, (A, a)

Here, we consider two special cases.
CASE a = 2. Substituting A = 1 and a = 2 into (4.1), after multiplica-
tion by 22, we obtain

n+2 - 2 > (2)2’”
w025 = () =X

n=0

ie.,

Yo_o(1,2)n _17_ B2

Z 2(L,2)n(n = 1) Z o

after using the series representation (1.1). Therefore, we have
B® =n(n—1)Y,_5(1,2), n#2,

where B,(?) denotes the Bernoulli numbers of the second order.
Now, we are interested for a case when \ = —%(5 +B71), where 8 > 1.

Theorem 4.2. If 3 > 1 we have

Y3 =13 (1)a0me 0.5 )

=0\
Proof. Starting from (4.1), for a =2, A = —%(ﬂ + 371, and 8> 1, ie.,
1 1
P (si-505+57).2) = TPap(0.50)Fas(0.557),

and using the corresponding series representations (4.1) and (1.6), we obtain

ZY (~3(6+87, )Ti(Z&‘@vﬂ)?:) 2500
, j=0

ie., (4.2). O

In a particular case for § = 2, the equality (4.2) reduces to the following
identity

Ya(-32)=1 > (1)es0.280s (0.1,
We give the following functional equations related to the numbers
Y. (A a):
F(z;M1) = —Fap(0,2;A— 1)
and

F(z; /\7 1) = FAE(O,Z; 1-— /\)
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Combining the above equations with (4.1), (1.2) and also (1.6), we get
1 1
Y1(\ 1) = _EB"(/\ —1) and Y,(\1)= §5n(0, 1-—A).
4.2. A Recurrence Relation for the Numbers Y,, (A, a)
By applying the Umbral calculus methods to (4.1), we find a recurrence
relation for these numbers.

Theorem 4.3. Let 2 # aX and

Yo(Aa) = —

2 —a\’

Then, for n > 1, we have
n n )
Y, (N a)= ) (aA —a" )Y (A a). 4.3
=3 (%) Y, (0a) (4.3
Proof. Starting from (4.1) we get

ZY )\a——a)\z ZY +Z n, ZY

n=0 n=0

Now, using the Cauchy product rule in the left-hand Slde of this equality, we
obtain

ZY"(A’“)Z ﬂ“ZZ( > EED Y (?)a"‘%(x,wf: =1L

n=0 j=0 n=0j=0
Therefore,
o
;)Y O\ a)= _1+;) JZ;(J) (aX — a")Y;()\, a) ok

Comparing the coefficients of 2" /n! on both sides of the above equality, we
arrive at the desired result. O

According to (4.3), we can recursively compute the values of the num-
bers Y, (A, a) for aX # 2,

Y.\ a) =

_aA" 1( > (aX — a")Y;(\, a).

This formula gives

1
Yot a) =50
a\—a

e =G

a®X? + (2 — 4a + a?)a
YQ ()\,a) = ((2_0)\)3 ) )

a®A® 4 (8 — 12a + 642 — a®)a®\? + (4 — 12a + 6a® — 2a°)a) + 2a°
Ys(Aa) = 2 —aN)i ’

etc.
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Remark 4.4. All numbers Y, (), a) are rational functions of real parameters
a and A, with a pole A = 2/a of order n + 1.
4.3. A New Family of Polynomials P, (x; A, a)

By (4.1), we can define a new family of polynomials P, (x; A, a) by means of
the following generating function:

G(z;z;M,a) = e F(z; N, a),
ie.,

Tz

G(z; ;M a) anmx\an' ¢ (4.4)

1 —ale? +ea*’

Using (4.1), (4.4), as well as the numbers Y;(), a), we obtain the following
representation of the polynomials P, (x; A, a).

Theorem 4.5. For n € Ny we have

(23 M, a) i() 2" Y\, a).

j=0

Proof. According to (4.4), we have

ZPAQ:;A,@)?Z(Z )(ZY /\Cl;);

n=0
ie.,
o0 n o0 n n
;Pn(x; /\,a)i—! = nz:% jz:;) (?)x”jyj(/\,a) %
The last equality gives the desired result. (|

Theorem 4.6. For n > 1 we have

0
%Pn(x; A a) =nP,_1(z; A a).

Proof. By differentiating the generating function (4.4) with respect to z, we
conclude that

%G(z; x; A\ a) = 2G(z; 25\, a).

Then, using the corresponding series representation, we obtain

Z(‘? x)\a ZnPnlx)\a)

from which the desired result directly follows. O

Theorem 4.7. The following identities
2, 1
> <2k) Poop(w;A,a) = S(Po(w+152,0) + Pa(z — 1 Xa))  (45)

k=0
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and
vz, )
kZ:O <2k . 1) Pr_on_1(z; M a) = 5(Pn(:g + 1L\ a) — Pz —1;\,a))
(4.6)
hold.

Proof. According to (4.4), we find that
G(z;x +y; Ay a) = e*G(z; 25 M, a),

as well as the following equality

3 Pn(x—ky;)\,a)—zn = SIS y" I Pj(z; N\, a) —Zn,
‘ n! < ‘ n!
n= n= j:

ie.,

P.(z+y; N\ a) :Z( )yPn]x)\a)

7=0
Now, substituting ¥y = 1 and y = —1 into this equality, we obtain

Po(z +1; ) a) = zn: (;‘) Po_i(z; )\, a)

Jj=0

and
n

Pu(z — LM a) =Y (~1) (Z) Po_j(z: A a),

j=0
respectively. Finally, adding and subtracting these equalities we get the iden-
tities (4.5) or (4.6). O
References

[1] Apostol, T.M.: On the Lerch Zeta function. Pacific J. Math. 1(2), 161-167
(1951)

[2] Bayad, A., Simsek, Y., Srivastava, H.M.: Some array type polynomials associ-
ated with special numbers and polynomials. Appl. Math. Comput. 244, 149-157
(2014)

[3] Caki¢, N.P., Milovanovi¢, G.V.: On generalized Stirling numbers and polyno-
mials. Math. Balkanica 18, 241-248 (2004)

[4] Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expan-
sions. Reidel, Dordrecht and Boston (1974)

[5] Dere, R., Simsek, Y., Srivastava, H.M.: A unified presentation of three families
of generalized Apostol type polynomials based upon the theory of the umbral
calculus and the umbral algebra. J. Number Theory 133, 3245-3263 (2013)

[6] Djordjevié¢, G.B.: Polynomials related to generalized Chebyshev polynomials.
Filomat 23(3), 279-290 (2009)

277



117 Page 16 of 17 G. Ozdemir et al. MJOM

[7] Djordjevié¢, G.B., Milovanovi¢, G.V.: Special Classes of Polynomials. University
of Ni§, Leskovac (2014)

[8] Gegenbauer, L.: Zur Theorie der Functionen Cj,(x). Osterreichische Akademie
der Wissenschaften Mathematisch Naturwissen Schaftliche Klasse Denkscriften
48, 293-316 (1884)

[9] Gould, H.-W.: Inverse series relations and other expansions involving Humbert
polynomials. Duke Math. J. 32(4), 697-712 (1965)

[10] Henry, W., He, T.: Characterization of (c)-Riordan arrays, Gegenbauer—
Humbert-type polynomial sequences, and (c)-Bell polynomials. J. Math. Res.
Appl. 33(5), 505-527 (2013)

[11] Horadam, A.F.: Genocchi polynomials. In: Applications of Fibonacci Numbers,
vol. 4 (Winston-Salem, NC, 1990), pp. 145-166. Kluwer Acad. Publ., Dordrecht
(1991)

[12] Humbert, P.: Some extensions of Pincherle’s polynomials. Proc. Edinburgh
Math. Soc. 1(39), 21-24 (1921)

[13] Kim, T.: On the ¢g-Genocchi numbers and polynomials. Adv. Stud. Contemp.
Math. 17, 9-15 (2008)

[14] Lu, D.-Q., Srivastava, H.M.: Some series identities involving the generalized
Apostol type and related polynomials. Comput. Math. Appl. 62, 3591-2602
(2011)

[15] Luo, Q.-M.: On the Apostol-Bernoulli polynomials. Cent. Eur. J. Math. 2(4),
509-515 (2004)

[16] Luo, Q.-M., Srivastava, H.M.: Some generalizations of the Apostol-Genocchi
polynomials and the Stirling numbers of the second kind. Appl. Math. Comput.
217, 5702-5728 (2011)

[17] Luo, Q.-M., Srivastava, H.M.: Some relationships between the Apostol-
Bernoulli and Apostol-Euler polynomials. Comput. Math. Appl. 51, 631-642
(2006)

[18] Milovanovi¢, G.V., Djordevié¢, G.P.: On some properties of Humbert’s polyno-
mials. Fibonacci Q. 25, 356-360 (1987)

[19] Milovanovié¢, G.V., Djordevié¢, G.P.: On some properties of Humbert’s polyno-
mials. II. Facta Univ. Ser. Math. Inform. 6, 23-30 (1991)

[20] Milovanovi¢, G.V., Mitrinovi¢, D.S., Rassias, ThM: Topics in Polynomials: Ex-
tremal Problems, Inequalities. Zeros. World Scientific Publ. Co., Singapore
(1994)

[21] Ozdemir, G., Simsek, Y.: Generating functions for two-variable polynomials
related to a family of Fibonacci type polynomials and numbers. Filomat 30(4),
969-975 (2016)

[22] Ozden, H., Simsek, Y., Srivastava, H.M.: A unified presentation of the gener-
ating functions of the generalized Bernoulli, Euler and Genocchi polynomials.
Comput. Math. Appl. 60, 2779-2787 (2010)

[23] Pincherle, S.: Una nuova extensione delle funzione spherich. Mem. R. Accad.
Bologna 5, 337-362 (1890)

[24] Simsek, Y.: Generating functions for generalized Stirling type numbers. Ar-
ray type polynomials, Eulerian type polynomials and their applications. Fixed
Point Theory Appl. 87, 28 (2013). doi:10.1186/1687-1812-2013-87

278



MJOM Generating Functions for Special Polynomials and Numbers Page 17 of 17 117

[25] Simsek, Y.: Computation methods for combinatorial sums and Euler-type num-
bers related to new families of numbers. Math. Meth. Appl. Sci. (2016). doi:10.
1002/mma.4143

[26] Srivastava, H.M.: Some generalizations and basic (or ¢-) extensions of the
Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 5(3), 390444
(2011)

[27] Srivastava, H.M., Choi, J.: Zeta and ¢-Zeta Functions and Associated Series
and Integrals. Elsevier Inc, Amsterdam (2012)

[28] Srivastava, H.M., Manocha, H.L.: A treatise on generating functions. In: El-
lis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd.,
Chichester; Halsted Press John Wiley & Sons, Inc., New York (1984)

[29] Srivastava, H.M., Kurt, B., Simsek, Y.: Some families of Genocchi type poly-
nomials and their interpolation functions. Integral Transforms Spec. Funct. 23,
919-938 (2012)

Gulsah Ozdemir and Yilmaz Simsek
Department of Mathematics, Faculty of Science
Akdeniz University

Antalya

Turkey

e-mail: ozdemir.gulsah@hotmail.com

Yilmaz Simsek
e-mail: ysimsek63@gmail.com

Gradimir V. Milovanovié

Serbian Academy of Sciences and Arts
Beograd

Serbia

e-mail: gvm@mi.sanu.ac.rs
and

Faculty of Science and Mathematics
University of Nis

Nis

Serbia

Received: October 23, 2016.
Revised: March 17, 2017.
Accepted: March 29, 2017.

279






P. Cheraghi, A.P. Farajzadeh, G.V. Milovanovié: Some notes on weak
subdifferential, FILOMAT 31 (2017), 3407 — 3420. [RJ239]

281






Filomat 31:11 (2017), 3407-3420
https://doi.org/10.2298/FIL1711407C

Published by Faculty of Sciences and Mathematics,
University of Ni8, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Some Notes on Weak Subdifferential

P. Cheraghi?®, Ali P. Farajzadeh?, Gradimir V. Milovanoviéb<

Razi University, Department of Mathematics, Kermanshah, 67149, Iran
b Serbian Academy of Sciences and Arts, Beograd, Serbia
“University of Nis, Faculty of Sciences and Mathematics, P.O. Box 224, 18000 Nis, Serbia

Abstract. Some necessary conditions for having nonempty weak subdifferential of a function are presented
and the positively homogeneous of the weak subdifferential operator is proved. Necessary and sufficient
conditions for achieving a global minimum of a weak subdifferentiable function is stated, as well as a link
between subdifferential and the Fréchet differential with a weak subdifferential. A result about the equality
of the fuzzy sum rule inclusion is also investigated. Finally, some examples are included.

To the memory of Professor Lj. Ciri¢ (1935-2016)

1. Introduction

The notion of weak subdifferential which is a generalization of the classic subdifferential, is introduced
by Azimov and Gasimov [1]. It uses explicitly defined supporting conic surfaces instead of supporting
hyperplanes. Recall that a convex set has a supporting hyperplane at each boundary point. This leads to
one of the central notions in convex analysis, that of a subgradient of a possible nonsmooth even extended
real valued function [4]. The main reason of difficulties arising when passing from the convex analysis to the
nonconvex one is that the nonconvex cases may arise in many different forms and each case may require a
special approach. The main ingredient is the method of supporting the given nonconvex set. Subgradients
plays an important role in deriving of optimality conditions and duality theorems. The first canonical
generalized gradient was introduced by Clarke [4]. He applied the generalized gradient systematically
to nonsmooth problems in a variety of problems. Since a nonconvex set has no supporting hyperline at
each boundary point, the notion of subgradient have been generalized by most researchers on optimality
conditions for nonconvex problems [3, 4]. By using the notion of subgradients, a collection of zero duality
gap conditions for a wide class of nonconvex optimization problems was derived [1]. In this study we give
some important properties of the weak subdifferentials. By using the definition and properties of the weak
subdifferential which are described in [1, 2, 10, 11], we present some facts concerning weak subdifferential in
the nonsmooth and nonconvex analysis. It is also obtained Necessary and sufficient optimality conditions
by using the weak subdifferential.
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This paper is organized as follows. The definition and some preliminaries of the weak subdifferential
are given in Section 2. In Section 3, some theorems connecting operations on the weak subdifferential in the
non-smooth and non-convex analysis are provided. Also, a necessary condition in which a function attains
its global minimum by applying weak subdifferential is stated.

2. Preliminaries

Throughout this paper let X be a real normed space and let X* be the topological dual of X. By || - || we
denote the norm of X and by (x*, x) the value of the linear functional x* € X" at the point x € X.

Definition 2.1 ([10, 11]). Let f : X — R be a function and x € X be a given point. The set
If® ={x e X : (V¥xeX) f(x) - f(®) 2 (', x - D)
is called the subdifferential of f at ¥ € X.

Definition 2.2 ([10, 11]). Let f : X — R be a function and % € X be a given point. A pair (x*,c) € X* X R* where
IR, the set of nonnegative real numbers, is called the weak subgradient of f at X € X if the following inequality holds:

(Vx € X) fx) = f(®) > (x", x = %) — cllx — x|

The set
Pf@) = {0, e X' xR : (VxeX)  f(x) - f@®) 2 (¢, x =D —cllx— x| |

of all weak subgradients of f at ¥ € X is called the weak subdifferential of f at X € X . If 9V f(X) # 0, then f is called
weakly subdifferentiable at X.

Remark 2.3. It is obvious from the definition of weak subgradient that if 0 f(X) is nonempty then it contains
uncountable members. Because if (x*,¢) € 9V f(X) , then we have

(VxeX)  f0)-f®) >, x -5 —dll -l

Hence
(Vx e X, Yec>70) flx) = f(X) > (", x = %) —cllx - x|,

which the last inequality means that (x*,c) € d“ f(X). This completes proof of the assertion.

Remark 2.4. It is clear that when f is subdifferentiable at X, then f is also weakly subdifferentiable at X ; that is, if
x* € df(%), then by the definition of weak subgradient we get (x*,c) € " f(X) for every ¢ > 0. But the following
example shows that the converse may fail.

Example 2.5. Let X = Rand f(x) = —|x|. Then it follows from the definition of weak subdifferential that
(a,0) € f(0) = (a,c) e RxR* and (VxeX) —|x|>ax—clx|
Hence the weak subdifferential can be explicitly written as
I°f(0) = {(@,c) e RXR*; Ja] < c - 1},
On the other hand, it follows from the definition of the subdifferential that df(0) = 0.

Remark 2.6. It follows from Definition 2.2 that the pair (x*,c) € X* X R" is a weak subdifferential of f at X € X if
and only if there exists a continuous (super linear) concave function

g(x) = (", x = %) + f(%) — cllx — I,

such that
(VxeX) g <fe) and g(x) = f).
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The class of weakly subdifferentiable functions are wider than the class of subdifferentiable functions.
The weak subdifferential is a strong tool for studying nonconvex optimization problems, for instance, see
[1, 12]. It is worth noting that the calculation of weak subdifferential by using its definition is not easy
in general. The calculation of weak subdifferential for some functions is given in [14]. M.Kucuk, et al.
presented the very useful method for calculation of weak subdifferential of functions that represented as
the infimum of support functions, the functions that represented as difference of two sublinear functions ,
and convex functions.

Definition 2.7 ([13]). A function f : X — R s called locally Lipschitz at X € X if there exist a nonnegative number
L (Lipschitz constant) and a neighborhood N(X) of % such that

(VxeN®)  1f@) - f@) < Lix - .
If the above inequality holds for all x € X, then f is called Lipschitz with the Lipschitz constant L.

Theorem 2.8 ([10]). Let the weak subdifferential of f : X — R at  be nonempty. Then the set 9" f(%) is closed and
convex.

3. Main Result
In this section we follow the main results given in [10]. In the sequel we need the following definition .
Definition 3.1 ([13]). A function f : X — (—co, +00] is lower semicontinuous at ¥ € X if
X, = & — liminf f(x,) > f(X).

It is worth noting that Definition 3.1 was called sequentially lower semicontinuity by some authors
while they defined the lower semicontinuity of f at the point ¥ € X as

hrer ijnf fx) > f(%).

Itis clear that the lower semicontinuity at a point implies the sequentially lower semicontinuity at the point.
The next result provides a necessary condition for weak subdifferentiability of a function at a point.

Proposition 3.2. Let f be weak subdifferentiable at ¥ € X. Then f is lower semicontinuous at ¥ € X.

Proof. The weak subdifferentiability of f at ¥ implies that " f(X) # 0. Hence there exists the pair (x*,¢c) €
X* x IR* such that

(VxeX)  fo)- f®) = (2 -0 —clx L.
The result follows by taking the limit inferior of the both sides of the last inequality when x — . O
The following example shows that the converse of Proposition 3.2 may fail.
Example 3.3. Let X = Rand f(x) = —x2. It is easy to see that 9“ f(0) = 0 while f is a continuous function.
The next definition is important in this paper.

Definition 3.4 ([7]). Let f : X — R be a function. If there is a continuous linear map f'(%) : X — R with the

property
i VEED - fO @I _
llll—0 17l
then f'(%) : X — Ris called the Fréchet derivative of f at X € X and f is called the Fréchet differentiable at X.
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The next conclusion provides a link between Fréchet differentiability and weak subdifferentiability of a
function.

Proposition 3.5. Assume f : X — R is subdifferentiable and Fréchet differentiable at X. Then
{(f'(®),¢);c 2 0} € I"f(X).

Proof. Since f is subdifferentiable at X € X, then there exists x* € df(x) € X* such that
Vx € X) fx) = f(X) > (x", x = %).

By taking
x=X+test. t>20, ecX, |l =1,

we get
f(x +te) — f(X) > (x, te).

Therefore,

fE+ie) - f®) _ (xte)
t I

Now it is obvious from Fréchet differentiability of f at X, by letting t — 07, that
(x* = f(x),e) <0.
Hence x* = f'(%) and f’(%) € df(%). Then f’(¥) € df(x) and so it follows from Remark 2.4 that
((f' @), )0 > 0} € F£().
This completes the proof. [
The following example shows that the conclusion in Proposition 3.5 may be strict.

Example 3.6. Let X =R, f =0 and X = 0. Then by the definition of weak subdifferential and Fréchet differentia-
bility of f at X we have, respectively,

3" f(0) = {(a,c) e RxR* ;|a| < c}

and
A ={(f(0),¢);c >0} ={(0,c);c > 0}.

It is clear that A G 9V f(0).
The following example shows that the subdifferentiability of f at ¥ in Proposition 3.5 is essential.
Example 3.7. Let X = Rand f(x) = —x2. Then it is easy to verify that
df(0)=0, “f(x)=0 and f(0)=0.

Remark 3.8. It is well known that if f is convex and Fréchet differentiable at X then df(X) = { f’(f)}. Hence by
Proposition 3.5 f is weak subdifferentiable at X.

The next result gives a characterization of having global minimum for a weakly subdifferentiable
function.
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Proposition 3.9. Suppose f : X — (—co,+00] is weakly subdifferentiable at X € X. Then f has a global minimum
at % if and only if (0,¢) € 9V f(X) for all ¢ > 0.

Proof. The proof directly follows from the definition of weak subdifferentiability of f at¥ € X. [
The next conclusion asserts that the operator weak subdifferential (9%) is positively homogeneous.
Proposition 3.10. Let f : X — R be weakly subdifferentiable at X € X. Then
(Ya > 0) d“(af)(%) = ad” f(%).

Proof. If (x*,¢) € ad” f(X), then

1(x* c) € df(x)

a’ '
Hence

(reX) [0 -f@2 (S x-x)- S

“\a’ a

Thus,

Vx € X) af(x) —af(®) = (x",x —x) —cllx — x|

This means that ad” f(¥) C d”af(X). Now we prove that the converse of the inclusion. Since af with the
first part of proof is weakly subdifferentiable at %, then there exists a pair (x*,c) € d”af(%) such that

(VxeX)  af()-af@® > (,x -5 —lx - .
Hence
VxeX) f@)-f@) > <§,x—x>—§|lx—x|l.

This implies that

(f, %) eafm.

a o

Consequently, (x*,c) € ad” f(%) and therefore ”af(X) C ad” f(X). This completes the proof. [

Remark 3.11. Note that 9°(f(ax)) = d“af(¥) may drop. Consider X =R, % =1, a = V2, and define

1, xeQ@,
f(X)_{ 0, xeQ.

Then we have
If(1) = {@,0) e RXR*; lal < ¢}, I"f(V2) =0.

Now we are interested to find a sufficient condition that the following equality holds.

Proposition 3.12. If f is a positively homogeneous function and weak subdifferentiable at X and ax, where o is a
positive real number, then

d“(f(ax)) = 9" f(%).
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Proof. It follows from the hypothesis that
", 0)€edf(ax) < f(ax)— f(aX) > (x",ax — a¥) — cllax — aX||
= a(f(x) - f(®) = ax’,x = %) - llx — xI[)
= (', c)edf(x).
This completes the proof. [
In the next we recall the fuzzy sum rule and we investigate sufficient condition which the equality holds.

Proposition 3.13 ([10]). If fi : X —» Roand f, : X — R are weak subdifferential at %, then fi + fo is weak
subdifferential at X and

I fi(X) + 9°fo(%) € IV (fi + f2)(%).

Remark 3.14. The simple example X = R, fi(x) = sinx, fo(x) = —sinx , X = 0, shows that the inclusion of
Proposition 3.13 may be strict.

The following proposition provides sufficient conditions in which the equality of Proposition 3.13 holds.

Proposition 3.15. Assume that fi : X — R is weak subdifferentiable at X, f, : X — R is subdifferentiable and
Fréchet differentiable at % and — f, is subdifferentiable at X. Then

I fiR) + I fo(%) = I (fi + f)(®).

Proof. If (x*,¢) € 9°(fi + f2)(%), then

(VxeX)  (fi+LL)E)-(fi+f)E®)= " x-%)—cllx -z
Since f, : X — R is Fréchet differentiable at X and — f, is subdifferentiable at %, we get, see Proposition 3.5,

Vx e X) — fo(x) + fa(X) = (= f5(X),x — %).
It follows from the first inequality that

(VxeX) (Al - AW@)+ (LK) = £(F) 2 ", x = %) = cllx — 2.
Hence

(xeX) (A - AF) 2 (L) - L)+, x - %) = cllx - 7.
Now the hypothesis implies

f) = AE) = (- f(0),x =) + (&', x = %) —cllx = x|
Therefore

(itx) = fi(®) = (" = f3(%),x = 2)) — cllx — 7|,
Then

(" = f,(),0) € 9“f1(%), (£;(%),0) € I fo(2).
This means that

d(fi + f)(®) € I°fi(%) + 9“ f2(%).

The reverse side of the inclusion follows from Proposition 3.13 and so the proof is completed. [
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Corollary 3.16. Iffor all but at most one of the weak subdifferentiable functions f; at X, f;, — f; are Fréchet differentiable

and subdifferentiable at %, then
Y o fi@ = o [Z ﬁ] (3).
i=1 i=1

Remark 3.17. It is easy to check that if f : X — R is Fréchet differentiable at X, then f,—f are subdifferentiable at X
if and only if
(VxeX)  flx) - f(®)=(f(®),x-%).

Proposition 3.18. Let fi : X — R be a function, —f; be Fréchet differentiable and subdifferentiable at % and
f2: X = Rbea function. If fi + f attains a global minimum at X, then (- f{(%),0) € d“ fo(X).

Proof. Since fi + f, attains a global minimum at ¥ then
(VxeX) (At L2+ L)E)

and so we can rewrite the inequality as
(VxeX) L) - ()2 AF) = filx).

Hence the subdifferentability and Fréchet differentiabability of — f;, similar to the proof of Proposition 3.15,
imply that

(IxeX)  fol0) = foT) = (~f{(%), x - ).
This means that
(=fi(®),0) € 9" f2(%)
and so the proof is completed. [
Proposition 3.19. Let f : X — R be weak subdifferentiable at % and g — f attain a global minimum at %. Then
dUf(%) € Ig(%).

Proof. The weak subdifferentiability of f at X implies that 0“ f(¥) # 0. Hence there exists (x*,c) € X* X R*
such that

Vx e X) fx) = f(®) > {x", x = %) —cllx — .
Since g — f attains a global minimum at ¥ then
(VxeX) (- P =g~ H.
Therefore,
VxeX) g0 - g = ) - FD).
Consequently, the above inequalities imply that
Vx € X) g(x) = g(X) > (x",x = %) — cllx — 7|
This means that (x*, c) € d“g(%), which is the desired result and the proof is completed. [J

Corollary 3.20. If f attains a global minimum at X then 9% f(X) contains the weak subdifferentiable of the zero
function at X, that is
9“0(%) C 9V f(X).
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Example 3.21. The example, f(x) = —|x| for all x € R and X = 0 shows that the condition X is a global minimum of
f in the previous corollary is essential.

Proposition 3.22. If g — f is a constant function on X, then
(VxeX) 9“f(x) =d“g(x).
Proof. From
(VxeX) (f-9@=(f-9F)
by Proposition 3.19 we have
9“g(%) C dVf(X).
Similarly it follows from
(VxeX) (g-HE = (@G- NHE)
that
3V f(%) C d“g(x).
This completes the proof. [

Let Y be a real normed space and Y* denote the topological dual space of Y. For any y* € Y*, we consider
the scalar function (y*, h) is defined by the equality

(VueX)  (y, ) =y’ hw),

where 1 : X — Y'is a function and X is a real normed space.
Let g : Y — R be a function and # = k(). In the next result we will concentrate on the composition
f(u) = g(h(u)), u € X, and the projection operator 7 : X*XR — X*, such that (x*, t) = x* forall (x*, ) € X*xR.

Proposition 3.23. Assume that g is weak subdifferentiable at ij and (y*, h) is weak subdifferentiable at % for some
v € n(@“g(@)). If h is locally Lipschitz at % with the constant Lipschitz L, then f is weak subdifferentiable at X and

n(d“(y", (%)) € 1@ f(%)).
Proof. If w € m(d“(y*, h)(%)) then there exists a nonnegative number c such that
(VxeX) (v, m)x) =y h)®) 2 (w,x - x) - cllx - |
Since y* € (9" g(7)) then there exists ¢ > 0 such that
(yeY) g 9@ = y-p—dy-7l
and so
(VxeX) g(h(x) - gh(x) = (", h(x) — h(x)) - cllh(x) - AF)I|.
This means that
f) - f@®) = (Y, h(x) - h(x) - ellh(x) - k(@)

(w,x = X) = cllx - X|| - cLlx — ]|

\%

(w,x — Xy — (c+cL)||x — x|,

then (w, ¢ + ¢L) € 9" f(%). Consequently, w € 1(d" f(X)). This completes the proof. [
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It is worth noting that the conclusion of Proposition 3.23 can be rewritten in the following form:

U@ v m@) : v € 79} € m@* f(x).

Proposition 3.24. If f and —g is weak subdifferentiable, respectively, at X and . If h is Lipschitz function with the
constant Lipschitz L, then for any y* € n(d”(—g(7))) the function (y*, hy is weak subdifferential at X and

(@ F(®) C 1@~y h()).
Proof. If x* € (9" f(%)) , then there exists a nonnegative number ¢ such that
(VxeX)  f0)-f®) 2, x -5 —cl -1l
Also if (", ¢) € d“(—g)(), then we have
(yeY)  —gW)+9® 2y -7 -y -7l
Consequently,

My eY) =y )+ Y E) = g(y) — 9(7) —ally — Il

Therefore,
—y, )+ E) > f(x) = f(®) - ellh(x) — k)|
> (x",x—%) —cllx = x| - ellh(x) = h(@)II.
Thus,
=y, )+ @) > &, x - %) = cllx - x| - cLllx — x|

(x*,x — Xy — (c +cL)||x — x[|.
This means that (x*,c + ¢L) € 9“({(—y", h)(X)). Hence
x* € (@ -y, h)(%)).
This completes the proof. [J
By combining Propositions 3.23 and 3.24 we obtain the following result.

Corollary 3.25. Let f be weak subdifferentiable at % and g be Fréchet differentiable at ij , and g , —g is subdifferentiable
at §7. If h is locally Lipschitz function with the constant Lipschitz L at X, then

n(df (%) = n(d*(g’ (), h)(X))-
In the following we present some examples.

Example 3.26. The example

[ 1L xeq, [0 xeq@,
f& = 0, xe€Q, o) = 1, x€Q,

shows that the weak subdifferentability of f o g at  may not imply the weak subdifferentability of f and g at %.

The next example shows that the composition of two weak subdifferentiable functions is not necessarily
weak subdifferentiable.
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Example 3.27. Take f(x) = x2 and g(x) = —x. Then f, g are weak subdifferentiable at & = 0, but (g o f)(x) = —x* is
not weak subdifferentiable at X = 0.

The next example shows that the product of two weak subdifferentiable functions is not necessarily
weak subdifferentiable.

Example 3.28. Let f(x) = x, g(x) = —x. Then f, g are weak subdifferentiable at = 0 while (fg)(x) = —x? is not
weak subdifferentiable at X = 0.

The next example shows that the weak subdifferentability of fg at ¥ may not imply the weak subdif-
ferentability of f and g at X.

Example 3.29. Consider
1, xeqQ, 0, xeqQ,
flx) = and  g(x) =
0, xe€Q, 1, x€Q.

Then g is not weak subdifferentiable at x = 0 while (fg)(x) = 0 is weak subdifferentiable at each point of the real
number.

Proposition 3.30. Ifall f;, i € I (I is a finite nonempty set) and f(u) = sup fi(u), u € X, are finite at X, then the
i€l

closure of the convex hull of the set | 9" fi(X) is a subset of I* f(%), i.e.,

iely(%)

o [co[ o f,(x)]] c IVf (@),

iely(%)
where Io(®) = {i € 1 : fi(%) = f(9)}.
Proof. Suppose that
Y aix;,c) € co | ) £,
iely(x) iely (%)

suchthat Y, a;=1,a; 20, (x},¢;) € d”fi(X). Then we have

iely(x)
(Vx eX Vie IO(JZ)) fi(x) = fi®) = (", x = %) — cillx — x|.
Therefore,

xeX) ) af@- ) af@®= ) adx’x-0- ) aclx -

i€lp(x) iely(x) ielp(x) i€lp(x)

Since f(x) = sup fi(x), x € X, we have [p(%) = {i el: fi(x) = f(x)}, so that

i€l

(VxeX)  f)-f@= () anx-x)- Y aclx -

iely(x) i€ly(x)

and

Z ai(xi, ci) € IUF (D).

il (%)
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Consequently,
co| | J 9“fi®)| o f(x).
iel(x)
Now the clossedness of the set “ f(¥) completes the proof. [

The next proposition states necessary conditions that with them a weakly subdifferentiable function
obtains a global maximum.

Proposition 3.31. Let fat % attain a global maximum. If (x*,c) € 9% f(%), then ||x*|| < c.
Proof. Since f has a global maximum at X, then we have
(VxeX)  f) < f@®).
It follows from (x*, c) € * (%), that
Vx € X) fx) = f(®) = (x", x = %) = cllx — 7.
Hence
Vx e X) 0> (" x—x)—cl|lx—x,
Consequently
Vx € X) (x*,x = x) < cllx —xl,
and so
llll < c.
This completes the proof. [

Recall that in [11, 12, 14, 15], the well-known theorem about the representation of the directional
derivative of the convex functions as a point wise maximum of subgradients of that function is generalized
to a nonconvex case by using the notion of a subgradient. They worked on special class of invex functions
that includes the class of convex functions. It should be noted that the results given in [12] is a generalization
of the results presented in [11] for a special class of invex functions .The optimality condition formulated in
[12], guarantees the existence of the weak subgradient, that is the pair consisting of some linear functional
and some real number such that the graph of the homogeneous function defined by this paper, is a conical
surface which separates the optimal point from the given (non convex) set. In the sequel we establish
a new version of the main result of [12], for the Fréchet differentiable functions in the setting of infinite
dimensional normed spaces.

Proposition 3.32. If f is subdifferentiable and Fréchet differentiable at X, then f has a global minimum at % if and

only if
(Vx € X) (f'(®),x—x)=0.

Proof. Suppose that f has a global minimum at ¥, then we have
VxeX)  f(x)—f(x)=0.
From the Fréchet differentiability of f at ¥, we get

o VE+1) = 0 = (F@), ]

m 0.
(== (Il
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If we take
h=Ax-x),

then we obtain

02 Lim JEFAC D)~ f®) ~ /() A(x - )

A0 llAG =2l

and so, since ¥ is a global minimum of f, we have

(@), A - D)
0= lim —e—ar

Consequently, by the linearity of f'(¥), we can deduce that
(Vx € X) (f'(®),x—x)=0.

Conversely, by using our assumptions, we have
(xeX)  f@)-f®) 2 (F@),x-0=0.

Then
(VxeX)  f)=f@)

and this shows that ¥ is a global minimum of f. Hence the proof is completed. [

3418

Proposition 3.33. If f is subdifferentiable and Fréchet differentiable at X, then f is weakly subdifferentiable at % if

and only if f'(%) is weakly subdifferentiable at 0, the zero element of X, and

I“(f(%)) = I“(f' ()0
Proof. From the Fréchet differentiability f at ¥, we have

o FE+D) = 0 = (F @, _

0.
llnli—0 (Il

By taking
h=Alx—3%)

and by using the weak subdifferentiability of f at X, there exist (x*,c) € " f(%), such that

(Vx € X) fx) = f(®) = (", x = %) —cllx — x|
Hence

02 lim LEFAC =) - f®) - F@), Alx - )

A0+ lIAGx =)l

and from the weak subdifferentiability of f at ¥ we get

. Ax = X)) = cllA(x = D)l = (f7 (%), Ax — %))
(VxeX) 0= flim TREEE]

and equally

O x -0 — e -3 - (@), x -0 _ 0

Yx e X <
(VxeX) ]
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Therefore,
Vx € X) X, x=x)—cllx = x| - (f (%), x—x)<0
and so by taking z = x — X, we obtain
(VzeX) (f(0),2) =" 2) =l

Now, it follows from f’(X)(0) = 0, that (x*,c) € d“(f’(x))(0). Conversely, if (x*,¢) € J“(f'(%))(0), then we can
write

(VxeX)  (f'(®),x0) 22—l
Hence
VYx e X) (f'(®),x = %) > (x",x = %) — cllx — x|,
and by applying the subdifferentiability and Fréchet differentiability f at X, we get
(VxeX)  fx) - f(®) 2 (f (@), x-3).
Then
(VxeX)  f(x)—f(®) =, x—%) —clx — x|
This means that (x*, c) € 9“(f(x)) and proof is completed. [

Proposition 3.34. If f is subdifferentiable and Fréchet differentiable at X, then
(f'(®),x - ) = sup{(x', x = ) — cllx = 7| : (',¢) € (D)},
Proof. From the hypothesis and by using a similar proof as in Proposition 3.33, we deduce that
(f'(%),x — %) > sup{(x*,x —x)—cllx—x| : (x",¢) € 3”’f(3?)}.
Since (f(%),0) € d” f(%), then
(f@,x-2y e, x—0 -3l : (') € (@)},
and the desired equality is obtained. O

Corollary 3.35. We note that under above assumptions, if f attains a global minimum at X, then

sup{{(x",x - —cllx—-x| : (", ¢) € awf(f)} =0.
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Abstract. By using a special property of the gamma function, we first define a productive form of gamma
and beta functions and study some of their general properties in order to define a new extension of the
Pochhammer symbol. We then apply this extended symbol for generalized hypergeometric series and
study the convergence problem with some illustrative examples in this sense. Finally, we introduce two
new extensions of Gauss and confluent hypergeometric series and obtain some of their general properties.

1. Introduction

Let R and C respectively denote the sets of real and complex numbers and z be an arbitrary complex
variable. The well known (Euler’s) gamma function is defined, for Re(z) > 0, as

F(z)zf ¥ le™dx,
0

and forz € C\ Zy, where Z, = {0,-1,-2,...},as
T'(z+n)
1% @ +K)

The limit definition of the gamma function

T'(z) = (neN).

n!'n*
() = lim —————,
@ = lim

is valid for all complex numbers except the non-positive integers. An alternative definition is the productive
form of the gamma function, i.e.,

T() = % Q(1 + %)2(1 + %)71. ®
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When Re(x) > 0 and Re(y) > 0, the (Euler’s) beta function [4] has a close relationship with the classical
gamma function as

rr(y)
Tx+y)

1
B(x,y) = fo P - 1 di = By, ). 3

The generalized binomial coefficient may be defined (for real or complex parameters a and b ) by

a\ T@a+1) [ a
(n)_m_(a—b) (@b <C),

which is reduced to the following special case when b =n (n € N U {0}) :

( a ): 11(11—1)'“(11—11-}-1) — (_1)71(_”)”

n n! n!

’

where (), (a,b € C) denotes the Pochhammer symbol [19] given, in general, by

oy Tarh [ 1 (b=10,a¢C\(0)),
" T@ ) a@+1)---@a+n-1 (heN,aeC).

A remarkable property of the gamma function, which is provable via the limit definition (1), is

@ =10 "B rp+ipre-ig)eR. @

In this paper, we exploit the property (4) to introduce an extension of the Pochhammer symbol in order
to apply it in the hypergeometric series of any arbitrary order. Then, we study the convergence problem
of the involved hypergeometric series with some illustrative examples. Finally, we introduce two new
extensions of Gauss and confluent hypergeometric series and obtain some of their general properties. For
this purpose, we first define a productive form of the gamma function, by referring to the property (4), as
follows

T(p+ig) T'(p —iq)
I'(p)

For analogous extensions of the gamma function see e.g. [2, 14]. The limit definition of (5) can be derived
from (1), so that we have

12 n2p k
I(p,q) = I"L lim n(rz)—n = lim n!n? H % 6)
L (T S = A
k=0

(p,q) = (>0, g€R). %)

Also, the limit relation (1) implies that relation (6) is written as

o0 k 2
M) =) [~

. 7
k=0 P+’ + @

The result (7) shows that for any p > 0 and g € R we respectively have

0 <I(p,q) <I(p),

and

r ig)I'(p —1i
lim I(p, g) = lim Tp+ipTp—iq) _ 0.
q—00

) I'(p)
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In order to obtain an integral representation for I'l(p, q), we should first study the real function I'(p+iq)I'(p—ig).
Hence, we consider the second kind of (Cauchy’s) beta function [4], which says that if Re(a) > 0, Re(b) > 0
and Re(c + d) > 1 then

)

1 dt CT(c+d-1) e
— = b : 8
) wro-w | tor@ Y ©

One of the consequences of (8) is the definite integral

/2
27 T(r+1
f e(cost) dt = H,S(r )m o ©)
J, T(1+58) 11+ 5)

which can be derived from the well-known identity
(a — ity (a + ity = (@ + Y exp (Zq arctan é)

The simplified version of (9) is as

227 2T(2p — 1)

T(p +ig)l(p —iq) = — (10)
f e2t(cos P2 dt
-1/2
On the other hand, since
T(p +igI'(p —ig) . L 1 5 p—l( X )iq
Ty B(p +iq,p —iq) _j(; (x —x%) 1= dx (11)

1 1
f (x— 22" cos (q log i ) dx + if (x— 22" sin (q log ol ) dx, (12)
0 0

1-—x 1-—x

is a real value, for any p > 0 and g € R we can conclude that

1
f(x—xz)pflsin(qlog i )dx=0.
0

1-x

Therefore, by noting relations (10) and (11), two integral representations of I1(p, q) are as

rep) - 222T(2p -1
Il(p,q) = %f (x =2 ' cos (q log 1 f x) dx = nn/z @r-1) . (13)
P I'(p) f e2t(cos ¥ 2 dt
—-71/2

Note that the definite integral in the second equality of (13) can be computed in terms of a series. In fact,
since

o )

a _ n—a,it —iha _ n—a a (a=-2k)it _ »—a a _
(cost)' =27"(e" +e™)' =2 Z(k)e =2 Z(k)cos(a 2k)t,

k=0 k=0

and

t in gt
fe’”t cosgtdt = e’”w +c,
pe+q
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so we have
/2 /2 o
f e¥(cos )2 dt = 27%+2 f e Z (ZPk— 2) cos(2p — 2 = 2k)tdt
-n/2 —n/2 k=0
o0 /2
2p—2
272 Z ( P ) f e cos(2p — 2 — 2k)t dt
k=0 i

i o 2p — 2\gsinh(gm) cos ((p — 1)) + (p — 1 — k) cosh(qm) sin ((p — 1)n)
=2 22(_1)k( pk ) P+p-1-k?

Remark 1.1. By noting the well-known identity I'(z + 1) = zI'(z), since

Fp+1+ig) =(p+igTp+ig) and I'(p+1-ig) =p-igIp-ig),
SO

2 2

P tq

Hp+1,9) = I(p, q). (14)

Similarly, the approach (14) can be followed for e.g. the Legendre duplication formula [5, 15]

(27)"% m* " (mz) = F(Z)F(Z + %) F(z + %)r(z + m,; 1),

(when m = 2) so that we can eventually obtain

I1(2p,2q) =

22—
s (p + ,q)

\/—

Remark 1.2. When m € IN, to compute I'I(m + 1, ) we can again use the recurrence relation I'(z + 1) = zI'(z)

to finally obtain

Mm+1,q) = (m+ig)(m —1+ig)---(1 +ig)T'(1 +iqr)n(!m—iq)(m—1 —ig)--- (1 -ig)I'(1 —ig)

_ qm i a2
" m! sinh(qm) Uo (On =R+ ).

One of the other applications of (4) is to define the productive form of the beta function as follows

~_ B(r+ig,s—-ig)B(r —ig,s +iq) _ I1(r,q)I1(s,q)
Blr.s:q) = B(r,s) T I(r+s) (15

For analogous extensions of the family of beta functions see e.g. [6, 13]. By referring to relation (7), the
productive form of (15) can be obtained as

N = (r +k)>(s + k)
B(r,s;9) = B(r,5) g iRt YN N o .

(16)

Clearly the latter relation (16) shows that if ,s > 0 and q € R then

|B(Vr s; q)| < B(r,s).
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2. An Extension of Pochhammer’s Symbol and its Application to Hypergeometric Functions

The generalized hypergeometric series appear in a wide variety of applied mathematics and engineering
sciences [1, 3, 12, 18]. For instance, there is a large set of hypergeometic-type polynomials whose variable
is located in one or more of the parameters of the corresponding hypergeometric functions [8-10]. These
polynomials are of great importance in mathematics as well as in many areas of physics. A few examples
of their applications are discussed by Nikiforov, Suslov and Uvarov [16]. See also [5, 15]. Hence, it seems
that any change in hypergeometric series, especially in Gauss and confluent hypergeometric functions,
can be notable in various branches of mathematics. In recent years, some new extensions are given in
this direction, e.g. [7, 17]. A main reason for introducing and developing the generalized hypergeometric
series is that many special functions [4, 9, 11] can be represented in terms of them and therefore their initial
properties can be directly found via the initial properties of hypergeometric functions. Also, they appear
as solutions of many important ordinary differential equations [9, 11, 15]. The generalized hypergeometric
function

ay, az, ..., a
F
pea blr b2r~~~/

(@) @2)y -~ (@y), 2K
) Z(bl)k(bZ)k - (by), K 17)

in which (r), = H (r + j) denotes the same as Pochhammer symbol and z may be a complex variable is
=0

indeed a Taylor series expansion for a function, say f, as ), ¢,z with ¢ = f(k)(O) /k! for which the ratio of
k=0

successive terms can be written as

< (k+a)(k+a) - (k+ay)

o B (k+D1)(k+Dby) - (k+ D)k + 1)

According to the ratio test [4], the series (17) is convergent for any p < g + 1. In fact, it converges in |z] < 1
for p = g + 1, converges everywhere for p < g + 1 and converges nowhere (z # 0) for p > g + 1. Moreover,
for p = g + 1 it absolutely converges for |z| = 1 if the condition

q q+1
At = Re[z bj—zaj] >0, (18)
j=1 j=1

holds and is conditionally convergent for |z] = 1 and z # 1 if =1 < A* < 0 and is finally divergent for |z| = 1
andz # 1if A" < -1.

There are two important cases of the series (16) arising in many physical problems [3, 8, 12, 15]. The first
case is the Gauss hypergeometric function convergent in |z| < 1 that is denoted by

_ a, b () (b)y z
y‘zFl( | ) Z O K
and satisfies the differential equation
zz-1)y"+((@a+b+1Dz—-c)y +aby =0. (19)

Particular choices of the parameters in the linearly independent solutions of the differential equation
(19) yield 24 special cases. The »F; can be given an integral representation as

b T e e -
zpl( ”C ‘z):ﬁfo P -H7 (1 -t2)"dt (Rec>Reb>0; farg(1-2) < 7). (20)
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By using a series expansion of (1 — fz)™ in (20), one can also write the 5F; in terms of the beta function as

a, b . b + k B(b+k,c—b) Z
ZFl( c ‘ ) Z(; TBc-b) K- @
The second case, which converges everywhere, is the confluent hypergeometric function
b (b)k z
= F zl|l=
= ( ¢ ) (C)k [

as a basis solution of the differential equation
zy’' +(c-2)y' -by =0,

which is a degenerate form of equation (19) where two of the three regular singularities merge into an
irregular singularity. The 1F; has an integral form as

b
1F1(

__T© fl b1(q _ pyebl gt , _
c Z)_F(b)F(c—b) | P (1-1) e* dt (Rec>Reb>O, larg(1 z)|<n),

and can be represented in terms of the beta function as

b v Bltkc-b) 2k
1Fl(c Z)_kzzot B(b,c—b) Kk (22)

Now, we can introduce an extension of the Pochhammer symbol in order to apply it in the generalized
hypergeometric series of any arbitrary order. Let us reconsider the gamma form of the Pochhammer symbol

I(s+k)

0= "1 23)
By noting (5), a real extension of (23) may be defined as
il = kD) _ (s +ighls —ia), _ ﬁ s+ +q
T TG ) Ly os*i
Subsequently, a real extension of the hypergeometric functions may be defined as
[a; anr], [az;aor], ..., [y apr] ) > [a1; anrlilag; aorly - [ap; apr], - 24
[b1; B17], [b2;Bor], ..., [bg;Byr] - [b1; Brr)[b2; Barly - - - [bg; Byr], Y

where {a;, o)} =1’ {by, ﬁk}k L E€R and r € R. On the other hand, the definition

(s +1ig),(s — iq);
() ’

implies that the fraction term of (24) is expanded as

[s;ql =

p

[a1; earlilaz; aarly - - [ap; apr], H (aj +iajr) (a; —iajr), H b)),
[bl;ﬁlr]k[bZ;ﬁﬂ’]k [bqr qr]k j=1 (a]')k (b +1ﬁjr)k(b iﬁjr)k.
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This means that the real series (24) can be transformed to a standard hypergeometric function as follows

.

@ +igr, ay —iaqr, ..., a, +ia,r, a, +iayt, by, by, ..., b
:2p+qF2q+p bl : 1t bl . 1t ’ bp Cpls bp “pls 1, U2, A (25)
1 +ifar, by —ipar, ..., by +iBgr, by —iBgr, av, az, ..., Ay

F [ay; arr], [ag; anr], ..., [ap; apr]
[bl;ﬁlr]r [bz;ﬁzr], (AR [bqrﬁqr]

Hence, the convergence radius of (24) would directly depend on the convergence radius of 2.4F2q+p in (25)
as the following illustrative examples show.

Example 2.1. Let (p,q) = (2,1). In this case, (24) is reduced to

JF, [al;alr], [le} (Xz}"] ‘ = F, a1+ ioqr, ap —ioqr, ap +iqgr, a, —iaor, bl
[b1; Bar] bi+ipir, bi—ipir, m, a

whose convergence radius is |z| < 1. Moreover, according to (18), if a1 +a, < by in (26), then the convergence
radius is extended to |z| < 1.
As a particular case of (26), taking » = 0 gives the same as classical oF; and (a1, az) = (0,0) with 17 = g

yields

2F1( [a1;0], [a2;0] ’ Z) = iF ( a, a, b
which is convergent in |z| < 1if a; + a, < by. Finally, if 1 = 0, (26) is reduced to

z) , (26)

[b1;9] by +iq, bi—ig

[a1; anr], [az; aor] m +iaqr, a; —ioqr, ap +iaor, ar —iapr
2F1 be:0 z| = 4F;3 b
[b1;0] 1, a1,

z),
convergent in |z| < 1 when a; +a, < by.

Example 2.2. Let (p,q) = (1,1). Then (24) changes to

[a1; an7]
1F: ( [b1; 1 7]

which is convergent everywhere. For instance, if & = 0 and 17 = g in (27), then the following real series
converges everywhere

[alro] ai, bl
A i )= o [

Example 2.3. An interesting case of (24) is when (p, q) = (1,0), because the real series

oo (k=1
(9o e e
0

j=0
satisfies the second order differential equation

r m + i, ap —iaqr, by
=3f3 . .
by + 1ﬁ1r, b1 - 1‘81}’, ay

z) , (27)

zz-1Dy' +(a+1)z-a)y + @ +¢")y=0.
Note that the more general case of (28) is indeed the real series
a+iq, a—i SEES zk
y:zF]( ﬂ],b 1 ‘z):z l_[(a+j)2+q2 Nk
=0 \ j=0 L
which satisfies the differential equation

z(z—l)y”+((2a+1)z—b)y’+(a2+q2)y:O.
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2.1. A new extension of Gauss and confluent hypergeometric functions

Since many special functions of mathematical physics can be represented in terms of ,F; or 1F; by special
choices of the parameters, they play a unifying role in the theory of special functions. Hence, any significant
generalization of them may be useful. In this section, we apply the generalized beta function (15) for two
relations (21) and (22) to respectively extend the functions >F; and 1F;. First, by noting two relations (15)
and (21), the proposed extension of ;F; may be considered as

B(b+kc—b
2F1( ,C ) Z()k b+k,c— ‘7)2_ (29)

B(,c-b) k!’
which reduces to the same as > F; for g4 = 0. Since |B(r,s;q)| < B(r,s) for any r,s > 0 and q € R, the extended
series (29) converges in |z| < 1if ¢ > b > 0 and c is not a negative integer or zero. Now, the integral
representation of (29) can be derived by (13) and (15) as follows

a, b
2F1( .

_ T(c—b+igl(c-b—igpl'2b) - X \[v @k + 1/2) (dzx(1 - x))F
= T2(H)[2(c — b) f (x — 23" cos (q log m)[ On i ) dx (30)

\_ow 2 @I Tc—bgTEb+2k) (! bkt
: ’7) L HTOIe-b) TO© TO+h Jo (x =) cos (" log 7

X )dx
-x

T'(c—b+ig)T'(c — b—ig)'(2b)
= (c *iplie 1q f(x xz)h ]cos(qlog

a, b+1/2
rz(b)r2(c )ZH( c

Note that g = 0 in (30) gives a new representation for ,F; so that we have

b (! _
2F1( a,cb ‘z): ll:gib))jo‘ (=2 121-“1( a, bz—l/z

Similarly, for the extension of 1F; we can define

b|_ \_\v Bl+kc-byg) 2
1F1(C Z'q)_kz_o‘—B(b,C—b) K (31)

4zx(1 - x)) dx

4zx(1 — x)) dx.

which reduces to the same as 1F; for 4 = 0. Again since |B(r,s; q)| < B(r,s) for any r,s > 0 and g € R, the
generalized series (31) converges everywhere if ¢ > b > 0 and c is not a negative integer or zero. Also, the
integral representation of (31) is derived in a similar way as

b|_\_ T—-b+iplc—b—igpl2b) (! b1 x b+1/2
1F1(C z,q)— 2 —D) ﬁ(x—x) cos(qlogl_x)lFl( c

4zx(1 - x)) dx.
(32)

Finally for g = 0, (32) reduces to a new representation for the series 1F; as

b T(2b) 2yt g B+172
1F1( ) T2(b) f( - ( c

c 4zx(1 - x)) dx.
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1 Introduction

Fractional integral inequalities involving (k, s)— type integrals attract the atten-
tions of many researchers due their diverse applications see, for examples, [1—4].
In [5], Farid et al. an integral inequality obtained by Mitrinovic and Pecaric was
generalized to measure space as follows.

Theorem 1. Let (21, X1, 11),(§22, X, o) be measure spaces with o— finite mea-
sures and let f; : 25 — R, i = 1,2,3,4 be non-negative functions. Let g be the
function having representation

o(x) = /Q (e, 1) F(8)dpn (1),

© Springer International Publishing AG 2017

T.Sh. Kalmenov et al. (eds.), Functional Analysis in Interdisciplinary Applications,
Springer Proceedings in Mathematics & Statistics 216,
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where k @ 25 x 21 — R is a general non-negative kernel and f : 2 — R is
real-valued function, and ps is a mon-decreasing function. If p,q are two real
numbers such that % + % =1,p>1, then

Y fi(@) f2(2)g(z)dps(x) (1)

1
q

<o 5 fs(x)g(x)duz(w)y ( 5 Rl

where

b
C = sup { (/ k(xat)fl(w)fz(w)du2($)> ()

te

, S -
(/ k(x,wfs(x)duz(x)) (/ k(m)fm)dﬂz(x)) }

The following definitions and results are also required.

2 Preliminaries

Recently fractional integral inequalities are considered to be an important tool
of applied mathematics and their many applications described by a number
of researchers. As well as, the theory of fractional calculus is used in solving
differential, integral and integro-differential equations and also in various other
problems involving special functions [6-8].

We begin by recalling the well-known results.

1. The Pochhammer k-symbol (), ; and the k-gamma function I}, are defined
as follows (see [9]):

(@) i =x(x+k)(z+2k)---(z+(n—1)k) (neN;k>0) (3)

and | .
VE™ (nk)*®~
To(z) = lim MRORET (k> 0; z € C\KZy ) , (4)
n=oo (T)nk
where kZy = {kn : n € Zg }. It is noted that the case k = 1 of equation
((3)) and equation ((4)) reduces to the familiar Pochhammer symbol (z),, and

the gamma function I'. The function I}, is given by the following integral:

Ii(z) = /000 Lo dt (R(x) > 0). (5)
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304 M. Tomar et al.

The function I, defined on RY is characterized by the following three prop-
erties: (1) Ip(x + k) = « I'y(x); (i) I'k(k) = 1; (iii) I'x(z) is logarithmically
convex. It is easy to see that

x
k

2. Mubeen and Habibullah [10] introduced k-fractional integral of the Riemann-
Liouville type of order « as follows:

Fk(x):k%—lf( ) (R(z) > 0; k > 0). (6)

1 K o

ng[f(t)]:i/ (t_T)k 1f(7'>d’7’,(0(>0,{1}>07]€>0), (7)
Ii(a) Ja

which, upon setting £ = 1, is seen to yield the classical Riemann-Liouville

fractional integral of order a:

I -

TEASOY = T} = g [ = >0t a). @)

3. Sarikaya et al. [11] presented (k,s)-fractional integral of the Riemann-
Liouville type of order «, which is a generalization of the k-fractional integral
(7), defined as follows:

(s+1)'°F

WL 0] = s

/ (ts+1 o 7_S+1)%_1 Tsf (T) d’/", T E [a7b] 9 (9)

where k > 0, s € R\ {—1} and which, upon setting s = 0, immediately reduces
to the k-integral (7).

4. In [11], the following results have been obtained. For f be continuous on
[a,b], k>0 and s € R\{—1}. Then,

Wo RILF )] = RIS () = RIT RIS ()], (10)

and

(s+ 1) Ii(a +B)

for all a, 8 > 0, = € [a,b] and I} denotes the k—gamma function.

5. Also, in [12], Akkurt et al. introduced (k, H)—fractional integral. Let (a,b) be
a finite interval of the real line R and $(«) > 0. Also let h(x) be an increasing
and positive monotone function on (a, b], having a continuous derivative h’(x)
on (a,b). The left- and right-sided fractional integrals of a function f with
respect to another function h on [a, b] are defined by

s jo (xs+1 - aerl)%_l _ I (B) 2 as+1)a:5_1’

(e S ) (@) (11)
1

a krkm)/a [h(x) = RO R () F(D)dt, k>0, R(@) >0
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(7507 (@) (12)

1 b o
i=——— [ [h(z) — ()] F 'R (t) f(t)dt, K :
T [ @) — OO k>0 Re) >0
Recently, Tomar and Agarwal [13] obtained following results for
(k, s)—fractional integrals.

Theorem 2 (Holder Inequality for (k,s)-fractional integrals). Let f, g :
[a,b] — R be continuous functions and p,q > 0 with % + % = 1. Then, for all
t>0, k>0, a>0,s e R—{-1},

1 1
wa | Fg O] < I 1f OF] kI3 g ()] (13)
Lemma 1. Let f, g : [a,b] — R be two positive functions and %—l—% =1 a,k>0
and s € R — {—1}, such that fort € [a,b], ; JSfP(t) < 00, 3J5g%(t) < oo. If
f(7)

0<m<—=<M<oo,T € la,bl, 14
o 0,0 (14)

then the inequality

1

kJa f®))7 (I 9@)]

Py

< <fr{) we[frogi]  a9)
holds.

Lemma 2. Let f,g : [a,b] — R be two positive functions a,k > 0 and s €
R — {—1}, such that fort € [a,b], J3 fP(t) < o0, 1JSg(t) < co. If

fr(7)
Ogmggq(T)§M<oo,7’€[a,b]7 (16)
then we have
s ) ozt < ()7 1 (o). (1)

wherep>1and%+é:1.

Motivated by this work, we establish in this paper some new extensions of the
reverse Holder type inequalities by taking (k, s)—Riemann-Liouville fractional
integrals.
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3 Reverse Holder Type Inequalites

In this section we prove our main results (Theorems 3 and 4).
Theorem 3. Let f(x) and g(x) be integrable functions and let 0 < p < 1,

% + % = 1. Then, the following inequality holds

1

LI Fg(t)] =3I P07 SIS FUH)]7 (18)

Proof. Set c= 1%, q = —pd. Then we have d = -5
(k, s)—fractional integrals, we have

LI LfPO) = 5T 19O |97 ()]
SSRGS RAVOE
= (2 197 [T 1g(8)]]' 7. (19)

=

In equation (19), multiplying both sides by (5J& lg?(®))P ™", we obtain

RIS L@ GI "))
< RIS | fa@I” (20)
Inequality (20) implies inequality
A=A ATEOIE (21)

which completes this theorem.

Theorem 4. Suppose p,q,l > 0 and % + % + % = 1. If f,g and h are positive
functions such that
i.)0<m§ 7 M<oofo7“somel>0suchthat%—i—%:l

s’

(k72 70 )% (IS (IS ()7

S(M> - kJa (Fgh)(). (22)

]

m

Proof. Let %+%:%forsomes>0. Thus, %—f—gzland%—&—%:l. If we use
7t and Lemma 2 for H = fg and h, then we get

(ICH (1) (LI (1)} < (M) e ) (0) (23)

m
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which is equivalent to

et < (3) GrGame). e

1
s

GJa 1> (#)])

Now, using ¢ and the fact that % + 3 =1, and applying Lemma 2 to f® and g°,
we also have

Pa
s2

rrof G < (37 Grroso) e

which is equivalent to

prg
s3

WO (o) < (0) @0 o)

|

(26)

Combining equations (24) and (26), we obtain desired inequality equation (22),
which is complete the proof.

4 Applications for Some Types Fractional Integrals

Here in this section, we discuss some applications of Theorem 1 in the terms of
Theorems 5-7 and Corollary 1-5.

Theorem 5. Let p,q be two real numbers such that % + % =1,p>1 and let
[ be continuous on [a,b], k>0 and s € R\{—1} . Then

b
/ £1(2) (@) I f () da (27)

1

b % b q
§C</ fs(x)i«fi‘f(x)dfv) (/ f4(m)ZJ3f(x)dw> ;
where

b o
C = sup { </ ($s+1 - tSH) " fl(x)fg(x)da:> (28)

t€la,b]

(/ (:Cerl _ ts+1) 3 f3(1?)d56> (/ (strl _terl) k f4(1‘)d$> }

Proof. In Theorem 1, if we take 21 = 25 = (a,b), duy(t) = dt, dus(x) = dx and
the kernel

(s-i—l)l_%(1554r1_7_s+1>‘,:—17_S .
k(x,t) = kTh () ifa<t<uz
0 ifex<t<b,

then g(z) becomes ;J¢ f(t) and so we get desired inequality (27). This completes
the proof of Theorem 5.
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Corollary 1. In Theorem b, if we take s =0, then we get

b
/ F1(@) fa ()T () (20)

<C</f3 o f ) (/f4 Do f( )

b
C:tzl[il?b]{ (/a (=85! fi(z) fo(2) x) (30)

—1

b(l’*t)i_lfé() N b(x—t)%_1f4(x)dx q .
(f o) (! ) )

Remark 1. In Corollary 1, « = k = 1, Theorem 1 reduces to Theorem 3.1 in [5].

Corollary 2. In Theorem 5, if we take f3(z) = f¥(x) and fo(x) = fi(x), then
we get

where

b
| r@n@i @ @1
(o) son)
where
b -
C= suwp {( / (a7t —¢1) fl(x)fz(:v)dw> (32)
t€la,b] a

b . Ea . z
(/ (xs-‘rl _ ts+1) 3 ff(x)dm) </ (Z‘S-H _ ts+1) k fg(x)dac> }

Corollary 3. In Corollary 2, if we take s = 0, then we get

b
/fl(l’)fg(l’)kjaf(l')dx (33)
(o) ([ rnse)
where
b
Cii}i%{( / (x—1)f f1<m>f2<x>dx> (34)
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Remark 2. In Corollary 3, « = k = 1, Corollary 3 reduces to Corollary 3.2 in [5].

Theorem 6. Let (a,b) be a finite interval of the real line R and R(a) > 0.
Let h(z) be an increasing and positive monotone function on (a,b], having a
continuous derivative h'(x) on (a,b). Also, let p, q be two real numbers such that
%—Fé =1,p>1 and let f be continuous on [a,b], k > 0 and s € R\{—-1} .
Then

[ @5 (155) @ (3)

<c ( /ab o) (173 1F) (x)dx> z ( ab £a@) (1720 5 (x)dx> |

where

b P
x </ (h(x) = h()* h’(t)fa(x)dfv>

b q
(/ (h(x)—h(t))z_lh’(t)fax(m)dx) } (36)

Proof. Applying Theorem 1 with 1 = 25 = (a,b), du1(t) = dt,dus(x) = dx
and the kernel

(@) =h@)* ')
k(x,t) = I) ifa<t<uz
0 ife<t<b,

then g(x) becomes (ngﬂr hf) () and so we get desired inequality (35). This
completes the proof of Theorem 6.

Corollary 4. In Theorem 6, setting f3(x) = f1(x) and fo(x) = fi(z), we get

[ @5 (192 1) @)t (37)

1
a

<C (/ab fi(x) (kjg-%-,hf) (:l:)dx> v </ab F4(x) (k‘]lethf) (:l:)dx) ’
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where

b (e}
C = sup {( / (h(z) — h(t))* "B/ (1) f1(2) fg(ac)dx>
t€la,b] a

—1

b P
x ( / (h(z) — h(t))* h’(t)ff(m)dx)

b q
(/ (h(ﬂﬁ)h(t))%_lh’(t)fé’(w)dx> } (38)

Theorem 7. Under the assumptions of Theorem 6, we have

b
| n@ @ (I af) @)e (39)

(/fs W af) )(/h Wil € >>,

b
C= sup {( / (h(x) — h(£) E W () fa (2 )fz(w)dw>

where

t€la,b]

b 3
x ( / (h(z) — h(t)* h’(t)fg(:v)dx>

b KB
(/ (h(x) = h(t))* h’(t)f4(x)dx> } (40)

Proof. In contrast to Theorem 6, if we take the kernel

-

kI ()

(h(@)=h()F W) e <
k(x,t) = o

we obtain desired inequality.

Corollary 5. In Theorem 7, setting f3(x) = f¥(x) and fo(x) = fi(z), we get

[ 1@ (5 4f) @ ()

X i
<C</ ff(gﬂ ka hf ) (/ f3(x ka hf (z)d ) ,
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where

t€la,b]

b (a9
C = sup { (/ (h(z) - h(t))"‘1h'(t)f1(ff)f2(ff)dx>
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Abstract. One class of linear multistep methods for solving the Cauchy problems of the
form y' = F(z,y), y(z0) = yo, contains Adams-Bashforth rules of the form yn+1 = y, +
hZ:.:Ol ng)F(zn,,i,yn,,i), where {Bfk)}f:_ol are fixed numbers. In this paper, we propose
an idea for a weighted type of Adams-Bashforth rules for solving the Cauchy problem for
singular differential equations,

A(z)y/ + B(z)y = G(z,y), y(wo) = vo,

where A and B are two polynomials determining the well-known classical weight functions
in the theory of orthogonal polynomials. Some numerical examples are also included.

AMS subject classifications: 65L05, 33C45

Key words: weighted Adams-Bashforth rule, ordinary differential equation, linear multi-
step method, weight function

1. Introduction

In this paper, we present an idea for constructing weighted Adams-Bashforth rules
for solving Cauchy problems for singular differential equations.

There are two main approaches to increase the accuracy of a numerical method
for ordinary non-singular differential equations. In the first approach (i.e., multistep
methods), the accuracy is increased by considering previous information, while in
the second one (i.e., multistage methods or more precisely Runge-Kutta methods),
the accuracy is increased by approximating the solution at several internal points.

Multistep methods were originally proposed by Bashforth and Adams [2] (see
also [1, 3, 4]), where the approximate solution of the initial value problem

dy
4 = F@y), ylzo) = o, 1)
*Corresponding  author. Email  addresses: mmjamei@kntu.ac.ir (M. Masjed-Jamei),

gvmémi.sanu.ac.rs (G.V.Milovanovi¢), ah.salehi@mail.kntu.ac.ir (A.H. Salehi Shayegan)

http://www.mathos.hr/mc (©2018 Department of Mathematics, University of Osijek
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is considered as
k—1
k
Ynt1=Yn +h Z B; )F(Inﬂ" yn—i)~ (2)
i=0

Many years later, Moulton [12] (see also, [3, 4]) developed a class of implicit
multistep methods, the so-called Adams-Moulton methods,

k—1
Yn+1 = Yn + h Z QEMF(Infi’ ynfi)v (3)

i=—1

which have some better characteristics than the previous ones.

The unknown coefficients BE’C> and a5k> in relations (2) and (3) are chosen in
such a way that they have the highest possible accuracy order. These formulas are
indeed special cases of the so-called linear multistep methods denoted by

k1 ko
Yn = Z NjYn—j + h ZViF(wTL*% y"r*i)‘
j=1 i=0

Other special cases of linear multistep methods were derived by Nystrom and
Milne [1, 4]. The idea of Predictor-Corrector methods was proposed by Milne [4] in
which y,, is predicted by the Adams-Bashforth methods and then corrected by the
Adams-Moulton methods.

It is not fair to talk about linear multistep methods without mentioning the
name of Germund Dahlquist. In 1956, he [6] established some basic concepts such
as consistency, stability and convergence in numerical methods and showed that if
a numerical method is consistent and stable, then it is necessarily convergent.

However, it should be noted that the above-mentioned methods are valid only
for non-singular problems of type (1). In other words, if equation (1) is considered
as an initial value problem on (a,b) in the form

A(z)y = H(z,y), yla)=1yo, 4)

such that
A(a)=0 or A(b)=0,

then it is no longer possible to use usual Adams-Bashforth methods or other numer-
ical techniques. For this purpose, in this paper, we gave an idea for using a weighted
Adams-Bashforth rule.

For constructing these weighted rules we use a similar procedure as in the case of
non-weighted formulas. Therefore, in Section 2, we give a short account of construct-
ing the usual Adams-Bashforth methods by using linear difference operators and the
backward Newton interpolation formula. Such a procedure is applied in Section 3
for obtaining the weighted rules. By introducing the weighted local truncation error
of such rules, we determine their order. Finally, in order to illustrate the efficiency
of such weighted rules, we give some numerical examples in Section 4.
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ON WEIGHTED ADAMS-BASHFORTH RULES 129
2. Computing the usual Adams-Bashforth methods

In this section, we obtain the explicit forms of the coefficients {Bi(k) }f;ol in (2) using
the backward Newton interpolation formula for F(z,y) = F(z,y(z)) at equidistant
nodes x,_, = x, —vh, v =0,1,...,k—1, and in the next section we apply such an
approach in order to get the corresponding weighted type of Adams-Bashforth meth-
ods. Here we use standard linear difference operators V (the backward-difference
operator), E (the shifting operator), and 1 (the identity operator), defined by

V(@) =f(x)=fle=h),  Ef(x)=flz+h) and 1f(z)= f(2).

Since E* = (1 — V)™, we have

+o0 _ +oo
BN = Z(_l)u( V)‘) \via- Z (l);)'v A (5)
v=0 v=0
where \
Ay =AA+ D) (Atv—1)= W

is Pochhammer’s symbol. Assuming F,,_, = F(zy,—,,y(xp—,)) forv =0,1,...,k—1
and taking the first k& terms of (5) for = x,, + A\h we get

k—1

F(z,y(x)) = B*F, =)

v=0

M

TVVF" + e (Fn), (6)

where 7 (F},) denotes the corresponding error term. Using (6) we have

k—1 k—1 v
(AV),”V"FTL = (AV), > (=) (’7)E*"Fn
v=0 : v=0 i=0
k—1 i k—1 k—1
) <(i'1) > (V(A)Vi)v> Fai=3 CPOWFE ()
i=0 o= : i=0
where A = (z — z,,)/h and
1y k-1 ) . A E_
S S
because, based on induction, we have
k k—1
Ny _ Ny M
2 w—i) ‘szi Wi ki)

o (W) (M) e (3.
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Now, integrating (1) over (z,, Z,+1) and approximating F'(z,y) by its backward
Newton interpolation polynomial (7) yield

Tn+1 k-1 (k)
o) =) = [ Pledexn Y BOF, )
Tn i=0
where L -
k2
k E -1 A4+k—-1
B® = [ c®(\)dr = ( i ) (N ) dA. (10)
¢ * 7! k—1—1
0 : 0
k) .
Table 1 shows the values BE ) in (2) for k=2,3,...,8.
k 2 3 4 5 6 7 8
B" 3 23 55 1901 4277 198721 16083
0 2 12 24 720 1440 60480 4480
R | 1| _4 | _59 | _1387 | _2641 | _ 18637 | _ 1152169
1 2 3 24 360 480 2520 120960
BH 5 37 109 4991 235183 242653
2 12 24 30 720 20160 13440
BH _3 637 | _ 3649 | _ 10754 | _ 296053
3 8 360 720 945 13440
B 251 959 135713 2102243
4 720 480 20160 120960
BH _ 95 5603 115747
5 288 2520 13440
BY 19087 32863
6 60430 13440
(k) 5257
B; — 17280
Table 1: The coefficients of usual Adams-Bashforth formulae
By assuming that all previous values y,—;, « = 0,1,...,k — 1, are exact, i.e.,

Yn—i = Y(@n—i), i = 0,1,...,k — 1, (9) gives the k-step method (2). This k-step
method, known also as the kth-order Adams-Bashforth method, can be written in
the form

k—1

k
Yn+k — Yntk—1 = h Z ﬂ; )F7L+j7

j=0

where Bj(-k) = B,ikf)lfj, j=0,1,....,k—1.
According to (6), the local truncation error of this method at the point @,y €

[a,b] can be expressed in the form

k-1 1
Tntt) — Y(Tngn—
(Th)n-l—k = y( +k) hy( th 1) - Z/))J(k)y/(‘rn#—]) = / rk(Fn-Hc—l)d)‘? (11)
=0 0
where z +— y(z) is the exact solution of the Cauchy problem (1). If y € C**2[a, b,

then (11) can be expressed as (cf. [7, pp. 409-410])
(T)n+k = Cry* TV (€AY = Cry™ D (@,)h* + OB, (12)
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where z, < & < Tpt+k—1. In the simplest case (k = 1), we have the well-known
Euler method, y5,4+1 — yn = hE,. The so-called error constants Cy, in the main term
of the local truncation error for k = 1,2,3,4 and 5 are

1 5 3 251 95
== = =2, === = 1
Cy 5 Cy L Cs 3 Cy 750’ Cs 288’ (13)
respectively. Details on multistep methods, including convergence, stability and
estimation of global errors e,, = v, — y(z,,), can be found in [4, 7, 11].

Remark 1. These coefficients B;k) can also be expressed in terms of the first kind
Stirling numbers S(n, k), which are defined by

n—1 n
H (x —1) = Z S(n, k)",
i=0 k=0

(see [5, 8,9, 13]). Namely, for each k € N, coefficients (10) can be explicitly repre-
sented in terms of the first kind Stirling numbers as

v _1 ] )
o > Elsi)
Bl =Y
(=) + Y PG+ DS+ L5+ 1)
j=1

L i=0,1,...k—1. (14)

3. Weighted type of Adams-Bashforth methods

In this section, we study the Cauchy problem for a special type of differential equa-
tions of the first order given on a finite interval, on a half line or on the real line, which
can be considered, without loss of generality, as (—1,1), (0, +00), and (—o0, +00).
Thus, we consider the following initial value problem on (a, b)

A(z)y + B(x)y = G(x,y), y(zo) = vo, (15)

where A and B are two polynomials determining the well-known classical weight
functions in the theory of orthogonal polynomials (cf. [10, p. 122]). Such polynomials
and weight functions are given in Table 2, where «, 8,y > —1.

(a,b) w(z) A(z) B(x) \
(-1,1) (I-2)(1+z) [1-a? | B-—a—(a+B+2)z |
(0, 4+00) Ve " x y+l—x

(=00, +00) e 1 —2z

Table 2: Classical weight functions and corresponding polynomials A and B

Let again {1} be a system of equidistant nodes with the step h, ie., z; =
xo + kh € [a,b].
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Since the differential equation of the weight function is as (cf. [10, p. 122])
(Aw) = Bw,
after multiplying by w(x), our initial value problem (15) becomes
Ay + B(eyu(e)y = w@)G(e,y),  y(zo) = o,
which is equivalent to
(A@@)w()y) = w(@)G(z,y), y(xo) = yo. (16)

Now, integrating from both sides of (16) over [z, z,41] yields

Tl

A(;I?n+1)w($n+1)y(a?n+1) - A(xn)w(x'n)y(mn) = / w(ac)G(x,y)da:. (17)

T

Let @ = x,, + Ah. Similar to relations (6), (7) and (9), the right-hand side of (17)
can be written in the form

Tyt 1 k-1
/ w(z)G(z,y)dz = h/ w(xn + Ah) {Z (/\)'VV”Gn + rk(Gn)} dr,  (18)
STy 0 =0 v
and approximated as
Tnp1 1 k—1 v )
/ w(z)G(z,y)dz ~ h/ W+ Ah) Y (AV)'” < (-1 (’:) G,”-) A
Tn 0 v=0 "~ \i=0 )
k—1 (71)1 k—1 1 1
- h; < - Z:: — /0 w(@n + /\h)(/\)l,d/\> G
k-1
=03 B" (h,2,)Gs,
i=0
where L
B® (h,2,) = / w(n + AP (A, (19)
Jo

Gnoi = G(zp—i,y(Tn_y)), C’i(k)(A) is given by (8) and r(Gy,) is the error term in
the corresponding backward Newton interpolation formula for G(z,y) = G(z, y(x))
at equidistant nodes x,,_; = x,, —ih, i = 0,1,...,k — 1. Hence, the approximate
form of (17) becomes

k—1

Ans1)w(@ns1)y(@ni1) = A@@n)w(an)y(@n) = by BE (hy2)Goi,  (20)
i=0

where the coefficients ng)(h,,xn) depend on h and z,. As in the case of the
standard Adams-Bashforth methods, by assuming that all previous values vy, _;,
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1=0,1,...,k—1, are exact, i.e., Yypn—; = y(zp—;), i =0,1,...,k — 1, (20) gives our
weighted k-step method

k—1
Ans1)w(@ns1 )1 — Alwn)w(zn)yn =h > B (hwn)Gooi n>k—1, (21)
i=0
where G = G(@p—i, Yn—i), 1 =0,1,..., k — 1.
The mentioned dependence of the coefficients Bfk)(h7 Z,,) on the stepsize h and
2, makes these methods fundamentally different from the standard ones.
Similarly to (11), we can here define the corresponding weighted local truncation
error at the point z,1j € [a,b] as

(T Yt = {% [A@nr)W(@ntr)Y(@rgr) — Al@ppr—1)W( Zngr—1)Y(@n4r—1)]

k-1
e P S S
FZOkajfl(h, In+k—1)G(In+J7y(l‘n+]))}A(w"Jrk)w(xn+k)7

where z — y(z) is the exact solution of the Cauchy problem (15).
Then, according to (17), with n := n+k — 1, and using (18) and (20), we obtain

1 Tn4k
T Ypshy = —————— ; Grap—1)dz.
Tk = G5 oo / (G e

The first term omitted in the summation on the right-hand side in (18) is a good
approximation of the truncation error. We will call this quantity the main term of
the truncation error and denote by (T}")ntk-

Proposition 1. Let the exact solution of the singular Cauchy problem (15) be suffi-
ciently smooth, as well as the function z — g(z) = G(x,y(x)). Then, the main term
of the truncation error at the point x, 1y can be expressed in the form

RFg®) (&) /‘1 (/\ +k—1

oy, o
Lines = Aol Jy \ &

)w(xn+k71 + AR)dA, (22)
where
9%(2) = A)y ™ + [Bla) + kA @)y 4 k[B' (@) + 5 (k- 1A @)y 4D (23)

and xy,—1 < & < Tpgk—1-

Proof. According to (18), we have

- VFEGogne !
(T3 Intr = - I / W(Tnik-1 + AR)(A)pdA,
*JO

A(@ni)w(Tnsk
where the factor in front of the integral can be expressed in terms of divided differ-

ences as (cf. [7, p. 410])

ngnJrkfl

k
o =0 Bkt Tagko, o Tl g
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On the other hand, supposing that the function = — g(z) = G(z,y(z)) is suffi-
ciently smooth, we can write

~gW(&)
[Tntk-1;Tnth—2, - Tn-1] g = B

where & is between the smallest and the largest of these points. In order to calculate
these derivatives,

/()_6_G+8_G/ //()_82_G+ 62G+82_G/ /+8_G// £
9@ =55+ 3,v 9@ =55 oy oY |V Ty Y O

we use the relation g(z) = G(z,y(z)) = A(x)y' (x) + B(z)y(z). Since A(z) is a
polynomial of degree at most two and B(z) is a polynomial of first degree, these
derivatives can be calculated much simpler for each & > 0 in the form (23).

In this way, we obtain (22). O

Formally, (22) is of the same form as (12), i.e., Crg® (&,)h*, where

1 YA+ k-1
Ck = Ck(h, ln) = m /0 ( k >’w($n+k71 + )\h)dA

and g(® is given by (23). In the case of standard Adams-Bashforth methods, Cy, are
the error constants given by (13) and they are independent of the stepsize h and z:,.
Also, instead of ¢(¥), there is only the derivative y**+1 in (12). Because of these
differences, the actual order of the weighted methods can be reduced (see examples
in Section 4).

In the sequel, we consider the three cases given previously in Table 2.

3.1. Case (a,b) = (—1,1)
Consider the Cauchy problem of Jacobi type
(1-2®)y +(B-a—(a+p+2)2)y=GClzy), ylxo)=1yo,

where ,, = g + nh € (—1,1).
In this case, relation (20) is reduced to

k-1
Ynst = d(h,zn)yn + 0> D (h,2) G, (24)

i=0

where

d(h, ) Alzp)w(zy) (1 —a,)°t (1 4 2,)P
s L) = =
A@n1)w(@n41) (1 = @) (1 + g1 )L
and

1

(k)
D" (h,xz,) =
i (hzn) A(Tp41)w

(@nt1) / (e + M)CP ()i
T 0
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Putting
(1 —2,)%(1 + 2,)°

(h,x,) =
(( 1, T 1,) (1 _ x7z+1)a+1(1 + In+1)ﬁ+1

and

1
&0 (h, 2,) = / (1= 2 — AR (1 4 + A)PCHE (N)d,
0

rule (24) can be simplified as

k—1
Yni1 = c(h, zn) ((1 — a2y +hy o (h,xnmm) :

i=0

In the special (Legendre) case a = 8 = 0, (25) is reduced to

1
3 (1, 1,) = / c®(\dx = BP,
0

135

(27)

where B}k) are the same coefficients as for standard (non-weighted) Adams-Bashforth

formulas given by (10).
3.2. Case (a,b) = (0,00)
Now, consider the Cauchy problem of Laguerre type

oy + (v +1—2)y=G(x,y), ylxo)=yo,

in which @, = nh for n = 0,1,..., and the main relation (20) is reduced to the

corresponding equation (24) with

d(h,x,) = M’(ﬂ"n)) o ({L‘i>"/+17

A(l‘n-%—l)u}('rnﬁ—l Tn+1
and
(k) h 1
W oy B (han) e / ‘ ¥ = Ah ()
D (b wn) = Alwn)w(ena) 22t ) (n + M€ G (AN

n+1

In other words, we have
DP (h, ) = 2,0V d(h, 2,) 0" (h, ),

such that L
" (h, ) = / (@ + M) e CH® (A)dA.
0

Hence, the relation corresponding to (20) takes the form

oa!
Tpt1 =0

. y+1 hp, k=1
Yns1 :eh< Tn > Yn + e @Ek)(h,w,,)GT,,7

Tn+1
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Note that when v = 0, the coefficients (28) are independent of z,, and

1
&5 (b, ) = B (1) = / MO (A)dA. (30)
0

For instance, for k = 1(1)5 and ¢ = 0,1,...,k — 1, relation (30) gives

k=1
1—eh
8 () = ——
k=2
1+h—eP142n
oy = LR U2
9 1—e (1+h)
<I>§ )(h) =2
k=3
3 2+ 3h 4 2h% — e (2 4 5h 4 61h?)
" (h) = oI :
2(1+h) — e (2 + 4h + 3h?)
o 1) - g ,
3 2+ h—e "2+ 3h+2h?)
7 (h) = o :
k=4
39 (h) = 6+ 12h + 1172 + 6h° — 2~ "(3 + 9h + 1302 + 121%)
0 (h 6h4 ’
o () = — 2(3+5h + 3h?) —e " (6 4+ 16k + 19h + 1217)
1 2h4 )
oWy = 68+ 3h? — 2" (3 + Th + Th? + 4h?)
2 (’) 2h4 )
39 (1) = 2(3+3h+h?) —e (6 + 12k + 11h* + 6h%)
5 o :
k=5
8 (h) = 12 + 30h + 35h% 4 25h3 + 12h* — e (12 + 42h + T1h% + T7h3 + 60R*)
12h5 ’
3O (h) = — 2(12 + 27h + 26h2 + 12h%) — e~"(24 + 78h + 118h% + 107h3 + 60h*)
6h° ’
(5) 12 + 24h + 19h% 4 6h3 — e (12 + 36 + 49h* + 39h3 + 20Rh*)
Oy (h) = o ,
LJ
o (h) = — 2(12 + 21h + 14h? 4 4h3) — e~"(24 4 66h + 82h2 + 61h°% 4 30h?)
6h° '
3 (h) = 12 + 18h + 11h% + 3h3 — e"(12 + 30h + 35h> + 25h3 + 12h*)
12h5 ’
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Remark 2. According to (30), it is clear that }hn%) fbgk)(h) = Bi(k), 1=0,1,...,k—1,
L —

where ng) are the coefficients of standard (non-weighted) Adams-Bashforth formu-
las given by (10).
Remark 3. Consider the Cauchy-Laguerre problem zy'+(1—2)y = y (i.e., G(z,y) =
y), which is simplified as

y'=y, y(0)=1,

with the exact solution y = e®. Considering the simplest method (for k = 1) gives

el

eh h 1
Yn+1 = Hﬁ (yn + ;‘I’(() )(h)Gn> =

n

(Inyn + (]- - eih)G(-Tna yn)) .
Tn+1

Now, substituting x,, = nh in the above relation yields

1+nh)eh —1 .
Ynt+1 = ((71+7)1)hym with yo = 1.
For example, we have
eh —1 (1+h)e -1 eh—1
= . Yy = .
nETy T 2h ho
(142h)eh =1 (IT4+h)e"—1 et —1
vs= 3h 2h ho

or, in general,

B [+ (v = 1)hleh —1
=l
v=1

The method is convergent, i.e.,

n [1 + -1 er/n -1
lim Yp = lim n

n — +oo n—-+00 v

(nh = x = const) V= n

=e”. (31)

In order to prove (31) we define a sequence {ay }nen by

n [1+(u71)§] eo/n 1
n
rvx

n
and apply the well known Stolz-Cesaro theorem. Namely, if we prove the convergence

1 n
{1—&-(1—7) 1] et/n — 1
Ap — Ap—
li n n—1 n L

n—+4oo N — (n — 1) - ngg-loo 10g T -
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then the limit lim —— also exists and it is equal to L. Since
n—+oo N

l{{l-ﬁ-(l—l)w} ez/"—l}:1+§+0(7f2),
x n n

we conclude that L = loge” = x. Therefore, we obtain (31), because

. ilog {1+(1/71)ﬂ ee/n 1
n—+oo N n—>+ooV:1 ﬂ
n
n {1+(V71)q ev/n 1
= ’LHIEDO log ,Hl ’/777} =u

3.3. Case (a,b) = (—00,0)
Now, consider the Cauchy problem of Hermite type
Y —2zy = G(x,y), y(2o) = Yo,

in which z, = 2o + nh € (—o0,00) and the main relation (20) is reduced to the
corresponding equation (24) with
e*xi,

2 2
T —x h(2xn+h
= e¥nt1Tn = gh(2nth)

d(h,z,) =

—x2
e Tnt1

and
_ BV (h,x)

3
e Tnt1

1
DM (h, ) =i / =@ tAE ™ (N)dA.
0

In other words, we have D,Ek) (h,x,) = d(h, xn)cb,gk)(h, Zn), such that

1 P 5
o (h,z,) = / o= e AN o) (),
0
Hence, the relation corresponding to (20) takes the form
k—1
k
Ynp1 = TR <yn +y_ @ (n, wn>cm> . (32)
i=0

Remark 4. As in the case of non-weighted methods, in applications of these meth-
ods for £ > 1, we need the additional starting values y; = s;(h), i = 1,...,k — 1,
such that %m%] =yo (cf. [11, pp. 32-36]).

—
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4. Numerical examples

In order to illustrate the efficiency of our method, in this section we give two nu-
merical examples for singular Cauchy problems on (0,00) and (—1,1). In particu-
lar, the weighted Adams-Bashforth methods with respect to the standard Laguerre
weight given in Subsection 3.2 have the simplest form and they can find adequate
application in solving weighted singular Cauchy problems. The third case when
(a,b) = (—o0,00) is not interesting for applications because equation (15) is not
singular in a finite domain.

Example 1. We first consider a singular Cauchy problem
y? ((1 - 2?) tan(z) + 4z + 1) sec(x)

1— 2\, 1 —
(I—2%)y — 3y ]

, y(—=1)=2cosl.

Here,

Gla,y) = (1= %) tan(e) + 4z + 1) see(w)

1 + xy

and the exact solution of this problem is given by y(z) = (1 — ) cos z.

In order to solve the problem for 2 € [—1,0], we apply the k-step method (26),
with @« = 8 = 0 (Legendre case) and @gk)(h,xn) given by (27). For the sake of
simplicity, in the case k > 1, for starting values we use the exact values. Otherwise,
some other ways must be applied (see Remark 4).

Relative errors obtained by this k-step method when k= 1,2,...,5, for h = 0.02
and h = 0.01, are displayed in log-scale in Figures 1 and 2, respectively.

k=
k=2
1072} ?
k=3
10757 /’,
k=4
pZ«aENRNNE] -
10—8, /-”"i

I I I I I I
-1.0 -0.8 -0.6 -0.4 -0.2 0.0
Figure 1: Relative errors for methods (26) in Ezample 1 for h =0.02 and k =1,2,...,5

We consider now the actual errors, |yn+x — y(Tntx)| at a fixed point @ = x4k
obtained by using the k-step method (26) for different stepsize h and different k. We
take x = —0.5 and h = 0.05, 0.02 and 0.01. The corresponding errors are presented
in Table 3. Numbers in parentheses indicate decimal exponents.

Note that the effect of reducing the step-size h to the accuracy of the solution is
greater if k is higher. Assuming an asymptotic relation in the form

e(h7 kvx) = ‘y::+k' - y(IRJrk)‘ ~ Cph®*, (33)
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k=1

0.100
% H
0.001} /_,//———————— k=3

1075¢ k=4

. . . . . .
-1.0 -0.8 -0.6 -0.4 -0.2 0.0
Figure 2: Relative errors for methods (26) in Example 1 for h =0.01 and k =1,2,...,5

h k=1 k=2 k=3 k=4 k=5
0.05 || 2.27(—1) | 1.14(—1) | 4.76(—3) | 6.68(—5) | 1.45(—5)
0.02 || 4.10(—1) | 7.87(=2) | 1.20(—3) | 1.18(—5) | 6.89(~T7)
0.01 || 546(—1) | 5.77(—2) | 4.21(—4) | 2.57(—6) | 6.34(—8)

Table 3: Absolute errors in the obtained sequences {ynyi}n at the point & = x,4 = —0.5, using
the k-step method (26) for k =1,2,...,5 and h = 0.05, 0.02 and 0.01

where 2,4, = =1+ (n + k)h = x = const, and C}, and ay, are some constants, we
can calculate the following quotient for two different steps h; and ha,

e(hi, k) a"'
e(ha, k)~ \ha) =

Therefore,
_log(e(hy, k,x)/e(ha, k, )
log(h1/h2)

These values are presented in Table 4 for hy/he = 2 and hy/he = 5. As we can
see, the obtained values for the exponents «y, are very similar in these two cases.

g

(34)

hi/ho ay s s oy s ‘
2 —0.41 | 045 | 1.51 | 2.20 | 3.44
5 —0.54 | 0.42 | 1.51 | 2.02 | 3.38

Table 4: The parameters ay, obtained from (34) for k=1,2,...,5 and different stepsizes

As we can see, the actual order of the method is reduced approximately for one
order of magnitude. This effect is mentioned in Section 3 after Proposition 1.

Example 2. Here we consider again the Cauchy problem of Jacobi type

(1—2%)y —2zy=1—2—42® — 523 +zy, y(-1)=1,
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whose exact solution is y(z) = 22 +x + 1. According to Proposition 1, in this simple
case, we have

g(z) = G(z,y(w)) = —4a® = 32 + 1,

as well as
g(x) = 122> — 6z, ¢"(x) =240 -6, ¢"(x)=-24, ¢ (x)=0.

Now, we apply the k-step method (26) for & = 1(1)4, h = 0.05 and h = 0.01 (see
Tables 5 and 6), and for starting values (when £ > 1) we use the exact values of the
solution. In these tables, we only give the relative errors of the obtained values for
x=-0.9,-0.8,-0.7,—-0.6, —0.5 (m.p. is machine precision).

P k=1 k=2 k=3 | k=4
—0.9 | 5.62(=2) | 5.09(—3)

~0.8 | 4.88(=2) | 6.37(—3) | 3.17(=4) | m.p.
—0.7 | 4.37(=2) | 7.03(=3) | 4.46(—4) | m.p.
—0.6 | 3.80(—2) | 7.29(—3) | 5.62(~4) | m.p.
—0.5 | 3.18(=2) | 7.23(—3) | 6.42(—4) | m.p.

Table 5: Relative errors in the obtained approzimate sequences {Y 4k tn using k-step methods (26)
for k =1(1)4 and h = 0.05

T k= k= k= k=4
0.9 | 9.81(=3) | 2.61(—4) | 3.19(—6) | m.p.
—0.8 | 9.19(—3) | 2.82(—4) | 3.92(—6) | m.p.
—0.7 | 8.37(=3) | 2.94(—4) | 4.53(=6) | m.p.
—0.6 | 7.33(=3) | 2.96(—4) | 5.11(=6) | m.p.
—0.5 | 6.15(—3) | 2.89(—4) | 5.62(—6) | m.p.

Table 6: Relative errors in the obtained approzimate sequences {Y, 4k tn using k-step methods (26)
for k =1(1)4 and h = 0.01

As in Example 1, we consider asymptotic relation (33) at z = x4, = —0.5,
when & = 1,2,3 and hy = 0.05 and hy = 0.01. The values of the corresponding
exponent (34) are presented in Table 7.

k k=1 k=2 k=3
hi/hy =5 | a1 =1.00 | az =2.00 | ag =2.94 |

Table 7: The parameters «y, obtained from (34) for k =1,2,3 and hi/ha =5

As we can see, in this polynomial case, there is not previously mentioned defect
in the order. Note that the local truncation error (22) is equal to zero for each k > 4,
because of gt (z) = 0. Also, we see that the actual errors in Tables 5 and 6 for
k = 4 are on the level of machine precision.
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Example 3. Now we consider the Cauchy problem of Laguerre type

322+ 1

-z, 2
= ——e % y(0) =1

zy + (1 —2)y

whose exact solution is y = (22 + 1)e®. We apply the k-step method (29) for
k =1(1)6. The corresponding relative errors for h = 0.05 are given in Table 8, and
for h = 0.01 in Table 9. In these tables, we only give relative errors of the obtained
values for z = 0(0.1)1. As in Example 1, for starting values we use the exact values
of solution.

v | k=1 k=2 k=3 k=4 k=5 k=6
0.1 | 5.66(—2) | 3.74(—3)

0.2 | 1.18(—1) | 1.43(—2) | 7.17(~4) | 1.89(—5)

0.3 | 1.81(~1) | 2.62(—2) | 1.62(—3) | 7.55(—5) | 2.89(—6) | 6.33(—8)
0.4 | 2.45(—1) | 3.94(—2) | 2.62(~3) | 1.32(—4) | 5.83(—6) | 2.39(—7)
0.5 | 3.08(—1) | 5.42(—2) | 3.76(—3) | 1.98(—4) | 9.39(—6) | 4.16(—7)
0.6 | 3.70(—1) | 7.10(—2) | 5.10(=3) | 2.74(—4) | 1.33(=5) | 6.11(~7)
0.7 | 4.30(~1) | 9.01(~2) | 6.66(—3) | 3.63(—4) | 1.79(—5) | 8.48(—7)
0.8 | 4.88(—1) | 1.11(—1) | 8.49(—3) | 4.67(—4) | 2.33(—5) | 1.11(—6)
0.9 | 5.42(—1) | 1.35(—1) | 1.06(—2) | 5.88(—4) | 2.95(—5) | 1.42(—6)
1.0 | 5.93(—1) | 1.62(—1) | 1.31(—2) | 7.29(—4) | 3.67(~5) | 1.77(—6)

Table 8: Relative errors in the obtained sequences {ynij}tn using k-step methods (29) for k =
1,2,...,6 and h = 0.05

v | k=1 k=2 k=3 k=4 k=5 k=6
0.1 | 5.26(—2) | 1.86(—3) | 2.63(=5) | 2.92(—7) | 2.97(—9) | 2.85(—11)
0.2 | 1.05(—1) | 4.17(=3) | 6.20(=5) | 7.37(=7) | 8.17(=9) | 8.70(—11)
0.3 | 1.58(—1) | 6.73(—3) | 1.02(—4) | 1.23(—6) | 1.39(—8) | 1.51(—10)
0.4 | 2.12(=1) | 9.66(—3) | 1.47(—4) | 1.80(—6) | 2.04(—8) | 2.24(—10)
05 | 2.67(—1) | 1.31(—2) | 2.00(—4) | 2.45(—6) | 2.80(—8) | 3.09(—10)
0.6 | 3.23(—1) | 1.71(—2) | 2.63(—4) | 3.23(—6) | 3.70(—8) | 4.10(—10)
0.7 | 3.80(—1) | 2.18(—2) | 3.38(—4) | 4.16(—6) | 4.76(—8) | 5.28(—10)
0.8 | 4.35(—1) | 2.73(—2) | 4.26(—4) | 5.25(—6) | 6.02(—8) | 6.67(—10)
0.9 | 4.80(—1) | 3.38(—2) | 5.30(—4) | 6.53(—6) | 7.49(—8) | 8.32(—10)
1.0 | 5.41(=1) | 4.12(=2) | 6.51(—4) | 8.03(=6) | 9.22(—8) | 1.02(—9)

Table 9: Relative errors in the obtained sequences {ynik}tn using k-step methods (29) for k =
1,2,...,6 and h = 0.01

Using Proposition 1 we determine the main term of the truncation error at the
point 4, = x, for example, when h = 0.01 and = = 0.5.
Since

. B 1
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we first calculate the values: Q1 = 0.501671, Q2 = 0.41792, Q3 = 0.376058, Q4 =
0.34955, Q5 = 0.330639, and Qg = 0.316389. The corresponding derivatives

g®) (@) = 2y 4 (k+1 - 2)y® — kyE—D

are
g (z) =e* (327 + 6z +1), g"(x) =" (32% + 122+ 7),
g"(z) =e" (32° + 18z + 19) g (x) = e” (32® + 24z + 37)
g (z) = e® (3."52 + 30z + 61) , g (z) = e® (33&2 + 36z + 91) ,

where & € (z — (k+1h,z—h), k=1,2,...,6.
Now, taking = 2,45 = (n + k)h = 0.5, h = 0.01, and & = x — h = 0.49 in
(22), we obtain an approximation of the main term (7}),4x in the form

~ hegB) (2 — R

e I}
whose numerical values for & = 1,2,...,6, after dividing by y(0.5) = 2.0609, are:
3.70(—2), 9.00(—4), 1.70(-5), 2.74(—7), 4.00(—9), 5.48(—11), respectively. As ex-
pected, the actual global errors from Table 9 (the row referring to x = 0.5) are larger
compared to the corresponding local truncation errors.

‘ T aq @ s Qy Qa5 Qe
0.5 || 0.08 | 0.95 | 1.92 | 2.87 | 3.81 | 4.75
1.0 || 0.05 | 0.93 | 1.94 | 2.90 | 3.86 | 4.80

Table 10: The parameters ay obtained from (34) for k = 1,2,...,6 and hl1/h2 = 2 at two points
x = 0.5 and x = 1.0.

Finally, as in Example 1, we assume the behavior of the actual errors in the form
(33), where x4, = (n + k)h = x = const. We compare actual errors obtained for
hy = 0.02 and he = 0.01 at two points x = 0.5 and = = 1.0. The results for ay,
k=0,1,...,6 are presented in Table 10. As we can see, the obtained values of the
exponents «y, at these points are very close, but again with a defect of one order in
its magnitude!
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