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A generalization of the array type polynomials

Mohammad Masjed-Jamei, Gradimir V. Milovanović∗,
Muhammet Cihat Dağlı

Abstract. We introduce a generalization of the array type polynomi-
als by using two specific generating functions and investigate some of its
basic properties in the sequel. A recurrence relation and two summation
formulas involving these polynomials are also given.

1. Introduction

The Appell polynomials An (x) defined by

f(t)ext =

∞∑
n=0

An (x)
tn

n!
,

where f (t) is a formal power series in t, have found many considerable
applications in mathematics, theoretical physics and chemistry [1, 23]. One
the well-known examples of these polynomials is the Bernoulli polynomials
for the so-called Bose-Einstein function

f(t) = ε(t) =
t

et − 1
.

This function was also used in [5] as a weight function on (0,+∞) in con-
struction of Gaussian quadrature formulas for numerical calculation of in-
tegrals, which frequently occur in connection with the evaluation, in the
independent particle approximation, of thermodynamic variables for solid
state physics problems for boson systems. This kind of weighted integrals,
with the Bose-Einstein weight functions ε(t) are also found to provide very
effective tools for the summation of slowly convergent series whose general
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term is expressible in terms of a Laplace transform or its derivative. Such
method is known as the Laplace transform method (cf. [17, pp. 398–401]).

Another example known in the literature as the generalized Apostol–
Bernoulli polynomials can be defined as [9–11]

(1)
(

t

λet − 1

)m

ext =

∞∑
n=0

B(m)
n (x, λ)

tn

n!
,

where λ ∈ C, and |t| < 2π for λ = 1 and |t| < | log λ| for λ 6= 1. For
x = 0 in (1), the generalized Apostol–Bernoulli numbers are derived (see
also [13,14,21,22] in this sense).

On the other hand, the generalized λ−Stirling numbers of the second kind
Sn
m (λ) were introduced in [12] as

(2)
(
λet − 1

)m
m!

=

∞∑
n=0

Sn
m (λ)

tn

n!
,

for λ ∈ C and m ∈ N0 = {0, 1, 2, . . . , }, where λ = 1 gives the well known
Stirling numbers of the second kind.

By referring to (2), the λ−array type polynomials Sn
m(x, λ) are defined

as [3]

(3)
(
λet − 1

)m
m!

ext =

∞∑
n=0

Sn
m(x, λ)

tn

n!
,

see also [4,18–20]. In [2], the authors deduced some notable identities associ-
ated with λ−array type polynomials, λ−Stirling numbers of the second kind
and the Apostol–Bernoulli numbers. Furthermore, they studied λ−array
polynomials via λ−delta operator. For more details see [6–8] and references
therein.

In this paper, we define two parametric kinds of λ−array type polynomials
as follows:

(4)
(
λet − 1

)m
m!

ext cos yt =
∞∑
n=0

Sn,c
m (x, y, λ)

tn

n!
,

and (
λet − 1

)m
m!

ext sin yt =
∞∑
n=0

Sn,s
m (x, y, λ)

tn

n!
,

which are, in fact, the real and the imaginary part of(
λet − 1

)m
m!

e(x+iy)t,

respectively.
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Motivated by some of above-mentioned papers, we then introduce a bivari-
ate kind of λ−array type polynomials and investigate its general properties.
We also derive a recurrence relation and some summation formulas includ-
ing these polynomials and other special polynomials and numbers such as
parametric-kind Apostol–Bernoulli, generalized Apostol–Bernoulli numbers,
and generalized λ−Stirling numbers of the second kind.

2. A family of λ-array type polynomials

For two sequences {an}n∈N0
and {bn}n∈N0

such that

A(t) =

∞∑
n=0

an
tn

n!
and B(t) =

∞∑
n=0

bn
tn

n!
,

their binomial convolution is given by

cn = an ∗ bn =

n∑
k=0

(
n

k

)
akbn−k.

Also, we have the following generating function for the sequence {cn}n∈N0

as

C(t) = A(t)B(t) =

∞∑
n=0

cn
tn

n!
.

By noting these comments, the Taylor–Maclaurin expansions of the two
functions ext cos yt and ext sin yt are explicitly computed as (see e.g. [15]
and [16])

(5) ext cos(yt) =

∞∑
n=0

Cn(x, y)
tn

n!
,

and

ext sin(yt) =

∞∑
n=0

Sn(x, y)
tn

n!
,

where Cn(x, y) and Sn(x, y) are defined respectively as follows:

Cn(x, y) =

[n2 ]∑
k=0

(−1)k
(
n

2k

)
xn−2ky2k,

and

Sn(x, y) =

[n−1
2 ]∑

k=0

(−1)k
(

n

2k + 1

)
xn−2k−1y2k+1,

in which [x] stands for the greatest integer of x.
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By observing the definitions of λ−Stirling numbers of the second kind
Sn
m (λ) , Cn(x, y) and Sn(x, y), we can now introduce two parametric kinds

of λ−array type polynomials as follows

Sn,c
m (x, y, λ) = Sn

m (λ) ∗ Cn(x, y),

and
Sn,s
m (x, y, λ) = Sn

m (λ) ∗ Sn(x, y),

whose generating functions are respectively defined by
∞∑
n=0

Sn,c
m (x, y, λ)

tn

n!
=

(
λet − 1

)m
m!

ext cos yt,

and
∞∑
n=0

Sn,s
m (x, y, λ)

tn

n!
=

(
λet − 1

)m
m!

ext sin yt,

from which it is readily deduced that

Sn,c
m (x, y, λ) =

n∑
k=0

(
n

k

)
Sk
m (λ)Cn−k(x, y),

and

Sn,s
m (x, y, λ) =

n∑
k=0

(
n

k

)
Sk
m (λ)Sn−k(x, y).

Theorem 1. For every n ∈ N, we have

(6) Sn,c
m (2x, y, λ) =

n∑
k=0

(
n

k

)
Sk,c
m (x, y, λ)xn−k,

and

(7) Sn,s
m (2x, y, λ) =

n∑
k=0

(
n

k

)
Sk,s
m (x, y, λ)xn−k.

Proof. From (4), one can write
∞∑
n=0

Sn,c
m (2x, y, λ)

tn

n!
=

(
λet − 1

)m
m!

e2xt cos yt

=

( ∞∑
n=0

Sn,c
m (x, y, λ)

tn

n!

)( ∞∑
n=0

(xt)n

n!

)

=
∞∑
n=0

(
n∑

k=0

(
n

k

)
Sk,c
m (x, y, λ)xn−k

)
tn

n!
.

Comparing the coefficients of tn/n! on the both sides yields the desired
identity (6). Equality (7) can be obtained similarly. �
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Theorem 2. For n ∈ N and z ∈ R we have

Sn,c
m (x+ z, y, λ) =

n∑
k=0

(
n

k

)
Sk,c
m (x, y, λ) zn−k

and

Sn,s
m (x+ z, y, λ) =

n∑
k=0

(
n

k

)
Sk,s
m (x, y, λ) zn−k.

Proof. Using (4), one has
∞∑
n=0

Sn,c
m (x+ z, y, λ)

tn

n!
=

(
λet − 1

)m
m!

e(x+z)t cos yt,

and then, the right hand side in this equality can be written as( ∞∑
n=0

Sn,c
m (x, y, λ)

tn

n!

)( ∞∑
n=0

(zt)n

n!

)
=

∞∑
n=0

(
n∑

k=0

(
n

k

)
Sk,c
m (x, y, λ) zn−k

)
tn

n!
,

which gives the first identity after equating the coefficients tn/n!. The second
one can be derived in a similar way. �

Theorem 3. For r, n ∈ N, with n ≥ r, the following derivative formulas
hold:

∂r

∂xr
(
Sn,c
m (x, y, λ)

)
= 〈n〉r S

n−r,c
m (x, y, λ) ,(8)

∂r

∂xr
(
Sn,s
m (x, y, λ)

)
= 〈n〉r S

n−r,s
m (x, y, λ) ,(9)

where 〈x〉r denotes the falling factorial, defined for x ∈ R by

〈x〉r =

r−1∏
k=0

(x− k) =

{
x (x− 1) · · · (x− r + 1), if r ≥ 1,

1, if r = 0.

Proof. Using (4), we have
∞∑
n=0

∂r

∂xr
(
Sn,c
m (x, y, λ)

) tn
n!

=
∂r

∂xr

(
λet − 1

)m
m!

ext cos yt

=
∞∑
n=0

〈n〉r S
n−r,c
m (x, y, λ)

tn

n!
,

which concludes the proof of (8).
The assertion (9) can be proved similarly. �
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Corollary 1. For n ∈ N, the following relations are valid:
∂

∂y
Sn,c
m (x, y, λ) = −nSn−1,s

m (x, y, λ) ,

and
∂

∂y
Sn,s
m (x, y, λ) = nSn−1,c

m (x, y, λ) .

Theorem 4. For n ∈ N, two parametric kinds of λ−array type polynomials
Sn,c
m (x, y, λ) and Sn,s

m (x, y, λ) satisfy the following recurrent relations:

(10) λSn,c
m (x+ 1, y, λ) = (m+ 1)Sn,c

m+1 (x, y, λ) + Sn,c
m (x, y, λ) ,

and

(11) λSn,s
m (x+ 1, y, λ) = (m+ 1)Sn,s

m+1 (x, y, λ) + Sn,s
m (x, y, λ) .

Proof. From (4), we have

λ

∞∑
n=0

Sn,c
m (x+ 1, y, λ)

tn

n!
= λ

(
λet − 1

)m
m!

e(x+1)t cos yt

=

(
λet − 1

)m
m!

ext cos yt
{
λet − 1 + 1

}
= (m+ 1)

(
λet − 1

)m+1

(m+ 1)!
ext cos yt+

(
λet − 1

)m
m!

ext cos yt

= (m+ 1)
∞∑
n=0

Sn,c
m+1 (x, y, λ)

tn

n!
+
∞∑
n=0

Sn,c
m (x, y, λ)

tn

n!
.

Comparing the coefficients of tn

n! on the both sides of the last equality leads
to desired identity (10). The relation (11) follows easily in a similar way. �

Theorem 5. The following summation formulas are true
n+m∑
k=0

(
n+m

k

)
Sn+m−k,c
m (x, y, λ)B

(m)
k (λ)(12)

=

{(
n+m
m

)
Cn (x, y) , if n ≥ 0;

0, if −m ≤ n ≤ −1,

and
n+m∑
k=0

(
n+m

k

)
Sn+m−k,s
m (x, y, λ)B

(m)
k (λ)(13)

=

{(
n+m
m

)
Sn (x, y) , if n ≥ 0;
0, if −m ≤ n ≤ −1,

where B(m)
k (λ) is the generalized Apostol–Bernoulli numbers.
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Proof. Consider the equality(
t

λet − 1

)m
(
λet − 1

)m
m!

ext cos yt =
tm

m!
ext cos yt.

Making use of (1) for x = 0, (4) and (5), we find that
∞∑
n=0

B(m)
n (λ)

tn

n!

∞∑
n=0

Sn,c
m (x, y, λ)

tn

n!
=
tm

m!

∞∑
n=0

Cn(x, y)
tn

n!
.

So, we have
∞∑

n=−m

n+m∑
k=0

(
n+m

k

)
B

(m)
k (λ)Sn+m−k,c

m (x, y, λ)
tn

(n+m)!
(14)

=
1

m!

∞∑
n=0

Cn(x, y)
tn

n!
.

Now, if we compare the coefficients of tn on the both sides of (14), we reach
the formula (12). The relation (13) can be derived similarly. �

Theorem 6. The following relations are valid
n+m∑
k=0

(
n+m

k

)
Bk,c (x, y, λ)Sn+m−k

m (λ) =

(
n+m

m

)
Sn+m−1,c
m−1 (x, y, λ) ,

and
n+m∑
k=0

(
n+m

k

)
Bk,s (x, y, λ)Sn+m−k

m (λ) =

(
n+m

m

)
Sn+m−1,s
m−1 (x, y, λ) ,

where Bk,c (x, y, λ) and Bk,s (x, y, λ) are two parametric kinds of Apostol–
Bernoulli polynomials, presented in [22, Eq.8], and Sn

m (λ) is the generalized
λ−Stirling numbers of the second kind, given by (2).

Proof. Consider the equality

1

tm

(
t

λet − 1

)(
λet − 1

)m
ext cos yt =

(
λet − 1

t

)m−1
ext cos yt.

Now, utilizing [22, Eq.8], (2) and (4) yields that

1

tm

( ∞∑
n=0

Bn,c(x, y, λ)
tn

n!

)( ∞∑
n=0

m!Sn
m (λ)

tn

n!

)
(15)

=

∞∑
n=0

(m− 1)!Sn,c
m−1 (x, y, λ)

tn−m+1

n!
.
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Thus, while the left hand side of (15) can be written as
∞∑
n=0

(
n∑

k=0

Bk,c(x, y, λ)

k!

m!Sn−k
m (λ)

(n− k)!

)
tn−m(16)

=

∞∑
n=−m

(
n+m∑
k=0

Bk,c(x, y, λ)

k!

m!Sn+m−k
m (λ)

(n+m− k)!

)
tn,

the right hand side can be expressed as

(17)
∞∑

n=−(m−1)

(m− 1)!
Sn+m−1,c
m−1 (x, y, λ)

(n+m− 1)!
tn.

Note that for n = −m, since S0
m (λ)B0,c(x, y, λ) = 0, comparing the coef-

ficients of tn of (16) and (17) gives the first identity of the theorem. The
second one can be obtained in a similar way. �
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