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ABSTRACT. A summation/integration method for fast summing trigonometric series is presented. The basic
idea in this method is to transform the series to an integral with respect to some weight function on R+ and then
to approximate such an integral by the appropriate quadrature formulas of Gaussian type. The construction of
these quadrature rules, as well as the corresponding orthogonal polynomials on R+, are also considered. Finally,
in order to illustrate the efficiency of the presented summation/integration method two numerical examples are
included.
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1. INTRODUCTION

Let P be the space of all polynomials and Pn its subspace of polynomials of degree at
most n. In a joint paper with Walter Gautschi [9], we developed the Gauss-Christoffel
quadratures on (0,+1),

(1.1)
Z +1

0
f(t)w⌫(t) dt =

NX

k=1

A(N)
⌫,k f

�
⌧ (N)
⌫,k

�
+RN,⌫(f) (⌫ = 1, 2),

with respect to the Bose-Einstein and Fermi-Dirac weights, which are defined by

(1.2) w1(t) = "(t) =
t

et � 1
and w2(t) = '(t) =

1

et + 1
,

respectively. These N -point quadrature formulas are exact on the space of all algebraic
polynomials of degree at most 2N � 1, i.e., RN,⌫(P2N�1) = 0, ⌫ = 1, 2.

The weight functions (1.2) and the corresponding quadratures (1.1) are widely used
in solid state physics, e.g., the total energy of thermal vibration of a crystal lattice can
be expressed in the form

R +1
0 f(t)"(t) dt, where f(t) is related to the phonon density

of states. Also, integrals with the second weight function '(t) are encountered in the
dynamics of electrons in metals.

In the same paper [9], we showed that these quadrature formulas can be used for sum-
mation of slowly convergent series of the form

(1.3) T =
+1X

k=1

ak and S =
+1X

k=1

(�1)kak.
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In general, the basic idea in such the so-called summation/integration procedures is to
transform the sum to an integral with respect to some weight function w(t) on R or R+ =
[0,+∞), and then to approximate this integral by a finite quadrature sum, i.e.,

∫

R
f(x)w(x) dx ≈ QN (f) =

N∑

ν=1

A(N)
ν f

(
x(N)
ν

)
,

where the function f is connected with ak in some way, and x(N)
ν and A(N)

ν , ν = 1, . . . , N ,
are nodes and weights of the quadrature rule QN (f) (usually of Gaussian type), which
is efficient for approximating a large class of functions with a relatively small number of
quadrature nodes N .

As a transformation method of sums to integrals, we can use the Laplace transform as
in [9] (see also [5, 8]) or some methods of complex contour integration as in our papers
[12, 13] (see also [14, 15, 20, 17]). An account on summation/integration methods for the
computation of slowly convergent power series and finite sums was given in [16].

In order to apply the quadrature rules (1.1) to the series T and S in (1.3), in the men-
tioned paper [9], we supposed that the general term of series is expressible in terms of the
Laplace transform, or its derivative, of a known function. For example, let ak = F (k) and
F (s) = L[f(t)] =

∫ +∞
0 e−stf(t) dt for Re s ≥ 1. Then

T =
+∞∑

k=1

F (k) =
+∞∑

k=1

∫ +∞

0
e−ktf(t) dt =

∫ +∞

0

(
+∞∑

k=1

e−kt

)
f(t) dt,

i.e.,

(1.4) T =

∫ +∞

0

e−t

1− e−t
f(t) dt =

∫ +∞

0

t

et − 1

f(t)

t
dt =

∫ +∞

0
ε(t)

f(t)

t
dt.

Similarly, for “alternating” series, we have

(1.5) S =
+∞∑

k=1

(−1)kF (k) =

∫ +∞

0

1

et + 1
(−f(t)) dt,

where the Fermi-Dirac weight function ϕ(t) on (0,+∞) is appeared on the right-hand side
in (1.5).

In this way, the summation of the series T and S is transformed to the integration
problems with respect to the weight functions w1(t) = ε(t) and w2(t) = ϕ(t), respectively.
An application of quadrature formulas (1.1) for ν = 1 and ν = 2 to the integrals in (1.4) and
(1.5), respectively, provides an acceptable procedure for summation of slowly convergent
series T and S.

In this paper we consider the corresponding summation for the convergent trigono-
metric series

(1.6) C(x) =
+∞∑

k=1

ak cos kπx and S(x) =
+∞∑

k=1

ak sin kπx (−1 < x < 1).

The corresponding series

A(x) =
+∞∑

k=1

(−1)k−1ak cos kπx and B(x) =
+∞∑

k=1

(−1)k−1ak sin kπx,

can be also considered, putting x := x−1. Then A(x) = −C(x−1) and B(x) = −S(x−1).
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The series (1.6) can be treated in the complex form

(1.7) C(x) + iS(x) =
+∞∑

k=1

ake
ikπx.

The paper is organized as follows. In Section 2 we present the transformation of (1.7) to
the “weighted” integrals over (0,+∞). The construction of the corresponding quadrature
formulas of Gaussian type for such integrals is given in Section 3. A simpler method for
the sinus-series is presented in Section 4. Finally, in order to illustrate our methods, some
numerical examples are given in Section 5.

2. TRANSFORMATION OF (1.7) TO “WEIGHTED” INTEGRALS

We consider the series (1.7) whose general term ak is expressible in terms of the Laplace
transform of a known function, i.e., let ak = F (k), where

(2.1) F (s) = L[f(t)] =

∫ +∞

0
e−stf(t) dt, Re s ≥ 1.

Then we have

C(x) + iS(x) =
+∞∑

k=1

eikπx
∫ +∞

0
e−ktf(t) dt = π

∫ +∞

0

(
+∞∑

k=1

e−kπ(t−ix)

)
f(πt) dt,

i.e.,

(2.2) C(x) + iS(x) =
+∞∑

k=1

ake
ikπx = π

∫ +∞

0

eiπx

eπt − eiπx
f(πt) dt.

The obtained integral on the right-hand side in (2.2) is weighted with respect to the
one-parametar “complex weight function”

(2.3) w(t;x) =
eiπx

eπt − eiπx
, −1 < x < 1.

We note that

w(t; 0) =
ε(πt)

πt
, w(t; 1/2) = −ϕ(2πt) +

i

2 coshπt
, and w(t; 1) = −ϕ(πt),

where ε(t) and ϕ(t) are given by (1.2). As we can see, only for x = 0 and x = ±1, the
function w(t;x) is real. Also, w(t;−x) = w(t;x), so that it is enough to consider only the
case when 0 < x ≤ 1. The case x = 0 is not interesting because it leads to a numerical
series.

Lemma 2.1. The moments of the function (2.3) are given by

(2.4) µk(x) =

∫ +∞

0
tkw(t;x) dt =






− 1

π
Log(1− eiπx), k = 0,

k!

πk+1
Lik+1(e

iπx), k ∈ N,

where Lin is the polylogarithm function defined by

(2.5) Lin(z) =
+∞∑

ν=1

zν

νn
.
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Proof. In order to calculate the moments (2.4), i.e., the integrals

µk(x) =

∫ +∞

0

tkeiπx

eπt − eiπx
dt, k ≥ 0,

we note that, for a = eiπx, we have

a

eπt − a
=

ae−πt

1− ae−πt
=

+∞∑

ν=1

aνe−νπt
(
|ae−πt| = e−πt < 1

)
.

Then, we get

µk(x) =
+∞∑

ν=1

aν
∫ +∞

0
tke−νπt dt =

k!

πk+1

+∞∑

ν=1

aν

νk+1
,

which is the desired result, having in mind (2.5). !
Remark 2.1. An analytic extension of the function Lin is given by

Lis(z) =
z

Γ(s)

∫ +∞

0

ts−1

et − z
dt (| arg(1− z)| < π).

The function Lin is suitable for both symbolic and numerical calculation. It has a branch
cut discontinuity in the complex z-plane running from 1 to ∞. This function is imple-
mented in MATHEMATICA software as PolyLog[n,z] and it can be evaluated to arbi-
trary numerical precision.

Separating the real and imaginary parts in (2.3), i.e.,

(2.6) w(t;x) =
1

2

{
cosπx− e−πt

coshπt− cosπx
+ i

sinπx

coshπt− cosπx

}
,

and using (2.2) we obtain the following results:

Lemma 2.2. We have

C(x) =
+∞∑

k=1

ak cos kπx =
π

2

∫ +∞

0

cosπx− e−πt

coshπt− cosπx
f(πt) dt,

S(x) =
+∞∑

k=1

ak sin kπx =
π

2

∫ +∞

0

sinπx

coshπt− cosπx
f(πt) dt,

where ak = F (k) and f(t) = L−1[F (s)].

Remark 2.2. Similar formulas as in Lemma 2.2 are mentioned in [22, p. 725].

The real and imaginary parts of 2w(t;x) = wR(t;x) + iwI(t;x) for different values of x
are presented in Figure 1.

As we can see, the imaginary part t '→ wI(t;x) = Im (2w(t;x)) is a positive function on
R+ for each 0 < x < 1, and all its moments are

µI
k(x) =

∫ +∞

0
tk

sinπx

coshπt− cosπx
dt =






1− x, k = 0,

2k!

πk+1
Im
{
Lik+1(e

iπx)
}
, k ∈ N,

so that the orthogonal polynomials with respect to the inner product

(2.7) (p, q) =

∫ +∞

0
p(t)q(t)wI(t;x) dt,
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FIGURE 1. Real part (left) and imaginary part (right) of t '→ 2w(t;x) on
[0, 1.5] for x = 0 (black line), x = 1/8 (red line), x = 1/4 (green line),
x = 1/2 (blue line), x = 2/3 (magenta line), and x = 1 (black line)

as well as the corresponding quadrature formulas of Gaussian type exist for each n ∈ N.
However, the real part t '→ wR(t;x) = Re (2w(t;x)) changes its sign at the point t =

π−1 log(1/ cosπx) ∈ (0,+∞), when 0 < x < 1/2, while for 1/2 ≤ x ≤ 1 this function is
negative for each t ∈ R+. The moments of the function wR(t;x) are

µR
k (x) =

∫ +∞

0
tk

cosπx− e−πt

coshπt− cosπx
dt =






− 2

π
log
(
2 sin

πx

2

)
, k = 0,

2k!

πk+1
Re
{
Lik+1(e

iπx)
}
, k ∈ N.

Regarding these facts a system of orthogonal polynomials with respect to t '→ wR(t;x)
on R+ exists for each 1/2 ≤ x ≤ 1. However, for 0 ≤ x < 1/2 the existence is not
guaranteed.

3. CONSTRUCTION OF POLYNOMIALS ORTHOGONAL WITH RESPECT TO THE WEIGHTS
t '→ wI(t;x) AND t '→ wR(t;x) ON R+ AND CORRESPONDING GAUSSIAN RULES

As we mentioned in the previous section, the (monic) polynomials pIk(t;x), k = 0, 1, . . .,
orthogonal with respect to the inner product (2.7) exist uniquely, as well as the corre-
sponding quadrature formulas of Gaussian type

(3.1)
∫ +∞

0
g(t)wI(t;x) dt =

N∑

ν=1

AI
νg
(
τ Iν
)
+RN (g;x),

where τ Iν (≡ τ Iν (N, x)) and AI
ν (≡ AI

ν(N, x)) are their nodes and weight coefficients. The
corresponding remainder term RN (g;x) vanishes for each g ∈ P2n−1. Some error esti-
mates of Gaussian rules for certain classes of functions can be found in [11, Sect. 5.1.5].

The monic polynomials pIk(t;x) satisfy the three-term recurrence relation

(3.2) pIk+1(t;x) = (t− αI
k(x))p

I
k(t;x)− βI

k(x)p
I
k−1(t;x), k = 0, 1, . . . ,

with pI0(t;x) = 1 and pI−1(t;x) = 0.
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The nodes τ Iν in the Gaussian quadrature rule (3.1) are eigenvalues of the symmetric
tridiagonal Jacobi matrix (cf. [11, pp. 325–328])

(3.3) JN (wI( · ;x)) =





αI
0(x)

√
βI
1(x) O

√
βI
1(x) αI

1(x)
√

βI
2(x)

√
βI
2(x) αI

2(x)
. . .

. . . . . .
√
βI
N−1(x)

O
√

βI
N−1(x) αI

N−1(x)





,

and the weight coefficients AI
ν are given by AI

ν = βI
0(x)v

2
ν,1, ν = 1, . . . , N , where vν,1

is the first component of the eigenvector vν (= [vν,1 . . . vν,n]T) corresponding to the
eigenvalue τ Iν and normalized such that vT

ν vν = 1. The most popular method for solving
this eigenvalue problem is the Golub-Welsch procedure, obtained by a simplification of
the QR algorithm [10].

Unfortunately, the coefficients in the three-term recurrence relation (3.2) are not known.
They are known explicitly only for some narrow classes of orthogonal polynomials, in-
cluding a famous class of the classical orthogonal polynomials (Jacobi, the generalized La-
guerre, and Hermite polynomials). Orthogonal polynomials for which the recursion co-
efficients are not known are known as strongly non–classical polynomials. In the eighties of
the last century Walter Gautschi developed the so-called constructive theory of orthogonal
polynomials on R, including effective algorithms for numerically generating the recurrence
coefficients for non-classical orthogonal polynomials, a detailed stability analysis of such
algorithms as well as the corresponding software and several new applications of orthog-
onal polynomials (in particular see [4], [6], [7], as well as [18, 19, 20]).

On the other side, recent progress in symbolic computation and variable-precision
arithmetic now makes it possible to generate the recurrence coefficients directly by us-
ing the original Chebyshev method of moments, but in a sufficiently high precision arith-
metic. Such an approach allows us to overcome numerical instability in the map, in nota-
tion Kn : R2n → R2n, of the first 2n moments to 2n recursive coefficients,

µ = (µI
0(x), µ

I
1(x), . . . , µ

I
2n−1(x)) '→ ρ = (αI

0(x) . . . ,α
I
n−1(x),β

I
0(x), . . . ,β

I
n−1(x)),

which is a major construction problem. Respectively symbolic/variable-precision soft-
ware for orthogonal polynomials is now available: Gautschi’s package SOPQ in MATLAB
and our MATHEMATICA package OrthogonalPolynomials (see [3] and [21]), which is
downloadable from the web site http://www.mi.sanu.ac.rs/˜gvm/.

The package OrthogonalPolynomials, beside the numerical construction of the re-
currence coefficients, enables also the construction in a symbolic form for a reasonable
value of n. For example, executing the following commands

<< orthogonalPolynomials‘
muI[x_, n_]:=Table[If[k==0,1-x,

2k!/Pi^(k+1) Im[PolyLog[k+1,Exp[I Pi x]]]],{k,0,2n-1}];
mom = muI[x,5];
{alI,beI}=aChebyshevAlgorithm[mom,Algorithm->Symbolic];

we obtain the first five coefficients αI
k(x) and βI

k(x), k = 0, 1, 2, 3, 4, whose graphics are
presented in Figure 2.
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FIGURE 2. The coefficients αI
k(x) (left) and βI

k(x) (right), for k = 0 (black
line), k = 1 (red line), k = 2 (green line), k = 3 (blue line), and k = 4
(magenta line)
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FIGURE 3. The coefficients αR
k (x) (left) and βR

k (x) (right), for k = 0 (black
line), k = 1 (red line), k = 2 (green line), k = 3 (blue line), and k = 4
(magenta line)

Using these coefficients we can calculate Gaussian parameters (nodes and weights) for
each N ≤ n = 5 and each x. For larger values of n and a given x, it is more convenient
to use the option for numerical construction in the function aChebyshevAlgorithm,
instead of symbolic construction. A numerical example is given in Section 5.

In the same way, we can obtain the graphics of the coefficients αR
k (x) and βR

k (x), k =
0, 1, 2, 3, 4, for the polynomials pRk (t;x), k = 0, 1, . . ., orthogonal with respect to the func-
tion t '→ wR(t;x) on R+ (see Figure 3). As we mention before, these polynomials exist
uniquely for 1/2 ≤ x ≤ 1, but for 0 ≤ x < 1/2 their existence is not guaranteed.

4. SOME CLASSES OF POLYNOMIALS ORTHOGONAL ON THE SEMIAXIS AND
CORRESPONDING GAUSSIAN QUADRATURE RULES

There are orthogonal polynomials related to Bernoulli numbers, discovered as early as
Stieltjes [23] and later extended by Touchard [24] and Carlitz [2] (for details see Chihara
[1, pp. 191–193]. Carlitz defined polynomials

Ω(λ)
k (t) =

(−1)k(λ+ 1)kk!

2k
(
1
2

)
k

Fλ
k (1− λ+ 2t),
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where, as usual (λ)k is the well known Pochhammer symbol (or the raised factorial, since
(1)k = k!), defined by

(λ)k =
Γ(λ+ k)

Γ(λ)
= λ(λ+ 1) · · · (λ+ k − 1),

and Fλ
k (t) = 3F2

[
−k, k + 1, 1

2 (1 + λ + t); 1,λ + 1; 1
]

is the so-called Pasternak polyno-
mial. These polynomials are orthogonal (but not positive-definite) on a line in the com-
plex plane L = (c− i∞, c+ i∞), −1 < c < 0, with respect to the complex weight function
z '→ 1/(sin(πz) sinπ(z − λ)). However, taking (λ − 1 + it)/2 instead of t (see [1, p. 192]),
we get the positive-definite monic polynomials

(4.1) G(λ)
k (t) = (−i)kΩ(λ)

k

(
λ− 1 + it

2

)
, −1 < λ < 1,

orthogonal with respect to the weight function

(4.2) t '→ wG(t;λ) =
1

coshπt+ cosπλ
on R.

These polynomials satisfy the three-term recurrence relation

G(λ)
k+1(t) = tG(λ)

k (t)−Bk(λ)G
(λ)
k−1(t), G(λ)

0 (t) = 1, G(λ)
−1 (t) = 0,

where the recurrence coefficients are given by

(4.3) B0(λ) =

∫ +∞

−∞
wG(t;λ) dt =

2λ

sinπλ
, Bk(λ) =

k2(k2 − λ2)

4k2 − 1
, k = 1, 2, . . . .

Remark 4.1. When λ → 0 these polynomials G(λ)
k reduce to orthogonal polynomials with

respect to the logistic weight t '→ 1/(coshπt+ 1) = 2e−πt/(1 + e−πt)2 (see [16, p. 49]).

As we can see, there is a connection between the weights wI(t;x) and wG(t;λ) on R+.
Namely,

wI(t;x) = sin(πx)wG(t; 1− x), 0 ≤ t < +∞.

Using this fact and some results from [11, pp. 102–103] we can get the recurrence coeffi-
cients in an explicit form for polynomials Mk(t;x) orthogonal with respect to the weight
function

(4.4) t '→ wM (t;x) =
sinπx√

t
(
coshπ

√
t− cosπx)

on R+ (0 < x < 1).

Here, sin(πx) is a constant factor and it can be omitted.

Theorem 4.1. The polynomials {Mk(t;x)}+∞
k=0 orthogonal with respect to the weight function

wM (t;x), given by (4.4), satisfy the three-term recurrence relation

(4.5) Mk+1(t;x) = (t− αM
k (x))Mk(t;x)− βM

k (x)Mk−1(t;x), k = 0, 1, . . . ,
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with M0(t;x) = 1 and M−1(t;x) = 0. The recurrence coefficients are

(4.6)






αM
0 (x) =

1

3
x(2− x),

αM
k (x) =

32(k + 1)k3 − 8k2(x− 2)x− 4k(x− 1)2 + (x− 2)x

(4k − 1)(4k + 3)
, k ∈ N;

βM
0 (x) = 2(1− x),

βM
k (x) =

4k2(2k − 1)2
(
4k2 − (1− x)2

) (
(2k − 1)2 − (1− x)2

)

(4k − 3)(4k − 1)2(4k + 1)
, k ∈ N.

In terms of polynomials (4.1), these polynomials can be expressed in the form

(4.7) Mk(t;x) = G(1−x)
2k

(√
t
)
, k = 0, 1, 2, . . . .

Proof. According to (4.1), (4.2) and [11, Theorem 2.2.11] we conclude that G(1−x)
2k

(√
t
)

are
monic polynomials orthogonal with respect to the weight function t '→ wG(

√
t; 1− x)/

√
t

on R+, so that (4.7) holds.
Now, using [11, Theorem 2.2.12] we obtain the coefficients in the three-term recurrence

relation (4.8). As usual, we put (cf. [11, p. 97])

βM
0 (x) =

∫ +∞

0
wM (t;x) dt = 2(1− x).

Thus, we have αM
0 (x) = B1(1− x) = x(2− x)/3, as well as

αM
k (x) = B2k(1− x) +B2k+1(1− x) and βM

k (x) = B2k−1(1− x)B2k(1− x),

where the coefficients Bk are given in (4.3). These formulas give the desired results. !

Remark 4.2. A few first polynomials Mk(t;x) are

M0(t;x) = 1,

M1(t;x) = t+
1

3
x(x− 2),

M2(t;x) = t2 +
2

7

(
3x2 − 6x− 10

)
t+

3

35
x
(
x2 − 4

)
(x− 4) ,

M3(t;x) = t3 +
5

11

(
3x2 − 6x− 28

)
t2 +

1

11

(
5x4 − 20x3 − 80x2 + 200x+ 224

)
t

+
5

231
x
(
x2 − 4

) (
x2 − 16

)
(x− 6) ,

M4(t;x) = t4 +
28

15

(
x2 − 2x− 18

)
t3 +

14

39

(
3x4 − 12x3 − 100x2 + 224x+ 648

)
t2

+
4

2145

(
105x6 − 630x5 − 4830x4 + 23520x3 + 54824x2 − 158368x− 146112

)
t

+
7

1287
x
(
x2 − 4

) (
x2 − 16

) (
x2 − 36

)
(x− 8) ,

etc.

As an additional result, which will not be of interest in our summation of trigonometric
series, we can prove the following statement:
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Theorem 4.2. The polynomials {Nk(t;x)}+∞
k=0 orthogonal with respect to the weight function

t '→ wN (t;x) =
sinπx

√
t

coshπ
√
t− cosπx

on R+ (0 < x < 1)

satisfy the three-term recurrence relation

(4.8) Nk+1(t;x) = (t− αN
k (x))Nk(t;x)− βN

k (x)Nk−1(t;x), k = 0, 1, . . . ,

with N0(t;x) = 1 and N−1(t;x) = 0. The recurrence coefficients are

αN
0 (x) =

1

5

(
−3x2 + 6x+ 4

)
,

αN
k (x) =

32(k + 3)k3 − 8k2
(
x2 − 2x− 12

)
− 12k(x− 3)(x+ 1)− 3x2 + 6x+ 4

(4k + 1)(4k + 5)
,

βN
k (x) =

4k2(2k + 1)2
(
4k2 − (1− x)2

) (
(2k + 1)2 − (1− x)2

)

(4k − 1)(4k + 1)2(4k + 3)

for each k ∈ N. In terms of polynomials (4.1), the polynomials Nk(t;x) can be expressed in the
form Nk(t;x) = G(1−x)

2k+1

(√
t
)
/
√
t for each k ∈ N0.

The coefficient βN
0 (x) may be arbitrary, because it multiplies N−1(t;x) = 0, but usually,

it is appropriate to take

βN
0 (x) =

∫ +∞

0
wN (t;x) dt =

8

π3
Im
{
Li3(e

iπx)
}
.

In the sequel we consider the Gaussian quadrature formula with respect to the weight
function wM (t;x) on R+,

(4.9)
∫ +∞

0
g(t)wM (t;x) dt =

N∑

ν=1

A(N)
ν (x)g

(
τ (N)
ν (x)

)
+RN (g;x),

where RN (g;x) is the corresponding remainder term (g ∈ P2n−1). As we mentioned in the
previous section, the parameters of the quadrature formula (4.9), the nodes τ (N)

ν (x) and
the weight coefficients A(N)

ν (x), can be calculated very easy from the symmetric tridiag-
onal Jacobi matrix JN (wM ( · ;x)) by the Golub-Welsch procedure. It is also implemented
in the package OrthogonalPolynomials by the function aGaussianNodesWeights.
Taking the recursion coefficients αM

k (x) and βM
k (x), k = 0, 1, . . . , n − 1, defined before in

(4.6), we can calculate nodes and weights in (4.9) for a given x and any N ≤ n.
For calculating values of the series S(x), presented in the form

(4.10) S(x) =
+∞∑

k=1

ak sin kπx =
π

4

∫ +∞

0

sinπx√
t
(
coshπ

√
t− cosπx

)f
(
π
√
t
)
dt,

we use the quadrature rule (4.9). Thus, we approximate S(x) by the quadrature sum
QN (f ;x), where

(4.11) QN (f ;x) =
π

4

N∑

ν=1

A(N)
ν (x)f

(
ξ(N)
ν (x)

)
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and ξ(N)
ν (x) = π

√
τ (N)
ν (x) , ν = 1, . . . , N . The corresponding (relative) error is given by

(4.12) EN (x) =

∣∣∣∣
QN (f ;x)− S(x)

S(x)

∣∣∣∣ .

5. NUMERICAL EXAMPLES

Through two examples we illustrate the efficiency of our methods. All computations
were performed in Mathematica, Ver. 12, on MacBook Pro (15-inch, 2017), OS X 10.14.6.

Example 5.1. We consider the following series

C(x) =
+∞∑

k=1

k

4k2 − 1
cos kπx and S(x) =

+∞∑

k=1

k

4k2 − 1
sin kπx.

The sum of the first series is given by (cf. [22, p. 731])

C(x) = −1

4
− 1

4
cos

πx

2
log
∣∣∣tan

πx

4

∣∣∣,

while for the sinus series, one can find that S(x) = (π/8) cos(πx/2).
Since

f(t) = L−1

[
s

4s2 − 1

]
=

1

4
cosh

t

2
,

using (2.2) and the corresponding Gaussian rules with respect to the weights wR(t;x) and
wI(t;x), we have

C(x) =
π

8

N∑

ν=1

AR
ν cosh

(πτRν
2

)
+RR

N (x) and S(x) =
π

8

N∑

ν=1

AI
ν cosh

(πτ Iν
2

)
+RI

N (x),

respectively.

TABLE 1. Relative errors EI
N (x) and ER

N (x), when N = 5, 10, 15, 20 and
x = 0.1(0.1)0.7

rel. err. x = 0.1 x = 0.2 x = 0.3 x = 0.4 x = 0.5 x = 0.6 x = 0.7

EI
5 (x) 1.10(−5) 2.03(−5) 2.84(−5) 3.54(−5) 4.13(−5) 4.62(−5) 5.00(−5)

EI
10(x) 2.40(−10) 4.51(−10) 6.39(−10) 8.06(−10) 1.10(−15) 1.07(−9) 1.16(−9)

EI
15(x) 4.78(−15) 9.07(−15) 1.29(−14) 1.64(−14) 1.10(−15) 2.19(−14) 2.39(−14)

EI
20(x) 9.14(−20) 1.74(−19) 2.50(−19) 3.17(−19) 1.88(−15) 4.25(−19) 4.64(−19)

ER
5 (x) 2.88(−5) 6.78(−5) 9.34(−5) 2.67(−4) 1.09(−8) 2.57(−5) 3.58(−5)

ER
10(x) 6.40(−10) 1.15(−9) 9.49(−10) 2.97(−9) 5.16(−17) 7.74(−10) 8.14(−10)

ER
15(x) 1.22(−14) 2.25(−14) 4.91(−14) 8.44(−14) 2.23(−25) 1.16(−14) 1.66(−14)

ER
20(x) 5.86(−19) 4.23(−19) 8.73(−19) 1.33(−18) 9.12(−34) 2.23(−19) 3.21(−19)

The relative errors in these quadrature sums are given by

ER
N (x) =

∣∣∣∣
RR

N (x)

C(x)

∣∣∣∣ =

∣∣∣∣∣
1

C(x)

(
π

8

N∑

ν=1

AR
ν cosh

(πτRν
2

)
− C(x)

)∣∣∣∣∣

and

EI
N (x) =

∣∣∣∣
RI

N (x)

S(x)

∣∣∣∣ =

∣∣∣∣∣
1

S(x)

(
π

8

N∑

ν=1

AI
ν cosh

(πτ Iν
2

)
− S(x)

)∣∣∣∣∣ .



Quadrature Formulas of Gaussian Type for Fast Summation of Trigonometric Series 179

For getting recurrence parameters in the three-term recurrence relations for the poly-
nomials pRk (t;x) and pIk(t;x), k = 0, 1, . . . , we apply the procedure described Section 3. In
order to save space the relative errors are given only at the points x = j/10, j = 1, . . . , 7,
for N = 5, 10, 15 and 20 nodes in the Gaussian rules (see Table 1). Numbers in parenthe-
ses indicate the decimal exponents, e.g., 1.10(−5) means 1.10 × 10−5. For N = 5 we use
the symbolic construction of recurrence coefficients, while for N > 5 we use numerical
construction with the WorkingPrecision -> 50, with repetitions for each x.

As we mention before, the existence of the orthogonal polynomials pRk (t;x), as well
as the corresponding Gaussian formulas, are not guaranteed for 0 ≤ x < 1/2. How-
ever, the obtained numerical results of ER

N (x), N = 5(5)20, for selected values of x ∈
{0.1, 0.2, 0.3, 0.4} show the existence of such quadrature rules, as well as a fast conver-
gence.

Example 5.2. Now we consider the series

S(x) =
+∞∑

k=1

sin kπx

(1 + k2)1/2
, 0 < x < 1.

With Sn(x) we denote the n-th partial sum, and by en(x) its relative error, i.e.,

en(x) =

∣∣∣∣
Sn(x)− S(x)

S(x)

∣∣∣∣ .

The partial sums Sn(x) are displayed in Figure 4 for n = 5, 10, and 50. As we can observe
their convergence is very slow.

0.2 0.4 0.6 0.8 1.0
x

0.5

1.0

1.5

Sn(x)

FIGURE 4. Partial sums Sn(x) for n = 5 (brown line), n = 10 (orange
line), and n = 50 (magenta line)

Now we apply our method for summing trigonometric series. Using Lemma 2.2, we
can identify F (s) = (1 + s2)−1/2 and f(t) = J0(t), where J0 is the Bessel function. Then,
according to (4.10) and (4.11), we have

S(x) =
+∞∑

k=1

sin kπx

(1 + k2)1/2
=

π

4

∫ +∞

0

sinπx√
t
(
coshπ

√
t− cosπx

)J0
(
π
√
t
)
dt

≈ π

4

N∑

ν=1

A(N)
ν (x)J0

(
ξ(N)
ν (x)

)
.
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This quadrature process converges fast, because

t '→ J0
(
π
√
t
)
=

+∞∑

m=0

(−1)m

(m!)2

(π
2

)2m
tm

is an entire function.

0 0.2 0.4 0.6 0.8 1
10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100 ! = !"

! = #"

" = #

" = !"

" = !#

" = $"

FIGURE 5. The relative errors en(x) in the partial sums Sn(x) for n = 10
and n = 50 and the relative errors EN (x) in the quadrature sums QN (f ;x)
for N = 5(5)20

The relative errors EN (x) of quadrature approximation QN (f ;x) are given by (4.12),
and presented in Figure 5 in log-scale for N = 5, 10, 15, and 20. Indeed, the convergence
of QN (f ;x) is fast. As we can see, the five-point Gaussian formula gives three to five exact
decimal digits (depending of x) of the sum S(x), and the quadrature formula with n = 20
nodes gives an accuracy to more than 14 decimal digits.

TABLE 2. Relative errors en(x) and EN (x), when n = 100 and 500 and
N = 5, 10, 20, 50, for some selected values of x in (0, 1)

x e100(x) e500(x) E5(x) E10(x) E20(x) E50(x)
0.1 2.49(−2) 4.99(−3) 4.96(−5) 1.03(−8) 4.72(−16) 4.78(−38)
0.2 1.51(−2) 3.03(−3) 1.13(−4) 2.39(−8) 1.10(−15) 1.13(−37)
0.3 1.12(−2) 2.41(−3) 1.88(−4) 4.03(−8) 1.88(−15) 1.93(−37)
0.4 1.06(−2) 2.12(−3) 2.70(−4) 5.87(−8) 2.76(−15) 2.84(−37)
0.5 9.87(−3) 1.97(−3) 3.54(−4) 7.80(−8) 3.68(−15) 3.81(−37)
0.6 9.44(−3) 1.89(−3) 4.35(−4) 9.66(−8) 4.59(−15) 4.76(−37)
0.7 9.18(−3) 1.84(−3) 5.06(−4) 1.13(−7) 5.39(−15) 5.61(−37)
0.8 9.04(−3) 1.81(−3) 5.61(−4) 1.26(−7) 6.03(−15) 6.28(−37)
0.9 8.96(−3) 1.79(−3) 5.96(−4) 1.34(−7) 6.44(−15) 6.71(−37)

Also, the relative errors en(x) in the partial sums Sn(x) for n = 10 and n = 50 are
shown in the same figure. Numerical values of the errors en(x) in the partial sums Sn(x)
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with n = 100 and n = 500 terms are given in the second and third column of Table 2 for
equidistant values of x (= 0.1, 0.2, . . . , 0.9). We note that the number of exact digits in
partial sums does not exceed three.

The numerical values of the corresponding relative errors EN (x) in the quadrature
approximations QN (f ;x), with N = 5, 10, 20, 50 nodes, at the same values of x are given in
the other columns of the same table. We note that the quadrature approximation Q50(f ;x)
has about 37 exact decimal digits! As an exact value of S(x) we use one obtained by the
Gaussian quadrature formula with N = 100 nodes.

6. CONCLUSION

In conclusion we can say that the method presented in Section 3 is general for the both
series C(x) and S(x), but for the sinus-series S(x) the method presented in 4 is much
simpler in applications, because in that case we have the recurrence relation (4.8), with
recurrence coefficients in the explicit form (4.6).
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