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Abstract. A survey on summation/integration methods for computation of slowly
convergent series is presented. Methods are based on some transformations of se-
ries to integrals, with respect to certain nonclassical weight functions over R+,
and an application of suitable quadratures of Gaussian type for numerical cal-
culating of such integrals with a high accuracy. In particular, applications to
some series with irrational terms are considered. Several numerical examples are
included in order to illustrate the efficiency of these methods.
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1. Introduction

In this paper we give an account on the so-called summation/integration methods
for fast summation of slowly convergent series and present their application, including
series with irrational terms. We consider convergent series of the form

+∞∑
k=1

(±1)kf(k), (1.1)

with a given function z 7→ f(z), with certain properties with respect to the variable
z. Here, the function f can depend on several other parameters, e.g., f(z;x, y, . . .),
so that these summation processes can be applied also to some classes of functional
series, not only to numerical series. Regarding the properties of the function f is often
appropriate to extract a finite number of first terms in (1.1), e.g.,

+∞∑
k=1

(±1)kf(k) =

m−1∑
k=1

(±1)kf(k) +

+∞∑
k=m

(±1)kf(k), (1.2)

and then apply the procedure to the series starting with the index k = m.
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The basic idea of these methods is to transform the second series in (1.2) (or
directly the series (1.1) if m = 1) to an integral with respect to certain weight function
w on R+, and then to approximate this weighted integral by a quadrature sum,

+∞∑
k=m

(±1)kf(k) =

∫ +∞

0

g(t)w(t) dt ≈
N∑
ν=1

Aνg(τν), (1.3)

where the function g is connected with the original function f in some way.
Thus, such summation/integration methods need two steps: (1) transformation

“sum to integral”; (2) construction of the quadrature rules∫ +∞

0

g(t)w(t) dt =

N∑
ν=1

Aνg(τν) +RN (g;w), (1.4)

with respect to the weight function w.
In our approach in (1.4) we take the Gaussian quadrature formulas, where

the nodes τν ≡ τ
(n)
ν and the weight coefficients (Christoffel numbers) Aν ≡ A

(n)
ν ,

ν = 1, . . . , N , can be determined by the well-known Golub-Welsch algorithm [6] if we
know the coefficients in the three-term recurrence relation of the corresponding poly-
nomials orthogonal with respect to the weight function w. Usually the weight function
w is strong non-classical and those recursive coefficients must be constructed numer-
ically. Basic procedures for generating these coefficients are the method of (modified)
moments, the discretized Stieltjes–Gautschi procedure, and the Lanczos algorithm and
they play a central role in the so-called constructive theory of orthogonal polynomials,
which was developed by Walter Gautschi in the eighties on the last century (cf. [2]).
The problem is very sensitive with respect to small perturbations in the data. The
basic references are [2], [4], [8], and [10].

For the construction of Gaussian quadrature rules (1.4) with respect to the strong
non-classical weight functions w on R+ today we use a recent progress in symbolic
computation and variable-precision arithmetic, as well as our Mathematica pack-
age OrthogonalPolynomials (see [1], [12]). The package is downloadable from Web
Site: http://www.mi.sanu.ac.rs/ gvm/. The approach enables us to overcome the
numerical instability in generating coefficients of the three-term recurrence relation
for the corresponding orthogonal polynomials with respect to the weight function w
(cf. [2], [4], [8], [10]). In this construction we need only a procedure for the symbolic
calculation of moments or their calculation in variable-precision arithmetic.

In the sequel, we mention only two methods for such kind of transformations:
Laplace transform method and Contour integration over a rectangle, including a sim-
ilar procedure for series with irrational terms. Several numerical examples are given
in order to illustrate the efficiency of these methods.

2. Laplace transform method

In this section we present the basic idea of the Laplace transform method and
give some considerations about applicability of this method. For details and several
examples see [5], [8, pp. 398–401] and [11].
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Suppose that the general term of series is expressible in terms of the Laplace
transform, or its derivative, of a known function.

Consider only the case when

f(s) = L[g(t)] =

∫ +∞

0

e−stg(t) dt, Re s ≥ 1.

Then
+∞∑
k=1

(±1)kf(k) =

+∞∑
k=1

(±1)k
∫ +∞

0

e−ktg(t) dt

=

∫ +∞

0

(
+∞∑
k=1

(
±e−t

)k)
g(t) dt,

i.e.,
+∞∑
k=1

(±1)kf(k) =

∫ +∞

0

±e−t

1∓ e−t
g(t) dt = ±

∫ +∞

0

1

et ∓ 1
g(t) dt.

In this way, the summation of series (1.1) is transformed to integration problems

T =

+∞∑
k=1

f(k) =

∫ +∞

0

e−t
g(t)

1− e−t
dt =

∫ +∞

0

t

et − 1

g(t)

t
dt (2.1)

and

S =

+∞∑
k=1

(−1)kf(k) =

∫ +∞

0

1

et + 1
(−g(t)) dt. (2.2)

The first integral representation (2.1) for the series T suggests an application of the
Gauss-Laguerre quadrature rule (with respect to the exponential weight w(t) = e−t)
to the function

g(t)

1− e−t
=

t

1− e−t
g(t)

t
,

supposing that g(t)/t is a smooth function. However, the convergence of these Gauss-
Laguerre rules can be very slow, according to the presence of poles on the imaginary
axis at the points 2kπi (k = ±1,±2, . . .).
Therefore, a better choice is the second integral representation in (2.1), with the Bose-
Einstein weight function ε(t) = t/(et − 1) on R+. Supposing again that t 7→ g(t)/t is
a smooth function, the corresponding Gauss-Bose-Einstein quadrature formula con-
verges rapidly.

In the case of “alternating” series, the obtained integral representation (2.2)
needs a construction of Gaussian quadrature rule with respect to the Fermi-Dirac
weight function ϕ(t) = 1/(et + 1) on R+.

Thus, for computing series T and S we need the Gauss-Bose-Einstein quadrature
rule ∫ +∞

0

ε(t)u(t) dt =

N∑
k=1

Aku(ξk) +RN (u; ε) (2.3)
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and the Gauss-Fermi-Dirac quadrature rule∫ +∞

0

ϕ(t)u(t) dt =

N∑
k=1

Bku(ηk) +RN (u;ϕ), (2.4)

respectively, whose parameters, nodes (ξk and ηk) and weight coefficients (Ak
and Bk), for each N ≤ n, can be calculated by the Mathematica package
OrthogonalPolynomials, starting from the corresponding moments of the weight

functions, µk(ε) =
∫ +∞

0
xkε(t) dt and µk(ϕ) =

∫ +∞
0

xkϕ(t) dt, k = 0, 1, . . . , 2n − 1.
The convergence of the quadrature formulas (2.3) and (2.4) is fast for smooth func-
tions t 7→ u(t) (u(t) = g(t)/t and g(t)), so that low-order Gaussian rules provide one
possible summation procedure.

However, if g is no longer smooth function, for example, if its behaviour as t→ 0
is such that g(t) = tγh(t), where 0 < γ < 1 and h(0) is a constant, then the previous
formulas for series T and S should be reduced to the following forms

T =

∫ +∞

0

tγ

et − 1
h(t) dt (2.5)

and

S =

∫ +∞

0

tγ

et + 1
(−h(t)) dt, (2.6)

respectively.
Introducing the weight functions from (2.5) and (2.6) as εγ(t) and ϕγ(t), respec-

tively, then their moments are

µk(εγ) = ζ(k + γ + 1)Γ(k + γ + 1), k ≥ 0, (2.7)

and

µk(ϕγ) =
(
1− 2−k−γ

)
ζ(k + γ + 1)Γ(k + γ + 1)

=
(
1− 2−k−γ

)
µk(εγ), k ≥ 0, (2.8)

where Γ(z) is gamma function and ζ(z) is the Riemann zeta function.
Evidently, the moments for the Bose-Einstein weight are

µk(ε) = µk(ε1) = (k + 1)!ζ(k + 2), k ≥ 0,

while for the Fermi-Dirac weight these moments are µk(ϕ) = µk(ϕ0), except k = 0,
i.e.,

µk(ϕ) =

{
log 2, k = 0,

(1− 2−k)k!ζ(k + 1), k > 0.

Example 2.1. For the series
+∞∑
k=1

(±1)k

k
√
k + 1

we put

f(s) =
1

s
√
s+ 1

=

∫ +∞

0

e−sterf(
√
t) dt, Re s > 0,
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i.e., g(t) = erf(
√
t), where erf(z) is the error function (the integral of the Gaussian

distribution), given by

erf(z) =
2√
π

∫ z

0

e−t
2

dt.

According to the first integral representation in (2.1), we can apply the Gauss-
Laguerre quadrature rule

T =

+∞∑
k=1

1

k
√
k + 1

=

∫ +∞

0

e−tΨ(t) dt =

N∑
ν=1

ALνΨ(τLν ) +RLN (Ψ), (2.9)

where

Ψ(t) =
erf(
√
t)

1− e−t
=

1√
πt

(
2 +

1

3
t+

1

30
t2 − 1

315
t3
)

+O
(
t7/2

)
. (2.10)

Otherwise, the exact value of T is

T = 2.184009470267851952894734157852949070443908406263229420200 . . .

(see Example 3.1).

Here we have an example in which the function g is no longer smooth, having a
square root singularity at t = 0. Relative errors in the Gauss-Laguerre approximations

QLag
N =

N∑
ν=1

ALνΨ(τLν )

are given in Table 1. Numbers in parentheses indicate decimal exponents, e.g. 5.01(−3)
means 5.03× 10−3.

Table 1. Relative errors in different quadrature sums in Example 2.1

N QLag
N QBE

N QgenBE
N

10 1.40(−1) 1.57(−1) 6.58(−11)
20 9.98(−2) 1.09(−1) 1.65(−20)
30 8.17(−2) 8.76(−2) 4.46(−30)
40 7.09(−2) 7.53(−2) 1.23(−39)
50 6.34(−2) 6.70(−2) 3.45(−49)

Another way for calculating the value of T is to apply the Gauss-Bose-Einstein
quadrature rule (2.3) to the last integral in (2.1), where u(t) = erf(

√
t)/t. The cor-

responding relative errors in the Bose-Einstein approximations QBE
N are presented in

the same table.

As we can see, these two quadrature sums are quite inefficient. In order to get a
quadrature sequence with a fast convergence, we note first that

erf(
√
t) =

√
t

π

(
2− 2

3
t+

1

5
t2 − 1

21
t3
)

+O
(
t9/2

)
.



364 Gradimir V. Milovanović

This means that we should take the integral (2.1) in the form

T =

+∞∑
k=1

1

k
√
k + 1

=

∫ +∞

0

√
t

et − 1

erf(
√
t)√
t

dt,

and then apply the Gaussian rule with respect to the generalized Bose-Einstein weight
t−1/2ε(t) =

√
t/(et − 1) (see [5] and [3]). In the last column of Table 1 we give the

corresponding quadrature approximations QgenBE
N . The fast convergence of QgenBE

N is
evident!

3. Method of contour integration over a rectangle

As we have seen in the previous section, the function g in (1.3) is connected
with the original function f over its Laplace transform, while the weight functions
are ε(t) = t/(et − 1) and ϕ(t) = 1/(et + 1) (or their generalized forms).

In 1994 we developed a method based on a contour integration over a rectangle
Γ in the complex plane [9], in which the weight w in (1.3) is one of the hyperbolic
functions

w1(t) =
1

cosh2 t
and w2(t) =

sinh t

cosh2 t
, (3.1)

and the function g can be expressed in terms of the indefinite integral F of f chosen
so as to satisfy the following decay properties: (see [7], [9], [8]):

(C1) F is a holomorphic function in the region{
z ∈ C

∣∣ Re z ≥ α, m− 1 < α < m
}
, (3.2)

where m,n ∈ Z (m < n ≤ +∞);

(C2) lim
|t|→+∞

e−c|t|F (x+ it/π) = 0, uniformly for x ≥ α;

(C3) lim
x→+∞

∫
R

e−c|t|
∣∣F (x+ it/π)

∣∣ dt = 0,

where c = 2 (or c = 1 for “alternating” series).
Taking Γ = ∂G and G =

{
z ∈ C : α ≤ Re z ≤ β, |Im z| ≤ δ/π

}
with m − 1 <

α < m, n < β < n+ 1, and δ > 0, we proved in [9] (see also [8]) that

Tm,n =

n∑
k=m

f(k) =
1

2πi

∮
Γ

( π

sinπz

)2

F (z) dz (3.3)

and

Sm,n =

n∑
k=m

(−1)kf(k) =
1

2πi

∮
Γ

( π

sinπz

)2

cosπz F (z) dz, (3.4)

where F is an integral of f .
Setting α = m− 1/2, β = n+ 1/2, and letting δ → +∞, under conditions (C1),

(C2), and (C3), the previous integrals over Γ reduce to the weighted integrals over
(0,+∞),

+∞∑
k=m

f(k) =

∫ +∞

0

w1(t)Φ

(
m− 1

2
,
t

π

)
dt (3.5)
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and
+∞∑
k=m

(−1)kf(k) = (−1)m
∫ +∞

0

w2(t)Ψ

(
m− 1

2
,
t

π

)
dt, (3.6)

where the weight functions w1 and w2 are given by (3.1), and Φ and Ψ by

Φ(x, y) = −1

2
[F (x+ iy) + F (x− iy)] = −ReF (x+ iy)

and

Ψ(x, y) =
1

2i
[F (x+ iy)− F (x− iy)] = ImF (x+ iy).

The integrals (3.5) and (3.6) can be calculated by using the N -point Gaussian quadra-
tures with respect to the hyperbolic weights w1 and w2,∫ +∞

0

g(t)ws(t) dt =

N∑
ν=1

ANν,sg(τNν,s) +RN,s(g) (s = 1, 2), (3.7)

with weights ANν,s and nodes τNν,s, ν = 1, . . . , N (s = 1, 2). Such quadratures are exact
for all polynomials of degree at most 2N − 1 (g ∈ P2N−1) and their numerical con-
struction is given in [9] and [11]. For example, for constructing Gaussian quadratures
for s = 1 and N ≤ 50, we use the first 2N = 100 moments (in symbolic form) and
then we construct the recursion coefficients in the three-term recurrence relation for
orthogonal polynomials with respect to the hyperbolic weight function w1 on (0,+∞).
The following procedure in the Mathematica package OrthogonalPolynomials

provides Gaussian quadratures (with Precision->60) for each N = 5(5)50 (i.e.,
{n,5,50,5}):
<<orthogonalPolynomials‘

f[s_]:=1/(s(s+1)^(1/2));

F[z_]:=Log[(Sqrt[1+z]-1)/(1+Sqrt[1+z])];

Phi[x_,y_]:=-Re[F[x+I y]]; w1[x_]:=1/Cosh[x]^2;

mom=Join[{1,Log[2]},Table[(2^(k-1)-1)k!/4^(k-1)Zeta[k],

{k,2,99}]];

{al,be}=aChebyshevAlgorithm[mom,WorkingPrecision->100];

(* {al1,be1}=aChebyshevAlgorithm[mom,WorkingPrecision->130];

N[Max[Abs[al/al1-1],Abs[be/be1-1]],3] *)

pq[n_]:=aGaussianNodesWeights[n,al,be,WorkingPrecision->65,

Precision->60];

nw=Table[pq[n],{n,5,50,5}];

The part between the comment signs ((* and *)) is used only to determine the
maximal relative error in the recursive coefficients, which is, in our case, 4.16×10−63.
Therefore, the precision of Gaussian parameters (nodes and weights) is at least 60
decimal digits!

Example 3.1. We again consider the series from Example 2.1.

Here, f(z) = 1/(z
√

1 + z), and F (z) = log
(√

z+1−1√
z+1+1

)
, the integration constant

being zero on account of the condition (C3).
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Thus, using the Gaussian quadrature (3.7) (for s = 1), we approximate the series
T by

T =

+∞∑
k=1

1

k
√
k + 1

≈ QN,m =

m−1∑
k=1

1

k
√
k + 1

+

N∑
ν=1

ANν,1Φ

(
m− 1

2
,
τNν,1
π

)
.

For m = 1 the first sum on the right side is empty. The corresponding code in
Mathematica is:

Q[m_]:=If[m==1,0,Sum[f[j],{j,1,m-1}]] +

Table[nw[[k]][[2]].Phi[m-1/2,nw[[k]][[1]]/Pi],{k,1,10}];

The quadrature sums QN,1 and QN,3 are presented in Table 2, and QN,15 in
Table 3. Digits in error are underlined.

Table 2. Quadrature sums QN,m for m = 1 and m = 3

N QN,1 QN,3
5 2.18399979 2.184009469

10 2.184009183 2.1840094702678658
15 2.18400947764 2.1840094702678519550
20 2.18400946996 2.18400947026785195289639
25 2.184009470281 2.184009470267851952894739799
30 2.18400947026793 2.18400947026785195289473417553
35 2.18400947026770 2.184009470267851952894734157762
40 2.1840094702678697 2.184009470267851952894734157852089

Table 3. Quadrature sums QN,15

N QN,15

5 2.18400947026785198767
10 2.1840094702678519528947341581999
15 2.1840094702678519528947341578529490706127
20 2.1840094702678519528947341578529490704439084170
25 2.184009470267851952894734157852949070443908406263233
30 2.184009470267851952894734157852949070443908406263229420199

As we can see, the sequence of quadrature sums {QN,m}N converges faster for
larger m. This rapidly increasing of convergence of the summation process as m
increases in due to the logarithmic singularities ±iπ

(
m− 1

2

)
of the function

z 7→ Φ

(
m− 1

2
,
z

π

)
, z = t+ is,

moving away from the real line. In Figure 1 we present the function

(t, s) 7→
∣∣∣∣Φ(m− 1

2
,

1

π
(t+ is)

)∣∣∣∣,
when m = 1 and m = 5.



On summation/integration methods for slowly convergent series 367

Figure 1. The function (t, s) 7→ |Φ
(
m− 1

2 ,
1
π (t+ is)

)
| for m = 1 (top) and m = 5

(bottom)
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For example, for m = 15 we obtained the same values of QN,15 for N = 40(5)50
and it can be taken as an exact value of the sum,

T = 2.184009470267851952894734157852949070443908406263229420200251.

for calculating the relative errors,

errN,m =

∣∣∣∣QN,m − TT

∣∣∣∣,
in other quadrature sums QN,m for smaller m < 15. These relative errors for some
selected m are presented in Table 4.

Table 4. Relative errors errN,m in the quadrature sums QN,m

N m = 1 m = 2 m = 3 m = 5 m = 10
5 4.43(−6) 3.59(−9) 4.65(−10) 8.05(−13) 8.28(−16)

10 1.31(−7) 5.02(−12) 6.34(−15) 6.25(−19) 8.30(−25)
15 3.38(−9) 6.19(−15) 9.81(−19) 6.88(−24) 2.77(−32)
20 1.39(−10) 1.31(−17) 7.59(−22) 1.14(−28) 2.84(−38)
25 6.15(−12) 2.57(−19) 2.58(−24) 1.15(−31) 6.01(−44)
30 3.73(−14) 4.17(−21) 8.10(−27) 6.13(−35) 1.09(−48)

4. Series with irrational terms

In this section we consider some important series of the form

U±(a, ν) =

+∞∑
k=1

(±1)k−1

(k2 + a2)ν+1/2
.

In 1916 Kapteyn (see [14, p. 386]) proved the formula

U+(a, ν) =

+∞∑
k=1

1

(k2 + a2)ν+1/2
=

√
π

(2a)νΓ(ν + 1/2)

∫ +∞

0

tν

et − 1
Jν(at) dt

which is valid when Re ν > 0 and | Im a| < 1. Here, Jν is the Bessel function of the
order ν, defined by

Jν(t) =

+∞∑
k=0

(−1)k

k!Γ(k + ν + 1)

(
t

2

)2k+ν

. (4.1)

Since for F (p) = 1/(p2 + a2)ν+1/2
(
Re ν > −1/2, Re p > | Im a|

)
, using the

method of Laplace transform, we find the original function

f(t) =

√
π

(2a)νΓ(ν + 1/2)
tνJν(at),
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as well as

U−(a, ν) =

+∞∑
k=1

(−1)k−1

(k2 + a2)ν+1/2
=

√
π

(2a)νΓ(ν + 1/2)

∫ +∞

0

tν

et + 1
Jν(at) dt.

Thus, this method leads to an integration of the Bessel function t 7→ Jν(at) with
Einstein’s weight ε(t) or Fermi’s weight ϕ(t). For some special values of ν, we can use
also quadratures with respect to the weights t±1/2ε(t) and t±1/2ϕ(t) (see [5] and [3]).

In the following example we show how to compute U±(a, ν), 0 < ν < 1, with a
high accuracy.

Example 4.1. According to the expansion of the Bessel function (4.1), we can consider
U±(a, ν) in the form (as the corresponding series in Example 2.1)

U±(a, ν) =

+∞∑
k=1

(±1)k−1

(k2 + a2)ν+1/2
=

√
π

2νΓ(ν + 1/2)

∫ +∞

0

t2ν

et ∓ 1

Jν(at)

(at)ν
dt,

and then construct Gaussian quadratures with respect to the (generalized) Einstein
and Fermi weights ε2ν(t) and ϕ2ν(t) on (0,+∞), respectively. Their moments are
given by (2.7) and (2.8), respectively, where γ = 2ν.

These series are slowly convergent for small ν. For example, for the remainder
Rn(a, ν) of the series U+(a, ν), we have

Rn(a, ν) =

+∞∑
k=n+1

1

(k2 + a2)ν+1/2
<

∫ +∞

n

dx

(x2 + a2)ν+1/2
.

For n� a the right hand side in the previous inequality can be simplified as∫ +∞

n

dx

x2ν+1
=

1

2νn2ν
,

so that we can roughly conclude that for a small ε, the remainder Rn(a, ν) < ε if
n > nε =

[
(2νε)−1/(2ν)

]
. The values of nε for ε = 10−3 and some given values of ν

are presented in Table 5.

Table 5. The values of nε for ε = 10−3 and some values of ν

ν 5× 10−1 10−1 10−2 10−3 10−4

nε 103 3× 1018 9× 10234 3× 102849 7× 1033494

Using the Mathematica package OrthogonalPolynomials and e.g. the first 100
moments µk(ε2ν), k = 0, 1, . . . , 99, in the symbolic form (2.7), we can construct for a
given ν = 10−4 the first 50 recursive coefficients in the three-term recurrence relation
with the maximal relative errors of about 6.09×10−53 if we use the WorkingPrecision
-> 95 in the Chebyshev method of moments, implemented in this package by the
command
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<<orthogonalPolynomials‘

moments=Table[Gamma[1+k+2v]Zeta[1+k+2v], {k,0,99}];

mv=moments/.{v -> 1/10000};

{alfaE,betaE}=aChebyshevAlgorithm[mv,WorkingPrecision->95];

These coefficients enables us to construct the corresponding Gaussian rules for
any N ≤ 50, ∫ +∞

0

t2ν

et ∓ 1
u(t) dt ≈ QN (u; ε2ν) =

N∑
k=1

Aku(ξk), (4.2)

where ξk and Ak, k = 1, . . . , N , are nodes and weight coefficients. Corresponding
Gaussian approximations QN (u; ε2ν), for

u(t) = u(t; a, ν) =

√
π

2νΓ(ν + 1/2)
· Jν(at)

(at)ν
, (4.3)

a = 1/4 and ν = 10−4, are presented in Table 6. Digits in error are underlined. In the
same table we give also the relative errors errN (a, ν) in these approximations, taking
Q50(u; ε2ν) as the exact value of the sum.

Table 6. Gaussian approximations QN (u; ε2ν) and relative errors
errN (a, ν) for u(t) given by (4.3)

N QN (u; ε2ν) errN (a, ν)

5 5000.541106014918 8.29(−14)
10 5000.54110601450371233515 1.53(−22)
15 5000.541106014503712334387545429320 1.29(−31)
20 5000.541106014503712334387545429967462497083 3.71(−41)
25 5000.5411060145037123343875454299674624972689174559 1.11(−49)

The relative errors errN (a, ν) for 0 < a < 1 and ν = 10−4 in log-scale are
displayed in Figure 2 for N = 5(5)15 nodes in the quadrature formula (4.2).

Remark 4.2. When a → 0 the function u(t), defined by (4.3), tends to the constant
2−v/Γ(v + 1). Then the quadrature sums in (4.2) give the same value for each N ,

U+(0, 10−4) = 5000.5772302278768195938031666553522327421800847082,

which is, in fact, an approximative value of the well-known ζ function at the point
2ν + 1 = 1.0002.
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0.0 0.2 0.4 0.6 0.8 1.0
a

1.×10 -45

1.×10 -35

1.×10 -25

1.×10 -15

errN(a, )

N=5

N=10

N=15

Figure 2. Relative errors in quadrature sums QN (u; ε2ν) for N = 5 (red line),
N = 10 (blue line), and N = 15 nodes (black line), when ν = 10−4

Finally, we consider an alternative method for the series of the form

+∞∑
k=−∞

f(k,
√
k2 + a2) and

+∞∑
k=−∞

(−1)kf(k,
√
k2 + a2) (a > 0),

where f is a rational function. Such series can be reduced to some appropriate inte-
grals, by integrating the corresponding function z 7→ F (z) = f(z,

√
z2 + a2)g(z), with

g(z) = π/ tanπz and g(z) = π/ sinπz, respectively, over certain circle Cn with the
cuts.

In the sequel we illustrate this alternative method in the simplest case when
f(z, w) = 1/w, i.e., to summation of the series

U−(a, 0) =

+∞∑
k=1

(−1)k−1

√
k2 + a2

, a > 0. (4.4)

Thus, we integrate the function z 7→ F (z) = g(z)/
√
z2 + a2, with g(z) = π/ sinπz,

over the circle

Cn =
{
z ∈ C

∣∣∣ |z| = n+
1

2

}
, n > a,

with cuts along the imaginary axis, so that the critical singularities ia and −ia are
eliminated (cf. [13, p. 217]). Precisely, the contour of integration Γ is given by Γ =
C1
n ∪ l1 ∪ γ1 ∪ l2 ∪ C2

n ∪ l3 ∪ γ2 ∪ l4, where C1
n and C2

n are parts of the circle Cn, γ1

and γ2 are small circular parts of radius ε and centres at ±ia, and lk (k = 1, 2, 3, 4)
are the corresponding line segments (see Figure 3).
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Figure 3. The contour of integration Γ

Let F ∗(z) be the branch of F (z) which corresponds to the value of the square
root which is positive for z = 1. Since∮

Γ

F ∗(z) dz = 2πi

n∑
k=−n

(−1)k√
k2 + a2

,

and
∫
γ1
→ 0,

∫
γ2
→ 0, when ε→ +0, and

∫
C1

n∪C2
n
→ 0, when n→ +∞, we obtain

+∞∑
k=1

(−1)k√
k2 + a2

= − 1

2a
+

∫ +∞

a

du

sinhπu
√
u2 − a2

,

i.e.,
+∞∑
k=1

(−1)k−1

√
k2 + a2

=
1

2a
− 1

2

∫ +1

−1

(
t sinh

πa

t

)−1 dt√
1− t2

.

Thus, we have reduced U−(a, 0) to a problem of Gauss-Chebyshev quadrature.

Since t 7→
(
t sinh(πa/t)

)−1
is an even function we can apply the (2n)-point Gauss-

Chebyshev approximations with only n functional evaluations, so that we have

U−(a, 0) ≈ GC(N ; a) =
1

2a
− π

2N

N∑
k=1

(
τk sinh

πa

τk

)−1

, (4.5)

where τk = cos
(
(2k − 1)π/(4N)

)
, k = 1, . . . , N .
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Example 4.3. We consider now the series

U−(a, 0) =

+∞∑
k=1

(−1)k−1

√
k2 + a2

for two different values of a, a = 1/4 and a = 10, whose exact values are

U−

(1

4
, 0
)

= 0.66632618906466580605283262942098890800417625596202 . . .

and

U−(10, 0) = 0.04999999999998988303868784011212623150952067574918 . . . ,

respectively.

For calculating the sum U−(a, 0) we apply the Gauss-Chebyshev quadrature
approximation (4.5), the Gauss-Fermi-Dirac rule (2.4), as well as the quadrature rule
(3.7) for s = 2.

The relative errors in the Gauss-Chebyshev quadrature sums GC(N ; a) for small
value a = 1/4 are given in Table 7, and for a = 10 in Table 8. In these tables we also
present the corresponding relative errors for the Gauss-Fermi-Dirac quadrature sums

GFD(N ; a) =

N∑
k=1

Bku(ηk),

obtained by (2.4), where u(t) = J0(at).

Table 7. Relative errors in the quadrature sums GC(N ; a), GFD(N ; a)
and QN,m(a) for a = 1/4

N GC(N ; a) GFD(N ; a) QN,1(a) QN,5(a) QN,10(a)
10 7.15(−4) 8.78(−19) 2.68(−5) 5.77(−14) 4.72(−20)
20 2.28(−5) 2.64(−37) 2.59(−7) 3.15(−23) 1.69(−28)
30 8.99(−8) 1.85(−55) 1.82(−8) 4.46(−25) 2.22(−35)
40 3.54(−7) 7.46(−10) 4.00(−29) 2.65(−41)
50 4.40(−8) 4.93(−11) 5.11(−33) 6.60(−47)

Finally, we apply the quadrature rule (3.7) for s = 2 to compute the weighted
integral (3.6). The construction of this quadrature we need the moments (cf. [11])

µ
(2)
k =

+∞∫
0

tkw2(t) dt=


1, k = 0,

k
(π

2

)k
|Ek−1|, k (odd) ≥ 1,

2k

4k
[
ψ(k−1)( 1

4 )− ψ(k−1)( 3
4 )
]
, k (even) ≥ 2,

where ζ(k) is the Riemann zeta function, Ek are Euler’s numbers, and ψ(z) is the
logarithmic derivative of the gamma function, i.e., ψ(z) = Γ′(z)/Γ(z).



374 Gradimir V. Milovanović

Table 8. Relative errors in the quadrature sums GC(N ; a), GFD(N ; a)
and QN,m(a) for a = 10

N GC(N ; a) GFD(N ; a) QN,1(a) QN,5(a) QN,10(a)
10 1.86(−22) 2.26 4.86(−14) 8.68(−17) 6.60(−20)
20 3.38(−31) 1.98 2.70(−14) 7.06(−21) 7.69(−28)
30 4.83(−38) 1.05 3.38(−15) 1.00(−23) 3.77(−33)
40 5.38(−45) 4.94(−2) 4.65(−15) 7.95(−26) 1.50(−37)
50 3.70(−49) 4.42(−1) 1.05(−15) 1.02(−27) 2.15(−41)

As in Example 3.1 we consider quadrature sums in the form

QN,m(a) =

m−1∑
k=1

(−1)k−1

√
k2 + a2

+ (−1)m−1
N∑
ν=1

ANν,2Ψ

(
m− 1

2
,
τNν,2
π

)
,

where Ψ(x, y) = ImF (x+iy) and F (z) = log(z+
√
z2 + a2). Although condition (C3),

in this case, is not satisfied the sequence of quadrature sums QN,m(a) converges. This
means that this requirement can be weakened, but it will be studied elsewhere.

As we can see, the convergence of Gauss-Chebyshev approximations GC(N ; a)
is faster if the parameter a is larger. However, the Laplace transform method
(GFD(N ; a)) is very efficient for a small parameter a, but, when a increases, the
integrand J0(at) becomes a highly oscillatory function and the convergence of the
quadrature process slows down considerably.

Also, we can see a rapidly increasing of convergence of the summation process
QN,m(a) as m increases.
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