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CONSTRUCTION OF GAUSSIAN QUADRATURE

FORMULAS FOR EVEN WEIGHT FUNCTIONS

Mohammad Masjed-Jamei, Gradimir V. Milovanović∗

Instead of a quadrature rule of Gaussian type with respect to an even weight

function on (−a, a) with n nodes, we construct the corresponding Gaussian

formula on (0, a2) with only [(n+1)/2] nodes. Especially, such a procedure is

important in the cases of nonclassical weight functions, when the elements of

the corresponding three-diagonal Jacobi matrix must be constructed numeri-

cally. In this manner, the influence of numerical instabilities in the process of

construction can be significantly reduced, because the dimension of the Jacobi

matrix is halved. We apply this approach to Pollaczek’s type weight func-

tions on (−1, 1), to the weight functions on R which appear in the Abel-Plana

summation processes, as well as to a class of weight functions with four free

parameters, which covers the generalized ultraspherical and Hermite weights.

Some numerical examples are also included.

1. INTRODUCTION

Let P be the set of all algebraic polynomials and Pn be its subset of degree
at most n. In this paper, we consider the Gauss-Christoffel quadrature rules with
respect to the even weight function x 7→ w(x) = w(−x) on a symmetric interval
(−a, a) for a > 0,

(1)

∫ a

−a

f(x)w(x) dx =

n∑

k=1

wkf(xk) +Rn(f ;w),

where Rn(f ;w) = 0 for each f ∈ P2n−1 and they are automatically exact for all
odd functions.
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Suppose that the moments µk =
∫ a

−a
xkw(x) dx, exist and are finite for any

k = 0, 1, . . . , and also µ0 =
∫ a

−a
w(x) dx > 0. Then the quadrature rules (1) exist

for each n ∈ N as well as the corresponding orthogonal polynomials. It is well
known that µ2k+1 = 0 for any k = 0, 1, . . ., and the monic symmetric polynomials
πk(x) orthogonal with respect to the even weight w on (−a, a) satisfy the three-term
recurrence relation (cf. [12, p. 102])

(2) πk+1(x) = xπk(x)− βkπk−1(x), k = 0, 1, . . . ,

with π−1(x) = 0, π0(x) = 1 and π1(x) = x.

The recurrence coefficients βk in (2) can be computed from the moments in
terms of Hankel determinants

∆k =

∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µk−1

µ1 µ2 µk

...
µk−1 µk µ2k−2

∣∣∣∣∣∣∣∣∣
,

by

βk =
∆k−1∆k+1

∆2
k

(k ≥ 1) with ∆0 = 1.

Although β0 in (2) may be arbitrary, it is sometimes convenient to define it as
β0 = µ0 =

∫ a

−a w(x) dx. By noting the definition

(p, q) =

∫ a

−a

p(x)q(x)w(x) dx and ‖p‖ =
√
(p, p),

one can prove that the norm of πn equals to

‖πn‖ =
√
β0β1 · · ·βn =

√
∆n+1

∆n
.

For instance, the first few monic symmetric polynomials πk in terms of mo-
ments are as follows

π2(x) = x2 − µ2

µ0
,

π3(x) = x3 − µ4

µ2
x,

π4(x) = x4 − µ6µ0 − µ4µ2

µ4µ0 − µ2
2

x2 +
µ6µ2 − µ2

4

µ4µ0 − µ2
2

,

π5(x) = x5 − µ8µ2 − µ6µ4

µ6µ2 − µ2
4

x3 +
µ8µ4 − µ2

6

µ6µ2 − µ2
4

x .

A standard method for calculating the nodes xk and the weight coefficients
(Christoffel numbers) wk in the quadrature (1) is based on their characterization
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via an eigenvalue problem for the Jacobi matrix of order n associated with the even
weight function x 7→ w(x). Thus, the nodes xk are the eigenvalues of the symmetric
tridiagonal Jacobi matrix (cf. [12, pp. 325–328])

(3) Jn(w) =




0
√
β1 O

√
β1 0

√
β2

√
β2 0

. . .

. . .
. . .

√
βn−1

O
√
βn−1 0




,

and the weight coefficients wk are given by wk = β0v
2
k,1 (k = 1, . . . , n), where vk,1

is the first component of the eigenvector vk (= [vk,1 . . . vk,n]
T) corresponding to

the eigenvalue xk, normalized such that vT
k vk = 1. This popular method is called

the Golub-Welsch procedure [8].

Unfortunately, for many weight functions the coefficients βk in (2) are not
explicitly known. In such cases, the corresponding polynomials πk are known as
strong non–classical orthogonal polynomials, and their recursion coefficients must
be constructed numerically from the moment information. Such problems are very
sensitive with respect to small perturbations in the input data. Fortunately, in the
eighties of the last century, Walter Gautschi developed the so-called constructive

theory of orthogonal polynomials on R, with effective algorithms for numerically
generating the first n recursion coefficients (the method of (modified) moments,
the discretized Stieltjes–Gautschi procedure, and the Lanczos algorithm), which
allow us to compute all orthogonal polynomials of degree ≤ n by a straightforward
application of the three-term recurrence relation. A detailed stability analysis of
these algorithms as well as several new applications of orthogonal polynomials are
also included in the previously mentioned theory. The basic references are [6, 7, 15].

Because of w(−x) = w(x) on (−a, a), the nodes in the quadrature sum

Qn(f ;w) :=

n∑

k=1

wkf(xk)

in (1) are symmetrically distributed with respect to the origin, and their weight
coefficients are mutually equal for symmetric nodes. Taking only positive nodes, de-

noted by x
(n)
k and the corresponding weight coefficients by A

(n)
k for k = 1, . . . ,m (=

[n/2]), the quadrature sum can be expressed as

(4) Qn(f ;w) :=





m∑

k=1

A
(n)
k

(
f(x

(n)
k ) + f(−x

(n)
k )
)
, n = 2m,

A
(n)
0 f(0) +

m∑

k=1

A
(n)
k

(
f(x

(n)
k ) + f(−x

(n)
k )
)
, n = 2m+ 1,
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where, in the case of odd n, A
(n)
0 (> 0) is the weight coefficient for the node 0.

Here,

0 < x
(n)
1 < · · · < x(n)

m < a and A
(n)
k > 0, k = 1, . . . ,m.

This paper is organized as follows. In Section 2, we shortly describe a simple
transformation from (−a, a) to (0, a2) and give recurrence coefficients for the corre-
sponding orthogonal polynomials. Section 3 is devoted to the construction of two
quadratures on (0, a2) and their connection with symmetric Gaussian quadratures
on (−a, a). These sections are introductory and record material that is essentially
known (cf. [12], [13]), but needed in subsequent sections. The numerical construc-
tion of Gaussian rules related to the Pollaczek-type weight functions on (−1, 1) is
presented in Section 4, together with some numerical examples. Symmetric Gaus-
sian quadrature rules on R, which appear in the Abel-Plana summation formulas,
are considered in Section 5. Finally, a class of symmetric weight functions with
four free parameters that covers many well-known weights on (−1, 1) and R are
considered in Section 6.

2. TRANSFORMATION AND PRESERVATION OF

ORTHOGONALITY

Suppose in (1) that x 7→ f(x) is an even function, so that

(5)

∫ a

−a

f(x)w(x) dx = 2

∫ a

0

f(x)w(x) dx =

∫ a2

0

f(
√
t)

w(
√
t)√
t

dt.

On the other hand, according to (1), (4) and (5) we have

(6) I(ϕ1;w1) =

∫ a2

0

f(
√
t)

w(
√
t)√
t

dt = Qn(f ;w) +Rn(f ;w),

where two new functions are defined on (0, a2) as

(7) w1(t) :=
w(

√
t)√
t

and ϕ1(t) := f(
√
t).

Similarly, we need to define

(8) w2(t) :=
√
t w(

√
t) and ϕ2(t) :=

f(
√
t)− f(0)

t
.

The orthogonal polynomials with respect to the weight functions w1(t) and
w2(t) defined on (0, a2) can be directly expressed in terms of the polynomials πk(x)
which are orthogonal with respect to the symmetric weight w on (−a, a). In fact,
according to Theorem 2.2.11 of [12, p. 102] we have:

(i) pν(t) := π2ν(
√
t) are orthogonal with respect to the weight function w1(t) =

w(
√
t)/

√
t on (0, a2), and
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(ii) qn(t) := π2n+1(
√
t)/

√
t are orthogonal with respect to the weight function

w2(t) =
√
t w(

√
t) on (0, a2).

Also, these (monic) polynomials satisfy the three-term recurrence relations
(Theorem 2.2.12 in [12, p. 102]),

(9) pν+1(t) = (t− aν)pν(t)− bνpν−1(t), ν = 0, 1, . . . ,

and

(10) qν+1(t) = (t− cν)qν(t)− dνqν−1(t), ν = 0, 1, . . . ,

with p0(t) = 1, p−1(t) = 0 and q0(t) = 1, q−1(t) = 0, respectively, where the
coefficients in (9) and (10) are given by

a0 = β1, aν = β2ν + β2ν+1, bν = β2ν−1β2ν ,

and
c0 = β1 + β2, cν = β2ν+1 + β2ν+2, dν = β2νβ2ν+1,

in which βk are the same values as in (2). In addition, we can define

b0 :=

∫ a2

0

w1(t) dt =

∫ a

−a

w(x) dx = µ0

and

d0 :=

∫ a2

0

w2(t) dt =

∫ a2

0

t w1(t) dt =

∫ a

−a

x2w(x) dx = µ2,

i.e., b0 := β0 and d0 := β0β1.

In the case of strong nonclassical weights, the coefficients aν and bν in (9), as
well as cν and dν in (10), must be constructed numerically (cf. [6], [12, pp. 160–
166]).

The orthogonal polynomials pν(t) and their recurrence relation (9) are applied
in constructing Gaussian quadratures with respect to the weight function w1(t) =
w(

√
t)/

√
t on (0, a2), while the polynomials qν(t) and their recurrence relation (10)

are appropriate for constructing Gauss-Radau rules (cf. [12, p. 329]).

By noting these comments and (4), the construction of quadratures (1) will
be significantly simplified. Namely, instead of constructing a quadrature formula
on (−a, a) with n nodes, we construct a quadrature formula on (0, a2) with only
[(n + 1)/2] nodes. In particular, it is very important in the cases of nonclassical
weight functions, when the recurrence coefficients in the three-term relations for the
corresponding orthogonal polynomials must be constructed numerically, before the
procedure for constructing nodes and Christoffel numbers (by the Golub-Welsch
procedure from the Jacobi matrices). In this manner, the influence of numerical
instabilities in the process of construction can be significantly reduced. Also, in
this way, the dimensions of the corresponding Jacobi matrices are halved.
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3. CONSTRUCTION OF TWO RULES OF GAUSSIAN TYPE

We consider now two quadrature formulas for computing the integral I(ϕ1;w1)
given in (6).

3.1. Gauss-Christoffel quadrature formula with the weight w1(t)

The first formula is a m-point Gauss-Christoffel quadrature formula with
respect to the weight function t 7→ w1(t) = w(

√
t)/

√
t on (0, a2),

(11) I(g;w1) =

∫ a2

0

g(t)w1(t) dt =

m∑

k=1

B
(m)
k g(τ

(m)
k ) +RGC

m (g;w1),

with the nodes 0 < τ
(m)
1 < · · · < τ

(m)
m < a2 and the corresponding weight co-

efficients B
(m)
k (k = 1, . . . ,m). The remainder term RGC

m (g;w1) = 0 for each
g ∈ P2m−1.

Proposition 3.1. The nodes τ
(m)
k (k = 1, . . . ,m) in the formula (11), that is, the

zeros of the polynomial pm(t) in (9), are the eigenvalues of the Jacobi matrix

Jm(w1) =




β1

√
β1β2 O

√
β1β2 β2 + β3

√
β3β4

√
β3β4 β4 + β5

. . .

. . .
. . .

√
β2m−3β2m−2

O
√
β2m−3β2m−2 β2m−2 + β2m−1




,

where βk are the same values as in (2). Also, the weight coefficients B
(m)
k are

given by B
(m)
k = β0v

2
k,1, where vk,1 is the first component of the eigenvector vk (=

[vk,1 . . . vk,m]T) corresponding to the eigenvalue τ
(m)
k and normalized such that

vT
k vk = 1.

3.2. Gauss-Radau quadrature formula with the weight w1(t)

The (m+1)-point Gauss-Radau quadrature formula with respect to the same

weight function w1(t) as before and the new nodes 0 = θ
(m)
0 < θ

(m)
1 < · · · < θ

(m)
m <

a2 and weight coefficients C
(m)
k are given by

(12) I(g;w1) =

∫ a2

0

g(t)w1(t) dt = C
(m)
0 g(0) +

m∑

k=1

C
(m)
k g(θ

(m)
k ) +RGR

m+1(g;w1).

It is clear that RGR
m+1(g;w1) = 0 for each g ∈ P2m.
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In order to construct the formula (12), we need to introduce a function h,
g(t) = g(0) + th(t), to get

I(g;w1) = g(0)

∫ a2

0

w1(t) dt+

∫ a2

0

h(t) t w1(t) dt.

This means that

(13) I(g;w1) = β0g(0) +

∫ a2

0

h(t)w2(t) dt = β0g(0) + I(h;w2),

because w2(t) = tw1(t) according to (7) and (8). To compute the integral I(h;w2)
we can directly construct the Gauss-Christoffel rule with respect to the second
weight function w2(t) =

√
t w(

√
t) on (0, a2) as

(14) I(h;w2) =

∫ a2

0

h(t)w2(t) dt =

m∑

k=1

D
(m)
k h(θ

(m)
k ) +RGC

m (h;w2),

where 0 < θ
(m)
1 < · · · < θ

(m)
m < a2 and D

(m)
k are the corresponding weight coeffi-

cients. Note in (14) that the remainder term RGC
m (h;w2) = 0 for each h ∈ P2m−1.

Thus, by noting (13) and (14) we first get

I(g;w1) = β0g(0) +
m∑

k=1

D
(m)
k h(θ

(m)
k ) +RGC

m (h;w2)

= β0g(0) +

m∑

k=1

D
(m)
k

g(θ
(m)
k )− g(0)

θ
(m)
k

+RGC
m (h;w2)

=

(
β0 −

m∑

k=1

D
(m)
k

θ
(m)
k

)
g(0) +

m∑

k=1

D
(m)
k

θ
(m)
k

g(θ
(m)
k ) +RGC

m (h;w2),

and then comparing this with (12), the weight coefficients of the Gauss-Radau
quadrature (12) are

(15) C
(m)
0 = β0 −

m∑

k=1

D
(m)
k

θ
(m)
k

, C
(m)
k =

D
(m)
k

θ
(m)
k

(k = 1, . . . ,m),

and RGR
m+1(g;w1) = RGC

m (h;w2) for h(t) = (g(t) − g(0))/t. This means that the
nodes of the Gauss-Radau quadrature rule with respect to the weight function
w1(t) are in fact the nodes of the Gauss-Christoffel formula with respect to the
weight function w2(t) = t w1(t) on (0, a2).

Proposition 3.2. The nodes θ
(m)
k (k = 1, . . . ,m) in the formula (12), that is, the
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zeros of the polynomial qm(t) in (10), are the eigenvalues of the Jacobi matrix

Jm(w2) =




β1 + β2

√
β2β3 O

√
β2β3 β3 + β4

√
β4β5

√
β4β5 β5 + β6

. . .

. . .
. . .

√
β2m−2β2m−1

O
√
β2m−2β2m−1 β2m−1 + β2m




.

where βk are the same values as in (2) and the weight coefficients C
(m)
k are given

by (15), where D
(m)
k is determined by the first component vk,1 of the normalized

eigenvector vk (= [vk,1 . . . vk,m]T) of the Jacobi matrix Jm(w2) corresponding to

the eigenvalue θ
(m)
k , i.e., D

(m)
k = β0β1v

2
k,1, k = 1, . . . ,m.

Remark 3.3. The quadratures (11) and (12) can be related to the basic quadrature
(1), which allows a much simpler construction of these symmetric quadratures given
in form

(16)

∫ a

−a

f(x)w(x) dx = Qn(f ;w) +Rn(f ;w),

where Qn(f ;w) is defined by (4). If we have the recursion coefficients βk in the
explicit form, in our construction we use Proposition 3.1 for even n and Proposi-
tion 3.2 for odd n. However, in the case of strong nonclassical weights, we first
numerically construct the recursion coefficients aν and bν in (9), and cν and dν in
(10), and then the Jacobi matrices Jm(w1) and Jm(w2) are given by

Jm(w1) =




a0
√
b1 O

√
b1 a1

√
b2

√
b2 a2

. . .

. . .
. . .

√
bm−1

O
√
bm−1 am−1




and

Jm(w2) =




c0
√
d1 O

√
d1 c1

√
d2

√
d2 c2

. . .

. . .
. . .

√
dm−1

O
√
dm−1 cm−1




.
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Corollary 3.4. The positive nodes x
(n)
k of the symmetric quadrature rule (16)

are given by x
(n)
k =

√
τ
(m)
k (n = 2m) and x

(n)
k =

√
θ
(m)
k (n = 2m + 1), and the

corresponding weight coefficients by

1◦ A
(n)
k =

1

2
B

(m)
k (k = 1, . . . ,m) for even n = 2m,

and

2◦ A
(n)
0 = C

(m)
0 , A

(n)
k =

1

2
C

(m)
k (k = 1, . . . ,m) for odd n = 2m+ 1,

where τ
(m)
k and B

(m)
k and θ

(m)
k and C

(m)
k are defined in Propositions 3.1 and 3.2,

respectively.

Corollary 3.5. Let f : (−a, a) → R be an even function and ϕ1 : (0, a2) → R and

ϕ2 : (0, a2) → R be defined by (7) and (8) respectively. The remainder term in (16)
is given by

Rn(f ;w) =

{
RGC

m (ϕ1;w1) n = 2m,

RGC
m (ϕ2;w2) n = 2m+ 1,

where RGC
m ( · ;wν) is the remainder term of the Gauss-Christoffel rule with respect

to the weight function wν (ν = 1, 2) on (0, a2).

Remark 3.4. Some fast variants of the Golub-Welsch algorithm for symmetric
weight functions in Matlab have been considered in [13], including numerical
experiments with Gegenbauer and Hermite weight functions.

4. GAUSSIAN RULES RELATED TO THE POLLACZEK WEIGHT

Recently De Bonis, Mastroianni, and Notarangelo [5] have considered Gaus-

sian quadrature rules with respect to the Pollaczek-type weightw(x;λ) = e−(1−x2)−λ

,
λ > 0, on (−1, 1) in order to evaluate integrals of the form

(17) I(f ;λ) =

∫ 1

−1

f(x)e−(1−x2)−λ

dx,

where f is a Riemann integrable function, in particular, f can increase exponen-
tially at the endpoints ±1. Also, their rule is useful for approximating integrals of
functions that decay exponentially at ±1 (e.g., when f is bounded or has a slower
growth than exponential at the endpoints).

In [5], the authors use the first 2n moments

µk =

∫ 1

−1

xkw(x;λ) dx, k = 0, 1, . . . , 2n− 1,

in order to construct the first n recursive coefficients and the corresponding Gaus-
sian quadratures with ≤ n nodes, by the package OrthogonalPolynomials ([1]),
which is downloadable from the web site http://www.mi.sanu.ac.rs/~gvm/.



186 Mohammad Masjed-Jamei, Gradimir V. Milovanović

Since w(x;λ) is even on (−1, 1), in our construction, we can use the following
weight functions on (0, 1)

(18) w1(t;λ) =
e−(1−t)−λ

√
t

and w2(t;λ) =
√
t e−(1−t)−λ

.

The weight functions x 7→ w(x;λ) on (−1, 1) and x 7→ w1(x;λ) on (0, 1) for λ =
1/10, λ = 1/2 and λ = 10 are displayed in Fig. 1, left and right, respectively. Note

λ=�/��

λ=�/�

λ=��

-��� -��� ��� ���
�

���

���

���

�

λ=�/��

λ=�/�λ=��

��� ��� ��� ���
�

���

���

���

���

�

Figure 1: The weight functions w(x;λ) = e−(1−x2)−λ

(left) and w1(x;λ) (right) for
three parameters λ = 1/10, λ = 1/2 and λ = 10.

that for a very small value of λ, the weight x 7→ w(x;λ) is very close to a constant
value (Legendre weight) in (−1, 1) and tends exponentially to zero at the endponts
±1.

According to results of Section 3, to construct Gaussian quadrature rules with
respect to the weight w on (−1, 1), for n (or less) nodes, we need the corresponding
Gaussian quadrature rules with respect to the weight function w1 (and w2) on
(0, 1), but only for [n/2] nodes. Thus, if we want to construct the quadrature sum
Qn(f ;w) for even number of nodes ≤ n (= 2m), we should first compute the first
m coefficients aν and bν for ν = 0, 1, . . . ,m− 1 (see Remark 3.3), starting with the
first 2m moments with respect to the weight function w1, i.e.,

µ
(1)
k (λ) =

∫ 1

0

tk−1/2e−(1−t)−λ

dt, k = 0, 1, . . . , 2m− 1.

As an illustration, we take m = 25 (i.e., n = 50) and λ = 10. In this case,

with the moments µ
(1)
k (10), k = 0, 1, . . . , 49, calculated with WorkingPrecision ->

80, using Mathematica package OrthogonalPolynomials (see [1, 17]), we get
the first 25 recursive coefficients aν and bν with maximal relative error less than
3.30× 10−60.

These coefficients enable us to establish the Gaussian quadrature rules (11)
for each m ≤ 25, i.e., the symmetric quadratures (16) on (−1, 1) for each even
n = 2m ≤ 50, according to Corollary 3.4.
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Example 4.1. For a given function f , defined on (−1, 1) by

(19) f(x) =
3e

− 1√
1−x2 − 2 sin(3x)− x2

(1− x2)
2 ,

we consider the integral I(f ;λ) (with respect to the Pollaczek weight function),
given by (17). For λ = 1/2 and λ = 10, the corresponding values are

I
(

f ; 1
2

)

= −0.1008535784477012537049661323701106088715102790788130235270 . . .

I(f ; 10) = 0.18289521923348319938801221433094240150942326723262931505276 . . . ,

obtained in Mathematica with WorkingPrecision -> 60. Graphics of the func-
tion (19) and the corresponding integrands in (17) are presented in Fig. 2 and
Fig. 3, respectively.

-��� -��� ��� ��� ���
-��

-��

-��

-��

-�

�

�

��

Figure 2: Graphic of the function x 7→ f(x) given by (19)
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Figure 3: Integrand in I(f ;λ) for λ = 1/2 (left) and λ = 10 (right)

Now, let us apply Gauss-Pollaczek quadrature rule with n = 10(10)50 nodes
to the integral I(f ;λ) and compare the results by ones obtained by the standard
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Gauss-Legendre rules. Here, Qn(f ;w) denotes the Gauss-Pollaczek quadrature sum
defined by (4), and rPn (f ;λ) shows their relative errors,

rPn (f ;λ) =

∣∣∣∣
Qn(f ;w) − I(f ;λ)

I(f ;λ)

∣∣∣∣.

Relative errors for λ = 1/2 and λ = 10 are given in Table 1. Numbers in paren-

Table 1: Relative errors in quadrature sums when n = 10(10)50
n rPn (f ; 1/2) rLn (f ; 1/2) rPn (f ; 10) rLn (f ; 10)
10 1.66 1.01 4.32(−13) 3.52(−2)
20 2.38(−1) 1.43(−1) 2.94(−24) 1.21(−3)
30 4.54(−2) 1.12(−2) 5.27(−35) 1.57(−5)
40 1.04(−2) 4.87(−3) 1.86(−45) 2.93(−6)
50 2.71(−3) 7.09(−4) 1.09(−55) 1.82(−7)

theses indicate decimal exponents. The corresponding relative errors in Gauss-
Legendre sums are denoted by rLn (f ;λ). As we can see, for λ = 1/2 both quadra-
tures are slow and have similar behaviour, while for a larger λ (= 10) the advantage
of the Gauss-Pollaczek quadrature is clearly evident.

5. A CLASS OF SYMMETRIC WEIGHTS ON R

In this section, we consider symmetric quadrature rules on R which play an
important role in summation formulas of Abel-Plana type, which were intensively
studied by Germund Dahlquist [2, 3, 4] (also see Milovanović [14, 16]). Such rules
can be constructed in a simpler way if the corresponding formulas on R

+ are first
constructed. By noting the results of Sections 2 and 3, instead of the polynomials
πn orthogonal with respect to x 7→ w(x) on R, we need the polynomials pν and
qν , given by the recurrence relations (9) and (10), respectively. In other words, the
recursive coefficients {aν} and {bν} for polynomials orthogonal with respect to the
weight function t 7→ w(

√
t)/

√
t on R+, as well as the coefficients {cν} and {dν} for

polynomials orthogonal with respect to the weight function t 7→
√
t w(

√
t) on R+

must be computed.

In the sequel, let us mention some important cases of the symmetric weight
x 7→ w(x) on R.

1◦ In [12, p. 159] three interesting even weight functions on R are given, for
which the recurrence coefficients βk in (2) are known explicitly. They are respec-
tively known as the Abel weight

w(x) = wA(x) =
x

eπx − e−πx
=

x

2 sinh(πx)
,

the Lindelöf weight

w(x) = wL(x) =
1

eπx + e−πx
=

1

2 cosh(πx)
,
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and the logistic weight

w(x) = wlog(x) =
e−πx

(1 + e−πx)2
.

The corresponding recurrence coefficients are

βA
k =

k(k + 1)

4
, βL

k =
k2

4
and βlog

k =
k4

4k2 − 1
(k = 1, 2, . . .),

with βA
0 = 1/4, βL

0 = 1/2 and βlog
0 = 1/π.

We mention also that wlog(x) = [wL(x/2)]2.

For these weight functions, in the sequel we give the recurrence coefficients in
(9) and (10) for polynomials orthogonal on (0,∞) with respect to t 7→ w(

√
t)/

√
t

and t 7→ w(
√
t)
√
t, respectively.

(i) In the Abel case we compute these coefficients as

aAν =
(2ν + 1)2

2
(ν ∈ N0), bA0 =

1

4
, bAν =

ν2(4ν2 − 1)

4
(ν ∈ N);

cAν = 2(ν + 1)2 (ν ∈ N0), dA0 =
1

8
, dAν =

ν(ν + 1)(2ν + 1)2

4
(ν ∈ N).

(ii) Similarly in the Lindelöf case the corresponding coefficients are

aLν =
8ν2 + 4ν + 1

4
(ν ∈ N0), bL0 =

1

2
, bAν =

ν2(4ν2 − 1)

4
(ν ∈ N);

cLν =
8ν2 + 12ν + 5

4
(ν ∈ N0), dL0 =

1

8
, dLν =

ν2(2ν + 1)2

4
(ν ∈ N).

(iii) Finally, in the case of the logistic weight the recurrence coefficients in (9)
are

alogν =
32ν4 + 32ν3 + 8ν2 − 1

(4ν − 1)(4ν + 3)
(ν ∈ N0),

blog0 =
1

π
, blogν =

16ν4(2ν − 1)4

(4ν − 3)(4ν − 1)2(4ν + 1)
(ν ∈ N),

and in (10) they are

clogν =
32ν4 + 96ν3 + 104ν2 + 48ν + 7

16ν2 + 24ν + 5
(ν ∈ N0),

dlog0 =
1

3π
, dlogν =

16ν4(2ν + 1)4

(4ν − 1)(4ν + 1)2(4ν + 3)
(ν ∈ N).

The first two weight functions appear in the so-called Abel-Plana summation
formulas (cf. [16]). For example, under certain conditions for an analytic function
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f in the complex plane, the finite sum Sn,m(f) =
n∑

k=m

(−1)kf(k) can be obtained

from the Abel summation formula

Sn,m(f) =
1

2

(
(−1)mf(m) + (−1)nf(n+ 1)

)
−
∫

R

h(x;m,n)wA(x) dx,

where

h(x;m,n) = (−1)m
f(m+ ix)− f(m− ix)

2ix
+ (−1)n

f(n+ 1 + ix)− f(n+ 1− ix)

2ix
.

2◦ For other weight functions which also appear in summation formulas, since
the explicit expressions of the coefficients βk are not known, using the Mathe-

matica package OrthogonalPolynomials (see [1, 17]) enables us to obtain βk in
rational forms.

For instance, consider the Plana weight function

w(x) = wP (x) =
|x|

e|2πx| − 1
,

which appears in the so-called Plana summation formula (cf. [19], [14])

Tm,n(f)−
∫ n

m

f(x) dx =

∫

R

g(x;m,n)wP (x) dx

for the composite trapezoidal sum

Tm,n(f) =

n∑

k=m

′′

f(k) =
1

2
f(m) +

n−1∑

k=m+1

f(k) +
1

2
f(n),

where

(20) g(x;m,n) =
f(n+ ix)− f(n− ix)

2ix
− f(m+ ix) − f(m− ix)

2ix
.

This formula holds for analytic functions in the strip Ωm,n =
{
z ∈ C : m ≤

Re z ≤ n
}
, such that

∫ +∞

0

|f(x+ iy)− f(x− iy)|e−|2πy| dy

exists, and lim
|y|→+∞

e−|2πy||f(x ± iy)| = 0 uniformly in x, for every m ≤ x ≤ n

(m,n ∈ N, m < n).
Using the package OrthogonalPolynomials, we can obtain the sequence of

coefficients {βP
k }k≥0 in rational forms as

βP

0
=

1

12
, βP

1
=

1

10
, βP

2
=

79

210
, βP

3
=

1205

1659
, βP

4
=

262445

209429
, βP

5
=

33461119209

18089284070
,

βP

6
=

361969913862291

137627660760070
, βP

7
=

85170013927511392430

24523312685049374477
, etc.
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When k increases, these values are becoming more complicated (see [16]).

The corresponding weights for polynomials pν and qν on R+ are

(21) w1(t) = wP
1 (t) =

1

e2π
√
t − 1

and w2(t) = wP
2 (t) =

t

e2π
√
t − 1

,

respectively. It is interesting to mention that at the Helsinki International Congress
of Mathematicians (1978), Nikishin [18] pointed out the importance of some classes
of orthogonal polynomials different from classical ones. In particular, he proposed
obtaining explicit forms of polynomials (if possible) orthogonal with respect to the
weight function wP

1 .

Taking the moments

µP
1,ν =

∫ +∞

0

tνwP
1 (t) dt =

(2ν + 1)!ζ(2ν + 2)

22ν+1π2ν+2
, ν = 0, 1, . . . , 2m− 1,

and

µP
2,ν =

∫ +∞

0

tνwP
2 (t) dt = µP

1,ν+1

(2ν + 3)!ζ(2ν + 4)

22ν+3π2ν+4
, ν = 0, 1, . . . , 2m− 1,

we can obtain the corresponding coefficients in (9) as

aP

0
=

1

10
, aP

1
=

871

790
, aP

2
=

1672667011

539062030
, aP

3
=

50634486717810987107

8296534235776787390
,

aP

4
=

3241115879498605269828015564949609681

320801324751624360801327631933415050
, etc.;

bP
0

=
1

12
, bP

1
=

79

2100
, bP

2
=

1312225

1441671
, bP

3
=

2491734801234609

512172182993900
,

bP
4

=
27698062380526543547153670700

1769555822315229089057426013
, etc.,

as well as in (10),

c
P

0
=

10

21
, c

P

1
=

110200

55671
, c

P

2
=

239533652610

53469214601
, c

P

3
=

31261160632702992474327200

3917478728549923835709789
,

cP
4

=
20322996172719322878237864291826792460487499568690

1628454245165190286597605307125063916376617814289
, etc.;

dP

0
=

1

120
, dP

1
=

241

882
, dP

2
=

423558471

182722826
, dP

3
=

821210997517832607

89904292554749621
,

dP

4
=

80876419660630210535853917968583415257

3206594662841751899714894730399285285
, etc.,

but their explicit expressions (for each index) remains a mystery!

Another interesting summation formula is

n∑

k=m

f(k)−
∫ n+1/2

m−1/2

f(x) dx =

∫

R

g
(
x;m− 1

2 , n+ 1
2

)
wM (x) dx,
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where the so-called midpoint weight function is defined by

w(x) = wM (x) =
|x|

e|2πx| + 1
,

and g
(
x;m− 1

2 , n+
1
2

)
by (20). As before, one can consider the polynomials pν and

qν orthogonal on R+ with respect to the weight functions

(22) w1(t) = wM
1 (t) =

1

e2π
√
t + 1

and w2(t) = wM
2 (t) =

t

e2π
√
t + 1

,

and in a similar way, one can obtain the corresponding coefficients in (9) and (10)
in the following the rational forms

aM

0
=

7

40
, aM

1
=

97153

82840
, aM

2
=

2143300949275717

675664735216120
, aM

3
=

220953557093736349691768417054261

35800501215823265013355797106040
,

a
M

4
=

13086134692539302585317174640117515705018056399360242497207

1286538803151559855777866179684631498656991773534847212200
, etc.;

bM
0

=
1

24
, bM

1
=

2071

33600
, bM

2
=

15685119025

15852295536
, bM

3
=

5895324568676150049511881

1170833101982789404702400
,

bM
4

=
919480999258696959661346213448241024976800075

57654080259790880043758405109730039860100212
, etc.;

cM
0

=
155

294
, cM

1
=

654837850

323155833
, cM

2
=

49647154589257771035

10966854047350313398
,

cM
3

=
54308858122280742671267557574002767329800

6765310743275018623908418926036774608781
,

c
M

4
=

23838072108838598641060574731766928201727321108514773479969006343251318055

1902789007849170506061772395575191790930210358707162334205873293472321134
, etc.;

dM

0
=

7

960
, dM

1
=

199849

691488
, dM

2
=

366669459296427

154646219485472
,

dM

3
=

2644652549156041551189819109731

286002885915941819991126155408
,

dM

4
=

70719511061081626527366043397565453286193455371009119954911

2782343550785232136311735142019287634629029202932721468080
, etc..

Unfortunately, we were unable to discover their explicit forms!

6. A CLASS OF SYMMETRIC WEIGHTS WITH FOUR FREE

PARAMETERS

In this section, we consider a special case of symmetric weight functions on
(−a, a) with four free parameters that covers many well-known classical weights
such as Legendre, first and second kind Chebyshev, ultraspherical, generalized ul-
traspherical, Hermite and generalized Hermite weight, i.e.,

w(x) = exp

(∫ x

c

rt2 + s

t(pt2 + q)
dt

)
= w(−x),
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where p, q, r, s are real parameters and c is a constant in (−a, a).

It is shown in [11] that a special solution of the differential equation

x2(px2+q)Φ′′
n(x)+x(rx2+s)Φ′

n(x)−
(
n(r+(n−1)p)x2+

1− (−1)n

2
s

)
Φn(x) = 0,

is the symmetric polynomial in the form

Φn(x) = Sn

(
r s
p q

∣∣∣∣ x
)

(23)

=

[n/2]∑

k=0

(
[n/2]

k

)


[n/2]−(k+1)∏

i=0

(2i− (−1)n + 2 [n/2]) p+ r

(2i− (−1)n + 2) q + s


xn−2k,

whose monic form is given by

Ŝn(x) = Ŝn

(
r s
p q

∣∣∣∣ x
)

=

[n/2]−1∏

i=0

(
2i− (−1)n + 2

)
q + s(

2i− (−1)n + 2[n/2]
)
p+ r

Sn

(
r s
p q

∣∣∣∣ x
)
.

For instance, we have

Ŝ2

(
r s
p q

∣∣∣∣ x
)

= x2 +
q + s

p+ r
,

Ŝ3

(
r s
p q

∣∣∣∣ x
)

= x3 +
3q + s

3p+ r
x ,

Ŝ4

(
r s
p q

∣∣∣∣ x
)

= x4 + 2
3q + s

5p+ r
x2 +

(3q + s)(q + s)

(5p+ r)(3p+ r)
,

Ŝ5

(
r s
p q

∣∣∣∣ x
)

= x5 + 2
5q + s

7p+ r
x3 +

(5q + s)(3q + s)

(7p+ r)(5p+ r)
x .

According to [11], the monic form of these polynomials satisfies the three-
term recurrence relation

(24) Ŝk+1(x) = xŜk(x)− βk

(
r s
p q

)
Ŝk−1(x) (k ≥ 1),

where Ŝ0(x) = 1, Ŝ1(x) = x, and

βk

(
r s
p q

)
= −pq k2 +

(
(r − 2p)q − (−1)kps

)
k + (r − 2p)s(1− (−1)k)/2

(2pk + r − p)(2pk + r − 3p)
.

This means that for the monic polynomials πk(x) = Ŝk(x), the coefficients

(25) βk = βk(p, q, r, s) = βk

(
r s
p q

)
(k ≥ 1),



194 Mohammad Masjed-Jamei, Gradimir V. Milovanović

depend on four parameters p, q, r, s. Moreover, if βk(p, q, r, s) > 0, the generic form
of the orthogonality relation is as

(26)

∫ a

−a

W

(
r s
p q

∣∣∣∣ x
)
Ŝn

(
r s
p q

∣∣∣∣ x
)
Ŝk

(
r s
p q

∣∣∣∣ x
)
dx =

(
β0β1 · · ·βn

)
δn,k,

where

(27) W

(
r s
p q

∣∣∣∣ x
)

= exp

(∫ x

c

(r − 2p)t2 + s

t(pt2 + q)
dt

)

and

β0 =

∫ a

−a

W

(
r s
p q

∣∣∣∣ x
)
dx.

Without loss of generality, we can assume only a = 1 for finite intervals and
a = ∞ for the infinite interval.

Regarding [11], the function (px2 + q)W

(
r s
p q

∣∣∣∣ x
)

must vanish at x = a

in order to hold the orthogonality relation (26).

In general, there are four main sub-classes of distribution families (27) whose
probability density functions are as follows (see [11])

(28) K1W

(
−2α− 2β − 2 2α

−1 1

∣∣∣∣ x
)

=
Γ
(
α+ β + 3

2

)

Γ
(
α+ 1

2

)
Γ(β + 1)

|x|2α(1− x2)β

for −1 ≤ x ≤ 1, and

K2W

(
−2 2α
0 1

∣∣∣∣ x
)

=
1

Γ
(
α+ 1

2

) |x|2αe−x2

,(29)

K3W

(
−2α− 2β + 2 −2α

1 1

∣∣∣∣ x
)

=
Γ(β)

Γ
(
β + α− 1

2

)
Γ
(
−α+ 1

2

) |x|−2α

(1 + x2)
β
,(30)

K4W

(
−2α+ 2 2

1 0

∣∣∣∣ x
)

=
1

Γ
(
α− 1

2

) |x|−2αe−1/x2

(31)

for −∞ < x < ∞, where the values {Ki}4i=1 play the normalizing constant role
in relations (28) to (31). Consequently, there are four sub-sequences of symmetric
orthogonal polynomials (23).

According to (28), if (p, q, r, s) = (−1, 1,−2α− 2β− 2, 2α) is substituted into
(23), then

Sn

(
−2α− 2β − 2 2α

−1 1

∣∣∣∣ x
)

=

[n/2]∑

k=0

(
[n/2]

k

) [n/2]−(k+1)∏

i=0

−2i− (2β + 2α+ 2− (−1)n + 2[n/2])

2i+ 2α+ 2− (−1)n
xn−2k,
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represents the explicit form of generalized ultraspherical polynomials (GUP). By
noting (24) and (25), the recurrence relation of monic GUP takes the form

Ŝk+1(x) = x Ŝk(x) − βk

(
−2α− 2β − 2 2α

−1 1

)
Ŝk−1(x),

in which

(32) βk

(
−2α− 2β − 2 2α

−1 1

)
=

(
k + (1 − (−1)k)α

) (
k + (1− (−1)k)α+ 2β

)

(2k + 2α+ 2β − 1)(2k + 2α+ 2β + 1)
.

Hence, its orthogonality relation reads as

∫ 1

−1

|x|2α(1− x2)β Ŝn

(
−2α− 2β − 2 2α

−1 1

∣∣∣∣ x
)
Ŝm

(
−2α− 2β − 2 2α

−1 1

∣∣∣∣ x
)
dx

=

∫ 1

−1

|x|2α(1− x2)
β
dx

n∏

i=1

βi

(
−2α− 2β − 2 2α

−1 1

)
δn,m,

where

∫ 1

−1

|x|2α(1− x2)
β
dx = B

(
α+

1

2
, β + 1

)
=

Γ
(
α+ 1

2

)
Γ(β + 1)

Γ
(
α+ β + 3

2

) .

The above relation shows that the constraints on the parameters α and β should
be α+ 1/2 > 0 and β + 1 > 0.

The second sub-class is the generalized Hermite polynomials

Sn

(
−2 2α
0 1

∣∣∣∣ x
)

=

[n/2]∑

k=0

(
[n/2]

k

) [n/2]−(k+1)∏

i=0

−2

2i+ (−1)n+1 + 2 + 2α
xn−2k,

satisfying the monic recurrence relation

Ŝk+1(x) = x Ŝk(x)− βk

(
−2 2α
0 1

)
Ŝk−1(x),

with

(33) βk

(
−2 2α
0 1

)
=

k

2
+

1− (−1)
k

2
α,

and the orthogonality relation

∫ ∞

−∞
|x|2αe−x2

Ŝn

(
−2 2α
0 1

∣∣∣∣ x
)
Ŝm

(
−2 2α
0 1

∣∣∣∣ x
)

dx

=

(
1

2n

n∏

i=1

(
(1− (−1)i)α + i

)
)
Γ
(
α+

1

2

)
δn,m,
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provided that α+1/2 > 0. According to Favard’s theorem [7, 12], if βn(p, q, r, s) >
0 holds only for a finite number of positive integers, i.e., n = 1, . . . , N , then the
related polynomials are finitely orthogonal. In this sense, there are two kinds of
classical symmetric finite orthogonal polynomials.

The first finite class is orthogonal with respect to the weight function x 7→
|x|−2α(1 + x2)−β on (−∞,∞) with the initial vector (p, q, r, s) = (1, 1,−2α− 2β+
2,−2α), whose explicit form is as

Ŝn

(
−2α− 2β + 2 −2α

1 1

∣∣∣∣ x
)

=

[n/2]∑

k=0

(
[n/2]

k

) [n/2]−(k+1)∏

i=0

2i+ 2[n/2] + (−1)n+1 + 2− 2α− 2b

2i+ (−1)n+1 + 2− 2α
xn−2k,

and satisfies the recurrence relation (24) with

(34) βk

(
−2α− 2β + 2 −2α

1 1

)
= −

[
k − α+ (−1)kα

] (
k − (1− (−1)k)α− 2β

)

(2k − 2α− 2β + 1)(2k − 2α− 2β − 1)
.

Hence, its orthogonality relation takes the form

∫ ∞

−∞

|x|−2α

(1 + x2)β
Ŝn

(
−2α− 2β + 2 −2α

1 1

∣∣∣∣ x
)
Ŝm

(
−2α− 2β + 2 −2α

1 1

∣∣∣∣ x
)
dx

=
n∏

i=1

βi

(
−2α− 2β + 2 −2α

1 1

)
Γ
(
β + α− 1

2

)
Γ
(
−α+ 1

2

)

Γ(β)
δn,m,

if and only if

βn

(
−2α− 2β + 2 −2α

1 1

)
> 0; β + α >

1

2
, α <

1

2
and β > 0.

In other words, the finite polynomial set {Sn(1, 1,−2α− 2β + 2,−2α ;x)}n=N
n=0 is

orthogonal with respect to the weight function |x|−2α(1 + x2)−β on (−∞,∞) if
and only if N ≤ α+ β − 1/2, α < 1/2 and β > 0.

Similarly, the second finite class is orthogonal with respect to the weight
x 7→ |x|−2αe−1/x2

on (−∞,∞) with the initial vector (p, q, r, s) = (1, 0,−2α+2, 2),
whose explicit form is as

Ŝn

(
−2α+ 2 2

1 0

∣∣∣∣ x
)

=

[n/2]∑

k=0

(
[n/2]

k

) [n/2]−(k+1)∏

i=0

(
i+
[n
2

]
− (−1)n

2
+ 1− α

)
xn−2k,

and satisfies the recurrence relation (24) with

(35) βk

(
−2α+ 2 2

1 0

)
=

2(−1)
k
(k − α) + 2α

(2k − 2α+ 1)(2k − 2α− 1)
,
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and finally has the orthogonality relation
∫ ∞

−∞
|x|−2αe−1/x2

Ŝn

(
−2α+ 2 2

1 0

∣∣∣∣ x
)
Ŝm

(
−2α+ 2 2

1 0

∣∣∣∣ x
)

dx

=

n∏

i=1

βi

(
−2α+ 2 2

1 0

)
Γ
(
α− 1

2

)
δn,m,

if and only if N = max{m,n} ≤ α − 1/2. This means that the finite polynomial

set {Sn(1, 0,−2α+ 2, 2 ;x)}n=N
n=0 is orthogonal with respect to the weight function

|x|−2αe−1/x2

on (−∞,∞) if N ≤ α−1/2. The following table summarizes the main
characteristics of the four introduced sub-classes. For other symmetric orthogonal
polynomials see e.g. [9, 10].

Table 2: Four special cases of Sn(p, q, r, s;x)

Definition Weight βk

Sn

(

−2α− 2β − 2 2α
−1 1

∣

∣

∣

∣

x

)

|x|2α(1− x2)β
(k+α−(−1)kα)(k+(1−(−1)k)α+2β)

(2k+2α+2β−1)(2k+2α+2β+1)

Sn

(

−2 2α
0 1

∣

∣

∣

∣

x

)

|x|2αe−x2 k
2
+ 1−(−1)k

2
α

Sn

(

−2α− 2β + 2 −2α
1 1

∣

∣

∣

∣

x

)

|x|−2α

(1 + x2)β
−
(k−α+(−1)kα)(k−(1−(−1)k)α−2β)

(2k−2α−2β+1)(2k−2α−2β−1)

Sn

(

−2α+ 2 2
1 0

∣

∣

∣

∣

x

)

|x|−2αe−1/x2 2(−1)k(k−α)+2α
(2k−2α+1)(2k−2α−1)

In the last column of this table we give the explicit expressions for the re-
cursion coefficients βk in the three-term recurrence relation. We use them in the
construction of the corresponding Jacobi matrices.
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