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Abstract. The main purpose of this paper is to present a multi–parameter study of the famil-

iar Mathieu series and the alternating Mathieu series S (r) and !S (r). The computable series

expansions of the their related integral representations are obtained in terms of higher transcen-

dental hypergeometric functions like Lauricella’s hypergeometric function F
(m)
C [x], Fox–Wright

Ψ function, Srivastava–Daoust S generalized Lauricella function, Riemann Zeta Dirichlet Eta

function, while the extensions concern products of Bessel and modified Bessel functions of the

first kind, hyper–Bessel and Bessel–Clifford functions. Auxiliary Laplace–Mellin transforms,

bounding inequalities for the hyper–Bessel and Bessel–Clifford functions are established- which

are also of independent but considerable interest. A set of bounding inequalities are presented

either for the hyper–Bessel and Bessel–Clifford functions which are to our best knowledge new,

or also for all considered extended Mathieu–type series. Next, functional bounding inequalities,

log–convexity porperties and Turán inequality results are presented for the investigated exten-

sions of multi–parameter Mathieu–type series. We end the exposition by a thorough discussion

closes the exposition including important details, bridges to occuring new questions like the sim-

ilar kind multi–parameter treatment of the complete Butzer–Flocke–Hauss Ω function which is

intimately connected with the Mathieu series family.

1. Introduction and preliminaries

The series representation of Riemann Zeta function ζ(s) is defined by [81, p. 164, Eq. (1)]

ζ(s) =
!

n≥1

n−s, ℜ(s) > 1 ,

and its integral representation is given as

ζ(s) =
1

Γ(s)

" ∞

0

xs−1

ex − 1
dx, ℜ(s) > 1. (1.1)

The close relative of the Riemann Zeta function known as Dirichlet Eta function (or the alternating

Riemann Zeta function) η(s) and its integral representation is given by [81, p. 384, Eq. (35)]

η(s) =
!

n≥1

(−1)n−1n−s, ℜ(s) > 0 ,
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and

η(s) =
1

Γ(s)

" ∞

0

xs−1

ex + 1
dx, ℜ(s) > 0, (1.2)

respectively.

In the study of elasticity of solid bodies, Émile Leonard Mathieu (1835-1890) investigated the

celebrated infinite series of the form [54]

S(r) =
!

n≥1

2n

(n2 + r2)2
, r > 0. (1.3)

A remarkable useful integral representation for S(r) is given by Emersleben [21] in the following

elegant form

S(r) =
1

r

" ∞

0

x sin(rx)

ex − 1
dx. (1.4)

The alternating Mathieu series

#S(r) =
!

n≥1

(−1)n−1 2n

(n2 + r2)2
, r > 0, (1.5)

and one of its integral representation was established by Pogány et al. [74, p. 72, Eq. (2.8)]

#S(r) = 1

r

" ∞

0

x sin(rx)

ex + 1
dx; (1.6)

another kind integral forms for Mathieu and alternaning Mathieu series were obtained by Milo-

vanović and Pogány [60, pp. 185-186, Corollary 2.2], Tomovski and Pogány [89, p. 7, Theorem

3.2] derived Cauchy principal value integrals for these series, also see [11, 13, 20] in this integral

forms respect. We notice that S(0) = 2 ζ(3), while #S(0) = 2 η(3) but that are not the only connect-

ing links between the Riemann ζ, Dirichlet η and the Mathieu series and its alternating variant.

The Mathieu series (1.3) and alternating Mathieu series (1.5) can also be written in terms of the

Riemann Zeta function ζ(s) and Dirichlet Eta function η(s), respectively [13, p. 863, Eq. (2.3–4)]

S(r) = 2
!

n≥0

(−1)n (n+ 1) ζ(2n+ 3) r2n, |r| < 1 (1.7)

and

#S(r) = 2
!

n≥0

(−1)n (n+ 1) η(2n+ 3) r2n, |r| < 1. (1.8)

The generalization of Mathieu series we can realize considering the related integral representation

extending the integrand by a weight function. Namely, re-write (1.4) into the form

S(r) =

$
π

2r

" ∞

0

x3/2

ex − 1

$
2

πrx
sin(rx) dx =

$
π

2r

" ∞

0

x3/2

ex − 1
J 1

2
(rx) dx , (1.9)

where J 1
2
stands for the Bessel function of the first kind of the order 1

2 . Now, diverse points of

view occur which we can develop in several possible directions. We mention few of them:

(i) The generalization methodology of the multiparameter unified and generalized Voigt func-

tion considered by Khan et al. [30] in which a finite product of different arguments sine

function is inserted into integrand.
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(ii) Replacing the product of trigonometric functions with a product of Bessel functions of the

first kind was done in the article by Srivastava and Pogány [86, p. 195, Eq. (4)]. Motivated

by (1.9) we can proceed using one general order Bessel function of the first kind Jν(rx)

instead of J 1
2
(rx) in (1.9) or, secondly, the product of sines from (i) we replace with a

product
%m

j=1 Jνj (rjx); min{ν1, · · · , νm} > −1. By these methods we extend either the

integrals (1.3) and (1.5) or a fortiori the series (1.7) and (1.8).

(iii) As a further extension of Bessel function the multiparameter Bessel–Clifford function [16,

26, 27], which is actually a normalized and simplified argument variant of the Delerue

hyper-Bessel function [15, 16, 32, 33, 34, 36, 37], can be used in (ii).

However, the hyper–Bessel function unification of the input Bessel and modified Bessel

functions is of considerable interest.

(iv) A wide range of literature offered on the bounding inequalities for the Bessel functions

family members (see [1, 2, 3, 5, 6, 17, 18, 31, 54, 60, 67, 69, 70, 72, 74, 79, 80, 86, 90])

suggests to include a special chapter for obtaining and discussing bounding inequalities for

the multi–parameter extensions of the Mathieu–type series.

(v) Diverse mathematical models are connected with the here exposed theory of Mathieu series,

particularly with the general concept of the so–called (a,λ)–series, see [70]. So, the inserted

7. Application section is devoted to certain applications of different type Mathieu series

and generalizations in quantum physics (Casimir effect’s mathematics); the 2D clamped

plates and membranes vibration model described by the fourth order homogeneous and

non-homogeneous differential equation ∆2f = 0 associated with Neumann boundary con-

dition; the same type Neumann problem for the 3D prism (both investigated by Mathieu

himself); ODE description and definition of the Butzer–Flocke–Hauss complete Ω and the

related study devoted to bounds’ magnitude which are derived by the celebrated Chaplygin

Differential Comparison Theorem.

The main objectives of this work are to present a multi–parameter study of the familiar Mathieu

series and alternating Mathieu series S (r) and &S (r). Series expansions are obtained in terms

of Lauricella’s hypergeometric functions by using generalized Weber-Schafheitlin integral. Rela-

tionships of the multi–parameter Mathieu series and alternating Mathieu series with the Riemann

Zeta function and the Dirichlet Eta function are also considered.

Next, a set of bounding inequalities are presented either for the hyper–Bessel and Bessel–Clifford

functions which are to our best knowledge new, or also for all considered extended Mathieu–type

series, while a short section concerning log–convexity and Turán inequalities are given for all

considered extended Mathieu series.

The Applications section covers the topics listed above in (v), while a thorough discussion

finishes the exposed results.
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2. Preliminaries. Hypergeometric and Bessel type special functions

In the beginning part of this section we recall power series definitions of generalizations of

hypergeometric function which take place in our considerations.

The Fox-Wright function, which is a generalization of hypergeometric function, is defined as

follows [24], [92, p. 4, Eq. (2.4)]:

pΨq

'
(a1, A1), · · · , (ap, Ap)

(b1, B1), · · · , (bq, Bq)

(((((z
)
=

!

k≥0

p%
j=1

Γ(aj + kAj)

q%
j=1

Γ(bj + kBj)

zk

k!
, (2.1)

where Aj > 0, j = 1, · · · , p;Bj > 0, j = 1, · · · , q. The convergence conditions for the series at

the right-hand side of (2.1) follow from the known asymptotic of the Euler Gamma–function. The

defining series in (2.1) converges in the whole complex z-plane when

∆ = 1 +

q!

j=1

Bj −
p!

i=1

Ai > 0.

If ∆ = 0, then the series in (2.1) converges for |z| < ρ, and |z| = ρ under the condition ℜ(θ) > 1
2

where

ρ =

p*

j=1

A
−Aj

j ·
q*

j=1

B
Bj

j , θ =

q!

j=1

bj −
p!

k=1

ak +
p− q

2
. (2.2)

The Fox–Wright function extends the generalized hypergeometric function pFq[z] which power

series form reads

pFq

+ a1, · · · , ap
b1, · · · , bq

(((z
,
=

!

k≥0

p%
l=1

(al)k

q%
l=1

(bl)k

zk

k!
,

where, as usual, we make use of the Pochhammer symbol (or raising factorial)

(τ)0 = 1; (τ)k = τ(τ + 1) · · · (τ + k − 1) =
Γ(τ + k)

Γ(τ)
, k ∈ N.

In the special case Ar = Bs = 1; r = 1, · · · , p; s = 1, · · · , q, the Fox–Wright function pΨq[z] reduces

(up to the multiplicative constant) to the generalized hypergeometric function

pΨq

+ (a1, 1), · · · , (ap, 1)
(b1, 1), · · · , (bq, 1)

(((z
,
=

Γ(a1) · · ·Γ(ap)
Γ(b1) · · ·Γ(bq) pFq

+ a1, · · · , ap
b1, · · · , bq

(((z
,
.

The Bessel function of the first kind of the order ν has the power series definition

Jν(z) =
!

k≥0

(−1)k
-
z
2

.ν+2k

k! Γ(ν + k + 1)
, −z ∕∈ N; ν ∈ C, (2.3)

while the modified Bessel functions of the first kind of the order ν has the expansion

Iν(z) =
!

k≥0

-
z
2

.ν+2k

k! Γ(ν + k + 1)
, −z ∕∈ N; ν ∈ C.
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Their multi–parameter analogues are the hyper–Bessel function by Delerue has the power series

definition (see the inventory article [15] and also [1, 12, 16, 37]):

J (m)
ν (z) =

/
z

m+ 1

0 m!
j=1

νj !

k≥0

(−1)k
-

z
m+1

.k(m+1)

Γ(ν1 + k + 1) · · ·Γ(νm + k + 1) k!
,

and its modified variant is1

I(m)
ν (z) =

/
z

m+ 1

0 m!
j=1

νj !

k≥0

-
z

m+1

.k(m+1)

Γ(ν1 + k + 1) · · ·Γ(νm + k + 1) k!
.

For m = 1 we arrive at the classical Bessel and modified Bessel functions, while for m ≥ 2 we

deduce the so–called Bessel–Clifford (or normalized hyper–Bessel) functions [28, p. 11, Eq. (2.5)]

C(m)
ν (±z) =

1
223

224

z
−

m!
j=1

νj/(m+1)

J (m)
ν

-
(m+ 1) z1/(m+1)

.

z
−

m!
j=1

νj/(m+1)

I(m)
ν (z)

-
(m+ 1) z1/(m+1)

.
=

!

k≥0

(∓1)k zk

m%
j=1

Γ(νj + k + 1) k!
. (2.4)

In the case m = 1 the Bessel–Clifford function is related with the standard Bessel function of the

first kind of the order ν1 ≡ ν via the equality [28, p. 11, Eq. (2.2)]

C(1)
ν (z) = Cν(z) = z−

ν
2 Jν(2

√
z) . (2.5)

Another type generalization includes the four multivariable Lauricella generalized hypergeometric

series of m variables. We will apply F
(m)
C (see the original definitions in Lauricella’s introductory

memoir [44, p. 113]) to infer some our main results. Its definition reads [85, p. 33, Eq. (1)]

F
(m)
C [α,β;γ;x] =

!

k≥0

(α)k1+···+km (β)k1+···+km

m*

j=1

x
kj

j

(γj)kj
kj !

.

The convergence domain is
5
|x1|+ · · ·+

5
|xm| < 1 established in [44, p. 116].

Finally, the Srivastava-Daoust generalization of the Lauricella hypergeometric functions in m

variables defined by [82, p. 454]

SA:B′;··· ;B(m)

C:D′;··· ;D(n)

6

778

[(a) : θ′, · · · , θ(m)] : [(b′) : ϕ′]; · · · ; [(b(n)) : ϕ(m)]

[(c) : ψ′; · · · ;ψ(m)] : [(d′) : δ′]; · · · ; [(d(m)) : δ(m)]

((((((((

x1

...

xm

9

::;

=
!

k≥0

A%
j=1

(aj)k1θ′
j+···+kmθ

(m)
j

B′%
j=1

(b′j)k1ϕ′
j
· · ·

B(m)%
j=1

(b
(m)
j )

kmϕ
(m)
j

C%
j=1

(cj)k1ψ′
j+···+kmψ

(m)
j

D′%
j=1

(d′j)k1δ′j
· · ·

D(m)%
j=1

(d
(m)
j )

kmδ
(m)
j

xk1
1

k1!
· · · x

km
m

km!
, (2.6)

where the parameters satisfy

θ′1, · · · , θ′A, · · · , δ
(m)
1 , · · · , δ(m)

D(m) > 0.

1Here, and in what follows, we shall write the shorthand a = (a1, · · · , am).
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For convenience, we write (a) to denote the sequence of A parameters a1, · · · , aA, with similar

interpretations for (b′), · · · , (d(m)). Empty products should be interpreted as unity. Srivastava and

Daoust [83, pp. 157–158] reported that the series in (2.6) converges absolutely

(i) for all x = (x1, · · · , xm) ∈ Cm when

∆ℓ = 1 +

C!

j=1

ψ
(ℓ)
j +

D(ℓ)!

j=1

δ
(ℓ)
j −

A!

j=1

θ
(ℓ)
j −

B(ℓ)!

j=1

ϕ
(ℓ)
j > 0, ℓ = 1,m;

(ii) for |xℓ| < ηℓ when ∆ℓ = 0, ℓ = 1, · · · ,m, where

ηℓ := min
µ1,··· ,µm>0

1
22223

22224

µ
1+

D(ℓ)!
j=1

δ
(ℓ)
j −

B(ℓ)!
j=1

ϕ
(ℓ)
j

ℓ

C%
j=1

/
m<
ℓ=1

µℓψ
(ℓ)
j

0ψ
(ℓ)
j D(ℓ)%

j=1

-
δ
(ℓ)
j

.δ(ℓ)j

A%
j=1

/
n<

ℓ=1

µℓθ
(ℓ)
j

0θ
(ℓ)
j B(ℓ)%

j=1

-
ϕ
(ℓ)
j

.ϕ(ℓ)
j

=
2222>

2222?

.

When all ∆ℓ < 0, S A:B′;··· ;B(m)

C:D′;··· ;D(m) (x) diverges exclusively at the origin, that is, this series is formal.

3. Multi–parameter Mathieu series Sµ,ν(r) and &Sµ,ν(r)

The extended Mathieu series S(r) and its alternating variant #S(r) read

Sµ,ν(r) =

$
π

2r

" ∞

0

xµ−1

ex − 1
Jν(rx) dx, µ+ ν ≥ 1, (3.1)

#Sµ,ν(r) =

$
π

2r

" ∞

0

xµ−1

ex + 1
Jν(rx) dx, µ+ ν ≥ 0, (3.2)

where in both cases r > 0, µ > 0. Clearly S 3
2 ,

1
2
(r) = S(r) and #S 3

2 ,
1
2
(r) = #S(r).

Now, we introduce the multi–parameter Mathieu series and alternating Mathieu series Sµ,ν(r)

and &Sµ,ν(r); a = (a1, · · · , am) as follows

Sµ,ν(r) = Km(r)

" ∞

0

xµ−1

ex − 1

m*

j=1

Jνj
(rj x) · dx, µ+

m!

j=1

νj ≥ 1; (3.3)

&Sµ,ν(r) = Km(r)

" ∞

0

xµ−1

ex + 1

m*

j=1

Jνj
(rj x) · dx; µ+

m!

j=1

νj ≥ 0 (3.4)

Km(r) =
@π
2

Am
2

m*

j=1

r
− 1

2
j , r ∈ Rm

+ .

At this point we remark that the Mathieu series S(r) (so does its recently introduced alternating

counterpart #S(r)), was considered by É. L. Mathieu for r > 0. Obviously, the definition (1.3)

allows r ∈ R. Following Mathieu’s approach in taking the domain r > 0, we consider the first

orthant Rm
+ as the domain for r for the multi–parameter Mathieu series, also since we remain by

this choice in real domain for Sµ,ν(r) and &Sµ,ν(r).
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Remark 1. It is worth to mention that by means of the relation

1

ex + 1
=

1

ex − 1
− 2

e2x − 1
,

in (3.4) and simplifying, we get the simple inter-relation

&Sµ,ν(r) = Sµ,ν(r)− 2−µ−m
2 +1 Sµ,ν

-
1
2 r

.
.

Accordingly, the analysis of the alternating multi–parameter Mathieu-type series study can be treated

considering exclusively the multi–parameter Mathieu’s Sµ,ν .

Theorem 1. For all µ ≥ 1, ν + 1 ∈ Rm+1
+ , µ +

m<
j=1

νj > 0 and r ∈ Rm
+ such that

m<
j=1

rj < µ we

have

Sµ,ν(r) = κm(µ,ν)
!

n≥1

1

n
µ+

m!
j=1

νj

F
(m)
C

+1
2

@
µ+

m!

j=1

νj

A
,
1

2

@
µ+

m!

j=1

νj + 1
A
;ν + 1; −r2

n2

,
,

&Sµ,ν(r) = κm(µ,ν)
!

n≥1

(−1)n−1

n
µ+

m!
j=1

νj

F
(m)
C

+1
2

@
µ+

m!

j=1

νj

A
,
1

2

@
µ+

m!

j=1

νj + 1
A
;ν + 1; −r2

n2

,
,

where

κm(µ,ν) =

π
m
2 Γ

@
µ+

m<
j=1

νj

A

2
m
2 +

!m
j=1 νj

m*

j=1

r
νj− 1

2
j

Γ
-
νj + 1

. .

Proof. Insert the binomial series expansion of the kernel (ex − 1)−1 =
<

n≥1 e
−nx, into (3.3), valid

for the whole integration domain x > 0. The legitimate integral–sum interchange, which can be

proved e.g. by the dominated convergence theorem results in

Sµ,ν(r) = Km(r)
!

n≥1

" ∞

0

xµ−1 e−nx
m*

j=1

Jνj (rj x) · dx . (3.5)

Making use of the generalized Weber–Schafheitlin integral [84, p. 2, Eq.(2.2)]

" ∞

0

xµ−1e−αx
m*

j=1

Jνj (βjx) dx =

m%
j=1

-βj

2

.νj
Γ
@
µ+

m<
j=1

νj

A

α
µ+

m!
j=1

νj

Γ(ν1 + 1) · · ·Γ(νm + 1)

× F
(m)
C

+1
2

@
µ+

m!

j=1

νj

A
,
1

2

@
µ+

m!

j=1

νj + 1
A
;ν + 1; −β2

α2

,
, (3.6)

which parameter space consists from ℜ(µ) > 0, ℜ
-
µ +

<m
j=1 νj

.
> 0 and |β1| + · · · + |βm| < |µ|,

specifying in (3.5) α = n and βj = rj ; j = 1, · · · ,m, we conclude the first asserted formula.

The derivation procedure of the series expansion result for &Sµ,ν(r) applies the binomial series

(1 + ex)−1 =
<

n≥1(−1)n−1e−nx, x > 0. Now, the path to the final formula is obvious. □

The next result gives an insight how our series expansion formulae are related to the one-

parameter initial Mathieu series (3.3) and(3.4).
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Corollary 1.1. For all µ, ν + 1 > 0, µ+ ν > 0 we have

Sµ,ν(r) = κ1(µ, ν)
!

n≥1

1

nµ+ν 2F1

+ 1
2 (µ+ ν), 1

2 (µ+ ν + 1)

ν + 1

(((−
r2

n2

,

= κ1(µ, ν)
!

n≥1

1

(n2 + r2)
µ+ν
2

2F1

+ 1
2 (µ+ ν), 1

2 (ν − µ+ 1)

ν + 1

(((
r2

n2 + r2

,
.

Moreover, when µ+ ν + 1 > 0 there holds

&Sµ,ν(r) = κ1(µ, ν)
!

n≥1

(−1)n−1

nµ+ν 2F1

+ 1
2 (µ+ ν), 1

2 (µ+ ν + 1)

ν + 1

(((−
r2

n2

,

= κ1(µ, ν)
!

n≥1

(−1)n−1

(n2 + r2)
µ+ν
2

2F1

+ 1
2 (µ+ ν), 1

2 (ν − µ+ 1)

ν + 1

(((
r2

n2 + r2

,
,

where

κ1(µ, ν) =

√
π rν−

1
2 Γ(µ+ ν)

2ν+
1
2 Γ(ν + 1)

.

Proof. Putting m = 1 in Theorem 1, then having in mind that now ν = ν1 ≡ ν, r = r1 ≡ r and

the Lauricella F
(1)
C reduces to the Gaussian 2F1 function we have instead of (3.6) the integral (see

Watson’s historically developmental comments [91, p. 384 et seq., Eqs. (2) and (3)] concerning

this result who attributed the first formula to Hankel and Gegenbauer):

" ∞

0

xµ−1e−ax Jν(bx) dx =

-
b
2

.ν
Γ(µ+ ν)

aµ+ν Γ(ν + 1)
2F1

+ 1
2 (µ+ ν), 1

2 (µ+ ν + 1)

ν + 1

(((−
b2

a2

,

=

-
b
2

.ν
Γ(µ+ ν)

(a2 + b2)
1
2 (µ+ν) Γ(ν + 1)

2F1

+ 1
2 (µ+ ν), 1

2 (1− µ+ ν)

ν + 1

(((
b2

a2 + b2

,
,

where the second equality follows by the Pfaff linear transform of the argument in Gaussian hy-

pergeometric function. Following the steps in the proof of Theorem 1, we conclude the statements

specifying a = n; b = r. □

The reconstruction of the sine functions product in multi–parameter Mathieu series’ integrand in

(3.3) and (3.4), respectively, the Bessel function’s order should be specified as νj =
1
2 , j = 1, · · · ,m,

in our setting ν = 1
2
. The associated integrals read

Sµ, 12
(r) =

1
m%
j=1

rj

" ∞

0

xµ−m
2 −1

ex − 1

m*

j=1

sin(rj x) · dx, (3.7)

&Sµ, 12
(r) =

1
m%
j=1

rj

" ∞

0

xµ−m
2 −1

ex + 1

m*

j=1

sin(rj x) · dx . (3.8)

To restore S(r) and #S(r) in (1.4) and (1.6) it is enough to specify m = 1, µ = 5
2 in the previous

couple of formulae. Hence, we have



MULTI–PARAMETER MATHIEU SERIES 9

Corollary 1.2. For all µ ≥ 1 and r ∈ Rm
+ such that

m<
j=1

rj < µ, there holds

Sµ, 12
(r) = Γ

@
µ+

m

2

A !

n≥1

1

nµ+m
2
F

(m)
C

B
1

2

@
µ+

m

2

A
,
1

2

@
µ+

m

2
+ 1

A
;
3

2
;−r2

n2

C
,

&Sµ, 12
(r) = Γ

@
µ+

m

2

A !

n≥1

(−1)n−1

nµ+m
2

F
(m)
C

B
1

2

@
µ+

m

2

A
,
1

2

@
µ+

m

2
+ 1

A
;
3

2
;−r2

n2

C
.

Theorem 2. For all µ > 0,ν + 1 ∈ Rm
+ such that µ+

m<
j=1

νj > 1, and for all r ∈ Rm
+ , we have

Sµ,ν(r) = Lm(r)
!

k≥0

Γ
@
µ+

m!

j=1

(νj + 2kj)
A
ζ
@
µ+

m!

j=1

(νj + 2kj)
A m*

j=1

(−1)kj
- rj

2

.2kj

Γ(kj + νj + 1) kj !
.

Moreover, for the same parameter space, when µ+
m<
j=1

νj > 0,

&Sµ,ν(r) = Lm(r)
!

k≥0

Γ
@
µ+

m!

j=1

(νj + 2kj)
A
η
@
µ+

m!

j=1

(νj + 2kj)
A m*

j=1

(−1)kj
- rj

2

.2kj

Γ(kj + νj + 1) kj !
,

where the constant

Lm(r) = π
m
2 2

−m
2 −

m!
j=1

νj
m*

j=1

r
νj− 1

2
j .

Proof. Using the Bessel function series form (2.3) in (3.3), we have

Sµ,ν(r) = Km(r)

" ∞

0

xµ−1

ex − 1

m*

j=1

Jνj (rj x) · dx

= Km(r)

" ∞

0

xµ−1

ex − 1

m*

j=1

!

kj≥0

(−1)kj

Γ(kj + νj + 1) kj !

@rjx
2

Aνj+2kj

· dx

= Km(r)
!

k≥0

" ∞

0

x
µ+

m!
j=1

(νj+2kj)−1

ex − 1
dx ·

m*

j=1

(−1)kj

Γ(kj + νj + 1) kj !

@rj
2

Aνj+2kj

= Km(r)
!

k≥0

Γ
@
µ+

m!

j=1

(νj + 2kj)
A
ζ
@
µ+

m!

j=1

(νj + 2kj)
A m*

j=1

(−1)kj
- rj

2

.νj+2kj

Γ(kj + νj + 1) kj !
,

which is equivalent to the first statement of the theorem. In the derivation procedure we apply

the integral representation (1.1) of the Riemann Zeta function.

Similarly, if we start with the expression (3.4) we obtain the second formula with the aid of

Dirichlet Eta function’s integral form (1.2). In both cases the parameter constraints are controlled

by (1.1) and (1.2) convergence conditions, respectively. □

Now we re-consider the integral expressions (3.7) and (3.8) of the multi–parameter Mathieu

series Sµ, 12
(r) and its alternating counterpart &Sµ, 12

(r). The related multiple series expansions in

terms of Riemann ζ and Dirichlet η functions give the following results.
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Corollary 2.1. For all µ > 0 such that µ+ m
2 > 1, and for all r ∈ Rm

+ , we have

Sµ, 12
(r) =

!

k≥0

Γ
@
µ+

m

2
+ 2

m!

j=1

kj

A
ζ
@
µ+

m

2
+ 2

m!

j=1

kj

A m*

j=1

(−1)kjr
2kj

j

(2kj + 1)!
, (3.9)

while µ+ m
2 > 0 implies

Sµ, 12
(r) =

!

k≥0

Γ
@
µ+

m

2
+ 2

m!

j=1

kj

A
η
@
µ+

m

2
+ 2

m!

j=1

kj

A m*

j=1

(−1)kjr
2kj

j

(2kj + 1)!
. (3.10)

Proof. The Maclaurin series expansion of the sine function in the integrand of (3.7) implies

Sµ, 12
(r) =

1
m%
j=1

rj

" ∞

0

xµ−m
2 −1

ex − 1

m*

j=1

!

kj≥0

(−1)kj (rjx)
2kj+1

(2kj + 1)!
· dx

=
!

k≥0

(−1)

m!
j=1

kj
m*

j=1

r
2kj

j

(2kj + 1)!

" ∞

0

x
µ+m

2 +2
m!

j=1
kj−1

ex − 1
dx .

By virtue of the integral (1.1) with the parameter s = µ + m
2 + 2

m<
j=1

kj > 1 we conclude the first

result (3.9). Similar steps lead to (3.10). □

4. Extending Mathieu series via hyper–Bessel functions

The next step in generalization of the Mathieu series’ integrals includes the product of several

hyper–Bessel functions which replaces the product of Bessel functions of the first kind in (3.3) and

(3.4). This extension includes the Bessel–Clifford functions case by virtue of the inter–relation

Cν(z) = z−ν/2 Jν(2
√
z), see in the context of (2.5). Thus, the hyper–Bessel generalized Mathieu–

type integral expression and its alternating version read

S J
µ,ν̄(r) = Km(r)

" ∞

0

xµ−1

ex − 1

m*

j=1

J
(ℓj)
νj (rj x) · dx, µ+

m!

j=1

ℓj!

k=1

νjk > 1; (4.1)

&S J
µ,ν̄(r) = Km(r)

" ∞

0

xµ−1

ex + 1

m*

j=1

J
(ℓj)
νj (rj x) · dx; µ+

m!

j=1

ℓj!

k=1

νjk > 0 (4.2)

Km(r) =
@π
2

Am
2

m*

j=1

r
− 1

2
j , r ∈ Rm

+ ,

where the multi–index ν̄ := (ν1, · · · ,νm) and νj = (νj1, · · · , νjℓj ).
The counterpart definitions of modified hyper–Bessel extensions of the Mathieu–type series’

integral expressions we introduce when in the (4.1) and (4.2) we replace the hyper–Bessel function

J
(m)
νj (x) with the modified hyper–Bessel function I

(m)
νj (x). Hence,

S I
µ,ν(r) = Km(r)

" ∞

0

xµ−1

ex − 1

m*

j=1

I
(ℓj)
νj (rj x) · dx,
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&S I
µ,ν(r) = Km(r)

" ∞

0

xµ−1

ex + 1

m*

j=1

I
(ℓj)
νj (rj x) · dx .

The parameter space remains r ∈ Rm
+ , while the constant Km(r) coincides with the one in the

above quoted relations (4.1) and (4.2).

Here, and in what follows, under Laplace–Mellin transform of a suitable input function h(x) we

mean the improper integral

LM[h](p, s) =

" ∞

0

e−pxxs−1h(x) dx ,

where the parameter space of p and s depend on the nature and behavior of h.

In inferring the series form of the hyper–Bessel extensions of the Mathieu–type integrals we

need two lemmata which precise the Laplace–Mellin transforms of the product of finitely man

m, say, hyper–Bessel or modified hyper–Bessel functions of not necessarily equal number of order

parameters ℓj , j = 1, · · · ,m. We could not find any traces in the literature of these Laplace–Mellin

transformation result which are of particular interest by themselves.

Proposition 1. For all ℜ(p), µ, νjk − 1 > 0, such that µ +
<m

j=1

<ℓj
k=1 νjk > 0; ℓj ∈ N, when

j = 1, · · · ,m; k = 1, · · · , ℓj, and r ∈ Rm
+ , the following Laplace–Mellin transform holds

LM
+ m*

j=1

J
(ℓj)
νj (rj x)

,
(p, µ) =

" ∞

0

e−p x xµ−1
m*

j=1

J
(ℓj)
νj (rj x) · dx

= Bp(µ, r) · S1:−;··· ;−
−:1;··· ;1

D E
(µ+ ν") : ℓ+ 1

F
: [− : −]; · · · ; [− : −]

− :
+ ℓ1%
k=1

(ν1k + 1) : 1
,
; · · · ;

+ ℓm%
k=1

(νmk + 1) : 1
,

(((((x
G
, (4.3)

LM
+ m*

j=1

I
(ℓj)
νj (rj x)

,
(p, µ) =

" ∞

0

e−p x xµ−1
m*

j=1

J
(ℓj)
νj (rj x) · dx

= Bp(µ, r) · S1:−;··· ;−
−:1;··· ;1

D E
(µ+ ν") : ℓ+ 1

F
: [− : −]; · · · ; [− : −]

− :
+ ℓ1%
k=1

(ν1k + 1) : 1
,
; · · · ;

+ ℓm%
k=1

(νmk + 1) : 1
,

((((( − x

G
, (4.4)

where x = (x1, · · · , xm)T with

xj = −
@ rj
p(ℓj + 1)

Aℓj+1

, j = 1, · · · ,m ; and ν" =

m!

j=1

ℓj!

k=1

νjk .

The constant

Bp(µ, r) =
Γ(µ+ ν")

pµ+ν!

m*

j=1

ℓj*

k=1

@ rj
ℓj + 1

Aνjk

Γ(νjk + 1)
.
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Proof. In the integrand we express the hyper–Bessel functions by their Maclaurin series. After

some routine calculations we get

Ip(µ, ν̄, r) =

m*

j=1

@ rj
ℓj + 1

A ℓ!
k=1

νjk

·
!

k≥0

(−1)

m!
j=1

kj m%
j=1

- rj
ℓj+1

.kj(ℓj+1)

m%
j=1

@
kj !

ℓj%
k=1

Γ(νjk + kj + 1)
A

" ∞

0

e−p xxq−1 dx ,

where

q = µ+

m!

j=1

ℓj!

k=1

νjk +

m!

j=1

kj(ℓj + 1) .

Inserting the Gamma integral’s solution we have

Ip(µ, ν̄, r) =
1

pµ

m*

j=1

@ rj
p(ℓj + 1)

A ℓj!
k=1

νjk !

k≥0

(−1)

m!
j=1

kj m%
j=1

- rj
ℓj+1

.kj(ℓj+1)

m%
j=1

@
kj !

ℓj%
j=1

Γ(νjk + kj + 1)
A

× Γ
@
µ+

m!

j=1

ℓj!

k=1

νjk +

m!

j=1

kj(ℓj + 1)
A
. (4.5)

Now using the Pochhamer symbol notation there holds

Ip(µ, ν̄, r) = Bp(µ, ν̄, r)
!

k≥0

@
µ+

m<
j=1

ℓj<
k=1

νjk

A
m!

j=1
(ℓj+1)kj

m%
j=1

ℓj%
k=1

(νjk + 1)kj

m*

j=1

(−1)kj

kj !

@ rj
p(ℓj + 1)

A(ℓj+1)kj

.

In turn, comparing this expression with (2.6), we clearly get the Srivastava–Daoust S function as

the stated result. The transform (4.4) we derive in the same manner, however the sign change of

x in the S function implies the final expression. □

The sub–case ℓ1 = · · · = ℓm = ℓ of Proposition 1 we can specify to a greater extent.

Proposition 2. For all ℜ(p), µ, νjk − 1 > 0; ℓ ∈ N when j = 1, · · · ,m; k = 1, · · · , ℓ such that

µ+
m<
j=1

ℓ<
k=1

νjk > 0 and r ∈ Rm
+ the following Laplace–Mellin transforms hold:

LM
+ m*

j=1

J (ℓ)
νj

(rj x)
,
(p, µ) =

" ∞

0

e−p x xµ−1
m*

j=1

J (ℓ)
νj

(rj x) · dx

= Ap(µ, r) · Sℓ+1:−;··· ;−
−:1;··· ;1

D +
1

ℓ+1

@
µ+ ν" + r

A
: ℓ+ 1

,ℓ
r=0

: [− : −]; · · · ; [− : −]

− :
+ ℓ%
k=1

(ν1k + 1) : 1
,
; · · · ;

+ ℓ%
k=1

(νmk + 1) : 1
,

(((((x
G
,
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and

LM
+ m*

j=1

I(ℓ)νj
(rj x)

,
(p, µ) =

" ∞

0

e−p x xµ−1
m*

j=1

I(ℓ)νj
(rj x) · dx

= Ap(µ, r) · Sℓ+1:−;··· ;−
−:1;··· ;1

D +
1

ℓ+1

@
µ+ ν" + r

A
: ℓ+ 1

,ℓ
r=0

: [− : −]; · · · ; [− : −]

− :
+ ℓ%
k=1

(ν1k + 1 : 1
,
; · · · ;

+ ℓ%
k=1

(νmk + 1) : 1
,

((((( − x

G
,

where x = (x1, · · · , xm)T with

xj = −
@ rj
p(ℓ+ 1)

Aℓ+1

, j = 1, · · · ,m ; and ν" =

m!

j=1

ℓ!

k=1

νjk .

The constant

Ap(µ, r) =
(ℓ+ 1)µ−

1
2

(2π)
ℓ
2 pµ+ν!

m*

j=1

r

ℓ!
k=1

νjk

j

ℓ+1%
r=1

Γ
+

1
(ℓ+1)

@
µ+ ν" + r − 1

A,

ℓ%
j=1

Γ(νjk + 1)

.

Proof. Firstly, we equalize all parameter sizes ℓj = ℓ, j = 1, · · · ,m in (4.5). Then, by the Gauss

multiplication theorem [85, p. 16, Eq. (16)]

Γ(nz) = (2π)
1
2 (1−n)nn z− 1

2

n*

j=1

Γ
@
z +

j − 1

n

A
, z ∕= 0,− 1

n
,− 2

n
, · · · ; n ∈ N ,

transform (4.5) and rewrite the resulting expression in Pochhammer symbols notation. Hence,

Ip(µ, ν̄, r) =
(ℓ+ 1)µ−

1
2

(2π)
ℓ
2 pµ

m*

j=1

@rj
p

A ℓ!
k=1

νjk

·
!

k≥0

(−1)

m!
j=1

kj m%
j=1

- rj
p

.(ℓ+1)kj

m%
j=1

@
kj !

ℓ%
j=1

Γ(νjk + kj + 1)
A

×
ℓ+1*

r=1

Γ
+ 1

(ℓ+ 1)

@
µ+

m!

j=1

ℓ!

k=1

νjk + r − 1
A
+

m!

j=1

kj

,

= Ap(µ, r)
!

k≥0

ℓ+1%
r=1

@
1

(ℓ+1)

+
µ+

m<
j=1

ℓ<
k=1

νjk + r − 1
,A

m!
j=1

kj

m%
j=1

ℓ%
j=1

(νjk + 1)kj

m*

j=1

E
−
- rj

p

.ℓ+1Fkj

kj !
,

where

Ap(µ, r) =
(ℓ+ 1)µ−

1
2

(2π)
ℓ
2 p

µ+
m!

j=1

ℓ!
k=1

νjk

m*

j=1

r

ℓ!
k=1

νjk

j

ℓ+1%
r=1

Γ
+

1
(ℓ+1)

@
µ+

m<
j=1

ℓ<
k=1

νjk + r − 1
A,

ℓ%
k=1

Γ(νjk + 1)

.

Now, we recognize the multiple series as the Srivastava–Daoust S function of m variables. □
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Theorem 3. Let the parameter space and the domain be the same as in Proposition 1. Then

S J
µ,ν̄(r) = Cm(r)

!

n≥1

1

nµ+ν! S1:−;··· ;−
−:1;··· ;1

D E
(µ+ ν") : ℓ+ 1

F
: [− : −]; · · · ; [− : −]

− :
+ ℓ1%
k=1

(ν1k + 1) : 1
,
; · · · ;

+ ℓm%
k=1

(νmk + 1) : 1
,

(((((x
G
,

&S J
µ,ν̄(r) = Cm(r)

!

n≥1

(−1)n−1

nµ+ν! S1:−;··· ;−
−:1;··· ;1

D E
(µ+ ν") : ℓ+ 1

F
: [− : −]; · · · ; [− : −]

− :
+ ℓ1%
k=1

(ν1k + 1) : 1
,
; · · · ;

+ ℓm%
k=1

(νmk + 1) : 1
,

(((((x
G
,

S I
µ,ν̄(r) = Cm(r)

!

n≥1

1

nµ+ν! S1:−;··· ;−
−:1;··· ;1

D E
(µ+ ν") : ℓ+ 1

F
: [− : −]; · · · ; [− : −]

− :
+ ℓ1%
k=1

(ν1k + 1) : 1
,
; · · · ;

+ ℓm%
k=1

(νmk + 1) : 1
,

((((( − x

G
,

&S I
µ,ν̄(r) = Cm(r)

!

n≥1

(−1)n−1

nµ+ν! S1:−;··· ;−
−:1;··· ;1

D E
(µ+ ν") : ℓ+ 1

F
: [− : −]; · · · ; [− : −]

− :
+ ℓ1%
k=1

(ν1k + 1) : 1
,
; · · · ;

+ ℓm%
k=1

(νmk + 1) : 1
,

((((( − x

G
,

where x = (x1, · · · , xm)T with coordinates

xj = −
@ rj
n(ℓj + 1)

Aℓj+1

, j = 1, · · · ,m ; and ν" =

m!

j=1

ℓj!

k=1

νjk ,

while

Cm(r) =
@π
2

Am
2

Γ(µ+ ν")

m*

j=1

E
rj/(ℓj + 1)

F
ℓj!

k=1

νjk

√
rj

ℓj%
k=1

Γ(νjk + 1)

.

Proof. The derivation follows the method from Theorem 1. The binomial series of (ex−1)−1 gives

Sµ,ν̄(r) = Km(r)

" ∞

0

xµ−1

ex − 1

m*

j=1

J
(ℓj)
νj (rj x) · dx

= Km(r)
!

n≥1

" ∞

0

xµ−1 e−nx
m*

j=1

J
(ℓj)
νj (rj x) · dx .

Now, it is enough to take the Laplace–Mellin transform result (4.3) to earn the first statement,

setting p = n. As to the computation series expansion of the remaining three Mathieu–type series’

integrals &S J
µ,ν̄(r), S I

µ,ν̄(r) and &S I
µ,ν̄(r) we apply the same method, this time starting with the

corresponding series of (ex ± 1)−1. □

The synthesis of Proposition 2 and Theorem 3 can be formulate as

Corollary 3.1. Let the parameter space and the domain be the same as in Proposition 2. Then

we have

S J
µ,ν̄(r) = Dm(r)

!

n≥1

1

nµ+ν! Sℓ+1:−;··· ;−
−:1;··· ;1

D +
1

ℓ+1

@
µ+ ν" + r

A
: ℓ+ 1

,ℓ
r=0

: [− : −]; · · ·

− :
+ ℓ%
k=1

(ν1k + 1) : 1
,
; · · · ;

+ ℓ%
k=1

(νmk + 1) : 1
,
(((((x

G
,
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&S J
µ,ν̄(r) = Dm(r)

!

n≥1

(−1)n−1

nµ+ν! Sℓ+1:−;··· ;−
−:1;··· ;1

D +
1

ℓ+1

@
µ+ ν" + r

A
: ℓ+ 1

,ℓ
r=0

: [− : −]; · · ·

− :
+ ℓ%
k=1

(ν1k + 1) : 1
,
; · · · ;

+ ℓ%
k=1

(νmk + 1) : 1
,
(((((x

G
,

S I
µ,ν̄(r) = Dm(r)

!

n≥1

1

nµ+ν! Sℓ+1:−;··· ;−
−:1;··· ;1

D +
1

ℓ+1

@
µ+ ν" + r

A
: ℓ+ 1

,ℓ
r=0

: [− : −]; · · ·

− :
+ ℓ%
k=1

(ν1k + 1) : 1
,
; · · · ;

+ ℓ%
k=1

(νmk + 1) : 1
,
((((( − x

G
,

&S I
µ,ν̄(r) = Dm(r)

!

n≥1

(−1)n−1

nµ+ν! Sℓ+1:−;··· ;−
−:1;··· ;1

D +
1

ℓ+1

@
µ+ ν" + r

A
: ℓ+ 1

,ℓ
r=0

: [− : −]; · · ·

− :
+ ℓ%
k=1

(ν1k + 1) : 1
,
; · · · ;

+ ℓ%
k=1

(νmk + 1) : 1
,
(((((− x

G
,

where x = (x1, · · · , xm)T with coordinates

xj = −
@ rj
n(ℓ+ 1)

Aℓ+1

, j = 1, · · · ,m ; and ν" =

m!

j=1

ℓ!

k=1

νjk .

The constant

Dm(r) =
π

m−ℓ
2 (ℓ+ 1)µ−

1
2

2
m+ℓ

2

m*

j=1

r

ℓ!
k=1

νjk− 1
2

j

ℓ*

k=1

Γ
E

1
ℓ+1

-
µ+ ν" + k

.F

Γ(νjk + 1)
.

Remark 2. The most general results are presented in the ongoing section. Several specifications

in the parameter range for ν̄ in Propositions 1 and 2, in Theorem 3 and in Corollary 3.1 imply

the achievements of the previous research chapters.

So, for instance putting either ℓj = 1, j = 1, · · · ,m in Theorem 3, or, which gives the same

result, ℓ = 1 in Corollary 3.1, we arrive at Theorem 1. If we additionally reduce m = 1, we arrive

at Corollary 1.1 for the computational power series expansions of the Bessel–function extensions

of the Mathieu–type series integral representations.

5. Extending Mathieu series via Bessel–Clifford function

In this section we exploit the inter–relations (2.5) between the Bessel–function of the first kind

and the related Bessel–Clifford function:

C(1)
ν (z) = Cν(z) = z−ν/2 Jν(2

√
z) =

!

k≥0

(−1)k zk

Γ(ν + k + 1) k!
,

which is extended to the multi–parameter Bessel–Clifford and modified Bessel–Clifford functions

(2.4). The straightforward consequences of that display (also see [28, p. 11, Eq. (2.5)]) are the

reverse formulae

J (m)
ν (x) =

@ x

m+ 1

A m!
j=1

νj

C(m)
ν

@ xm+1

(m+ 1)m+1

A
, (5.1)

I(m)
ν (x) =

@ x

m+ 1

A m!
j=1

νj

C(m)
ν

@
− xm+1

(m+ 1)m+1

A
, (5.2)
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Let us introduce the extension of the initial Mathieu series’ integral form by means of the product

of m Bessel–Clifford functions (2.4) by which we replace the product of hyper–Bessel functions in

definitions (4.1) and (4.2). Therefore the Bessel-Clifford extended Mathieu series integrals read:

S C
µ,ν̄(s, r) = Km(r)

" ∞

0

xµ−1

ex − 1

m*

j=1

C
(ℓj)
νj (rjx

s) dx, (5.3)

&S C
µ,ν̄(s, r) = Km(r)

" ∞

0

xµ−1

ex + 1

m*

j=1

C
(ℓj)
νj (rjx

s) dx , (5.4)

where in both cases s, r > 0, µ > 0, ν̄ + 1 > 0. However, the shorthand notations ν",ν" used in

the previous section 4 remain the same. The auxiliary parameter s > 0 we put for the sake of

completeness of unification suggested via the formulae (5.1) and (5.2).

Theorem 4. For all s, µ, ν̄ > −1 such that µ+ ν" > 0, and r ∈ Rm
+ we have

S C
µ,ν(s, r) =

!

n≥1

Hm(r)

nµ
S1:−;··· ;−
−:1;··· ;1

D [(µ) : s, · · · , s] : −; · · · ;−

− :
+ ℓ1%
k=1

(ν1k + 1) : 1
,
, · · · ,

+ ℓm%
k=1

(νmk + 1) : 1]

(((((x
G
,

&S C
µ,ν(s, r) = Hm(r)

!

n≥1

(−1)n−1

nµ
S1:−;··· ;−
−:1;··· ;1

D [(µ) : s, · · · , s] : −; · · · ;−

− :
+ ℓ1%
k=1

(ν1k + 1) : 1
,
, · · · ,

+ ℓm%
k=1

(νmk + 1) : 1]

(((((x
G
,

where

x = −
@r
n

As

, and Hm(r) = Γ(µ)

m*

j=1

$
π

2rj

@ ℓj*

k=1

Γ(νjk + 1)
A−1

.

Proof. Consider the integral S C
µ,ν(r) in (5.3). The legitimate integration–summation order inter-

change which follows the binomial series expansion (ex − 1)−1 and the Bessel–Clifford functions

power series’ multiplication results in

S C
µ,ν(s, r) = Km(r)

!

n≥1

!

k≥0

m*

j=1

(−1)kjr
skj

j

kj !
ℓj%

k=1

Γ(νjk + kj + 1)

·
" ∞

0

x
µ+s

m!
j=1

kj−1

e−nx dx

= Hm(r)
!

n≥1

1

nµ

!

k≥0

(µ)sk1+···+skm

m%
j=1

ℓj%
k=1

(νjk + 1)kj

·
m*

j=1

(−1)kj

kj !

@rj
n

Askj

= Hm(r)
!

n≥1

1

nµ
S1:−;··· ;−
−:1;··· ;1

D [(µ) : s, · · · , s] : −; · · · ;−

− :
+ ℓ1%
k=1

(ν1k + 1) : 1
,
, · · · ,

+ ℓm%
k=1

(νmk + 1) : 1]

(((((−
@r
n

As
G
,

which finishes the proof.

The second formula’s derivation follows the same lines. □

The specification m = 1 gives a more familiar form since the Srivastava–Daoust S function in

Theorem 4 reduces to the generalized hypergeometric function 1Fℓ. Indeed,
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Corollary 4.1. For all µ,ν + 1 > 0; r > 0 we have

S C
µ,ν(r) =

√
π Γ(µ)

√
2r

ℓ%
j=1

Γ(νj + 1)

!

n≥0

1

nµ 1Fℓ

+ µ

ν + 1

(((−
r

n

,
, (5.5)

&S C
µ,ν(r) =

√
π Γ(µ)

√
2r

ℓ%
j=1

Γ(νj + 1)

!

n≥0

(−1)n−1

nµ 1Fℓ

+ µ

ν + 1

(((−
r

n

,
. (5.6)

Proof. The proof follows the steps of the proving procedure in getting the results of Theorem 1.

The inserted binomial series, the power series form of Bessel–Clifford function and the Gamma

function integral transform the integral under consideration to

S C
µ,ν(r) =

$
π

2r

!

n≥1

" ∞

0

xµ−1e−nx C(m)
ν (rx) dx

=

$
π

2r

!

n≥1

!

k≥0

(−1)krk

k!
m%
j=1

Γ(νj + 1)

" ∞

0

xµ+k−1 e−nx dx

=

$
π

2r

Γ(µ)
m%
j=1

Γ(νj + 1)

!

n≥1

1

nµ

!

k≥0

(µ)k
m%
j=1

(νj)k

@
− r

n

Ak

k!
,

which is exactly the stated formula (5.5).

Mimicking this procedure we easily conclude (5.6) as well. □

Another approach in studying (5.5) gives a series expansion of S C
µ,ν(r) in terms of Riemann

Zeta, and &S C
µ,ν(r) expressed via Dirichlet Eta function.

Corollary 4.2. For all µ− 1,ν + 1 > 0; r > 0 we have

S C
µ,ν(r) =

$
π

2r

!

k≥0

Γ(µ+ k) ζ(µ+ k)
ℓ%

j=1

Γ(νj + 1)

(−r)k

k!
,

&S C
µ,ν(r) =

$
π

2r

!

k≥0

Γ(µ+ k) η(µ+ k)
ℓ%

j=1

Γ(νj + 1)

rk

k!
.

Proof. We have by direct calculation:

S C
µ,ν(r) =

$
π

2r

!

k≥0

(−1)krk

k!
ℓ%

j=1

Γ(νj + 1)

" ∞

0

xµ+k−1

ex − 1
dx.

The integral (1.1) confirms the firstly stated formula. Applying the integral (1.2) in same fashion

evaluation for the alternating Bessel–Clifford extension &S C
µ,ν(r) we get the second relation. □
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6. Functional bounding inequalities

The inclusion of this chapter in the manuscript has a dual purpose. Firstly, giving a set of

bounding inequalities of the extended Mathieu–type series integral forms, secondly, obtaining their

computable series representations inferred to this section in the same way we can bound these

series, considering that these are special kind summation formulae.

For estimation purposes we recall certain bounding inequalities for Jν , Iν on the positive real

half–axis. First we mention Lommel’s results [48], [49, pp. 548–549] (see also [91, p. 406])

|Jν(x)| ≤ 1, |Jν+1(x)| ≤
1√
2
, ν > 0, x ∈ R, (6.1)

and the bound by Minakshisundaram and Szász [62, p. 37]

|Jν(x)| ≤
1

Γ(ν + 1)

/
|x |
2

0ν

, x ∈ R. (6.2)

Another bounds were derived by Landau [43], who gave in a sense best possible bounds for Jν with

respect to ν and t. These bounds read as follows

|Jν(x)| ≤ bL ν−1/3, bL =
3
√
2 sup
x≥0

Ai(x), (6.3)

|Jν(x)| ≤ cL |x|−1/3, cL = sup
x≥0

x1/3J0(t) , (6.4)

where Ai(·) stands for the Airy function.

Krasikov established uniform bounds for |Jν |. Let ν > −1/2, then

J2
ν (x) ≤

4
-
4x2 − (2ν + 1)(2ν + 5)

.

π
-
(4x2 − λ)3/2 − λ

. =: Kν(t),

for all t > 1
2

√
λ+ λ2/3,λ := (2ν + 1)(2ν + 3). The estimate is sharp in certain sense, see [39,

Theorem 2]. In turn, Krasikov’s recently published a set of more precise and simpler bounds

[40, 41]. Precisely, for all ν ≥ 1/2 and for all t ≥ 0 there holds [40, p. 210, Theorem 3]

((((x
2 −

(((ν2 −
1

4

(((
((((
1/4

|Jν(x)| ≤
$

2

π
, (6.5)

where the right–hand–side constant is sharp. Next, his result [40, p. 210, Theorem 4] imply

|Jν(x)| ≤
$

2

πx
+ ρ c

(((ν2 −
1

4

(((x−3/2 , x > 0, |ρ| < 1 , (6.6)

where

c =

1
2223

2224

-
2
π

.3/2
x ≥ 0, |ν| ≤ 1/2

4
5 0 < x <

5
|ν2 − 1/4|, ν > 1/2

2
π x ≥

5
|ν2 − 1/4|, ν > 1/2

.

Here c cannot be less then 1/
√
2π. For another kind bounds upon Jν(t) consult [40, Theorems 2,

5, 6] and [41, Theorems 2, 4].
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It is worth to mention that Olenko [65, Theorem 1] established the upper bound

sup
x≥0

√
t|Jν(x)| ≤ bL

$
ν1/3 +

α1

ν1/3
+

3α2
1

10ν
= dO, ν > 0 , (6.7)

where α1 is the smallest positive zero of the Airy–function Ai and bL is the Landau’s constant

from above. In this respect we point out Krasikov’s result [40, p. 211, Eq. (7)].

Further considerable upper bounds are listed e.g. in [2, 3, 71, 80, 86]. We also draw the attention

to the work by Paris [67] (see also [79]), who reported on the inequality

1 ≤ Jν(νx)

xν Jν(ν)
≤ eν(1−x), ν > 0; x ∈ (0, 1].

A different approach was used by Srivastava and Pogány in [86]. Let us denote χS(x) the charac-

teristic (or indicator) function of a set S, that is χS(x) = 1 for all x ∈ S, else χS(x) = 0. Here the

integration interval is the positive real half-axis, therefore we need an efficient bound for |Jµ(t)| on
(0, A], A >

√
λ+ λ2/3/2. So, the bounding function

|Jµ(x)| ≤ Vµ(x) :=
dO√
x
χ(0,Aλ](x) +

H
Kµ(x)

-
1− χ(0,Aλ](x)

.
, (6.8)

where, by simplicity reasons, our choice would be

Aλ = 1
2

-
λ+ (λ+ 1)2/3

.
,

because Kν(x) is positive and monotonous decreasing for x ∈ 1
2

-
(λ + λ2/3),∞

.
, compare [86, §3].

Moreover, we point out that for Aλ we can take any 1
2

-
λ + (λ + η)2/3

.
, η > 0. (The interested

reader is referred to [2] too). Obviously, combining (6.5), (6.6) in Vµ(x) replacing Olenko’s result

and/or Kν(x) in (6.8), we can define further bounding functions for |Jν |.
Since some Mathieu–type integrals are expressed in terms of modified Bessel Iν too, we apply

an estimate by Luke [50, p. 399, Eq. (3)]

Iµ(x) <

-
x
2

.µ

Γ(µ+ 1)
coshx, x > 0, µ+ 1 > 0 . (6.9)

Finally, the functional bounds for the hyper–Bessel function and modified hyper–Bessel function

when ν > −1, for all x ∈
-
0, jm+1

νm,1

F
[1, p. 284, Corollary 1]

J (m)
ν (x) ≤ 1

A(ν)

@ x

m+ 1

A m!
j=1

νj

exp
I
− xm+1

(m+ 1)m+1 A(ν)

J
, A(ν) =

m*

j=1

(νj + 2). (6.10)

Here jνm,1 denotes the first positive zero of the normalized hyper–Bessel function

J (m)
ν (x) =

@ x

m+ 1

A−
m!

j=1
νj

m*

j=1

Γ(νj + 1) · J (m)
ν (x) =

!

k≥0

(−1)k

k!
m%
j=1

(νj + 1)k

@ x

m+ 1

Ak(m+1)

,

A Redheffer–type inequality was reported by Aktaş et al. [1, p. 284, Theorem 7]:

@jm+1
νm,1 − xm+1

jm+1
νm,1

Aανm

≤ J (m)
ν (x) ≤

@jm+1
νm,1 − xm+1

jm+1
νm,1

Aβνm

, x ∈
-
0, jνm,1

.
;
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where the best constants are

ανm =
jm+1
νm,1

(m+ 1)m+1 A(ν)
, and βνm = 1 .

In turn, this implies for the same domain of the argument the estimate

-
x

m+1

.
m!

j=1
νj

m%
j=1

Γ(νj + 1)

@jm+1
νm,1 − xm+1

jm+1
νm,1

Aανm

≤ J (m)
ν (x) ≤

-
x

m+1

.
m!

j=1
νj

m%
j=1

Γ(νj + 1)

@jm+1
νm,1 − xm+1

jm+1
νm,1

Aβνm

. (6.11)

Also, we need the definition of the Hurwitz–Lerch Zeta function[87, p. 488, Eq. (1.1)]

ζ(s, a) = Φ(z, s, a) =
!

k≥0

zk

(k + a)s
,

where −a ∕∈ N0; s ∈ C when |z| < 1 and ℜ(s) > 1 when |z| = 1. Special cases of interest for our

exposure are the Riemann Zeta ζ(s) = Φ(1, s, 1), the Dirichlet Eta η(s) = Φ(−1, s, 1);ℜ(s) > 0.

Finally, we draw the attention to the Remark 1 by which there holds for some suitable positive

function A(r) that

|Sµ,ν(r)| ≤ A(r) ⇒ | &Sµ,ν(r)| ≤ A(r) + 2−µ+ 1
2 A

@r
2

A
. (6.12)

Theorem 5. For all µ, ν > 1 and for all r > 0 we have

|Sµ,ν(r)| ≤
$

π

2r

@ r

ν

Aν +
Jν(ν) e

ν Γ(µ+ ν) ζ(µ+ ν, r + 1)− bL
µ 3
√
ν

-
e

µν
r(µ+1) − 1

.−1
A,

+

$
π

2r

bL
3
√
ν
Γ(µ)ζ(µ) =: Hµ,ν(r),

|#Sµ,ν(r)| ≤ Hµ,ν(r) + 2−µ+ 1
2Hµ,ν

@r
2

A
.

Proof. Observe the transformations of the Bessel function in the integrand as follows

Jν(rx) = Jν

@
ν · r

ν
x
A
;

apply now the Paris upper bound when ν > 0 and x ∈
-
0, ν

r

F
. This result in

Jν(rx) ≤
@ r

ν

Aν

Jν(ν) e
ν xν e−rx, 0 < x ≤ ν

r
. (6.13)

Splitting the integration domain into R+ =
-
0, ν

r

F
∪
-
ν
r ,∞), we conclude

|Sµ,ν(r)| ≤
$

π

2r

@ r

ν

Aν

Jν(ν) e
ν

" ν
r

0

xµ+ν−1e−rx

ex − 1
dx+

$
π

2r

" ∞

ν
r

xµ−1

ex − 1
|Jν(rx)| dx

≤
$

π

2r

@ r

ν

Aν

Jν(ν) e
ν

" ν
r

0

xµ+ν−1e−rx

ex − 1
dx+

$
π

2r

bL
3
√
ν

" ∞

ν
r

xµ−1

ex − 1
dx , (6.14)

where Landau’s first upper bound (6.3) was employed. The first integral we handle in the following

way:
" q

0

xµ+ν−1e−rx

ex − 1
dx ≤

!

n≥1

" ∞

0

xµ+ν−1 e−(r+n)x dx
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=
!

n≥1

Γ(µ+ ν)

(r + n)µ+ν
= Γ(µ+ ν) ζ(µ+ ν, r + 1) .

As to the second integral in (6.14), consider the integral

I(p, q) =

" ∞

q

xp−1

ex − 1
dx =

!

n≥1

Γ(p, nq)

np
,

where Γ(t, z) =
K∞
z

xt−1e−x dx denotes the upper incomplete Gamma function and p − 1, q > 0.

Obviously I(p, q) ≤ Γ(p) ζ(p), but we can derive a more sophisticated bound with the bilateral

bound for the lower incomplete Gamma function γ(t, z) = Γ(t)−Γ(t, z) =
K z

0
xt−1e−x dx, reported

by Neuman [64, p. 1213, Theorem 4.1]

exp
I
− ax

a+ 1

J
≤ a x−a γ(a, x) ≤ 1

a+ 1

-
1 + a e−x

.
, min{a, x} > 0.

Rewriting this Neuman’s formula into the equivalent form:

Γ(a)− xa

a(a+ 1)

-
1 + a e−x

.
≤ Γ(a, x) ≤ Γ(a)− xa

a
exp

I
− ax

a+ 1

J
, (6.15)

we conclude

I(p, q) ≤ Γ(p) ζ(p)− qp

p

@
exp

I pq

p+ 1

J
− 1

A−1

.

Collecting the bounds derived, we finish the proof.

As to the bound (6.14), it is enough to recall (6.12) for m = 1. □

Remark 3. In estimating the modulus of the Bessel function Jν(x), we may choose any of the

above listed bounds like the ones by Lommel (6.1), Landau’s second (6.4), Krasikov (6.6), Olenko

(6.7), Minakshisundaram and Szász (6.2) or Srivastava and Pogány (6.8).

However, the sharpness of the bounds depends on the range and constraints of the involved

parameters.

Now we switch to the kernel consisting from the product of m Bessel functions of the first kind.

Theorem 6. For all µ,ν + 1 > 0 such that µ+
m<
j=1

νj > 1, and for all r > 0 we have

|Sµ,ν(r)| ≤ Km(r)

L
e

m!
j=1

νj
m*

j=1

D
rj
νj

Gνj

Jνj (νj) · Γ
@
µ+

m!

j=1

νj

A
ζ
@
µ+

m!

j=1

νj , 1 +

m!

j=1

rj

A

+

m*

j=1

bL√
rj 3

√
νj

D
Γ(µ)ζ(µ)− (ν+(r))

µ

µ

@
exp

M
µ ν+(r)

µ+ 1

N
− 1

A−1
GO

=: Hµ,ν(r) ,

where

r+(ν) = max
1≤j≤m

@ rj
νj

A
and ν+(r) = min

1≤j≤m

@νj
rj

A
. (6.16)

Moreover, for all µ+
m<
j=1

νj > 0 there holds

| &Sµ,ν(r)| ≤ Hµ,ν(r) + 2−µ−m
2 +1Hµ,ν

@r
2

A
.



22 R. K. PARMAR, G. V. MILOVANOVIĆ AND T. K. POGÁNY

Proof. We follow the methodology used in proof of the previous theorem. By means of Paris’

upper bound (6.13) for the interval x ∈ (0, ν+(r)
F
, and simultaneously by Neuman estimate (6.15)

for x > ν+(r), we deduce

|Sµ,ν(r)| = Km(r)

" ν$(r)

0

xµ−1

ex − 1

m*

j=1

Jνj (rj x) · dx

+Km(r)

" ∞

ν$(r)

xµ−1

ex − 1

m*

j=1

Jνj (rj x) · dx

≤ Gm(r)Γ
@
µ+

m!

j=1

νj

A
ζ
@
µ+

m!

j=1

νj , 1 +

m!

j=1

rj

A

+Km(r)
bmL

m%
j=1

3
√
νj

D
Γ(µ)ζ(µ)− (ν+(r))

µ

µ

@
exp

M
µ

(m+ 1) r+(ν)

N
− 1

A−1
G
.

The first assertion is proved. The second one follows by (6.12). □

For the next functional inequalities we need upper bound for the modulus of the hyper–Bessel

and Bessel–Clifford functions. In this goal, according to (6.16), we introduce the convention

ν+(1) = ν1 ≤ · · · ≤ νm .

Theorem 7. For all x > 0 and ν+(1) = ν1 ≥ 1, m ∈ N we have

((C(m)
ν (±x)

(( ≤
m!

j=1

x− νj
2 Iνj (2

√
x) ≤

m!

j=1

cosh(2
√
x)

Γ(νj + 1)
(6.17)

L ((J (m)
ν (x)

((

I
(m)
ν (x)

O
≤

@ x

m+ 1

A m!
j=1

νj
m!

j=1

@ x

m+ 1

A− νj
2 (m+1)

Iνj

I
2
@ x

m+ 1

A 1
2(m+1)

J
(6.18)

≤
@ x

m+ 1

A m!
j=1

νj
m!

j=1

1

Γ(νj + 1)
cosh

I
2
@ x

m+ 1

A 1
2(m+1)

J
. (6.19)

Proof. It is well–known that any positive m–tuple a = (a1, · · · , am) is endowed by the property

a1 · · · am ≤ a1 + · · ·+ am; aj ∈ [0, 1], j = 1, · · · ,m , (6.20)

where the equality is achieved either for m = 1, or all aj = 0. On the other side Γ(ν+(1)+k+1) ≥ 1

when ν+(1) ≥ 1 and k ∈ N0. Choosing aj = Γ(νj + k + 1) we conclude

1
m%
j=1

Γ(νj + k + 1)
≤

m!

j=1

1

Γ(νj + k + 1)
.

Multiply this inequality with (±x)k, x > 0 and summ up with respect to k ∈ N0. Now, by virtue of

definition (2.4) of the Bessel–Clifford function, relation (2.5) between the one–dimensional Bessel–

Clifford function and the Bessel function od the first kind and the property |Jν(z)| ≤ Iν(z), we
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conclude for positive argument x > 0 that

((C(m)
ν (±x)

(( ≤ C(m)
ν (−x) =

!

k≥0

xk

k!
m%
j=1

Γ(νj + k + 1)

≤
m!

j=1

!

k≥0

xk

k!Γ(νj + k + 1)
=

m!

j=1

x− νj
2 Iνj

(2
√
x) .

Applying Luke’s functional upper bound (6.9), we arrive at the inequality (6.18) for the m–order

parameter Bessel–Clifford function.

As to the bound (6.18) for hyper–Bessel function, the reversed relation (5.1) for (2.4) and the

previous estimate imply

(((J (m)
ν

-
(m+ 1)x1/(m+1)

.((( ≤ x
1

m+1

m!
j=1

νj ((C(m)
ν (±x)

(( ≤ x
1

m+1

m!
j=1

νj
m!

j=1

x− νj
2 Iνj (2

√
x) .

The argument change (m+ 1)x1/(m+1) .→ x gives

(((J (m)
ν (x)

((( ≤
@ x

m+ 1

A m!
j=1

νj
m!

j=1

@ x

m+ 1

A− νj
2 (m+1)

Iνj

I
2
@ x

m+ 1

A 1
2(m+1)

J
.

and Luke’s upper bound (6.9) establishes the final result. The identical bound for the modified

hyper–Bessel function holds now in a straightforward way for all x > 0. □

Now, we consider S C
µ,ν̄(s, r),

&S C
µ,ν̄(s, r) expressed by (5.3) and (5.4), respectively.

Theorem 8. For all µ− 1 > 0, ν̄ + 1 > 0, s ∈ (0, 2) and r > 0 we have that

((S C
µ,ν̄(s, r)

(( ≤ KC
m(s, r)

m*

j=1

ℓj!

k=1

r
−

νjk
2

j

Γ(νjk + 1)

!

n≥1

1

nµ 2Ψ1

'
(µ2 ,

s
2 ), (

µ
2 + 1

2 ,
s
2 )

( 12 , 1)

(((((
2s rj
ns

)
. (6.21)

Moreover, when s ∈ (0, 2), µ > 0, ν̄ + 1 > 0 and for all r > 0 there holds

(( &S C
µ,ν̄(s, r)

(( ≤ KC
m(s, r)

m*

j=1

ℓj!

k=1

r
−

νjk
2

j

Γ(νjk + 1)

!

n≥1

(−1)n−1

nµ 2Ψ1

'
(µ2 ,

s
2 ), (

µ
2 + 1

2 ,
s
2 )

( 12 , 1)

(((((
2s rj
ns

)
. (6.22)

For s = 2 both formulae are valid when r ∈ (0, 1
4 )

m. Here the constant

KC
m(s, r) =

π
m
2 Γ(µ+ 1)

2
m
2 +1

m*

j=1

r
− 1

2
j .

Proof. Starting with (5.3) the following subsequent majorizations follow:

((S C
µ,ν̄(s, r)

(( ≤ Km(r)

" ∞

0

xµ−1

ex − 1

m*

j=1

((C(ℓj)
νj (±rjx

s)
(( dx ≤ Km(r)

" ∞

0

xµ−1

ex − 1

m*

j=1

C
(ℓj)
νj (−rjx

s) dx

≤ Km(r)

" ∞

0

xµ−1

ex − 1

m*

j=1

ℓj!

k=1

r
−

νjk
2

j x− s
2 νjk Iνjk

-
2
√
rj x

s
2

.
dx ,



24 R. K. PARMAR, G. V. MILOVANOVIĆ AND T. K. POGÁNY

where the last estimate there follows by the auxiliary bound (6.17). Hence, routine transformations

by the second appropriate bound in (6.17) imply

((S C
µ,ν̄(s, r)

(( ≤ Km(r)
!

n≥1

m*

j=1

ℓj!

k=1

r
−

νjk
2

j

Γ(νjk + 1)

" ∞

0

xµ−1 e−nx cosh
-
2
√
rj x

s
2

.
dx .

The inner integral is in fact the Laplace–Mellin transform of the hyperbolic cosine function of

power function argument. Its general closed form becomes

LM
E
cosh

-
axq

.F
(p, µ) =

Γ(µ+ 1)

2 pµ 2Ψ1

'
(µ2 , q), (

µ
2 + 1

2 , q)

( 12 , 1)

(((((
4q−1 a2

p2q

)
, (6.23)

where µ + 1 > 0, ℜ(p) > 0, q ∈ (0, 1) and for q = 1, |a| < ℜ(p). Indeed, since the series form of

the cosine hyperbolic and the reversing of the order of summation and integration ensure the set

of transformations by the Legendre duplication formula, the formula (6.23) is evident:

LM
E
cosh

-
axq

.F
(p, µ) =

!

n≥0

a2n

(2n)!

" ∞

0

e−px xµ+2nq−1 dx

=
1

pµ

!

n≥0

a2n

Γ(2n+ 1)

Γ(µ+ 2nq)

p 2nq

=
Γ(µ+ 1)

2 pµ

!

n≥0

(µ2 )qn (
µ
2 + 1

2 )qn

( 12 )n n!

@4q−1a2

p 2q

An

.

Consequently, specifying p = n, q = s/2, a = 2
√
rj we arrive at the stated bound (6.21). As to the

convergence of the Fox–Wright function term, consulting (2.2), ∆ = 2 − s > 0 is satisfied by the

conditions of the theorem. For s = 2, the radius ρ = 4rj < 1, j = 1, · · · ,m confirm the convergence

region 0 < r < 1
4 , while for s > 2 the series becomes formal, that is, converges exclusively at r = 0.

The formula (6.22) it follows by a similar approach - here we expand the binomial (ex + 1)−1

and integrate term-wise like in earlier exposed alternating series cases. □

An important special case of Theorem 8 we present in terms of the Hurwitz–Lerch Zeta function.

Corollary 8.1. For all µ− 1, ν̄ + 1 > 0 and for all r ∈ Rm
+ \ {1, 4, 9, · · · }m we have

((S C
µ,ν̄(2, r)

(( ≤ KC
m(2, r)

m*

j=1

ℓj!

k=1

r
−

νjk
2

j

Γ(νjk + 1)

E
Φ(1, µ, 1− 2

√
rj) + Φ(1, µ, 1 + 2

√
rj)

F
.

Moreover, for the same parameter space and µ > 0, there holds

(( &S C
µ,ν̄(2, r)

(( ≤ KC
m(2, r)

m*

j=1

ℓj!

k=1

r
−

νjk
2

j

Γ(νjk + 1)

E
Φ
-
− 1, µ, 1− 2

√
rj
.
+ Φ

-
− 1, µ, 1 + 2

√
rj
.
] ,

where KC
m(2, r) = KC

m(s, r)/2.
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Proof. Setting s = 2 in Theorem 8, that is, q = 1 in (6.23) the Fox–Wright 2Ψ1 one reduces to the

Gaussian 2F1 function. Moreover, having in mind that

2F1

'
µ
2 ,

µ
2 + 1

2
1
2

(((((
4rj
n2

)
=

nµ

2

+ 1

(n− 2
√
rj)µ

+
1

(n+ 2
√
rj)µ

,
, (6.24)

where the formula is valid for rj < n2 for all n ∈ N. Accordingly, rj ∈ (0, 1). Now, summing up

the right–hand–side with respect to n ∈ N we get:

!

n≥1

1

nµ 2F1

'
µ
2 ,

µ
2 + 1

2
1
2

(((((
4rj
n2

)
=

1

2

!

n≥1

+ 1

(n− 2
√
rj)µ

+
1

(n+ 2
√
rj)µ

,
,

which is a sum of two Hurwitz–Lerch Zetas; these are well defined when the denominator argument

a = −1 + 2
√
rj is not a negative integer, which means that rj is different from a perfect square.

So the asserted result. The bound for
(( &S C

µ,ν̄(2, r)
(( also follows. □

Now, we consider the modulus of the hyper–Bessel extension of (4.1), viz.

S J
µ,ν̄(r) = Km(r)

" ∞

0

xµ−1

ex − 1

m*

j=1

J
(ℓj)
νj (rj x) · dx, µ+ ν+ > 1 ,

and its counterpart version associated with the alternating Mathieu–series integral (4.2):

&S J
µ,ν̄(r) = Km(r)

" ∞

0

xµ−1

ex + 1

m*

j=1

J
(ℓj)
νj (rj x) · dx; µ+ ν+ > 0 ,

pointing out that Km(r) and ν+ denote the same constants as earlier.

In this derivation process the main derivation tool will be either the functional upper bound

(6.18), that is its majorized, simplified version (6.19), both presented in Theorem 7.

Theorem 9. For all µ,ν+ > 0, such that µ+ ν+ > 1, ℓ ∈ Nm and for all r > 0 we have

((S J
µ,ν̄(r)

(( ≤ 2−1Km(r)Γ(µ+ ν+ + 1)

m*

j=1

ℓj!

k=1

@ rj
ℓj + 1

A ℓj!
k=1

νjk 1

Γ(νjk + 1)

!

n≥1

1

nµ+ν$

× 2Ψ1

'
(µ+ν$

2 , 1
2(ℓj+1) ), (

µ+ν$+1
2 , 1

2(ℓj+1) )

( 12 , 1)

(((((

D
2 rj

(ℓj + 1)n

G 1
ℓj+1

)
.

In the case when µ+ ν+ > 0 there holds

(( &S J
µ,ν̄(r)

(( ≤ 2−1Km(r)Γ(µ+ ν+ + 1)

m*

j=1

ℓj!

k=1

@ rj
ℓj + 1

A ℓj!
k=1

νjk 1

Γ(νjk + 1)

!

n≥1

(−1)n−1

nµ+ν$

× 2Ψ1

'
(µ+ν$

2 , 1
2(ℓj+1) ), (

µ+ν$+1
2 , 1

2(ℓj+1) )

( 12 , 1)

(((((

D
2 rj

(ℓj + 1)n

G 1
ℓj+1

)
.

Identical upper bounds hold for S I
µ,ν̄(r), and

&S I
µ,ν̄(r) under the same parameter constraints, re-

spectively.
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Proof. Bearing in mind that there are two bounds on disposal for estimating the product of m

hyper–Bessel functions in the integrand of S J
µ,ν̄(r), we start ad libitum with the use of the simpler

bound (6.19), instead of (6.18). Thus,

((S J
µ,ν̄(r)

(( ≤ Km(r)

" ∞

0

xµ−1

ex − 1

m*

j=1

((J (ℓj)
νj (rj x)

(( dx

≤ Km(r)

" ∞

0

xµ−1

ex − 1

m*

j=1

@ rjx

ℓj + 1

A ℓj!
k=1

νjk
ℓj!

k=1

cosh
I
2
@ rjx

m+ 1

A 1
2(m+1)

J

Γ(νj + 1)
dx

= Km(r)

m*

j=1

ℓj!

k=1

Ajk

!

n≥1

" ∞

0

e−nx xµ+ν$−1 cosh
I
2
@ rjx

ℓj + 1

A 1
2(ℓj+1)

J
dx ,

where

Ajk =
@ rj
ℓj + 1

A ℓj!
k=1

νjk 1

Γ(νjk + 1)
.

Employing the Laplace–Mellin transform integral (6.23) for the following specified values of pa-

rameters:

p = n, µ+ ν+ .→ µ, a = 2
@ rj
ℓj + 1

A 1
2(ℓj+1)

, q =
1

2(ℓj + 1)
,

we get

((S J
µ,ν̄(r)

(( ≤ 2−1Km(r)Γ(µ+ ν+ + 1)

m*

j=1

ℓj!

k=1

Ajk

!

n≥1

1

nµ+ν$

× 2Ψ1

'
(µ+ν$

2 , 1
2(ℓj+1) ), (

µ+ν$+1
2 , 1

2(ℓj+1) )

( 12 , 1)

(((((

D
2 rj

(ℓj + 1)n

G 1
ℓj+1

)
.

The Fox–Wright function terms in the upper bound converge for all r > 0 and all ℓj positive

integers because

∆j = 2− 1

ℓj + 1
> 0; ℓj ∈ N; j = 1, · · · ,m .

By similar manipulations we conclude that
(( &S J

µ,ν̄(r)
(( has the same upper bound, as well as the

modified hyper–Bessel extensions S I
µ,ν̄(r) and

&S I
µ,ν̄(r) of the associated Mathieu- and alternating

Mathieu–series integrals, respectively. The absence of moduli in the latter two cases follow from

their definitions (4.1) and (4.2). □

7. Log–convexity and Turán type inequalities

In this section we present the log–convexity property and subsequently, Turán type inequality for

the multi–parameter Mathieu series and alternating Mathieu series Sµ,ν(r) and &Sµ,ν(r), hyper–

Bessel generalized Mathieu series and alternating Mathieu series S J
µ,ν̄(r),

&S J
µ,ν̄(r), and Bessel–

Clifford generalized Mathieu series and alternating Mathieu series S C
µ,ν̄(s, r) and

&S C
µ,ν̄(s, r).

Both, log-convexity and Turánian property we establish with respect the parameter µ.
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Theorem 10. Let r ∈ Rm
+ . Then the following assertions are true:

• The function µ .→ Sµ,ν(r) is log–convex on µ+
m<
j=1

νj ≥ 1.

• The function µ .→ &Sµ,ν(r) is log–convex on µ+
m<
j=1

νj ≥ 0.

• The function µ .→ S J
µ,ν̄(r) is log–convex on µ+

m<
j=1

ℓj<
k=1

νjk > 1.

• The function µ .→ &S J
µ,ν̄(r) is log–convex on µ+

m<
j=1

ℓj<
k=1

νjk > 0.

• The function µ .→ S C
µ,ν̄(s, r) is log–convex on s > 0, µ > 1, ν̄ + 1 > 0.

• The function µ .→ &S C
µ,ν̄(s, r) is log–convex on s > 0, µ > 0, ν̄ + 1 > 0.

Moreover, for the same parameter range there holds the Turán inequality

T 2
µ,ν(r) ≤ Tµ−α,ν(r)Tµ+α,ν(r) , µ > α > 0 , (7.1)

where Tµ ∈ {Sµ,ν , &Sµ,ν ,S J
µ,ν̄ ,

&S J
µ,ν̄ ,S

C
µ,ν̄ ,

&S C
µ,ν̄}.

Proof. Using the integral representation (3.3) by aid of classical Hölder–Rogers inequality for in-

tegrals, we have

Sλµ1+(1−λ)µ2,ν(r) = Km(r)

" ∞

0

xλµ1+(1−λ)µ2−1

ex − 1

m*

j=1

Jνj
(rj x) · dx,

= Km(r)

" ∞

0

xλ(µ1−1)+(1−λ)(µ2−1)

ex − 1

m*

j=1

Jνj
(rj x) · dx

= Km(r)

" ∞

0

L
xµ1−1

ex − 1

m*

j=1

Jνj (rj x)

Oλ L
xµ2−1

ex − 1

m*

j=1

Jνj (rj x)

O1−λ

· dx

≤
L
Km(r)

" ∞

0

xµ1−1

ex − 1

m*

j=1

Jνj (rj x) · dx
Oλ L

Km(r)

" ∞

0

xµ2−1

ex − 1

m*

j=1

Jνj (rj x) · dx
O1−λ

.

This is equivalent to

Sλµ1+(1−λ)µ2,ν(r) ≤ [Sµ1,ν(r)]
λ
[Sµ2,ν(r)]

1−λ
, (7.2)

which proves the first assertion for all µ1, µ2 > 1, λ ∈ [0, 1] and r ∈ Rm
+ . Next, choosing

µ1 = µ− α, µ2 = µ+ α; µ > α > 0; λ =
1

2

in (7.2) we conclude the Turán inequality (7.1) for the extended Mathieu–type series’ integral form

Sµ,ν .

In a similar manner, we can prove the next five Turán inequalities. □
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8. Applications

The famous American applied mathematician Philip J. Davis (1923–2018) recalled in his book

[14, p. 221] the following thought of the not less famous Ukrainian–born mathematician Alexander

Ostrowski (1893–1986): “... In the seventeenth and eighteenth centuries, mathematicians tried to

express integrals as sums. In the nineteenth century they began to express sums as integrals. So

mathematics go in spirals ...” This Ostrowski’s quotation can, actually only partially, to describe

this our study in presenting several type Mathieu and aligned series by integrals, having in mind

in the same time some application ancestry, like: 1. Quantum field theory and the Casimir ef-

fect’s mathematics; 2. Application to a Fredholm integral equations of the first kind with the

non-degenerate kernel in representing higher transcendental special functions of Bessel and hy-

pergeometric type; 3. Modeling of banding and vibration for clamped rectangular plates and

membranes of different shape and prisms, following Lamé problem in elasticity and equilibrium

(Mathieu, Lauricella, Koialovich, Inglis, Pickett, Meleshko) and in this connection 4. Dynamic

response of membranes with arbitrary shape (Caratelli it et al., Nagaya among others).

8.1. Quantum field theory and the Casimir effect’s mathematics. The quantum field the-

ory and quantum physics where Mathieu–type series play important roles. So, the (a,λ)–series

introduced in [70]

Sµ(2,a,λ) =
!

n≥0

a(n)

(λ(n) + 2)µ
, (2, µ > 0) (8.1)

where the sequences a(n),λ(n), n ∈ N0 are non–negative and the monotone λ(n) ↑ ∞. This general

Mathieu–type series concerns the so–called Zeta–function regularization, that is, the regularized,

with the aid of the Riemann Zeta–function, version of a divergent series which appear in derivation

of the vacuum expectation value of the energy of a particle field in quantum field theory:

〈0|T00(s)|0〉 =
!
2

∞!

n=1

1

|ωn|s−1
,

where T00 is the zero’th component of the energy-momentum tensor. Similarly, (a,λ)–series is

related with the mathematics of the Casimir effect, in fact the quantum force of attraction between

two parallel uncharged conducting plates with vacuum between them. By Casimir’s calculations

the zeta-regularized version of the energy 〈E(s)〉 per unit area of a plate is expressed via this kind

of series:

〈E(s)〉 = !A
(2π)2

"
dkx dky

∞!

n≥0

1

|ωn|s−1
, |ωn| := c

H
k2x + k2y + (nπ/a)2; |ω0| =: c|4k| ,

being A the area of the metal plates, c the speed of light, 4kx,4ky are the wave vectors in directions

parallel to the plates, while a denotes the distance between the plates [9], [10]; consult for further

informations about Casimir effect [61] and [73] for its Mathieu series relations.
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Now, straightforward transformations and the Kapteyn formula [11, p. 5 Eq. (2.13)]
" ∞

0

xν Jν(bx)

eπx − 1
dx =

(2b)ν Γ(ν + 1
2 )√

π

!

n≥1

1

(n2π2 + b2)ν+
1
2

,

imply the final (seemingly novel) representation result

〈0|T00(s)|0〉 =
!

2(c|4k|)s−1
+

!
√
aπ

s
2

cs−1
√
2
s
Γ( s−1

2 )

" ∞

0

x
s
2−1 J s

2−1

-
a |4k|x

.

eπx − 1
dx . (8.2)

The integral on the right-hand side u (8.2) for s > 2 can be calculated numerically efficiently

with similar quadrature formulas as the one with respect to Einstein’s weight function developed by

Gautschi and Milovanovć [25]. Reviewing this paper in Mathematical Reviews, renowned nuclear

scientist Gheorghe Adam in his rewiew [MR771039 (86j:65028)], among other things, says, “To the

reviewer’s knowledge, the present paper provides the first systematic investigation on the derivation

of quadrature rules able to provide high-precision accuracy to the above integrals.”

In our case the convergence of the corresponding quadrature formulae will be fast if we provide

the integration of an entire function t .→ Fs(t) with respect to some modified Einstein function

t .→ tν/(et − 1) on [0,∞), where 0 < ν ≤ 1. Indeed, let s ∈ (m,m+ 1], where m is an integer ≥ 2.

Then 0 < ν = s−m ≤ 1 and the integral in (8.2) for s > 2 can be reduced to

A

" ∞

0

tν

et − 1
Fs(t) dx,

where Fs(t) = tm−1− s
2 J s

2−1

-
a
π |4k| t

.
is an entire function, and A is a constant.

8.2. Fredholm integral equation of the first kind and Chaplygin comparison theorem.

The next applications of the Mathieu (a,λ)–series results concern the Fredholm integral equations

of the first kind with the nondegenerate kernel, which ones give the main tool in characterizing

the Bessel function of the first kind Jν(x) of order ν and the Kummer’s confluent hypergeometric

function 1F1(a; c;x) in terms of a Bromwich–Wagner contour integral [19, Theorem 1, Eq.(15)],

[74, Theorems 19, 20; Corollary 8].

8.3. The biharmonic differential equation in modeling of elasticity of plates and mem-

branes. The next application is discovered through considerations of a relevant physical problem,

for example, normal modes of vibrating systems of physical and engineering sciences. The two-

dimensional problem of stresses in an infinitely long elastic rectangular prism or a thin rectangle

subjected to a surface load on its sides is one of the oldest benchmark problems of linear elas-

tostatics, which originates back to Lamé’s lectures [42] on the mathematical theory of elasticity.

He considered the equilibrium of a three-dimensional elastic parallelepiped under any system of

normal forces on its sides. The two–dimensional version of the problem for the elastic rectangle and

the general biharmonic problem (which also appears when considering bending of a clamped, thin

elastic rectangular plate) also attracted the attention. That two-dimensional problem of an elastic

rectangle was developed by Mathieu in his notes, articles, memoir and the monograph on easticity

[51, 52, 53, 54]. The main idea of the superposition method for the biharmonic equation in the 2D
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domain D = [−a, a]× [−b, b] was to consider the sum of two Fourier series on the complete systems

of trigonometric functions with respect to coordinates x and y. These series satisfy identically the

biharmonic equation on the whole rectangle Ω including all the four edges. The coefficient of a

term in one series will depend on all the coefficients of the other series and vice versa; the solution

reduces to solving the infinite system of linear algebraic equations giving the relations between

the coefficients and loading forces. Mathieu [51, 52, 53, 54] studied this problem but without

giving any numerical results for stresses for the square plate. Further simplifications, approvals

and developments of that theory were found by Koialowitch [38], Lauricella [44, 45, 46, 47], Inglis

[29] and Pickett [68] among others. It is worth to mention that only Koialowitch constructed the

mathematical solution of the problem and provided some numerical results, see [55, 56]. The whole

ancestry of the problem is thoroughly presented in Meleshko’s historical survey [57] which contains

highly exhaustive references list.

The Neumann problem arise in the analysis of transverse vibrations of an elastic membrane or

plate stretched over a planar region D ⊂ E2, or a prism, parallelopiped in E3, while the corre-

sponding theory for the plate or prism depends on the biharmonic partial differential expression

∆2 = ∆(∆) =
!

1≤j,k≤r

∂4

∂x2
j ∂x

2
k

.

For example, when r = 2, the clamped plate is studied under the Neumann boundary value problem

∆2U = 0 in D, U = 0 and
∂U

∂4n
= 0 on ∂D , (8.3)

for U coming from a suitable functions class and where ∂D denotes the boundary of D, [23]. In

the case when D = [−a, a] × [−b, b] it was stated that the final representation of the biharmonic

function in terms of infinite Fourier series is convergent and satisfies both boundary conditions

at all sides of the rectangle, [58]. The resulting infinite system of linear algebraic equations has

been treated by a traditional way, named ’the method of reduction’ originates back to Fourier,

also see [38, 59]. The finiteness of solutions was proved by Mathieu who derived estimates for

coefficients in a series form which coincide with S(r) and Sµ(r). However, these functional series

contain trigonometric and hyperbolic sine and cosine function expressions, which alternate their

building block’s sings, that is, they are in the same time Fourier–Bessel series of Neumann and/or

Dini type series (for which consult [3, 91]).

The applied mathematician Schröder [78] has considered the extended ’problem of clamped

rectangular plate’ for the non–homogeneous Neumann boundary problem case of (8.3):

∆2U = f(x, y) in D, U = 0 and
∂U

∂4n
= 0 on ∂D . (8.4)

His memoir also contains upper bounds for the Mathieu–type series of the magnitude of S(r) ≤ r−2

derived by the usual series–integral majorization procedure. Schröder method differs from Math-

ieu’s (that is the one used by Lauricella and Koialowitsch), but also includes series of Neumann–

and Dini–Bessel type, which terms alternate in signs. Three years later Emersleben [21] for integer
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r precise Schröder’s bound upon Mathieu series (which result is de facto necessary only for conver-

gence purposes in certain by-product Fourier series), in turn his contribution is the first integral

expression for S(r), compare (1.4). Section 6 thoroughly extended Emersleben’s integral form of

the Mathieu series for another generalized multiparameter Mathieu-type series.

It is worth to mention that serious application targeted research is conducted by biharmonic

equation’s modeling in elasticity theory themata when the domain of the Neumann problems (8.3)

and (8.4). So, for D being starlike domain, the investigations by Caratelli et al. [7, 8] are relevant,

while when D is of arbitrary shape Nagaya’s [63] work can be used; in all three publications

the corresponding Fourier–Bessel series belong to the Neumann series family built by the Bessel

functions of the first and the second kind.

9. Discussion. Remarks. Open problems

A. The notation Ω(z), z ∈ C stands for the so–called Butzer–Flocke–Hauss (complete) Omega

function introduced in [4, Definition 7.1], [5] in the form

Ω(z) := 2

" 1
2

0+

sinh(zu) cot(πu) du, z ∈ C .

It is the Hilbert transform H1[e
−zx](0) at zero of the 1–periodic function

-
e−zx

.
1
, defined by the

periodic extension of the exponential function e−zx, |x| < 1
2 , z ∈ C, thus

Ω(z) = H1

E
e−zx

F
(0) = PV

" 1
2

− 1
2

ezu cot(πu) du .

Another expressions for complete BHF Omega function Ω(x) are given by Butzer et al. [6]:

Ω(x) =
2

π
sinh

@x
2

A" ∞

0

1

et + 1
cos

/
xt

2π

0
dt , x ∈ R , (9.1)

by Tomovski and Pogány for the real argument complete BHF Ω function which reads [90, p. 10,

Theorem 3.3]

Ω(x) = 2

$
2

π
sinh

@x
2

A
PV

" ∞

0

sinh
@xt
π

A
tan t dt . (9.2)

By extensions in the integrand of the Butzer–Flocke–Hauss Omega function which is intimately

connected to the generalized Mathieu series (consult the extensive study by Butzer and Pogány

[5]) we are faced with a new territory of ideas and series/integral conclusion upon the structure of

these kind generalizations.

Inspired by (9.1), we can write

Ω(x) =

√
x

π
sinh

@x
2

A " ∞

0

√
t

et + 1
J− 1

2

@ xt

2π

A
dt

having in mind that cos(z) =
5
πz/2 J− 1

2
(z), then we can proceed with generalization considering

hyper–Bessel function, Bessel–Clifford function and/or their products instead of J− 1
2
in the kernel.

On the other hand the well–known equality sinh(z) =
5
πz/2 I 1

2
(z) can be used for extending

the integrand of the representation formula (9.2).



32 R. K. PARMAR, G. V. MILOVANOVIĆ AND T. K. POGÁNY

Finally, a linear ODE was obtained [6, Theorem 1], whose particular solution is the Butzer–

Flocke–Hauss complete real–parameter Omega function Ω(z), z ∈ C [4, Definition 2.1], which is

associated with the complex–index Bernoulli function Bα(z) and with the complex–index Euler

function Eα(z). This is accomplished with the aid of an integral representation of the alternating

Mathieu–type series #T (r) =
<
n≥0

(−1)n−1(n2 + r2)−2, r ∈ R.

Moreover, it is worth to mention that the use of the Chaplygin comparison theorem, actually a

highly powerful differential inequality’s use was exploited in discussing the magnitudes of bound-

ing inequalities for the BFH Ω function by constant use of the alternating Mathieu series and

generalized Mathieu eries, see [75].

B. The multi–index Mittag–Leffler function’s power series definition is [35, p. 1888, Eqs. (7–8)]

E
(n)
(ρj),(µj)

(z) = 1Ψn

'
(1, 1)

(µ1, ρ1), · · · (µn, ρn)

((((( z
)
=

!

k≥0

zk

n%
j=1

Γ(µj + ρjk)
;

the parameters range follow the conditions declared for the Fox–Wright generalized hypergemoetric

function. Obviously, close connections are there between Bessel-Clifford function and the multi–

parameter Mittag–Leffler function [16, 33, 36, 66, 88]. So, the integral representation of multi–

parameter Mathieu and alternating Mathieu series become

Sµ,ν(r) =

π
m
2

m%
j=1

r
νj− 1

2
j

2
m
2 +

m!
j=1

νj

" ∞

0

x
µ+

m!
j=1

νj−1

ex − 1

m*

j=1

E
(2)
(1,1),(νj+1,1)

D
−
r2jx

2

4

G
dx,

and

&Sµ,ν(r) =

π
m
2

m%
j=1

r
νj− 1

2
j

2
m
2 +

m!
j=1

νj

" ∞

0

x
µ+

m!
j=1

νj−1

ex + 1

m*

j=1

E
(2)
(1,1),(νj+1,1)

D
−
r2jx

2

4

G
dx,

where the so–called Dzrbashjan’s (binomial/two–parameter) Mittag-Leffler type function notation

is used. For m = 1, the integral representations (3.1) and (3.2) reduce to the familiar Mathieu

series and alternating Mathieu series (1.4) and (1.6) by virtue of (1.9).

C. The constraints of the inequality (6.20) actually can be weaken. Namely, rewriting a1 · · · an ≤
a1 + · · ·+ an into

an(a1 · · · an−1 − 1) ≤ a1 + · · ·+ an−1,

we see that (6.20) holds true when

a1 · · · an−1 < 1, an > 0; or a1 · · · an−1 > 1, an <
a1 + · · ·+ an−1

a1 · · · an−1 − 1
.

We conclude that when no more then one aj > 1, then the inequality (6.20) is valid as well.

This comment allows further possibilities to enlarge the parameter space in Theorem 7.
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D. The set of bounding inequalities for Bessel–function family members is extensive, excluding

the Bessel–Clifford functions and the hyper–Bessel and modified hyper–Bessel functions for the

interval x > jm+1
νm,1 which, according to our best knowledge, do not exist; here jνm,1 stands for the

first positive zero of the hyper–Bessel function J
(m)
ν (x), consult the introductory part of section 6.

In this respect immediately arise two important questions: (a) to derive suitable functional

bounding inequalities for the Bessel–Clifford functions and the hyper–Bessel and modified hyper–

Bessel functions, and (b) the sharpness issues for the derived upper bounds concerning the extended

Mathieu–type series integrals. In turn, the case (b) implies a new ask: the upper bounds magnitude

with respect to large parameters µ, ν̄ and r.

As to the problem (a) we give an answer by Theorem 7; also consult in this respect C. Having in

mind the hybrid upper bound (6.8) introduced by Srivastava and Pogány in [86] for Bessel functions

of the first kind, we can combine another existing bounds like the ones by Krasikov, Landau,

Lommel, Minkashisundaram–Szász, Olenko, and Sitnik for the annulus and another suitable ones

for the remaining part of the domain.

In our exposition we decide for Paris’ bound (6.13) which holds for the unit interval. This implies

that our approach suggests several possible bounds; the ’best bound’ contest could be resolved by

the smallest magnitude study, for instance.

Hybrid bounds for the Bessel–Clifford, and hyper–Bessel functions we can build following the

traces of aforementioned method by Srivastava and Pogány. Considering the bound (6.10) by

Aktaş et al. from one side for the values of the argument in annulus and the offered bounds from

Theorem 7, we have on disposal the hybrid functional upper bound for the hyper–Bessel function

J
(m)
ν (x) as

((J (m)
ν (x)

(( ≤ HJ
m(x) =

@ x

m+ 1

A m!
j=1

νj

L
1

A(ν)
e
− xm+1

(m+1)m+1 A(ν) · χ-
0,jm+1

νm,1

F(x)

+

m!

j=1

1

Γ(νj + 1)
cosh

+
2
@ x

m+ 1

A 1
2(m+1)

,
· χ-

jm+1
νm,1,∞

.(x)
O
; A(ν) =

m*

j=1

Γ(νj + 2) ,

where χS(x) denotes the characteristic function of the set S.

On the other hand the Redheffer–type inequality (6.11) implies the hybrid bound

((J (m)
ν (x)

(( ≤ KJ
m(x) =

@ x

m+ 1

A m!
j=1

νj

L
jm+1
νm,1 − xm+1

jm+1
νm,1

m%
j=1

Γ(νj + 1)
· χ-

0,jm+1
νm,1

.(x)

+

m!

j=1

1

Γ(νj + 1)
cosh

+
2
@ x

m+ 1

A 1
2(m+1)

,
· χE

jm+1
νm,1,∞

.(x)
O
.

The derivation of hybrid bound for the Bessel–Clifford function C
(m)
ν (x) and its applications we

leave to the interested reader.

The problem (b) has an interesting consequence and another benefits. Namely, the computable

power series representation formulae in terms of higher transcendental functions which consist the
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matter of Theorems 1–4 and all their corollaries are in fact summation formulae when we reverse

their point of view. On the other hand Theorems 5-9 give functional upper bounds for the integrals

represented by the series/summations which are a fortiori upper bounds for the mentioned highly

complicated sums.

E. Propositions 1 and 2 present novel results in Laplace–Mellin transform family of the products of

m hyper–Bessel functions of not necessarily equal size parameters, complementing the appropriate

sections of Laplace transform collections like Erdélyi et al. [22] and Prudnikov et al. [76].

Next, new integral Laplace–Mellin transform formula (6.23) was obtained for the cosine hyper-

bolic function with general power argument, reads as follows:

" ∞

0

e−pxxµ−1 cosh
-
axq

.
dx =

Γ(µ+ 1)

2 pµ 2Ψ1

'
(µ2 , q), (

µ
2 + 1

2 , q)

( 12 , 1)

(((((
4q−1 a2

p2q

)
,

where µ + 1 > 0, ℜ(p) > 0, q ∈ (0, 1), which follows from the convergence condition for the Fox–

Wright 2Ψ1 function as ∆ = 2−2q > 0. Else, for q = 1 the series converges for |a| < ℜ(p); this can
be seen from the constraint ρ = 1 around (2.2) or by the asymptotic behavior of the integrand for

large x. This transform is an important extension of the related formula listed in the monograph

by Prudnikov et al. [76, p. 60, Eq. 17], where only the positive rational exponent q ∈ Q+ was

considered, and the formula is in the Meijer G function setting given, which use we systematically

avoid in the whole exposition; consult also [77] in this respect.

It is worth to mention that the case q = 1 of the previous formula reduces to a sum of two

algebraic functions, viz. (6.24).

F. The integral representations of hyper–Bessel and modified hyper–Bessel functions are reported

for instance in [16, p. 32, Theorem 3]

J (m)
ν (z) = cm

@ z

m+ 1

A m!
j=1

νj
" 1

0

Gm,0
m,m

'
t

(((((
ν

j
m+1 − 1

)
cosm+1

E
(m+ 1)z t1/(m+1)

F
dt ,

I(m)
ν (z) = cm

@ z

m+ 1

A m!
j=1

νj
" 1

0

Gm,0
m,m

'
t

(((((
ν

j
m+1 − 1

)
hm+1

E
(m+ 1)z t1/(m+1)

F
dt ,

where z, νj ∈ C and ℜ(νj) > −1, j = 1,m, the constant

cm = (2π)−
m
2

√
m+ 1 ,

while the generalized cosine function of the order r ∈ N reads

cosr(w) =
!

k≥0

(−1)kwrk

(rk)!
= 0Fr−1

'
−

1

n
,
2

n
, · · · , n− 1

n

(((((−
@z
r

Ar
)
, cos1(w) ≡ cos(w).



MULTI–PARAMETER MATHIEU SERIES 35

In the integrand the Meijer G function terminology is used. In turn, the modified hyper–Bessel

functions’ integral representation contains the generalized hyperbolic hm+1(w) = cosm+1(−w)

function in the kernel, [16, p. 31, Definition 3].

We also notice that the multi–index Mittag–Leffler function is related with the Delerue hyper–

Bessel function by the formula [34, p. 1132, Eq. (16)].

Finally, we re-call the integral representation formula for the Bessel–Clifford function [28, p. 17,

§5] (also see [16]) which reads:

C(m)
ν (z) = cm

" 1

0

Gm,0
m,m

'
t

(((((
ν

j
m+1 − 1

)
cosm+1

E
(m+ 1)z t1/(m+1)

F
dt .

These integral expressions could be also used in another fashion approach for the tasks realized in

our present exposition.
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