Dedekind and Hardy Type Sums and
Trigonometric Sums Induced by Quadrature
Formulas

Gradimir V. Milovanovi¢ and Yilmaz Simsek

Abstract The Dedekind and Hardy sums and several their generalizations, as well
as the trigonometric sums obtained from the quadrature formulas with the highest
(algebraic or trigonometric) degree of exactness are studied. Beside some typical
trigonometric sums mentioned in the introductory section, the Lambert and Eisen-
stein series are introduced and some remarks and observations for Eisenstein series
are given. Special attention is dedicated to Dedekind and Hardy sums, as well as
to Dedekind type Daehee-Changhee (DC) sums and their trigonometric representa-
tions and connections with some special functions. Also, the reciprocity law of the
previous mentioned sums is studied. Finally, the trigonometric sums obtained from
Gauss-Chebyshev quadrature formulas, as well as ones obtained from the so-called
trigonometric quadrature rules, are considered.

1 Introduction and Preliminaries

Trigonometric sums play very important role in many various branches of mathe-
matics (number theory, approximation theory, numerical analysis, Fourier analysis,
etc.), physics, as well as in other computational and applied sciences. Inequalities
with trigonometric sums, in particular their positivity and monotonicity are also im-
portant in many subjects (for details see [63, Chap. 4] and [66]).

There are several trigonometric sums in the well-known books [70], [71], [42,
pp- 36-40] and [47]. The famous Dedekind and Hardy sums and many generalized
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sums have also trigonometric representations. In this introduction we mention some
typical trigonometric sums obtained lately.

In 2000 Cvijovi¢ and Klinowski [26] gave closed form of the finite cotangent
sums

Ul T T
= Z cot” M and Z cot" P
) q

where n and ¢ are positive integers (¢ > 2) and & is a non-integer real number.
They obtained S,(¢;&) in a determinant form, as well as the following differential
recurrence relation

d

Snt2(4:6) = =Su(4:6) — (n+1) dé

—=Sut1(q:8) (n>1),
where

S1(¢:€) = geot(n&),
$2(q:&) = g*[cot?(mE) +1] —
S3(q:&) = ¢’ [cot’ (&) + cot(mE)] — geot(nE),

etc. Evidently, according to the properties of the cotangent function, S5, . ;(q) = 0,
as well as

q
2 2 pﬂ' _ 1 *
Z cot n —Szn(Zq) an 1;1 cot n m = ESzn(ZQ‘f' 1)

For example, S5(q) = (> —3q+2)/3, S;(q) = (¢* —20g> +45q—26) /45, S;(q) =
(2¢° — 42¢* + 483¢> — 945g + 502) /945, etc. In general, S} (¢) is a polynomial of
degree 2n with rational coefficients [26] (see also [70, p. 646] forn =1 and n = 2).

Using contour integrals and the Cauchy residue theorem, Cvijovi¢ and Srivastava
[27] derived formulas for general family of secant sums

! 2rpm i
San(q,r) = Y cos( P )secz" (p—) (r=0,1,...,g—1),
= q q

p# % (qiseven)

when n € N and g € N\ {1}, as well as for various special cases including ones for

r=0,1.e.,
Son(q Z sec? ( )

They also obtained sums which were considered earlier by Chen [17] by using the
method of generating functions. In the Appendix of [17], Chen gave tables of power
sums of secant, cosecant, tangent and cotangent. Among various such trigonometric
summation formulae, we mention only a few of them for tangent function:
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Y tan ("—”) _ %n(n— (4 n—3),

(S km 1 4,53 g2
z:tan6 <—) = En(nfl)(Zn +2n° —8n~—8n+15).
n

Using their earlier method, Cvijovi¢ and Srivastava [28] obtained closed-form
summation formulas for 12 general families of trigonometric sums of the form

nil(j:l)k"f (#)g(k—ﬂ)m (meN\{1},r=1,...,n—1),

k=1 n

for different combinations of the functions x — f(x) and x — g(x) and different
values (even and odd) of m € N. The first function can be f(x) = sinx or f(x) = cosx,
while the second one can be one of the functions cotx, tanx, secx, and csc(x). Such
a family of cosecant sums. i.e.,

nl 2rkm krm
Com(n,r) = Z cos ( - )csczm (7) ;

where m € N, n € N\ {1}, and r =0,1,...,n — 1, was previously considered by
Dowker [30]. All obtained formulas in [28] involve the higher-order Bernoulli poly-
nomials (see also [23] and [24]).

In [32] da Fonseca, Glasser, and Kowalenko have considered the trigonometric
sums of the form

n—1 n—1
y k 3 k

Com (l’l) = Coszm ( 7[) and Sy, (n) = Sian (_ﬂ') ,
k=0 n =0 n

and their extensions. In [31] da Fonseca and Kowalenko studied the sums of the

form .
km
_1 k 2m
,§l< )\ cos (2n+2)’

where n and m are arbitrary positive integers.

Recently da Fonseca, Glasser, and Kowalenko [33] have presented an elegant
integral approach for computing the so-called Gardner-Fisher trigonometric inverse
power sum

2mn=l kT
Sma(n) = (%) Y sec®™ (ﬂ) , n,meN.
k=1

For example,
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n? 1 n* 5 7
SIQ(H)F<1E) and SZ’Z(H)%<1+2_1122_;14>

By using contour integrals and residues, similar results for secant and cosecant sums
were also obtained by Grabner and Prodinger [41] in terms of Bernoulli numbers
and central factorial numbers.

Recently Chu [21] has used the partial fraction decomposition method to get a
general reciprocal theorem on trigonometric sums. Several interesting trigonometric
reciprocities and summation formulae are derived as consequences.

In this chapter, we mainly give an overview of the Dedekind and Hardy sums
and several their generalizations, as well as the trigonometric sums obtained from
the quadrature formulas with the highest (algebraic or trigonometric) degree of ex-
actness.

The chapter is organized as follows. In Section 2 we introduce Lambert and
Eisenstein series and give some remarks and observations for Eisenstein series. Sec-
tions 3 and 4 are dedicated to Dedekind and Hardy sums. In Section 5 we consider
the Dedekind type Daehee-Changhee (DC) sums. Their trigonometric representa-
tions and connections with some special functions are presented in Sections 6 and
7, respectively. The Section 8 is devoted to the reciprocity law of the previous men-
tioned sums. Finally, in Sections 9 and 10 we consider trigonometric sums obtained
from Gauss-Chebyshev quadrature formulas, as well as ones obtained from the so-
called trigonometric quadrature rules.

2 Lambert and Eisenstein Series

Lambert series G, (x) is defined by

oo

Gy(x) = Z mfp] imxm = i m~ Px™,

m=1 m,n=1

where p > 1. These functions are regular for |x| < 1. The special case p = 1 gives
Gy (x)=—log [T (1—x").
m=1

For odd integer values of p, Apostol [2] gave the behavior of these functions in the
neighborhood of singularities, using a technique developed by Rademacher [72] in
treating the case p = 1.

The following series

Y (m+nz)*,

(m,n)€Z?

for Imz > 0 and Re s > 2, has an analytic continuation to all values of s. In the paper
[56] by Lewittes, it is well known this series has transformation formulae for the
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analytic continuation of very large class of the Eisenstein series. These transforma-
tion formulae are related to large class of functions which generalized the case of
the Dedekind eta-function, which is given as follows:

Let z=x-+1y and s = 0 +ir with x,y, 0, be real. For any complex number w,
branch of logw with —7 < argw < 7. Let

7az+b
 cz+d

V()
be an arbitrary modular transformation. Let H denote the upper half-plane,
H={z:Im (z) > 0}.

For z € H and 6 > 2, the Eisenstein series, G (z,s,71,72) is defined by

eZn’i(mhl +nhy)

G(z,s,1,h) = , (1)
( ) r#(m,n)e7? ((m—l—rl)z—i—n—i—rz)s
where 1, € R.
Substituting r; = r» = 0 into Eq. (1), we have
G(zs) 1 )
Z,8) = —
r#(mn)€Z? (m + nz)s

(for details see [55], [56]). Let r; and r, be arbitrary real numbers. For z € H and
arbitrary s, generalization of Dedekind’s eta-function is given by

Al(z,s,1r1,1m2) = Z Z J~ 1 g2kt 2mik(mtry)z
m>—ry k=1

For a real and o > 1, Lewittes ([55], [56]) define { (s,a) by
{(s,a) =) (n+a)™".
n>—a
Observe that
C(s,a) =C (s, {a}+x(a)),

where {a} denotes the fractional part of a, and ¥ («) denotes the characteristic func-
tion of integers. Since 0 < x (a) + {a} <1, { (s,{a} + x (a)) denotes the classi-
cal Hurwitz zeta-function. Lewittes ([56, Eq-(18)]) showed a connection between
G(z,8,7r1,72) and A (z,s,71,77) as follows

G(zs,r1,72) = () (8 (sm2) +e™°E (s, 12) )

(A(z,s,rl,rg)+emsA(z,S,7r],fr2)).
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The above equation was proved by Berndt [10]. He proved transformation for-
mula under modular substitutions which is derived for very large class of general-
ized Eisenstein series. Berndt’s results easily converted into a transformation for-
mula for a large class of functions that includes and generalizes the Dedekind eta-
function and the Dedekind sums.

A transformation formula of the function A (z,s,7,7,) is given by Apostol [2] as
follows: Let m (> 0) is an even integer. Then

(ca+d)" A(V (), ~m) = A, —m) + 58 (m+ 1) (1 = (cz +)")

iyt e me2 ("82)Be(D) Buea i (2)
2(m+2)!j:1k:0 (—(CZ‘Fd))Fk

3)

However, due to a miscalculation of residue, the term 1¢(m+ 1) (1 — (cz+d)™)
was omitted. The result was also misstated by Carlitz [16]. The proof of this trans-
formation is also given by Lewittes [56] and after that by Berndt [10]. A special
value of the function A(z,s,r,r,) is given by

iz
logn (z) = = ~ ().

Hence, the transformation formula for A(z) is given as follows (cf. [5], [?], [53],
[54)):

Theorem 1. For z € H we have
1 -
1(-1)=vE@ne

Eisenstein Series

2.1 Further remarks and observations for Eisenstein series

Now we give some standard results about Eisenstein series.
For2 <keNandzeH,

i k—1 2minz
= n €
mez (Z+m)k (k_l)' n=1

is the known Lipschitz formula.
Apostol-Eisenstein series are given as follows:
If 2 < k € N and z € H, the Eisenstein series G (z,2k) is defined by
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G(z2k)= Y] % 4)

2
0#(m,n)€Z? (mz + n)

It converges absolutely and has the Fourier expansion

27“ * e 27rinz
G (z,2k) =28 (2k) + Z O (

where, as usual, o, (1) = Y4, d° and { (z) denotes Riemann zeta function.
For k = 1, the series in (4); G (z,2) is no longer absolutely convergent. G (z,2) is
an even function,

=)

G(z,2) =28 (2) +2(2mi) Z e (5)

n=1

forz € H.

For x = e°™ the series in (5) is an absolutely convergent power series for |x| < 1
so that G (z,2) is analytic in H. The behavior of G (z,2) under the modular group is
given by (cf. [S])

1
G (——,2) =72G(z,2) — 2miz.
Z
The well-known Lipschitz formula is given by the following lemma:

Lemma 1 (Lipschitz formula). Let 2 < k € N and z € H. Then

*Zﬂi)k o k-1 2minz
2 n* e ™,
-1 &

By using this lemma, the Fourier expansion of the Eisenstein series is given by:

1

mez (Z + m)k

Theorem 2. If k is an integer with k > 2 and z € H, then

( ) C( 2 27“ i ink 1 2mnmz

‘mln

Proof. We give only brief sketch of the proof since the method is well-known. Now

replacing z by az, where a > 0, substituting in Lemma 1 and summing overalla > 1,
we get

Nk e

(*27“)' Z k=1 2minaz.

a=1meZ az+m) (k_ ]) an=1

We rearrange the terms right member of the above equation, we have

Z k— leZﬂ:maz.

oo 1 i k

7 —26 (k)

N —

0#£acZ meZ (az + m)

After a further little rearrange and use of (2) we obtain the desired result.
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Remark 1. Putting r| = rp, =0, we have

G(2,5,0,0) = 2 (0) (£ (5,0) +€™¢ (5.0) )
(—2mi)*

T

(A (2,5,0,0) —l—emsA(z,s,0,0)) .

Replacing s by k (k is an integer with k£ > 1) in the above, we have

2 (2mi)k
(k—1)!

G(z,k) =28 (k) + A(z,k).

After a number of straightforward calculations we arrive at the desired result.
The Fourier expansion of the function G (z,k,r, 1) is given by:
Corollary 1. Let 2 < k € N, r,h be rational numbers and z € H. Then

2 (—2mi)t

(k 1)' i ak*lezm(nﬂ)az'

a,n=1

G(z,k,r,h) =28 (k,h) +

3 Dedekind Sums

The history of the Dedekind sums can be traced back to famous German mathe-
matician Julius Wilhelm Richard Dedekind (1831-1916), who did important work
in abstract algebra in particularly including ring theory, algebraic and analytic num-
ber theory and the foundations of the real numbers. After Dedekind, Hans Adolph
Rademacher (1892-1969), who was one of the most famous German mathemati-
cians, worked the most deeply the Dedekind sums. Rademacher also studied impor-
tant work in mathematical analysis and its applications and analytic number theory.
It is well-known that, the Dedekind sums, named after Dedekind, are certain fi-
nite sums of products of a sawtooth function. The Dedekind sums are found in the
functional equation that emerges from the action of the Dedekind eta function un-
der modular groups. The Dedekind sums have occurred in analytic number theory,
in some problems of topology and also in the other branches of Mathematics. Al-
though two-dimensional Dedekind sums have been around since the 19th century
and higher-dimensional Dedekind sums have been explored since the 1950s, it is
only recently that such sums have figured flashily in so many different areas. The
Dedekind sums have also many applications in some areas such as analytic number
theory, modular forms, random numbers, the Riemann-Roch theorem, the Atiyah-
Singer index theorem, and the family of zeta functions.

In many applications of elliptic modular functions to analytic number theory,
and theory of elliptic curves, the Dedekind eta function plays a central role. It was
introduced by Dedekind in 1877 by Dedekind. This function is defined on the upper
helf-plane as follows:
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mr/lQ H (1 meT)

The infinite product has the form [] (1 —x"), where x = e**7. If 7 € H, then
n=1
|x| < 1 so the product converges absolutely and it is nonzero. Furthermore, since the
convergence is uniform on compact subsets of H, 1(7) is analytic on H. The func-
tion 1(7) is related to analysis, number theory, combinatorics, ¢g-series, Weierstrass
elliptic functions, modular forms, Kronecker limit formula, etc.
The behavior of this function under the modular group I"(1), defined by

r()= {A: {jfl] Cad—be=1, a,b,c,deZ},

we note that

7az+b
Ccz4d

It is well-known that the Dedekind sums s(h, k) first arose in the transformation
formula of the logarithm of the Dedekind-eta function which is given by Apostol,

i d 1 1
logn(Az) =logn(z) + m(]aT—i;) — i (s(d,c) — Z) + Elog(cz+d),

where z € H and s(d, ¢) denotes the Dedekind sum which defined by
d
=% (ENIE)
U mod ¢ ¢ ¢

where (d,c) =1, ¢ >0, and

0, otherwise,

{x[x]%, x¢Z,

where [x] is the largest integer < x. The arithmetical function ((x)) has a period 1
and can thus be expressed by a Fourier series as follows:

1 & sin( 27rnx
__E;

For basic properties of the Dedekind sums see monograph of Rademacher and
Grosswald [76].

The most important property of Dedekind sums is the reciprocity law. Namely, if
(h,k) = 1 and h and k are positive, then

1 (h k1) 1
s(h,k) + s(k, k) = <k+h+hk)z
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(cf. [2], [100]). This will be discussed in more detail in a separate section.
Apostol [2] defined the generalized Dedekind sums s, (h,k) as

k=1

n— (nh

Sp(h,k): _BP <_>a

nz::o k k

where B, (x) is the p-th Bernoulli function defined by
B (x) = Bu(x — [x]),

where B, (x) denotes the Bernoulli polynomial. These important polynomials are
defined by the following generating function

=

t”

a .

t
of — 16)“ =Y. Balv)

n=0

For x = 0 these polynomials reduce to the well-known Bernoulli numbers B, =
B, (0) (cf. [72]). A few first numbers are 1, —-1/2,1/6,0,—1/30,0,1/42, ....
The functions B, (x) are 1-periodic, and they satisfy

for0 <x< 1, and
B,(x+1)=By(x)

for other real x. The Bernoulli function can be expressed by the following Fourier

expansion
- n! 1 .
B (x) - _ i _emex (6)
" (2mi)” 0mez mpP

Observe that s (h,k) = s(h,k). A representation of s,(h,k) as an infinite series
has also given by Apostol [2]. Namely, forodd p > 1, (h,k) =1 as

! 1 2mimh/k 2mimh/k
sh==L0 Y — ([ — |
(27[1) meN mP \ 1 —e2mimh/k | _ e2mimh/k

m % 0(mod k)

The relation between Dedekind sums s (4, k) and cotzx are given in the lemma
below. This lemma is a special case of (7). The following well-known result is easily

given:
1 k] mhrw mm
= 1 ¥ cor (Y cor (7).
s(h,k) 4kmlco< . >co .

Recently, many authors proved the above nice formulas by different methods
([4], [14], [11], [12], [29], [16], [90], [101]).

Using contour integration and Cauchy Residue Theorem, Berndt [11] proved the
following result:
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Lemma 2. Let h,k € N with (h,k) = 1. Then

1 1 mhm
S(l’l,k):ﬁ Z ECOt (T)

meN
m % 0(mod k)

The sums s, (h,k) are related to the Lambert series G, (x) in the same way that
s (h,k) is related to 1) (z), log 1 (z) being the same as (7iz/12) — Gy (e*™), respec-
tively. The sums s, (h, k) are expressible as infinite series related to certain Lambert
series and, for odd p > 1, s, (h,k) is also seen to be the Abel sum of a divergent
series. This relation is given as follows:

Theorem 3 ([85]). For (h,k) = 1, the Abel sum of the divergent series

for odd p is given by
(=11p)27)" (2p1) "5 (h,k),

where 6, (n) =Y 41, d"

Apostol [2] gave a proof of this theorem using a contour integral representation
of the Lambert series G, (x), but his proof is very different from that given below
(see [85]).

Brief sketch of the proof of Theorem 3: Starting with (6), replacing x by nx (n € N)
and summing over n we get (cf. [85])

o | 0o _
Z B, (nx) =— (chi)l’ Z Z _peZﬂilmnx'

If we rearrange the above equation, we get

=) = —1 o
_ P' 1 2 wimnx 1 2rimnx
B (nx):— - —¢C + —¢C .
O e

n=1m=—oo

After a little calculation, we easily obtain

4 p
mn=1 m mn=1 m

& _ p! s 1 2mi s 1 —2mi

,;IBP (nX) B 7(27[1)P ( Z —e-mumnx _ Z —e imnx | 8)
Because of the identity 2isinz = e —e™'? and putting x = a/b in (8), where
a,b € Z with (a,b) = 1, and writing the Lambert series as a power series G, (x) =
Yo 0p(n)n~Px", we get (cf. [85])

oo

o = (na\ p! _ . (2nma
n;pr (7) = _(27ri)1’mz m "o, (m)sm( - ) . ©)
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Using a definition of the Lambert series G, (x) = Y n~Px"/ (1 —x") and replac-
ing x by a/b, with (a,b) = 1, in (8), we get

o pl 1 e27l'imh/k e27L'imh/k

() L (g

ngl P\b (27[1)P mze:N mP \ 1 —e2mimh/k | _ e2mimh/k
m % 0(mod k)

By substituting (7) into the above, we obtain

ilép (%) = —s,(a,b). (10)

For odd p we get
)= (DI = (1] p), (i

which is known as Jacobi (Legendre) symbol. Finally, combining (9)—(11), we find
the desired result.
Zagier [101] defined the following multiple Dedekind sums

T T .
d(p;015027---; - ]/ZZC t< ma]>C0t< maz)...cot< ma/).
m=1 )4 p

The sum d(p;ay,as,...,a;) vanishes identically when j is odd. In [90], Simsek,
Kim and Koo gave various formulas for the above sums and finite trigonometric
sums.

3.1 Some others formulas for the Dedekind sums

Theorem 4 ([85]). Let a,b € 7 with (a,b) = 1 and let p be odd integers. Then

(@) = o (11 X Fsin () ¢ (1),

n=1m=1

where £ (p,m/b) is the Hurwitz zeta function.

Proof. By substituting x = a/b into (8), we easily calculate
= /na 2p! = 1 . [(27nnma
B (—) = — s1n( ) .
n; P\b (27b)P mZ: | mP b

Writing m = ub+ ¢, with u =0,1,3,... and ¢ = 1,2,...,b — 1 in the above, we
obtain

£5 () i E Reg)on (3).
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where we assume p > 1 in order to insure that the series involved should be abso-
lutely convergent and the rearragements valid. Now, after combining Eqgs. (10) and
(12), the proof is completed.

Lemma 2, as well as corresponding expression for s, (h,k) in (7), can be obtained
without any knowledge of the function 1) and the finite sum ):’;l;i nx". By using the
well-known equality

2imx

) e 672i7'cx
COtax = —1 1 —e2imx ] _e—2imx )

Theorems 3 and 4, a relation between s, (h,k) and cot(an7/b) can be obtained as
follows:

Theorem 5 ([85]). Let (h,k) = 1. For odd p > 1 we have

. p! 1 nnh
Sp(l’l,k)—l(zn_i)p Z n—pCOt (T) .

neN
n # 0(mod k)

Proof. By substituting (6) in to definition of s, (h,k), we have

sp () = Egﬁp(%)

2ximnh
k

By applying the well-known identity 2isinx = e'* — e~ ™ in the above, we obtain
. p' — w— 1 . [(2mmnh
h,k — .
i) =3l Tn T (7

Now, by using the following well-known identity

k
Z asin<27m¢> = ——cot (n—d)),
a mod k k 2 k

where k1 ¢, ¢ € Z, then we have the desired result.

By using Theorem 5, we arrive at the following result:
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Corollary 2 ([85]). For odd p > 1 we have

b—1

van-iy T ()s(3)

n=1

The proof this corollary was proved by Apostol [4].

Using a technique developed by Rademacher (Theorem 2, Eq. (5) in [10]) and
Lewittes (Eq. (56) in [4]), we can give the behavior of Lambert series and Dedekind
eta-function. Namely, substituting r; = r, = s = 0 into Eq. (3) (and also Eq. (5) in
[10]), we have (cf. [85])

A(V (Z)) :A(Z) + % — %log (CZ+d)+7riS(dvc) —mi (a{iz»cd) :

By the definition of G (e”iz) and A (z), we get (cf. [85])

Gl (eﬂlV(Z)) — Gl (eﬂlz) + % _ E

log (cz+d) + mis (d, ) — mi ("1‘;‘1) L (14
C

This relation gives modular transformation of Gy (e™%). Replacing V (z) = azth by

cz+d’
Wi(z) = %:i* where c,d > 0 in (14), we have

i AN |
61 () =0, () + 2L

. (b—c
log (dz—¢)+ mis (—c,d) — mi ( oF ) . (15)

Comparing (14) with (15) and using reciprocity law of Dedekind sums

d c 1
12s(d 12s(c,d) = — —+—=4+—, (d,c)=1
s(@de)+12s(ed) = -3+ 5+ 540 (o) =1,

we deduce that

- . 1 dz—c i (cb —da—3dc+1)
miv(z)\ _ mW(z) ) — 1
G (e ) Gy (e ) 5108 (CZer) + 12dc .

Thus, we arrive at the following results (see [85]).

Theorem 6. Ler V(z) = ?;ig and W(z) = ZE:Z be arbitrary modular transforma-

tions, with ¢ > 0, and let
d
K= {Z:RC(Z) >= Im (z) >O}.

Then, for z € K we have

Z l (eZEian(z) _ eZn'ian(z)) _ ll (dZ — C> i (Cb —da—3dc+ 1)

e m 2 %8\ czvd 12dc
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Theorem 7. Let m > 0 be an even integer and (a,b) = 1. We have

- i (€ (5.2) — £ (5.1~ %)
Sm+1 (a,b) - 7'[2 (47[1);71 Z nler '
neN
n % 0(mod b)

4 Hardy Sums

Hardy’s sums are derived from theta function. Thus, the well known theta-functions,
9,(0,9)(n = 2,3,4) related to infinite products are given by

%(0,q) = 2q'/2H 1—¢*) (144",

(I=g")(1+g" 1),

:8

%(0,9) =

n=1

(-0 - )2

s

194(07Q) =

=
—_

In the sequel we denote 1% (0,q), 93(0,q) and 94(0,q) as D (z), ¥3(z) and V4(z),

respectively, where ¢ = e™<. The relations between theta-functions and Dedekind
eta-function are defined by

n°(z)
n2(2z2)n%(z/2)

These relations, as well as others, are studied by Rademacher [72] (see also [84],
as well as the books [99] and [82]).

Let h and k with k > 0 be relatively prime integers (i.e., (h,k) = 1). The Hardy
sums are defined by (see [48])

%(z) =

T
L

( 1)j+1+[hj/k],

()
(¢

[95)
—~
=

=
N

I
.
Il

S](

=
=

I
["J»

~.
Il

Sz(h,k)

I
=
N
N
~ —

.
Il
= .

S3(

=
Ko
I
1~
Py
L
~=
/N
/
|3
N—

~.
Il
R



16 Gradimir V. Milovanovi¢ and Yilmaz Simsek

sak) = L (-1,

- fevn((d)

>~

By using the following well-known trigonometric formulas, we mention some
relations including the Hardy sums (for details see [40]).
If 2m — 1 #£ 0 (mod k), (h,k) =1, then

ZJS1n< kal)hj) §00t<nh(2;;(1)>'

If m= (2n—1)h, 2n— 1 # 0(mod k), and h and k are of opposite parity, an
elementary calculation gives

¥ sin () = an ().

J=1

If 2m # 0 (mod k), and & and k are of opposite parity, an elementary calculation

gives
k—1 .
. Tmj k Tm
j;(*”’fsm <T> =5 ()

If k is odd, then

j=1
if k is even, then
k—1 .
2
Z sin hnm]) =0
= k
Also (cf. [15])
Y eor (%) = (k= D6=3)
i k 3

The Fourier series of the functionf(x) = (—1)™ is given by (cf. [40])
((2n—1)xm)

1=
:2_; 2n—1

Combining the above finite trigonometric sums and Fourier series of the function
f(x) = (=)} with definitions of the Hardy sums, some relations between Hardy
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sums and trigonometric functions can be given. Such results were obtained by Gold-
berg [40] and Berndt and Goldberg [14]:

Theorem 8. Let h and k denote relatively prime integers with k > 0.
1° If h+k is odd, then

4 Th(2n— 1)\
S(h,k)fnnz::lzn ctan( T2 ); (16)

2° If his even and k is odd, then

2 > 1 Th(2n—1)
hk)=—— t ; 17
s k) =—2 El 2nf1C°( 2% ) a7
2n—1%0(mod k)
3° If his odd and k is even, then
1 = 1 h
sk =-=— Y ;tan(ﬂ); (18)

n=

4° If k is odd, then

1 &1 Thn
hk)=—)Y —tan(—); 19
sl =2 ¥ () (19
5° If his odd, then
4 & 1 wh(2n—1)
h k)= — t ; 20
sa(s) 717,;2117100( ) 20)
6° If h and k are odd, then
2 o 1 h(2n—1)
=— . 21
s =2 ) 2nf1tan( 2% ) @D

n=1
2n—1%0(mod k)

Using the well-known sum

=

)y

n=-—oo n +y

=Tcotmy
in (16) through (21), the relations between Hardy sums and finite trigonometric
sums can be also obtained [40], [14]:

Theorem 9. Let h and k be coprime integers with k > 0.
1° If h+ k is odd, then
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S(h,k) = %ka"] tan (nh(Z;;(— 1)) cot (n(Zr;k— ])) ;

2° If his even and k is odd, then

51(h,k) = ’zik mf_] cot <”h(2;1( 1)) cot (n(zrgk 1)> ;

m# (k+1)/2

3° If his odd and k is even, then

k=1
sz(h,k):f%( Z tan(ﬂkm)cot(%n);
m=1

m#k/2
4° If k is odd, then

1d h
s3(h,k) = % than (nkm> cot (ﬂTm) ;
m=

5°If his odd, then

6° If h and k are odd, then

sk §um (T (2

m# (k+1)/2

Using elementary methods, the previous identities were also obtained by Sitara-
machandrarao [91]. Some new higher dimensional generalizations of the Dedekind
sums associated with the Bernoulli functions, as well as ones of Hardy sums, have
been recently introduced by Rassias and Téth [77]. They derived the so-called

Zagier-type identities for these higher dimensional sums, as well as a sequence of
corollaries with interesting particular sums.

5 Dedekind Type Daehee-Changhee (DC) Sums

The first kind n-th Euler function E,,(x) is defined by
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for 0 < x < 1, and by o _
E,(x+1)=—E,(x)

for other real x. This function can be expressed by the following Fourier expansion

2m! oo e(an 1)mix

m(x) = (ﬂi)erl n;m (211— l)erl P

(22)

where m € N (for details on Euler polynomials and functions and their Fourier se-
ries see [1], [16], [49], [50], [51], [94], [89], [96]). Hoffman [49] studied the Fourier
series of Euler polynomials and expressed the values of Euler polynomials at any
rational argument in terms of tanx and secx. Suslov [96] considered explicit expan-
sions of some elementary and g-functions in basic Fourier series of the g-extensions
of the Bernoulli and Euler polynomials and numbers.

Observe that if 0 < x < 1, then (22) reduces to the first kind n-th Euler polyno-
mials E,(x) which are defined by means of the following generating function

Delx oo "
G = LEW < 23)
n=0 :

Observe that E,(0) = E, denotes the first kind Euler number which is given by
the following recurrence formula

n

Eo=1 and E,,:—Z(n)Ek. (24)
k=0 k

Some of them are givenby 1, —1/2,0,1/4,...,E,=2"E,(1/2) and E», =0 (n € N).

In [50] and [51], by using Fourier transform for the Euler function, Kim derived

some formulae related to infinite series and the first kind Euler numbers. From (22)
it is easy to see that (cf. [1], [51], [49], [89])

i 1 7 (*1)m+1752m+2E2m+1
= (2n—1)¥m+2 42m—+1)!

(25)

By using the first kind n-th Euler function and above infinite series, we can
construct infinite series representation of the Dedekind type Daehee-Changhee-sum
(DC-sum) and reciprocity law of this sum. We also can give relations between the
Dedekind type DC-sum and some special functions.

The second kind Euler numbers, E;;, are defined by means of the following gen-
erating functions (cf. [75], [1], [89])

1 2e* e T
SCChX:m:m:;EnJ, |X|<E (26)

Kim [51] studied the second kind Euler numbers and polynomials in details. By (23)
and (26), it is easy to see that
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mo m—1 om
E =Y (n )2"15,, and Ej,=—Y (2n )E;,,.

From the above Ej =1, Ef =0, E; = —1, Ef =0, E; =5, ..., and E;mH =0
(meN).
The first and the second kind Euler numbers are also related to tanz and secz,

e —eTiz g2z 2 g2 2
t. —_— = - — - .
M= e~ <e2lz+1> 2i <e2‘Z+1)

By using (23) and Cauchy product, we have (cf. [89])

2| —
(aok

3
I
o

tanz

i ! !
n! ) o= nl

g, (22" i) (2iz)" i —2iz)" i (—2ig)"
)

n n'
(2iz)* (2ig)"*

1 =22 12 & ZiZ)k (72iz)n7k
= Ej - = Ek
21,1;0,;) K (n—k)! 21,;0,;0 (n—k)!
l & & Ex . I & & Ey .
= — ——(20)"" — = ——(=21)""
21%,261{!(11—/{)! 21”:0k:0k!(n—k)!
o , 2j41 i 2j+1
_ (71)n221+l Z ( J+ )Ek Zi
) =Nk (2j+1)!
Finally, using (24) we obtain that (cf. [1], [75], [89])
oo 22n+1E2 | T
t _ —1 n+1 n+1 _2n+1 il 27
anz= ) (0" e <3 @7

Remark 2. There are several proofs of (27). For example, Kim [51] used

, e 2 4

Nz = e R R
to get

= 4"(1 —4"By, ,
ztanz= ) (—1)'—————=z77",
n; (2n)!

1.e., (27). Similarly, Kim [51] proved the following relation for the secant function
(see also [75], [1], [94], [89], [96])

oo

E; T
_ —1)" 2n__2n < Z.
secz n;)( ) e 2l < 5

Kim [52] defined the Dedekind type Daehee-Changhee (DC) sums as follows:

Definition 1. Let / and k be coprime integers with k > 0. Then
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-1 .
— 1Jw (M
Ty =2 X (<1 3B (). 8)

where E ,(x) denotes the p-th Euler function of the first kind.

The behavior of these sum 7),(h, k) is similar to that of the Dedekind sums. Sev-
eral properties and identities of the sum 7),(h, k) and Euler polynomials, as well as
some other interesting results, were derived in [52]. The most fundamental result
in the theory of the Dedekind sums, Hardy-Berndt sums, Dedekind type DC and
the other arithmetical sums is the reciprocity law and it can be used as an aid in
calculating these sums (see Section 8).

6 Trigonometric Representation of the DC-sums

In this section we can give relations between trigonometric functions and the sum
Ty, (h,k). We establish analytic properties of the sum 7}, (%, k) and give their trigono-
metric representation.

Starting from (22) in the form

(7‘Ei)m+1_ 0 e(anl)ﬂ:i_x oo e(
Em = ’
S Bl = L @n—1yt )y (2n— 1)+

(29)

we can get the following auxiliary result (see [89]):

Lemma 3. Let m € N and 0 < x < 1, except for m = 1 when 0 < x < 1. Then we

have (—1)"4(2 1)! & 2 1) )
- m— n—1)mx
Eom—1 (.X) = 2m Z Zm ) (30)
and (—1)"4(2 ((2 )
— —1)"4(2m)! & si n—1)mx
Eom(x) = 2mt 1 Z an )2t G1)

For 0 <x < 1, Epp_1(x) and Ey,,(x) reduce to the Euler polynomials, which are
related to Clausen functions (see Section 7).

We now modify the sums 7),(h, k) for odd and even integer p. Thus, by (28), we
define Ty,,—1(h,k) and T»,(h, k) sums as follows:

Definition 1’ [89]. Let & and k be coprime integers with k > 0. Then

y
Ton-1 (1, k) = 22 Y B () (32)

and
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Ton(h,K) 22 B (2), (33)

where E»,,_1(x) and E»,,(x) denote the Euler functions.
By substituting (30) into (32), we get (cf. [89])

—1)"(2m — — oo (Zn 1)whj
sz,,(h,k):fg(l)k;[—gml)z Z 7)7
j=1 n=1
—1D)"™2m — | & k—1 ) n— )
Ton1 k) = Uk,(ﬁm 1)'21(2,1_11)2”, 2(—1)’JC°S<%>.
n= j=

Since (cf. [14] and [40])

k

_ Y W
kzlje(anl)ﬂ:ihj/k _ e(@n—)mih/k _ 1’ 1L zn # O(mOd k)»

=1 Li(k—1), if 21— 1= 0(mod k),

we conclude that

N (1) o2 minik k
_ 1)/ jeén=l)mhj/k _
j;( D'ie elk+Q2n—1)h)mi/k _ |

from which, by some elementary calculations, the following sums follow

k=1 _ .
Y (—1)/jcos (Lkl)nh]) =—§ (34)
j=1
and .
- ... ((2n—1)7hj _k (2n—1)7h
j:Zl(—])stm <T> =5 tan (7% ) (35)

where 2n — 1 # 0 (mod k).
Using (34) and (25) we obtain the following result:

Theorem 10. Let h and k be coprime positive integers and m € N. Then

1
TZinfl(h;k) = (1 - kZ_m)EZ'”71'

Indeed, here we have
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_4(=1)"2m—1)! = 1
D1 (hak> - T n;] (211 — 1)2m’
2n—1% 0(mod k)
ie.,
A-D"em—-1) ) &1 . !
Tom-1(h,k) = n2m Zl (2n—1)2n L (2n—1)2m
n= n=1

Canrem—n & = 1
- 2m {Z (znl)Zm_ZW}’

J=1

where we put 2n— 1 = (2j — 1)k in order to calculate the second sum when 2n— 1 =
0 (mod k). It proves the statement.
Similarly, by substituting (31) into (33) we get

_ w o ((2n=Dhjz
8(—1ym(2m)1 k& sin({Zn=DhiT)
Dom(hik) = =572 (=1)j )}, 51>
n Jer2m+1 ];1 r;l (211 _ ])2 m+1
and then, using (35), we arrive at the following theorem.

Theorem 11 ([89]). Let h and k be coprime positive integers and m € N. Then

a-nmemt & (2
p2m+1 Zl (2n _ 1)2m+1 !
2n—1 n‘;"B (mod k)

TZm(h; k) = (36)

7 DC-Sums Related to Special Functions

In this section, we give relations between DC-sums and some special functions.

In [94], Srivastava and Choi gave many applications of the Riemann zeta func-
tion, Hurwitz zeta function, Lerch zeta function, Dirichlet series for the polyloga-
rithm function and Dirichlet’s eta function. In [45], Guillera and Sandow obtained
double integral and infinite product representations of many classical constants, as
well as a generalization to Lerch’s transcendent of Hadjicostas’s double integral
formula for the Riemann zeta function, and logarithmic series for the digamma and
Euler beta functions. They also gave many applications. The Lerch transcendent
D(z,s,a) (cf. [94, p. 121 et seq.], [45]) is the analytic continuation of the series

Blosa)=—t S f .y &
" a  (a+1)  (a+2) = (n+a)’
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which converges for a € C\ Z, s € C when |z| < 1, and Re (s) > 1 when |z| =1,
where as usual, Z, = Z~ U{0} and Z~ = {—1,-2,...}. @ denotes the familiar
Hurwitz-Lerch zeta function. Here, we mention some relations between this func-
tion @ and other special functions (cf. [45].

Special cases include the analytic continuations of the Riemann zeta function

P(1,5,1)=((s) = i— Re(s) > 1,

n:lns,
the Hurwitz zeta function
> 1
D(1,s,a) =C(s,a) = ——, Re(s)>1,
(o) = §la) = ¥ ooss Re)

the alternating zeta function (also called Dirichlet’s eta function 1 (s))

(1

n

=

(D(ilvsvl) = C*(S) = Z

)

the Dirichlet beta function
. > —1)"
27 @ (71 —) gy =y

the Legendre chi function
oo 2n+1

o A L
2 Z<P<Z ,s,E)*%s(Z)j;)(znﬂ)s’

|zl <1,Re(s) > 1,
the polylogarithm

. Z
7®(z,n,1) = Lin(z) = Z -
and the Lerch zeta function (sometimes called the Hurwitz-Lerch zeta function)
L(A,a,s) = @(*™* 5, a),

which is a generalization of the Hurwitz zeta function and polylogarithm (cf. [3],
[9], [19], [20], [25], [22], [45], [92], [93], [94)]).

By using (29), we can give a relation between the Legendre chi function x;(z)
and the function E,,(x):

Corollary 3 ([89]). Let m € N. Then we have

() = ity ()" e ™)+ sn ).
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The graphics of the functions x — E,,(x) on (0,1) for m = 1,2,...,6 are pre-
sented in Figure 1. Most of the aforementioned functions are implemented in Math-
ematica and Matlab software packages, and the values of these functions can be
calculated with arbitrary precision.

Eon(x) En(x)

Fig. 1 Graphics of the functions E,,(x) for m = 1,3,5 (left) and m = 2,4, 6 (right)

Choi et al. gave relations between the Clausen function, multiple gamma function
and other functions. The higher-order Clausen function Cl,(t) is defined for all
n € N\ {1} by (see [94])

i sin(kt)

, ifmiseven,
k=1 kr
Cl,(t) =<} ",
— kt
Y S i i odd.
k=1 kr

The following functions are related to the higher-order Clausen function (cf. [92],
[22, Eq. (5) and Eq. (6)])

o sin((2n+1)x) >
d C =)y ———.
Ly M G n; Qn+ 1)

n=1

8 Reciprocity Law

As we mentioned in Section 3, for positive 4 and k and (h, k) = 1 the reciprocity law

1 (h k 1 1
(hk)+S(kh) 12(k+ﬁ+ﬁ€) i

holds. For the sums s, (a,b), defined by (13) in Corollary 2, the reciprocity law is
given by

Rk s, (h,k) + kR'sp (k. h)
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1 a4 . . . n
= g () BB B
j=0

where (h,k) = 1 and B, is the nth Bernoulli number (cf. [2], [4], [5]).
In the sequel we mention some reciprocity theorems for Hardy sums:

Theorem 12. Let h and k be coprime positive integers. Then if h+ k is odd,
S(h,k)+S(k,h) = 1. (37)
Theorem 13. Let h and k be coprime integers. Then if h and k are odd,

1 1
S5(h,k)+S5(k,h): E*M (38)

Theorem 14. Let h and k be coprime integers. If h is even, then

1 1/1 h
Theorem 15. Let h and k be coprime integers. If k is odd, then

2s3(h,k) —sq(k,h) =1— % (40)
These reciprocity theorems appear in Hardy’s list [48], as Eqs. (viii), (vii), (vi),
(vi’) and (ix) on pages 122—-123. Berndt [13] deduced (37), (39), and (40), and Gold-
berg [40] deduced (38) from Berndt’s transformation formulae. For other proofs
which do not depend on transformation theory, we refer to Sitaramachandrarao [91].
Otherwise, all reciprocity theorems can be proved by using contour integration and
Cauchy Residue Theorem.
The reciprocity law of the sums 7}, (h, k), defined by (28) in Definition 1, is proved
in [52]:

Theorem 16. Let (h,k) =1 and h,k € N with h = 1 (mod 2) and k = 1 (mod 2).
Then we have

=2 f (kh(E+%)+k(E+h—[%}))p+(hE+kE)P+(p+2)Ep,

/7[%}'] mod 2
where
1
(hE+kE)”+1fr§: Wi etig,,
- j J n+1—j-
j=1

The first proof of reciprocity law of the Dedekind sums does not contain the the-
ory of the Dedekind eta function related to Rademacher [73]. The other proofs of
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the reciprocity law of the Dedekind sums were given by Rademacher and Grosswald
[76]. Berndt [11] and Berndt and Goldberg [14]) gave various types of Dedekind
sums and their reciprocity laws. Berndt’s methods are of three types. The first
method uses contour integration which was first given by Rademacher [73]. This
method has been used by many authors for example Grosswald [43], Hardy [48],
his method is a different technique in contour integration. The second method is
the Riemann-Stieltjes integral, which was invented by Rademacher [74]. The third
method of Berndt is (periodic) Poisson summation formula. For the method and
technique see also the references cited in each of these earlier works.

The famous property of the all arithmetic sums is the reciprocity law. In the
sequel we prove reciprocity law of (36), by using contour integration.

Theorem 17. Let h, k, m € N with h =1 (mod 2) and k = 1 (mod 2) and (h,k) = 1.
Then we have
hk2m+1T2m(h,k) + k]’l2m+1T2m(k,h)
m—1
2m 2j+27,2m—2j
=2Eyn41 — jz;)(zj_"_])EZjJrlEZmleh R
where E, are Euler numbers of the first kind.

Proof. Following [11, Theorem 4.2], [14, Theorem 3], [43], [44], [76], we give the
proof of this theorem. We use the contour integration method with the function

tan whz tan wkz
Fn(2) = =
b4
over the contour Cy,
‘l "
Iy=— F, dz,
N o ./CN n(z)dz

where Cy is a positively oriented circle of radius Ry, with 1 < N < oo, centered
at the origin. The sequence of radii Ry is increasing to oo and is chosen so that the
poles of F;,(z) are at a distance from Cy greater than some fixed positive number for
each N.

From the above, we have

o . .
Iy ! / ﬂef'zme tan (nhRN e'e) tan(nkRN e'e) de.

B 27[R%,m 0

By the condition on Cy, if Ry — oo, then tan (RNeie) is bounded, and threfore
limy 0 Iy = 0 as Ry — o for each m € N.

The function F;,(z) has a pole of order 2m — 1 at the origin, whose the residue can
be determined from the corresponding Laurent series at z = 0. Using the expansion

- T
tanz = Z TVZZV717 |Z| < Ea

v=0
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where

v_14Y(4Y = 1)Byy v 4"Ery_y

w=(1 o - Y o

(cf. Eq. (27))

we can get the Laurent expansion of F,,(z) at z = 0 in the following form

hkn? &
Fuld) = ot L (C1'm4 @1)
Z

where S
- Epjp1Eopoji1h k"7

f”:j;) Q2j+D)@2n—2j+ 1)

Then, from (41) for n = m — 1, we get the residue of the function F,(z) at the
pole z =0 as

l}ngm(Z) = hkm?(—1)" I g2n2gmp

7 7(71)”’(271')%" mfl( om

_ Er:E D i h2j+2k2mfzj. 42
Cmyke & 2j+1) 2j+1E2m—2j-1 (42)

The other singularities of the function F,(z) in the interior of the contour Cy are
points of the sets

2j—1 ,
XN{&jz—h : |§j|<RN,J€Z}

and 1
YN{Tlfz—k : |T[g|<RN,€€Z}.

Since h and k are odd positive integers, then the sets Xy and Yy has an intersection
2j—1 :
Zn =XnyNYy = {C] = JT : |C]| <Ry, JE Z},

with double poles of the function F,(z) in the interior of Cy. Their residues are

_.d e  (2m+1)4mt!
Restn(a) = lim 5 (=) 0] =~ e )

Te residues of the simple poles z = §; € Xy \ Zy and 1y € Yy \ Zy are easily found
to be

2m+1171,2m -
2°mtp . ((2] 1)7tk) a4

Res Fy,(z) = lim (z—&;)Fu(z) 2h

= — A an
=¢; =& m(2j—1)¥m+!
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and

) 22m+lk2m (26— 1)7.[],1
Res Fn(2) = Jim (2= 10)Fn(z) = — x(20— 1)2m+ tan( 2% ) (@5)

respectively. Now, by the Cauchy residue theorem, we have

Iv=Y ResFu(z)+ Y Res F, () +ResFu(z)+ Y, ResFu(z). (46)
éjEXN\Zszéj neery\zy < =0 Giezy o

Using the residues (45), (44), (42), (43), and letting N — oo in (46), we have that
Iy — 0 and

gm+1p2m ad tan ((2872711)7”’) gm+1p2m o0 tan ( 7(%;}],)”]()
T Z‘l (20— 1)2m+1 T T j;l W
20—1% 0(mod k) 2j—1#0(mod h)
(=" @m)* sl 2m 2j42,2m-2j
R M ) L
(2m+1)4m+2 & 1

2hkm2 = (21 _ 1)2m+2’

where the last sum is given by (25).
Multiplying this equality by the factor hk(—1)"(2m)!/(27)?", we arrive at the
desired result.

Corollary 4. Let For each m € N and each positive odd integer k > 3, we have

m—1

kszrlTZm(lak) = 2EZerl - Z (
Jj=0

212’1_: 1 )Ez i1 Eamj W2

This result can be proved in a similar way as Theorem 17. For the sets of singu-
larities here Zy = Xy, so that the first term on the right hand side in (46) vanishes.

We now give a relation between Hurwitz zeta function, tanz and the sum
o (k).

Hence, substituting n =rk+j, 0 <r <o, 1 < j<k (j# (k+1)/2) into (36),
and recalling that tan(7 + o) = tan ¢, then we have

4(—1)"(2m)! X o tan(ﬂhQ(rch]:rj)+l)
Do (h k) = ——2—"2
2m( ) ) n2m+l j;] r;() rk+] +])2m+l
j#(k+1)/2
4(—1)"(2m)! k (2 — D)mhy & 1
= n2m+l(2k)2m+l Z tan( 2k )Z 2j-1 2m+1"
i =0 <r+2—k)
j# (k+1))2
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where the last sum can be identified as the Hurwitz zeta function §(s,x) at s =
2m+1andx = (2j—1)/2. Note that j # (k+ 1) /2 provides the condition 2n — 1 #
0 (mod k) in the summation process in (??).

In this way, we now arrive at the following result:

Theorem 18. Let h and k be coprime positive integers and m € N. Then

4-1)"2m) & 2j—1)mh 2j—1
Tz;n(h,k)W Z tan(%)C(Z +1, Jzk )

J#( 1)/2

Remark 3. Finally, we mention the sums Y (h,k) defined by Simsek [88] (see also
[86] and [65, p. 211]) as Y (h,k) = 4kss(h,k), where h and k are odd with (h,k) =
1. If we integrate the function F(z) = cot(nz) tan(mhz) tan(mkz) over a contour,
obtained from the rectangle with vertices at £iB, § £iB (B > 0), we see that F(z)
has the poles z = 0 and z = 1/2 on this contour; therefore, reciprocity of the sums
Y (h,k) is given by

RY (h,k) + kY (k, h) = 2hk — 2.

Remark 4. Using the definitions of the g-analogues of some classical arithmetic
functions (Riemann zeta functions, Dirichlet L-functions, Hurwitz zeta functions,
Dedekind sums), Simsek [87] defined g-analogues of these functions and gave some
relations among them.

Remark 5. The higher multiple elliptic Dedekind sums and the reciprocity law have
been introduced and considered by Bayad and Simsek [7] (see also [6], [8], [29],
[83], [46]).

9 Sums Obtained From Gauss-Chebyshev Quadratures

It is well-known that Gaussian quadrature formulas with respect to the Chebyshev
weight functions of the first, second, third, and fourth kind,

1 141 1—1¢
1) = )=v1-1, =4/—
wi(t) — wa(t) = wit) =\ T Vi

respectively (cf. [18], [35], [58, p. 122]) have nodes expressible by trigonometric
functions. In a short note in 1884 Stieltjes [95] gave the explicit expressions for
these quadrature formulas for the weights wy, wy, and wy,

1 n
Klwl :% 2:: <COSTU”> + Rt ], 7

n

T . o km km
R 48
n+1kZsm n+1f(cosn+1)Jr nalfl; (“8)

=1

/ '1 wa(0) f()di =
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1 _ 4rm o, km 2km
XIW4(t)f(t)dt7 il Y sin il (cos 2n—|—1) +Ru4lf], (49)

k=1

where R, v(f) =0, v =1,2,4, for all algebraic polynomials of degree at most 2n— 1.
In the class of functions C?>"[—1, 1], the remainder term of these Gaussian formulas
can be done in the form (cf. [58, p. 333])

2
Ruwlf] = 1o ey _y e o,

(2n)!

where the norms of the corresponding orthogonal polynomials 7, , can be expressed
by the coefficients By in their three-term recurrence relations

7fk+1,v(t) =(t— O‘k,v)”k,v(t) *ﬁk,vﬂ-'k—l,v(t)a k=1,2,...,
ﬂoﬁv(l‘) = 1, 77.7,1’\;(1‘) :0,

as ||,y || = BovBiy -+ Buy. with
I
Bov = Moy = / 1 wy (1) dt.

The recurrence coefficients for these Chebyshev weights, as well as the corre-
sponding values of ||7, v ||* are presented in Table 1 (cf. [35, p. 29]). For complete-
ness, we also give parameters for the Chebyshev weight of the third kind w3. The

Table 1 Recurrence coefficients for different kind of Chebyshev polynomials

Weight function Recurrence coefficients v |I?
Chebyshev I o1 =0 (k>0) o
1 1 4"
(v=1) Por=m, Bi=5 B=7 (k=1)
Chebyshev 1T o2 =0 (k>0) T
T 1 22n+1
v=2 ==, =— (k>1
(v=2) Boa=5. Bo=y (k1)
1
Chebyshev 11T = 3 o3=0 (k>1) .
! &
(v=3) Pos=m By=7 (k=1)
1
Chebyshev IV Qo4 = 5 o4s=0 (k>1) .
1 T
(v=4) Poa=m, Ba=7 (k=1)
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corresponding quadrature formula for w3 (cf. [61]),

! _4Anm & L (2k—Drm (2k—1)x
/IW3(t)f(t)dt2n+]kZ]cos 2(zn_i_])f<c0s ST )+Rn,3[f], (50)

can be obtained by changing t := —¢ and using (49), as well as

1 1
[ w00 = [ w01 (1)t = QualF (=) + Rual )

Taking certain algebraic polynomials of degree at most 2n and integrating them

by using some of quadrature formulas (47)—(49) and (50), we can obtain some

trigonometric sums. For example, by a polynomial p,,(¢) of degree m < 2n, using
the quadrature formula (47) we get

(2k— 1)z n/' pm(t)
m | COS ——— de,
Z P ( 2n > —1v1—1¢2
but if py, (1) = Ar*" + terms of lower degree, then
(2k—1)m n 1 po(t) 2nA
ZPZn(COS " )25/17142(”_ T

Thus, we need to compute only integrals of the forms [, p,,(t)wy (r)ds for v =
1,2,3,4. As usual (s), is the well known Pochhammer symbol defined by

I'(s+n)

($)a=s(s+1)---(s+n—1)= 0

(I is the gamma function).

If we take
Pm(t) = Un(ct) =2"c"t" + terms of lower degree, ¢ € R,

where U,, is the Chebyshev polynomial of the second kind and degree m and use the
integral (cf. [71, p. 456])

v,

/ 72]'”(6’2 dr = P (2% ~ 1),
—x

where P, is the Legendre polynomial of degree m, we get the following statement:

Theorem 19. Let U,,, be Chebyshev polynomial of the second kind and degree m and
c € R. We have

0, mis odd (m > 1),

n —
Z U, <ccos(2v27n1)n> — an/z(Zcz— 1), mis even (0 <m < 2n),

n (P,,(Zc2 —-1)— 262"), m=2n,
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where P, is the Legendre polynomial of degree n.
Similarly, using the Legendre polynomials

1
Pn(t) = (nz—: ')”t” + terms of lower degree,
n.

defined by the generating function (cf. [58, p. 129]

1 o
_ = P, (t)x™,
V1 —2xt+x2 ,,,2::0 nl?)

for which the following integrals are true (see [71, p. 423])

and

VP () o ((1/2)n)* 2m 41
1 V1 -2 m! 2m+2’

we can prove the following statement:

Theorem 20. Let P, be the Legendre polynomial of degree n. Then

0, m is odd (m > 1),
2
4 2v—1=m l( m ) . -
ZPm <cos (T)> =9 4 \m)2 ) m is even (0 <m < 2n),
- n 2n\ 2 4n
() -2(5,)) m=2
and
. 2v—1 2v—1
Z cos( v )an,l (cos( v )n)
v=1 2 2n
0, mis odd (m > 1),
n m—1 m—2 2 .
= 4m-2 ((mfl)/Z) ) mis even (0<m<2n),

1 M—2\2  4n—2
42”*1<2(2n_1)<n—1) _”<2n—1))’ m=2n.

Now, we use the following weighted integral for Legendre polynomials, ex-
pressed in terms of the hypergeometric function (see [71, p. 422]),

m) = 1 —x2)B- x)dx = (—=1)" ﬂ —m,m+1,ﬁ.
I )7/71(1 AP Ba(x)dy = (-1) ﬁf(ﬁ—i—%) 3P 2. 1 ;1.
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For odd m this integral vanishes. We need now its value for § =3/2 and even m,
ie.,

T —m, m+1,3/2
Ly(m) = 5 3k [ - i1

Y
AG-HIE-HTENT(3+2)

SIS

Since I'(z) =I'(z+k)/(2)x (k € N), we have

r(l_m_ F(%)
Gm2) =

2 2
so that the previous integral becomes

batm = (Y’
32V = T g — 1) (m+2) \m/2)
Setting p, (1) = P(2) in (48) we get the following result:

Theorem 21. Let P, be the Legendre polynomial of degree n. Then

o, km ( km )
Z sin® ——P, | cos
o/ n+1 n+1

0, mis odd (m > 1),

n+1 m \2
e ] 0< 2
_ 4m(m+2)(m71)(m/2) , m is even (0 <m < 2n),

2 1 2n\2 4n _s
_42”“(21171(11) —‘_(114—1)(211))7 = an.

In the sequel we give trigonometric sums obtained by monomials p,,(#) = #" in
the quadrature formulas (47)—(49). Because of that, we need the moments

1
ymyv:/ wy(D)f"de, v=1,2,34.
—1

These moments are

0, m is odd,

- =X 7w/ m , '
mI™ (%) ﬁ(m/Z)’ m is even;
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VE((=1)m+ 1) (25) 0, m is odd,

Hm2 = 41"(%—1—2) B L( " ), m is even;

2m(m+2)\m/2

om (((71)!7171)1—'(%+1)2+((71)m+1)1—v(m+

Hma = [(m+2)
T m—+1

_— is odd

2m+'((m+1)/2)’ s 0ce

- 1( " ) m is even

m/2)’ '

Note that 1,3 = (—1)" 4.
According to (47)—-(49) we conclude that the following results hold.

Theorem 22. We have

35

0, mis odd (m > 1),
zn: 2"*1)757 2%( n/12)7 mis even (0 <m < 2n),
= m
v=1 2
2(C)2) o
n
0, mis odd (m > 1),
-2 VA, VI Ll( " ) m is even (0 <m < 2n)
leln n+1COS n+1 = (m+2)2m m/z ’ = )
V=

1 2n )
gt () —n= 1) m=2m

2n+ 1
;m—tz(mn/lz)’ m is even (0 < m < 2n),
! 2vm 2n+1 m+1
m — _ . <
; 2n+1 o8 T S ((m+1)/2)’ mis odd (0 <m < 2n),
2n+1//2n
T ((h)-1) m=m

Trigonometric sums can be also obtained in a similar way using quadrature for-
mulas of Radau and Lobatto type with respect to Chebyshev weights. We mention
that shortly after Stieltjes’ results [95], Markov [57] (see also [61]) obtained the ex-
plicit expressions for Gauss-Radau and Gauss-Lobatto formulas, with respect to the

Chebyshev weight of the first kind wy (¢) (for both endpoints),

(1, (2k—1)m
2/ +Zf(cos 1 )

[ moswa =52
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! 2z 1 ! 2km (+1)
[ o= 225 1500+ 3 (cos 2 )| R
and
[m@r@ar= T 1D Y s (eos 22 4 L )| 4Rl
1 1 - I’l+1 2 = n+1 2 n+2,1 )
respectively, where
(2n+1)
RN =4 ec™ L)
and ﬂf(2n+2) (fé )
Rioilfl= 5 —5mper  (FeC?=11)

(2n+2)122n+1

and & € (—1,1). These Gauss-Radau formulas are exact for all algebraic polyno-
mials of degree at most 2n, while the Gauss-Lobatto is exact for polynomials up to
degree 2n + 1, so that we can obtain trigonometric sums taking monomials x in the
previous formulas for all m < 2n+ 1 and m < 2n+ 2, respectively.

There are also similar quadrature formulas for other Chebyshev weights wy (),
v = 2,3.4. For details see [36], [37], [34], [78], [67], [69]. A general approach
in construction of Gauss-Radau and Gauss-Lobatto formulas can be found in [58,
pp. 328-332]. In some of these cases the nodes of quadratures can be expressed
in terms of trigonometric functions, and such quadratures can be used for getting
trigonometric sums.

Some more complex trigonometric sums can be obtained using quadrature for-
mulas of Turdn type (quadrature with multiple nodes) with respect to the Chebyshev
weight functions. For some details on such quadrature formulas see [97], [39], [59],
[38], [60], [64], [79], [80], [81].

10 Sums Obtained From Trigonometric Quadrature Rules

Another way for getting trigonometric sums is based on quadrature rules with max-
imal trigonometric degree of exactness. With .7; we denote the linear space of all
trigonometric polynomials of degree less than or equal to d,
ap d
tq(x) = >+ Y (axcoskx+ sinkx) (ar, by € R).
k=1
If |ay| + |bg| > O the degree of ¢, is strictly d.
We say that a quadrature formula of the form
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n

Omf(x)w(x)dx: Z wyf(xy) +Ru(f), 0<xp<x; <+ <xp<2m,
v=0

has trigonometric degree of exactness equal to d if the remainder term R, (f) = 0
for all f € J; and there exists some g in J;; such that R,(g) # 0.

Quadrature rules with a maximal trigonometric degree of exactness are known in
the literature as trigonometric quadrature rules of Gaussian type. Maximal trigono-
metric degree of exactness for quadrature rule with n 4 1 nodes is n.

A brief historical survey of available approaches for the construction of quadra-
ture rules with maximal trigonometric degree of exactness has been given in [61]
(see also [62], [68]). Here, we consider only a simple case of the (2n+ 1)-point
trigonometric quadrature formula

2n 2 2n
dx = R 51
Jy re0dx =575 3 50+ Rl 51)
with the nodes n
T
=0 k=0,1,...,2
Xk +27’l+], Oa ) , &I,

where 0 < 0 < 27/(2n+ 1). Formula (51) is exact for every trigonometric polyno-
mial of degree at most 2n (cf. [98]). Such kind of quadratures have applications in
numerical integration of 27-periodic functions. Two special cases of the quadrature
formula (51) for which 6 = 0 and 6 = n/(2n+ 1) are very interesting in applica-
tions. Their quadrature sums are

T 2 & [ 2%nm
Qa1 () = mkiof(z” +1> (52)
and 5
M 2 & Qk+1)m
o1 () = 2n+1k2(,)f( PP ) (53)

respectively. Some details on Q7 +1(f) and its applications in the trigonometric
approximation can be found in [58, Chap. 3]. The second formula Q%H (f) has
been analyzed in [62].

Remark 6. Putting h =27 /(2n+ 1) and fo = f(ah), we can write the formulas (52)
and (53) in the forms

03,1(f) Zh{%fo-Ffl+"'+f2n+%f2n+1}

and
Qi (f) = h{fij2+ f3pp+ -+ fan+ fons1)2} 5

where, because of periodicity, we introduced f>,11 = f(27) = £(0) = fo. These
quadratures (52) and (53) are symmetric with respect to the pointx = 7, and they are,
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in fact, the composite trapezoidal and midpoint rules, respectively. Also, they are
equivalent to the trigonometric version of the Gauss-Radau formulas with respect to
the Chebyshev weight of the first kind on (—1,1) (cf. [61]).

Taking f(x) = cos?” 2" xsin? x in (51), where 0 <m < n and 0 < v < m, we
get the following result:

Theorem 23. Ifn,m,v € Nand 0 < v < m <n, we have

2n 2km 2%r \ 2041 (zm) (")
v

Z cos?" 2V <9 + > sin?¥ <9 > = -

k=0

2n+1 2n+1)  4m <2m)
25

for each real 6.

Here, we see that f € %,,, as well as that

2T /2
Iny = / cos?" 2V xsin?¥ xdx = 4/ cos? 2 xsin?¥ xdx
Jo 0

1
_ 2/ tvfl/Z(lit)mfvfl/Zdt
0

2 1 1
il ()T (m=v+3).
" v+2 m V+2

after the change of variables ¢ = sin®x. Since I'(v +1/2) = (2v — 1)!\/7/2", by
using (51), we obtain the desired result.

Selecting other functions, such that f € %,, we can get similar results as in
Section 9.
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