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Abstract The Dedekind and Hardy sums and several their generalizations, as well

as the trigonometric sums obtained from the quadrature formulas with the highest

(algebraic or trigonometric) degree of exactness are studied. Beside some typical

trigonometric sums mentioned in the introductory section, the Lambert and Eisen-

stein series are introduced and some remarks and observations for Eisenstein series

are given. Special attention is dedicated to Dedekind and Hardy sums, as well as

to Dedekind type Daehee-Changhee (DC) sums and their trigonometric representa-

tions and connections with some special functions. Also, the reciprocity law of the

previous mentioned sums is studied. Finally, the trigonometric sums obtained from

Gauss-Chebyshev quadrature formulas, as well as ones obtained from the so-called

trigonometric quadrature rules, are considered.

1 Introduction and Preliminaries

Trigonometric sums play very important role in many various branches of mathe-

matics (number theory, approximation theory, numerical analysis, Fourier analysis,

etc.), physics, as well as in other computational and applied sciences. Inequalities

with trigonometric sums, in particular their positivity and monotonicity are also im-

portant in many subjects (for details see [63, Chap. 4] and [66]).

There are several trigonometric sums in the well-known books [70], [71], [42,

pp. 36-40] and [47]. The famous Dedekind and Hardy sums and many generalized
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sums have also trigonometric representations. In this introduction we mention some

typical trigonometric sums obtained lately.

In 2000 Cvijović and Klinowski [26] gave closed form of the finite cotangent

sums

Sn(q;ξ ) =
q−1

∑
p=0

cotn
(ξ + p)π

q
and S∗n(q) =

q−1

∑
p=1

cotn
pπ

q
,

where n and q are positive integers (q ≥ 2) and ξ is a non-integer real number.

They obtained Sn(q;ξ ) in a determinant form, as well as the following differential

recurrence relation

Sn+2(q;ξ ) =−Sn(q;ξ )− q

π(n+ 1)

d

dξ
Sn+1(q;ξ ) (n ≥ 1),

where

S1(q;ξ ) = qcot(πξ ),

S2(q;ξ ) = q2[cot2(πξ )+ 1]− q,

S3(q;ξ ) = q3
[

cot3(πξ )+ cot(πξ )
]

− qcot(πξ ),

etc. Evidently, according to the properties of the cotangent function, S∗2n+1(q) = 0,

as well as

q−1

∑
p=1

cot2n pπ

2q
=

1

2
S∗2n(2q) an

q

∑
p=1

cot2n pπ

2q+ 1
=

1

2
S∗2n(2q+ 1).

For example, S∗2(q) = (q2−3q+2)/3, S∗4(q) = (q4−20q2+45q−26)/45, S∗6(q) =
(2q6 − 42q4 + 483q2 − 945q+ 502)/945, etc. In general, S∗2n(q) is a polynomial of

degree 2n with rational coefficients [26] (see also [70, p. 646] for n = 1 and n = 2).

Using contour integrals and the Cauchy residue theorem, Cvijović and Srivastava

[27] derived formulas for general family of secant sums

S2n(q,r) =
q−1

∑
p = 0

p 6= q

2
(q is even)

cos

(

2rpπ

q

)

sec2n

(

pπ

q

)

(r = 0,1, . . . ,q− 1),

when n ∈ N and q ∈ N\ {1}, as well as for various special cases including ones for

r = 0, i.e.,

S2n(q) =
q−1

∑
p=0

sec2n

(

pπ

q

)

.

They also obtained sums which were considered earlier by Chen [17] by using the

method of generating functions. In the Appendix of [17], Chen gave tables of power

sums of secant, cosecant, tangent and cotangent. Among various such trigonometric

summation formulae, we mention only a few of them for tangent function:
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n−1

∑
k=1

tan2

(

kπ

n

)

= n(n− 1),

n−1

∑
k=1

tan4

(

kπ

n

)

=
1

3
n(n− 1)(n2+ n− 3),

n−1

∑
k=1

tan6

(

kπ

n

)

=
1

15
n(n− 1)(2n4+ 2n3 − 8n2− 8n+ 15).

Using their earlier method, Cvijović and Srivastava [28] obtained closed-form

summation formulas for 12 general families of trigonometric sums of the form

n−1

∑
k=1

(±1)k−1 f

(

2rkπ

n

)

g

(

kπ

n

)m

(n ∈ N\ {1}, r = 1, . . . ,n− 1),

for different combinations of the functions x 7→ f (x) and x 7→ g(x) and different

values (even and odd) of m∈N. The first function can be f (x) = sinx or f (x) = cosx,

while the second one can be one of the functions cotx, tanx, secx, and csc(x). Such

a family of cosecant sums. i.e.,

C2m(n,r) =
n−1

∑
k=1

cos

(

2rkπ

n

)

csc2m

(

kπ

n

)

,

where m ∈ N, n ∈ N \ {1}, and r = 0,1, . . . ,n− 1, was previously considered by

Dowker [30]. All obtained formulas in [28] involve the higher-order Bernoulli poly-

nomials (see also [23] and [24]).

In [32] da Fonseca, Glasser, and Kowalenko have considered the trigonometric

sums of the form

C2m(n) =
n−1

∑
k=0

cos2m

(

kπ

n

)

and S2m(n) =
n−1

∑
k=0

sin2m

(

kπ

n

)

,

and their extensions. In [31] da Fonseca and Kowalenko studied the sums of the

form
n

∑
k=1

(−1)k cos2m

(

kπ

2n+ 2

)

,

where n and m are arbitrary positive integers.

Recently da Fonseca, Glasser, and Kowalenko [33] have presented an elegant

integral approach for computing the so-called Gardner-Fisher trigonometric inverse

power sum

Sm,2(n) =
( π

2n

)2m n−1

∑
k=1

sec2m

(

kπ

2n

)

, n,m ∈ N.

For example,
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S1,2(n) =
π2

6

(

1− 1

n2

)

and S2,2(n) =
π4

90

(

1+
5

2n2
− 7

2n4

)

.

By using contour integrals and residues, similar results for secant and cosecant sums

were also obtained by Grabner and Prodinger [41] in terms of Bernoulli numbers

and central factorial numbers.

Recently Chu [21] has used the partial fraction decomposition method to get a

general reciprocal theorem on trigonometric sums. Several interesting trigonometric

reciprocities and summation formulae are derived as consequences.

In this chapter, we mainly give an overview of the Dedekind and Hardy sums

and several their generalizations, as well as the trigonometric sums obtained from

the quadrature formulas with the highest (algebraic or trigonometric) degree of ex-

actness.

The chapter is organized as follows. In Section 2 we introduce Lambert and

Eisenstein series and give some remarks and observations for Eisenstein series. Sec-

tions 3 and 4 are dedicated to Dedekind and Hardy sums. In Section 5 we consider

the Dedekind type Daehee-Changhee (DC) sums. Their trigonometric representa-

tions and connections with some special functions are presented in Sections 6 and

7, respectively. The Section 8 is devoted to the reciprocity law of the previous men-

tioned sums. Finally, in Sections 9 and 10 we consider trigonometric sums obtained

from Gauss-Chebyshev quadrature formulas, as well as ones obtained from the so-

called trigonometric quadrature rules.

2 Lambert and Eisenstein Series

Lambert series Gp (x) is defined by

Gp (x) =
∞

∑
m=1

m−p xm

1− xm
=

∞

∑
m,n=1

m−pxmn,

where p ≥ 1. These functions are regular for |x|< 1. The special case p = 1 gives

G1 (x) =− log
∞

∏
m=1

(1− xm) .

For odd integer values of p, Apostol [2] gave the behavior of these functions in the

neighborhood of singularities, using a technique developed by Rademacher [72] in

treating the case p = 1.

The following series

∑
(m,n)∈Z2

(m+ nz)−s ,

for Imz > 0 and Re s > 2, has an analytic continuation to all values of s. In the paper

[56] by Lewittes, it is well known this series has transformation formulae for the
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analytic continuation of very large class of the Eisenstein series. These transforma-

tion formulae are related to large class of functions which generalized the case of

the Dedekind eta-function, which is given as follows:

Let z = x+ iy and s = σ + it with x,y,σ , t be real. For any complex number w,

branch of logw with −π ≤ argw < π . Let

V (z) =
az+ b

cz+ d

be an arbitrary modular transformation. Let H denote the upper half-plane,

H={z : Im (z)> 0} .

For z ∈H and σ > 2, the Eisenstein series, G(z,s,r1,r2) is defined by

G(z,s,r,h) = ∑
r 6=(m,n)∈Z2

e2π i(mh1+nh2)

((m+ r1)z+ n+ r2)
s , (1)

where r1,r2 ∈R.

Substituting r1 = r2 = 0 into Eq. (1), we have

G(z,s) = ∑
r 6=(m,n)∈Z2

1

(m+ nz)s (2)

(for details see [55], [56]). Let r1 and r2 be arbitrary real numbers. For z ∈ H and

arbitrary s, generalization of Dedekind’s eta-function is given by

A(z,s,r1,r2) = ∑
m>−r1

∞

∑
k=1

ks−1e2π ikr2+2π ik(m+r1)z.

For a real and σ > 1, Lewittes ([55], [56]) define ζ (s,a) by

ζ (s,a) = ∑
n>−a

(n+ a)−s .

Observe that

ζ (s,a) = ζ (s,{a}+ χ (a)) ,

where {a} denotes the fractional part of a, and χ (a) denotes the characteristic func-

tion of integers. Since 0 < χ (a) + {a} ≤ 1, ζ (s,{a}+ χ (a)) denotes the classi-

cal Hurwitz zeta-function. Lewittes ([56, Eq-(18)]) showed a connection between

G(z,s,r1,r2) and A(z,s,r1,r2) as follows

G(z,s,r1,r2) = χ (r1)
(

ζ (s,r2)+ eπ isζ (s,−r2)
)

+
(−2π i)s

Γ (s)

(

A(z,s,r1,r2)+ eπ isA(z,s,−r1,−r2)
)

.
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The above equation was proved by Berndt [10]. He proved transformation for-

mula under modular substitutions which is derived for very large class of general-

ized Eisenstein series. Berndt’s results easily converted into a transformation for-

mula for a large class of functions that includes and generalizes the Dedekind eta-

function and the Dedekind sums.

A transformation formula of the function A(z,s,r1,r2) is given by Apostol [2] as

follows: Let m (> 0) is an even integer. Then

(cz+ d)m
A(V (z),−m) = A(z,−m)+

1

2
ζ (m+ 1)(1− (cz+ d)m)

+
(2π i)m+1

2(m+ 2)!

c

∑
j=1

m+2

∑
k=0

(

m+2
k

)

Bk

(

j
c

)

Bm+2−k

(

id
c

)

(−(cz+ d))1−k
. (3)

However, due to a miscalculation of residue, the term 1
2
ζ (m + 1)(1− (cz+ d)m)

was omitted. The result was also misstated by Carlitz [16]. The proof of this trans-

formation is also given by Lewittes [56] and after that by Berndt [10]. A special

value of the function A(z,s,r1,r2) is given by

logη(z) =
π iz

12
−A(z).

Hence, the transformation formula for A(z) is given as follows (cf. [5], [?], [53],

[54]):

Theorem 1. For z ∈H we have

η

(

−1

z

)

=
√

(−iz)η(z)

Eisenstein Series

2.1 Further remarks and observations for Eisenstein series

Now we give some standard results about Eisenstein series.

For 2 ≤ k ∈ N and z ∈H,

∑
m∈Z

1

(z+m)k
=

(−2π i)k

(k− 1)!

∞

∑
n=1

nk−1e2π inz

is the known Lipschitz formula.

Apostol-Eisenstein series are given as follows:

If 2 ≤ k ∈ N and z ∈H, the Eisenstein series G(z,2k) is defined by



Dedekind and Hardy Type Sums and Trigonometric Sums 7

G(z,2k) = ∑
0 6=(m,n)∈Z2

1

(mz+ n)2k
. (4)

It converges absolutely and has the Fourier expansion

G(z,2k) = 2ζ (2k)+
2(2π i)2k

(2k− 1)!

∞

∑
n=1

σ2k−1 (n)e2π inz

where, as usual, σc (n) = ∑d|n dc and ζ (z) denotes Riemann zeta function.

For k = 1, the series in (4); G(z,2) is no longer absolutely convergent. G(z,2) is

an even function,

G(z,2) = 2ζ (2)+ 2(2π i)2
∞

∑
n=1

σ (n)e2π inz (5)

for z ∈H.

For x = e2π iz the series in (5) is an absolutely convergent power series for |x|< 1

so that G(z,2) is analytic in H. The behavior of G(z,2) under the modular group is

given by (cf. [5])

G

(

−1

z
,2

)

= z2G(z,2)− 2π iz.

The well-known Lipschitz formula is given by the following lemma:

Lemma 1 (Lipschitz formula). Let 2 ≤ k ∈ N and z ∈H. Then

∑
m∈Z

1

(z+m)k
=

(−2π i)k

(k− 1)!

∞

∑
n=1

nk−1e2π inz.

By using this lemma, the Fourier expansion of the Eisenstein series is given by:

Theorem 2. If k is an integer with k ≥ 2 and z ∈H, then

G(z,k) = 2ζ (k)+
2(−2π i)k

(k− 1)!

∞

∑
m=1

∞

∑
n=1

nk−1e2π inmz.

Proof. We give only brief sketch of the proof since the method is well-known. Now

replacing z by az, where a> 0, substituting in Lemma 1 and summing over all a≥ 1,

we get
∞

∑
a=1

∑
m∈Z

1

(az+m)k
=

(−2π i)k

(k− 1)!

∞

∑
a,n=1

nk−1e2π inaz.

We rearrange the terms right member of the above equation, we have

1

2

∞

∑
0 6=a∈Z

∑
m∈Z

1

(az+m)k
− 2ζ (k) =

(−2π i)k

(k− 1)!

∞

∑
a,n=1

nk−1e2π inaz.

After a further little rearrange and use of (2) we obtain the desired result.
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Remark 1. Putting r1 = r2 = 0, we have

G(z,s,0,0) = χ (0)
(

ζ (s,0)+ eπ isζ (s,0)
)

+
(−2π i)s

Γ (s)

(

A(z,s,0,0)+ eπ isA(z,s,0,0)
)

.

Replacing s by k (k is an integer with k > 1) in the above, we have

G(z,k) = 2ζ (k)+
2(2π i)k

(k− 1)!
A(z,k) .

After a number of straightforward calculations we arrive at the desired result.

The Fourier expansion of the function G(z,k,r,h) is given by:

Corollary 1. Let 2 ≤ k ∈ N, r,h be rational numbers and z ∈H. Then

G(z,k,r,h) = 2ζ (k,h)+
2(−2π i)k

(k− 1)!

∞

∑
a,n=1

ak−1e2π i(n+r)az.

3 Dedekind Sums

The history of the Dedekind sums can be traced back to famous German mathe-

matician Julius Wilhelm Richard Dedekind (1831–1916), who did important work

in abstract algebra in particularly including ring theory, algebraic and analytic num-

ber theory and the foundations of the real numbers. After Dedekind, Hans Adolph

Rademacher (1892–1969), who was one of the most famous German mathemati-

cians, worked the most deeply the Dedekind sums. Rademacher also studied impor-

tant work in mathematical analysis and its applications and analytic number theory.

It is well-known that, the Dedekind sums, named after Dedekind, are certain fi-

nite sums of products of a sawtooth function. The Dedekind sums are found in the

functional equation that emerges from the action of the Dedekind eta function un-

der modular groups. The Dedekind sums have occurred in analytic number theory,

in some problems of topology and also in the other branches of Mathematics. Al-

though two-dimensional Dedekind sums have been around since the 19th century

and higher-dimensional Dedekind sums have been explored since the 1950s, it is

only recently that such sums have figured flashily in so many different areas. The

Dedekind sums have also many applications in some areas such as analytic number

theory, modular forms, random numbers, the Riemann-Roch theorem, the Atiyah-

Singer index theorem, and the family of zeta functions.

In many applications of elliptic modular functions to analytic number theory,

and theory of elliptic curves, the Dedekind eta function plays a central role. It was

introduced by Dedekind in 1877 by Dedekind. This function is defined on the upper

helf-plane as follows:
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η (τ) = eπ iτ/12
∞

∏
m=1

(

1− e2π imτ
)

,

The infinite product has the form
∞

∏
n=1

(1− xn), where x = e2π iτ . If τ ∈ H, then

|x|< 1 so the product converges absolutely and it is nonzero. Furthermore, since the

convergence is uniform on compact subsets of H, η(τ) is analytic on H. The func-

tion η(τ) is related to analysis, number theory, combinatorics, q-series, Weierstrass

elliptic functions, modular forms, Kronecker limit formula, etc.

The behavior of this function under the modular group Γ (1), defined by

Γ (1) =

{

A =

[

a b

c d

]

: ad− bc = 1, a,b,c,d ∈ Z

}

,

we note that

Az =
az+ b

cz+ d
.

It is well-known that the Dedekind sums s(h,k) first arose in the transformation

formula of the logarithm of the Dedekind-eta function which is given by Apostol,

logη(Az) = logη(z)+
π i(a+ d)

12c
−π i

(

s(d,c)− 1

4

)

+
1

2
log(cz+ d),

where z ∈H and s(d,c) denotes the Dedekind sum which defined by

s(d,c) = ∑
µ mod c

((µ

c

))((dµ

c

))

,

where (d,c) = 1, c > 0, and

((x)) =

{

x− [x]− 1
2
, x /∈ Z,

0, otherwise,

where [x] is the largest integer ≤ x. The arithmetical function ((x)) has a period 1

and can thus be expressed by a Fourier series as follows:

((x)) =− 1

π

∞

∑
n=1

sin(2πnx)

n
.

For basic properties of the Dedekind sums see monograph of Rademacher and

Grosswald [76].

The most important property of Dedekind sums is the reciprocity law. Namely, if

(h,k) = 1 and h and k are positive, then

s(h,k)+ s(k,h) =
1

12

(

h

k
+

k

h
+

1

hk

)

− 1

4
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(cf. [2], [100]). This will be discussed in more detail in a separate section.

Apostol [2] defined the generalized Dedekind sums sp (h,k) as

sp (h,k) =
k−1

∑
n=0

n

k
Bp

(

nh

k

)

,

where Bp(x) is the p-th Bernoulli function defined by

Bn(x) = Bn(x− [x]),

where Bn(x) denotes the Bernoulli polynomial. These important polynomials are

defined by the following generating function

t

et − 1
ext =

∞

∑
n=0

Bn(x)
tn

n!
.

For x = 0 these polynomials reduce to the well-known Bernoulli numbers Bn =
Bn(0) (cf. [72]). A few first numbers are 1, −1/2, 1/6, 0, −1/30, 0, 1/42, . . . .

The functions Bn(x) are 1-periodic, and they satisfy

Bn(x) = Bn(x)

for 0 ≤ x < 1, and

Bn(x+ 1) = Bn(x)

for other real x. The Bernoulli function can be expressed by the following Fourier

expansion

Bn (x) =− n!

(2π i)n ∑
0 6=m∈Z

1

mp
e2π imx (6)

Observe that s1(h,k) = s(h,k). A representation of sp(h,k) as an infinite series

has also given by Apostol [2]. Namely, for odd p ≥ 1, (h,k) = 1 as

sp (h,k) =
p!

(2π i)p ∑
m ∈N

m 6≡ 0(mod k)

1

mp

(

e2π imh/k

1− e2π imh/k
− e2π imh/k

1− e2π imh/k

)

. (7)

The relation between Dedekind sums s(h,k) and cotπx are given in the lemma

below. This lemma is a special case of (7). The following well-known result is easily

given:

s(h,k) =
1

4k

k−1

∑
m=1

cot

(

mhπ

k

)

cot
(mπ

k

)

.

Recently, many authors proved the above nice formulas by different methods

([4], [14], [11], [12], [29], [16], [90], [101]).

Using contour integration and Cauchy Residue Theorem, Berndt [11] proved the

following result:
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Lemma 2. Let h,k ∈ N with (h,k) = 1. Then

s(h,k) =
1

2π ∑
m ∈ N

m 6≡ 0(mod k)

1

m
cot

(

mhπ

k

)

.

The sums sp (h,k) are related to the Lambert series Gp (x) in the same way that

s(h,k) is related to η (z), logη (z) being the same as (π iz/12)−G1

(

e2π iz
)

, respec-

tively. The sums sp (h,k) are expressible as infinite series related to certain Lambert

series and, for odd p ≥ 1, sp (h,k) is also seen to be the Abel sum of a divergent

series. This relation is given as follows:

Theorem 3 ([85]). For (h,k) = 1, the Abel sum of the divergent series

∞

∑
n=1

σp (n)n−p sin

(

2πnh

k

)

for odd p is given by

(−1 | p)(2π)p (2p!)−1
sp (h,k) ,

where σp (n) = ∑d|n d p.

Apostol [2] gave a proof of this theorem using a contour integral representation

of the Lambert series Gp (x), but his proof is very different from that given below

(see [85]).

Brief sketch of the proof of Theorem 3: Starting with (6), replacing x by nx (n∈N)
and summing over n we get (cf. [85])

∞

∑
n=1

Bp (nx) =− p!

(2π i)p ∑
0 6=a∈Z

∞

∑
n=1

1

mp
e2π imnx.

If we rearrange the above equation, we get

∞

∑
n=1

Bp (nx) =− p!

(2π i)p

(

∞

∑
n=1

−1

∑
m=−∞

1

mp
e2π imnx +

∞

∑
m,n=1

1

mp
e2π imnx

)

.

After a little calculation, we easily obtain

∞

∑
n=1

Bp (nx) =− p!

(2π i)p

(

∞

∑
m,n=1

1

mp
e2π imnx −

∞

∑
m,n=1

1

mp
e−2π imnx

)

. (8)

Because of the identity 2isinz = eiz − e−iz and putting x = a/b in (8), where

a,b ∈ Z with (a,b) = 1, and writing the Lambert series as a power series Gp (x) =

∑∞
n=1 σp (n)n−pxn, we get (cf. [85])

∞

∑
n=1

Bp

(na

b

)

=− p!

(2π i)p

∞

∑
m=1

m−pσp (m) sin

(

2πma

b

)

. (9)
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Using a definition of the Lambert series Gp (x) = ∑∞
n=1 n−pxn/(1− xn) and replac-

ing x by a/b, with (a,b) = 1, in (8), we get

∞

∑
n=1

Bp

(na

b

)

=− p!

(2π i)p ∑
m ∈ N

m 6≡ 0(mod k)

1

mp

(

e2π imh/k

1− e2π imh/k
− e2π imh/k

1− e2π imh/k

)

.

By substituting (7) into the above, we obtain

∞

∑
n=1

Bp

(na

b

)

=−sp (a,b) . (10)

For odd p we get

(i)1−p = (−1)(1−p)/2 = (−1 | p), (11)

which is known as Jacobi (Legendre) symbol. Finally, combining (9)–(11), we find

the desired result.

Zagier [101] defined the following multiple Dedekind sums

d(p;a1,a2, . . . ,a j) = (−1) j/2
p−1

∑
m=1

cot

(

πma1

p

)

cot

(

πma2

p

)

· · · cot

(

πma j

p

)

.

The sum d(p;a1,a2, . . . ,a j) vanishes identically when j is odd. In [90], Simsek,

Kim and Koo gave various formulas for the above sums and finite trigonometric

sums.

3.1 Some others formulas for the Dedekind sums

Theorem 4 ([85]). Let a,b ∈ Z with (a,b) = 1 and let p be odd integers. Then

sp (a,b) =
2p!

(2πb)p
(−1 | p)

∞

∑
n=1

b−1

∑
m=1

sin

(

2πmna

b

)

ζ
(

p,
m

b

)

,

where ζ (p,m/b) is the Hurwitz zeta function.

Proof. By substituting x = a/b into (8), we easily calculate

∞

∑
n=1

Bp

(na

b

)

=
2p!

(2πb)p

∞

∑
m,n=1

1

mp
sin

(

2πnma

b

)

.

Writing m = ub+ c, with u = 0,1,3, . . . and c = 1,2, . . . ,b− 1 in the above, we

obtain

∞

∑
n=1

Bp

(na

b

)

=− 2p!

(2πb)p
(−1 | p)

∞

∑
n=1

b−1

∑
c=1

ζ
(

p,
c

b

)

sin

(

2πna

b

)

, (12)
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where we assume p > 1 in order to insure that the series involved should be abso-

lutely convergent and the rearragements valid. Now, after combining Eqs. (10) and

(12), the proof is completed.

Lemma 2, as well as corresponding expression for sp (h,k) in (7), can be obtained

without any knowledge of the function η and the finite sum ∑k−1
n=1 nxn. By using the

well-known equality

cotπx =−i

(

e2iπx

1− e2iπx
− e−2iπx

1− e−2iπx

)

,

Theorems 3 and 4, a relation between sp (h,k) and cot(anπ/b) can be obtained as

follows:

Theorem 5 ([85]). Let (h,k) = 1. For odd p ≥ 1 we have

sp (h,k) = i
p!

(2π i)p ∑
n ∈ N

n 6≡ 0(mod k)

1

np
cot

(

πnh

k

)

.

Proof. By substituting (6) in to definition of sp (h,k), we have

sp (h,k) =
k−1

∑
n=1

n

k
Bp

(

nh

k

)

= − p!

k (2π i)p

k−1

∑
n=1

n ∑
0 6=m∈Z

1

mp
e

2πimnh
k

= − p!

k (2π i)p

k−1

∑
n=1

n

(

∞

∑
m=1

1

mp
e

2πimnh
k +

−1

∑
−∞

1

mp
e

2πimnh
k

)

= − p!

k (2π i)p

k−1

∑
n=1

n

(

∞

∑
m=1

1

mp

(

e
2πimnh

k − e−
2πimnh

k

)

)

.

By applying the well-known identity 2isinx = eix − e−ix in the above, we obtain

sp (h,k) =−2i
p!

k (2π i)p

k−1

∑
n=1

n
∞

∑
m=1

1

mp
sin

(

2πmnh

k

)

.

Now, by using the following well-known identity

∑
a mod k

asin

(

2πnφ

k

)

=− k

2
cot

(

πφ

k

)

,

where k ∤ φ , φ ∈ Z, then we have the desired result.

By using Theorem 5, we arrive at the following result:
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Corollary 2 ([85]). For odd p > 1 we have

sp (a,b) = i
p!

(2π i)p

b−1

∑
n=1

cot
(πna

b

)

ζ
(

p,
n

b

)

. (13)

The proof this corollary was proved by Apostol [4].

Using a technique developed by Rademacher (Theorem 2, Eq. (5) in [10]) and

Lewittes (Eq. (56) in [4]), we can give the behavior of Lambert series and Dedekind

eta-function. Namely, substituting r1 = r2 = s = 0 into Eq. (3) (and also Eq. (5) in

[10]), we have (cf. [85])

A(V (z)) = A(z)+
π i

4
− 1

2
log(cz+ d)+π is(d,c)−π i

(

a+ d

12c

)

.

By the definition of G1

(

eπ iz
)

and A(z), we get (cf. [85])

G1

(

eπ iV (z)
)

= G1

(

eπ iz
)

+
π i

4
− 1

2
log(cz+ d)+π is(d,c)−π i

(

a+ d

12c

)

. (14)

This relation gives modular transformation of G1

(

eπ iz
)

. Replacing V (z) = az+b
cz+d

, by

W (z) = bz−a
dz−c

, where c,d > 0 in (14), we have

G1

(

eπ iW(z)
)

= G1

(

eπ iz
)

+
π i

4
− 1

2
log(dz− c)+π is(−c,d)−π i

(

b− c

12d

)

. (15)

Comparing (14) with (15) and using reciprocity law of Dedekind sums

12s(d,c)+ 12s(c,d) =−3+
d

c
+

c

d
+

1

dc
, (d,c) = 1,

we deduce that

G1

(

eπ iV (z)
)

−G1

(

eπ iW(z)
)

=
1

2
log

(

dz− c

cz+ d

)

+
π i(cb− da− 3dc+1)

12dc
.

Thus, we arrive at the following results (see [85]).

Theorem 6. Let V (z) = az+b
cz+d

and W (z) = bz−a
dz−c

be arbitrary modular transforma-

tions, with c > 0, and let

K=

{

z : Re (z)>−d

c
, Im (z)> 0

}

.

Then, for z ∈K we have

∑
m,n=1

1

m

(

e2π inmV(z)− e2π inmW(z)
)

=
1

2
log

(

dz− c

cz+ d

)

+
π i(cb− da− 3dc+ 1)

12dc
.
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Theorem 7. Let m > 0 be an even integer and (a,b) = 1. We have

sm+1 (a,b) =
2(m+ 1)!

π2 (4π i)m ∑
n ∈N

n 6≡ 0(mod b)

lim
s→1

(

ζ
(

s, na
b

)

− ζ
(

s,1− na
b

))

n1+m
.

4 Hardy Sums

Hardy’s sums are derived from theta function. Thus, the well known theta-functions,

ϑn(0,q)(n = 2,3,4) related to infinite products are given by

ϑ2(0,q) = 2q1/2
∞

∏
n=1

(1− q2n)(1+ q2n)2,

ϑ3(0,q) =
∞

∏
n=1

(1− q2n)(1+ q2n−1)2,

ϑ4(0,q) =
∞

∏
n=1

(1− q2n)(1− q2n−1)2.

In the sequel we denote ϑ2(0,q), ϑ3(0,q) and ϑ4(0,q) as ϑ2(z), ϑ3(z) and ϑ4(z),
respectively, where q = eπ iz. The relations between theta-functions and Dedekind

eta-function are defined by

ϑ3(z) =
η5(z)

η2(2z)η2(z/2)
.

These relations, as well as others, are studied by Rademacher [72] (see also [84],

as well as the books [99] and [82]).

Let h and k with k > 0 be relatively prime integers (i.e., (h,k) = 1). The Hardy

sums are defined by (see [48])

S(h,k) =
k−1

∑
j=1

(−1) j+1+[h j/k],

s1(h,k) =
k

∑
j=1

(−1)[h j/k]
(( j

k

))

,

s2(h,k) =
k

∑
j=1

(−1) j
(( j

k

))((h j

k

))

,

s3(h,k) =
k

∑
j=1

(−1) j
((h j

k

))

,
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s4(h,k) =
k−1

∑
j=1

(−1)[h j/k],

s5(h,k) =
k

∑
j=1

(−1) j+[h j/k]
(( j

k

))

.

By using the following well-known trigonometric formulas, we mention some

relations including the Hardy sums (for details see [40]).

If 2m− 1 6≡ 0(mod k), (h,k) = 1, then

k−1

∑
j=1

j sin

(

π(2m− 1)h j

k

)

=− k

2
cot

(

πh(2m− 1)

2k

)

.

If m = (2n− 1)h, 2n− 1 6≡ 0(mod k), and h and k are of opposite parity, an

elementary calculation gives

k−1

∑
j=1

(−1) j sin

(

πm j

k

)

=− tan
(πm

2k

)

.

If 2m 6≡ 0(mod k), and h and k are of opposite parity, an elementary calculation

gives
k−1

∑
j=1

(−1) j j sin

(

πm j

k

)

=
k

2
tan
(πm

2k

)

.

If k is odd, then

k−1

∑
j=1

(−1) j sin

(

2hπm j

k

)

=− tan

(

πhm

k

)

;

if k is even, then
k−1

∑
j=1

sin

(

2hπm j

k

)

= 0.

Also (cf. [15])
k−1

∑
j=1

cot2
(

π j

k

)

=
(k− 1)(k− 3)

3
.

The Fourier series of the function f (x) = (−1)[x] is given by (cf. [40])

f (x) =
1

2π

∞

∑
n=1

sin((2n− 1)xπ)

2n− 1
.

Combining the above finite trigonometric sums and Fourier series of the function

f (x) = (−1)[x] with definitions of the Hardy sums, some relations between Hardy
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sums and trigonometric functions can be given. Such results were obtained by Gold-

berg [40] and Berndt and Goldberg [14]:

Theorem 8. Let h and k denote relatively prime integers with k > 0.

1◦ If h+ k is odd, then

S(h,k) =
4

π

∞

∑
n=1

1

2n− 1
tan
(πh(2n− 1)

2k

)

; (16)

2◦ If h is even and k is odd, then

s1(h,k) =− 2

π

∞

∑
n = 1

2n−1 6≡ 0(mod k)

1

2n− 1
cot
(πh(2n− 1)

2k

)

; (17)

3◦ If h is odd and k is even, then

s2(h,k) =− 1

2π

∞

∑
n = 1

2n 6≡ 0(mod k)

1

n
tan
(πhn

k

)

; (18)

4◦ If k is odd, then

s3(h,k) =
1

π

∞

∑
n=1

1

n
tan
(πhn

k

)

; (19)

5◦ If h is odd, then

s4(h,k) =
4

π

∞

∑
n=1

1

2n− 1
cot
(πh(2n− 1)

2k

)

; (20)

6◦ If h and k are odd, then

s5(h,k) =
2

π

∞

∑
n = 1

2n−1 6≡ 0(mod k)

1

2n− 1
tan
(πh(2n− 1)

2k

)

. (21)

Using the well-known sum

∞

∑
n=−∞

1

n+ y
= π cotπy

in (16) through (21), the relations between Hardy sums and finite trigonometric

sums can be also obtained [40], [14]:

Theorem 9. Let h and k be coprime integers with k > 0.

1◦ If h+ k is odd, then
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S(h,k) =
1

k

k

∑
m=1

tan

(

πh(2m− 1)

2k

)

cot

(

π(2m− 1)

2k

)

;

2◦ If h is even and k is odd, then

s1(h,k) =− 1

2k

k

∑
m = 1

m 6= (k+1)/2

cot

(

πh(2m− 1)

2k

)

cot

(

π(2m− 1)

2k

)

;

3◦ If h is odd and k is even, then

s2(h,k) =− 1

4k

k−1

∑
m = 1

m 6= k/2

tan

(

πhm

k

)

cot
(πm

k

)

;

4◦ If k is odd, then

s3(h,k) =
1

2k

k−1

∑
m=1

tan

(

πhm

k

)

cot
(πm

k

)

;

5◦ If h is odd, then

s4(h,k) =
1

k

k

∑
m=1

cot

(

πh(2m− 1)

2k

)

cot

(

π(2m− 1)

2k

)

;

6◦ If h and k are odd, then

s5(h,k) =
1

2k

k

∑
m = 1

m 6= (k+1)/2

tan

(

πh(2m− 1)

2k

)

cot

(

π(2m− 1)

2k

)

.

Using elementary methods, the previous identities were also obtained by Sitara-

machandrarao [91]. Some new higher dimensional generalizations of the Dedekind

sums associated with the Bernoulli functions, as well as ones of Hardy sums, have

been recently introduced by Rassias and Tóth [77]. They derived the so-called

Zagier-type identities for these higher dimensional sums, as well as a sequence of

corollaries with interesting particular sums.

5 Dedekind Type Daehee-Changhee (DC) Sums

The first kind n-th Euler function Em(x) is defined by

En(x) = En(x)
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for 0 ≤ x < 1, and by

En(x+ 1) =−En(x)

for other real x. This function can be expressed by the following Fourier expansion

Em(x) =
2m!

(π i)m+1

∞

∑
n=−∞

e(2n−1)π ix

(2n− 1)m+1
, (22)

where m ∈ N (for details on Euler polynomials and functions and their Fourier se-

ries see [1], [16], [49], [50], [51], [94], [89], [96]). Hoffman [49] studied the Fourier

series of Euler polynomials and expressed the values of Euler polynomials at any

rational argument in terms of tanx and secx. Suslov [96] considered explicit expan-

sions of some elementary and q-functions in basic Fourier series of the q-extensions

of the Bernoulli and Euler polynomials and numbers.

Observe that if 0 ≤ x < 1, then (22) reduces to the first kind n-th Euler polyno-

mials En(x) which are defined by means of the following generating function

2etx

et + 1
=

∞

∑
n=0

En(x)
tn

n!
, |t|< π . (23)

Observe that En(0) = En denotes the first kind Euler number which is given by

the following recurrence formula

E0 = 1 and En =−
n

∑
k=0

(n

k

)

Ek. (24)

Some of them are given by 1, −1/2, 0, 1/4, . . ., En = 2nEn(1/2) and E2n = 0 (n∈N).

In [50] and [51], by using Fourier transform for the Euler function, Kim derived

some formulae related to infinite series and the first kind Euler numbers. From (22)

it is easy to see that (cf. [1], [51], [49], [89])

∞

∑
n=1

1

(2n− 1)2m+2
=

(−1)m+1π2m+2E2m+1

4(2m+ 1)!
. (25)

By using the first kind n-th Euler function and above infinite series, we can

construct infinite series representation of the Dedekind type Daehee-Changhee-sum

(DC-sum) and reciprocity law of this sum. We also can give relations between the

Dedekind type DC-sum and some special functions.

The second kind Euler numbers, E∗
m are defined by means of the following gen-

erating functions (cf. [75], [1], [89])

sechx =
1

coshx
=

2ex

e2x + 1
=

∞

∑
n=0

E∗
n

xn

n!
, |x|< π

2
. (26)

Kim [51] studied the second kind Euler numbers and polynomials in details. By (23)

and (26), it is easy to see that
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E∗
m =

m

∑
n=0

(m

n

)

2nEn and E∗
2m =−

m−1

∑
n=0

(2m

2n

)

E∗
2n.

From the above E∗
0 = 1, E∗

1 = 0, E∗
2 = −1, E∗

3 = 0, E∗
4 = 5, . . ., and E∗

2m+1 = 0

(m ∈N).
The first and the second kind Euler numbers are also related to tanz and secz,

tanz =−i
eiz − e−iz

eiz + e−iz
=

e2iz

2i

(

2

e2iz + 1

)

− e−2iz

2i

(

2

e−2iz + 1

)

.

By using (23) and Cauchy product, we have (cf. [89])

tanz =
1

2i

∞

∑
n=0

En

(2iz)n

n!

∞

∑
n=0

(2iz)n

n!
− 1

2i

∞

∑
n=0

En

(−2iz)n

n!

∞

∑
n=0

(−2iz)n

n!

=
1

2i

∞

∑
n=0

n

∑
k=0

Ek

(2iz)k

k!

(2iz)n−k

(n− k)!
− 1

2i

∞

∑
n=0

n

∑
k=0

Ek

(−2iz)k

k!

(−2iz)n−k

(n− k)!

=
1

2i

∞

∑
n=0

n

∑
k=0

Ek

k!(n− k)!
(2i)nzn − 1

2i

∞

∑
n=0

n

∑
k=0

Ek

k!(n− k)!
(−2i)nzn

=
∞

∑
j=0

(−1)n22 j+1

(

2 j+1

∑
k=0

(2 j+ 1

k

)

Ek

)

z2 j+1

(2 j+ 1)!
.

Finally, using (24) we obtain that (cf. [1], [75], [89])

tanz =
∞

∑
n=0

(−1)n+1 22n+1E2n+1

(2n+ 1)!
z2n+1, |z|< π

2
. (27)

Remark 2. There are several proofs of (27). For example, Kim [51] used

i tanz =
eiz − e−iz

eiz + e−iz
= 1− 2

e2iz − 1
+

4

e4iz − 1

to get

z tanz =
∞

∑
n=1

(−1)n 4n(1− 4n)B2n

(2n)!
z2n,

i.e., (27). Similarly, Kim [51] proved the following relation for the secant function

(see also [75], [1], [94], [89], [96])

secz =
∞

∑
n=0

(−1)n E∗
2n

(2n)!
z2n, |z|< π

2
.

Kim [52] defined the Dedekind type Daehee-Changhee (DC) sums as follows:

Definition 1. Let h and k be coprime integers with k > 0. Then
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Tp(h,k) = 2
k−1

∑
j=1

(−1) j−1 j

k
E p

(h j

k

)

, (28)

where E p(x) denotes the p-th Euler function of the first kind.

The behavior of these sum Tp(h,k) is similar to that of the Dedekind sums. Sev-

eral properties and identities of the sum Tp(h,k) and Euler polynomials, as well as

some other interesting results, were derived in [52]. The most fundamental result

in the theory of the Dedekind sums, Hardy-Berndt sums, Dedekind type DC and

the other arithmetical sums is the reciprocity law and it can be used as an aid in

calculating these sums (see Section 8).

6 Trigonometric Representation of the DC-sums

In this section we can give relations between trigonometric functions and the sum

Tp(h,k). We establish analytic properties of the sum Tp(h,k) and give their trigono-

metric representation.

Starting from (22) in the form

(π i)m+1

2m!
Em(x) =

0

∑
n=−∞

e(2n−1)π ix

(2n− 1)m+1
+

∞

∑
n=1

e(2n−1)π ix

(2n− 1)m+1
, (29)

we can get the following auxiliary result (see [89]):

Lemma 3. Let m ∈ N and 0 ≤ x ≤ 1, except for m = 1 when 0 < x < 1. Then we

have

E2m−1(x) =
(−1)m4(2m− 1)!

π2m

∞

∑
n=1

cos((2n− 1)πx)

(2n− 1)2m
, (30)

and

E2m(x) =
(−1)m4(2m)!

π2m+1

∞

∑
n=1

sin((2n− 1)πx)

(2n− 1)2m+1
. (31)

For 0 ≤ x < 1, E2m−1(x) and E2m(x) reduce to the Euler polynomials, which are

related to Clausen functions (see Section 7).

We now modify the sums Tp(h,k) for odd and even integer p. Thus, by (28), we

define T2m−1(h,k) and T2m(h,k) sums as follows:

Definition 1′ [89]. Let h and k be coprime integers with k > 0. Then

T2m−1(h,k) = 2
k−1

∑
j=1

(−1) j−1 j

k
E2m−1

(h j

k

)

(32)

and
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T2m(h,k) = 2
k−1

∑
j=1

(−1) j−1 j

k
E2m

(h j

k

)

, (33)

where E2m−1(x) and E2m(x) denote the Euler functions.

By substituting (30) into (32), we get (cf. [89])

T2m−1(h,k) =−8(−1)m(2m− 1)!

kπ2m

k−1

∑
j=1

(−1) j j
∞

∑
n=1

cos( (2n−1)πh j

k
)

(2n− 1)2m
,

i.e.,

T2m−1(h,k) =−8(−1)m(2m− 1)!

kπ2m

∞

∑
n=1

1

(2n− 1)2m

k−1

∑
j=1

(−1) j j cos

(

(2n− 1)πh j

k

)

.

Since (cf. [14] and [40])

k−1

∑
j=1

j e(2n−1)π ih j/k =











k

e(2n−1)π ih/k − 1
, if 2n− 1 6≡ 0(mod k),

1
2
k(k− 1), if 2n− 1≡ 0(mod k),

we conclude that

k−1

∑
j=1

(−1) j j e(2n−1)π ih j/k =
k

e(k+(2n−1)h)π i/k− 1
,

from which, by some elementary calculations, the following sums follow

k−1

∑
j=1

(−1) j j cos

(

(2n− 1)πh j

k

)

=− k

2
(34)

and
k−1

∑
j=1

(−1) j j sin

(

(2n− 1)πh j

k

)

=
k

2
tan

(

(2n− 1)πh

2k

)

, (35)

where 2n− 1 6≡ 0(mod k).
Using (34) and (25) we obtain the following result:

Theorem 10. Let h and k be coprime positive integers and m ∈ N. Then

T2m−1(h,k) =
(

1− 1

k2m

)

E2m−1.

Indeed, here we have
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T2m−1(h,k) =
4(−1)m(2m− 1)!

π2m

∞

∑
n = 1

2n−1 6≡ 0(mod k)

1

(2n− 1)2m
,

i.e.,

T2m−1(h,k) =
4(−1)m(2m− 1)!

π2m















∞

∑
n=1

1

(2n− 1)2m
−

∞

∑
n = 1

2n−1 ≡ 0(mod k)

1

(2n− 1)2m















=
4(−1)m(2m− 1)!

π2m

{

∞

∑
n=1

1

(2n− 1)2m
−

∞

∑
j=1

1

k2m(2 j− 1)2m

}

,

where we put 2n−1= (2 j−1)k in order to calculate the second sum when 2n−1≡
0(mod k). It proves the statement.

Similarly, by substituting (31) into (33) we get

T2m(h,k) =
8(−1)m(2m)!

kπ2m+1

k−1

∑
j=1

(−1) j j
∞

∑
n=1

sin
( (2n−1)h jπ

k

)

(2n− 1)2m+1
,

and then, using (35), we arrive at the following theorem.

Theorem 11 ([89]). Let h and k be coprime positive integers and m ∈ N. Then

T2m(h,k) =
4(−1)m(2m)!

π2m+1

∞

∑
n = 1

2n−1 6≡ 0(mod k)

tan
( (2n−1)πh

2k

)

(2n− 1)2m+1
. (36)

7 DC-Sums Related to Special Functions

In this section, we give relations between DC-sums and some special functions.

In [94], Srivastava and Choi gave many applications of the Riemann zeta func-

tion, Hurwitz zeta function, Lerch zeta function, Dirichlet series for the polyloga-

rithm function and Dirichlet’s eta function. In [45], Guillera and Sandow obtained

double integral and infinite product representations of many classical constants, as

well as a generalization to Lerch’s transcendent of Hadjicostas’s double integral

formula for the Riemann zeta function, and logarithmic series for the digamma and

Euler beta functions. They also gave many applications. The Lerch transcendent

Φ(z,s,a) (cf. [94, p. 121 et seq.], [45]) is the analytic continuation of the series

Φ(z,s,a) =
1

as
+

z

(a+ 1)s
+

z

(a+ 2)s
+ · · ·=

∞

∑
n=0

zn

(n+ a)s
,
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which converges for a ∈ C \Z−
0 , s ∈ C when |z| < 1, and Re (s) > 1 when |z| = 1,

where as usual, Z−
0 = Z− ∪ {0} and Z− = {−1,−2, . . .}. Φ denotes the familiar

Hurwitz-Lerch zeta function. Here, we mention some relations between this func-

tion Φ and other special functions (cf. [45].

Special cases include the analytic continuations of the Riemann zeta function

Φ(1,s,1) = ζ (s) =
∞

∑
n=1

1

ns
, Re (s)> 1,

the Hurwitz zeta function

Φ(1,s,a) = ζ (s,a) =
∞

∑
n=0

1

(n+ a)s
, Re(s) > 1,

the alternating zeta function (also called Dirichlet’s eta function η(s))

Φ(−1,s,1) = ζ ∗(s) =
∞

∑
n=1

(−1)n−1

ns
,

the Dirichlet beta function

2−s Φ
(

−1,s,
1

2

)

= β (s) =
∞

∑
n=0

(−1)n

(2n+ 1)s
,

the Legendre chi function

2−szΦ
(

z2,s,
1

2

)

= χs(z) =
∞

∑
n=0

z2n+1

(2n+ 1)s
, |z| ≤ 1, Re(s)> 1,

the polylogarithm

zΦ(z,n,1) = Lim(z) =
∞

∑
n=0

zk

nm

and the Lerch zeta function (sometimes called the Hurwitz-Lerch zeta function)

L(λ ,α,s) = Φ(e2π iλ ,s,α),

which is a generalization of the Hurwitz zeta function and polylogarithm (cf. [3],

[9], [19], [20], [25], [22], [45], [92], [93], [94]).

By using (29), we can give a relation between the Legendre chi function χs(z)
and the function Em(x):

Corollary 3 ([89]). Let m ∈ N. Then we have

Em(x) =
2(m!)

(π i)m+1

(

(−1)m+1χm+1(e
−π ix)+ χm+1(e

π ix)
)

.
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The graphics of the functions x 7→ Em(x) on (0,1) for m = 1,2, . . . ,6 are pre-

sented in Figure 1. Most of the aforementioned functions are implemented in Math-

ematica and Matlab software packages, and the values of these functions can be

calculated with arbitrary precision.
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� = �

� = �

Fig. 1 Graphics of the functions Em(x) for m = 1,3,5 (left) and m = 2,4,6 (right)

Choi et al. gave relations between the Clausen function, multiple gamma function

and other functions. The higher-order Clausen function Cln(t) is defined for all

n ∈ N\ {1} by (see [94])

Cln(t) =



















∞

∑
k=1

sin(kt)

kn
, if n is even,

∞

∑
k=1

cos(kt)

kn
, if n is odd.

The following functions are related to the higher-order Clausen function (cf. [92],

[22, Eq. (5) and Eq. (6)])

S(s,x) =
∞

∑
n=1

sin((2n+ 1)x)

(2n+ 1)s
and C(s,x) =

∞

∑
n=1

cos((2n+ 1)x)

(2n+ 1)s
.

8 Reciprocity Law

As we mentioned in Section 3, for positive h and k and (h,k) = 1 the reciprocity law

s(h,k)+ s(k,h) =
1

12

(

h

k
+

k

h
+

1

hk

)

− 1

4

holds. For the sums sp(a,b), defined by (13) in Corollary 2, the reciprocity law is

given by

hknsn(h,k) + khnsn(k,h)
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=
1

n+ 1

n+1

∑
j=0

(n+ 1

j

)

(−1) jB jh
jBn+1− jk

n+1− j +
n

n+ 1
Bn+1,

where (h,k) = 1 and Bn is the nth Bernoulli number (cf. [2], [4], [5]).

In the sequel we mention some reciprocity theorems for Hardy sums:

Theorem 12. Let h and k be coprime positive integers. Then if h+ k is odd,

S(h,k)+ S(k,h) = 1. (37)

Theorem 13. Let h and k be coprime integers. Then if h and k are odd,

s5(h,k)+ s5(k,h) =
1

2
− 1

2hk
. (38)

Theorem 14. Let h and k be coprime integers. If h is even, then

s1(h,k)− 2s2(k,h) =
1

2
− 1

2

(

1

hk
+

h

k

)

. (39)

Theorem 15. Let h and k be coprime integers. If k is odd, then

2s3(h,k)− s4(k,h) = 1− h

k
. (40)

These reciprocity theorems appear in Hardy’s list [48], as Eqs. (viii), (vii), (vi),

(vi’) and (ix) on pages 122–123. Berndt [13] deduced (37), (39), and (40), and Gold-

berg [40] deduced (38) from Berndt’s transformation formulae. For other proofs

which do not depend on transformation theory, we refer to Sitaramachandrarao [91].

Otherwise, all reciprocity theorems can be proved by using contour integration and

Cauchy Residue Theorem.

The reciprocity law of the sums Tp(h,k), defined by (28) in Definition 1, is proved

in [52]:

Theorem 16. Let (h,k) = 1 and h,k ∈ N with h ≡ 1(mod 2) and k ≡ 1(mod 2).
Then we have

kpTp(h,k)+ hpTp(k,h)

= 2
k−1

∑
j = 0

j− [ h j

k
]≡ 1mod 2

(

kh
(

E +
j

k

)

+ k
(

E + h−
[h j

k

])

)p

+(hE + kE)p +(p+ 2)Ep,

where

(hE + kE)n+1 =
n+1

∑
j=1

(n+ 1

j

)

h jE jk
n+1− jEn+1− j.

The first proof of reciprocity law of the Dedekind sums does not contain the the-

ory of the Dedekind eta function related to Rademacher [73]. The other proofs of
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the reciprocity law of the Dedekind sums were given by Rademacher and Grosswald

[76]. Berndt [11] and Berndt and Goldberg [14]) gave various types of Dedekind

sums and their reciprocity laws. Berndt’s methods are of three types. The first

method uses contour integration which was first given by Rademacher [73]. This

method has been used by many authors for example Grosswald [43], Hardy [48],

his method is a different technique in contour integration. The second method is

the Riemann-Stieltjes integral, which was invented by Rademacher [74]. The third

method of Berndt is (periodic) Poisson summation formula. For the method and

technique see also the references cited in each of these earlier works.

The famous property of the all arithmetic sums is the reciprocity law. In the

sequel we prove reciprocity law of (36), by using contour integration.

Theorem 17. Let h, k, m ∈ N with h ≡ 1(mod 2) and k ≡ 1(mod 2) and (h,k) = 1.

Then we have

hk2m+1T2m(h,k) + kh2m+1T2m(k,h)

= 2E2m+1 −
m−1

∑
j=0

( 2m

2 j+ 1

)

E2 j+1E2m−2 j−1h2 j+2k2m−2 j,

where En are Euler numbers of the first kind.

Proof. Following [11, Theorem 4.2], [14, Theorem 3], [43], [44], [76], we give the

proof of this theorem. We use the contour integration method with the function

Fm(z) =
tanπhz tanπkz

z2m+1

over the contour CN ,

IN =
1

2π i

∫

CN

Fm(z)dz,

where CN is a positively oriented circle of radius RN , with 1 ≤ N < ∞, centered

at the origin. The sequence of radii RN is increasing to ∞ and is chosen so that the

poles of Fm(z) are at a distance from CN greater than some fixed positive number for

each N.

From the above, we have

IN =
1

2πR2m
N

∫ 2π

0
e−i2mθ tan

(

πhRN eiθ
)

tan
(

πkRN eiθ
)

dθ .

By the condition on CN , if RN → ∞, then tan
(

RNeiθ
)

is bounded, and threfore

limN→∞ IN = 0 as RN → ∞ for each m ∈ N.

The function Fm(z) has a pole of order 2m−1 at the origin, whose the residue can

be determined from the corresponding Laurent series at z = 0. Using the expansion

tanz =
∞

∑
ν=0

τν z2ν−1, |z|< π

2
,
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where

τν = (−1)ν−1 4ν(4ν − 1)B2ν

(2ν)!
= (−1)ν 4νE2ν−1

2(2ν − 1)!
(cf. Eq. (27))

we can get the Laurent expansion of Fm(z) at z = 0 in the following form

Fm(z) =
hkπ2

z2m−1

∞

∑
n=0

(−1)nπ2n4n+1 fnz2n, (41)

where

fn =
n

∑
j=0

E2 j+1E2n−2 j+1h2 jk2n−2 j

(2 j+ 1)!(2n− 2 j+ 1)!
.

Then, from (41) for n = m− 1, we get the residue of the function Fm(z) at the

pole z = 0 as

Res
z=0

Fm(z) = hkπ2(−1)m−1π2m−24m fm−1

= − (−1)m(2π)2m

(2m)!hk

m−1

∑
j=0

( 2m

2 j+ 1

)

E2 j+1E2m−2 j−1h2 j+2k2m−2 j. (42)

The other singularities of the function Fm(z) in the interior of the contour CN are

points of the sets

XN =

{

ξ j =
2 j− 1

2h
: |ξ j|< RN , j ∈ Z

}

and

YN =

{

ηℓ =
2ℓ− 1

2k
: |ηℓ|< RN , ℓ ∈ Z

}

.

Since h and k are odd positive integers, then the sets XN and YN has an intersection

ZN = XN ∩YN =

{

ζ j =
2 j− 1

2
: |ζ j|< RN , j ∈ Z

}

,

with double poles of the function Fm(z) in the interior of CN . Their residues are

Res
z=ζ j

Fm(z) = lim
z→ζ j

d

dz

[

(z− ζ j)
2Fm(z)

]

=− (2m+ 1)4m+1

(2 j− 1)2m+2hkπ2
. (43)

Te residues of the simple poles z = ξ j ∈ XN \ZN and ηℓ ∈YN \ZN are easily found

to be

Res
z=ξ j

Fm(z) = lim
z→ξ j

(z− ξ j)Fm(z) =− 22m+1h2m

π(2 j− 1)2m+1
tan
((2 j− 1)πk

2h

)

(44)
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and

Res
z=ηℓ

Fm(z) = lim
z→ηℓ

(z−ηℓ)Fm(z) =− 22m+1k2m

π(2ℓ− 1)2m+1
tan
((2ℓ− 1)πh

2k

)

, (45)

respectively. Now, by the Cauchy residue theorem, we have

IN = ∑
ξ j∈XN\ZN

Res
z=ξ j

Fm(z)+ ∑
ηℓ∈YN\ZN

Res
z=ηℓ

Fm(z)+Res
z=0

Fm(z)+ ∑
ζ j∈ZN

Res
z=ζ j

Fm(z). (46)

Using the residues (45), (44), (42), (43), and letting N → ∞ in (46), we have that

IN → 0 and

4m+1k2m

π

∞

∑
ℓ= 1

2ℓ−1 6≡ 0(mod k)

tan
(

(2ℓ−1)πh

2k

)

(2ℓ− 1)2m+1
+

4m+1h2m

π

∞

∑
j = 1

2 j−1 6≡ 0(mod h)

tan
(

(2 j−1)πk

2h

)

(2 j− 1)2m+1

=− (−1)m(2π)2m

(2m)!hk

m−1

∑
j=0

( 2m

2 j+ 1

)

E2 j+1E2m−2 j−1h2 j+2k2m−2 j

− (2m+ 1)4m+2

2hkπ2

∞

∑
j=1

1

(2 j− 1)2m+2
,

where the last sum is given by (25).

Multiplying this equality by the factor hk(−1)m(2m)!/(2π)2m, we arrive at the

desired result.

Corollary 4. Let For each m ∈ N and each positive odd integer k ≥ 3, we have

k2m+1T2m(1,k) = 2E2m+1 −
m−1

∑
j=0

( 2m

2 j+ 1

)

E2 j+1E2m−2 j−1h2 j+2k2m−2 j.

This result can be proved in a similar way as Theorem 17. For the sets of singu-

larities here ZN = XN , so that the first term on the right hand side in (46) vanishes.

We now give a relation between Hurwitz zeta function, tanz and the sum

T2m(h,k).
Hence, substituting n = rk+ j, 0 ≤ r ≤ ∞, 1 ≤ j ≤ k ( j 6= (k+ 1)/2) into (36),

and recalling that tan(π +α) = tanα , then we have

T2m(h,k) =
4(−1)m(2m)!

π2m+1

k

∑
j = 1

j 6= (k+1)/2

∞

∑
r=0

tan
(

πh2(rk+ j)+1

2k

)

(2(rk+ j)+ 1)2m+1

=
4(−1)m(2m)!

π2m+1(2k)2m+1

k

∑
j = 1

j 6= (k+1)/2

tan
((2 j− 1)πh

2k

) ∞

∑
r=0

1
(

r+ 2 j−1
2k

)2m+1
,
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where the last sum can be identified as the Hurwitz zeta function ζ (s,x) at s =
2m+1 and x = (2 j−1)/2. Note that j 6= (k+1)/2 provides the condition 2n−1 6≡
0(mod k) in the summation process in (??).

In this way, we now arrive at the following result:

Theorem 18. Let h and k be coprime positive integers and m ∈ N. Then

T2m(h,k) =
4(−1)m(2m)!

(2kπ)2m+1

k

∑
j = 1

j 6= (k+1)/2

tan
((2 j− 1)πh

2k

)

ζ
(

2m+ 1,
2 j− 1

2k

)

.

Remark 3. Finally, we mention the sums Y (h,k) defined by Simsek [88] (see also

[86] and [65, p. 211]) as Y (h,k) = 4ks5(h,k), where h and k are odd with (h,k) =
1. If we integrate the function F(z) = cot(πz) tan(πhz) tan(πkz) over a contour,

obtained from the rectangle with vertices at ±iB, 1
2
± iB (B > 0), we see that F(z)

has the poles z = 0 and z = 1/2 on this contour; therefore, reciprocity of the sums

Y (h,k) is given by

hY (h,k)+ kY (k,h) = 2hk− 2.

Remark 4. Using the definitions of the q-analogues of some classical arithmetic

functions (Riemann zeta functions, Dirichlet L-functions, Hurwitz zeta functions,

Dedekind sums), Simsek [87] defined q-analogues of these functions and gave some

relations among them.

Remark 5. The higher multiple elliptic Dedekind sums and the reciprocity law have

been introduced and considered by Bayad and Simsek [7] (see also [6], [8], [29],

[83], [46]).

9 Sums Obtained From Gauss-Chebyshev Quadratures

It is well-known that Gaussian quadrature formulas with respect to the Chebyshev

weight functions of the first, second, third, and fourth kind,

w1(t) =
1√

1− t2
, w2(t) =

√

1− t2, w3(t) =

√

1+ t

1− t
, w4(t) =

√

1− t

1+ t
,

respectively (cf. [18], [35], [58, p. 122]) have nodes expressible by trigonometric

functions. In a short note in 1884 Stieltjes [95] gave the explicit expressions for

these quadrature formulas for the weights w1, w2, and w4,

∫ 1

−1
w1(t) f (t)dt =

π

n

n

∑
k=1

f

(

cos
(2k− 1)π

2n

)

+Rn,1[ f ], (47)

∫ 1

−1
w2(t) f (t)dt =

π

n+ 1

n

∑
k=1

sin2 kπ

n+ 1
f

(

cos
kπ

n+ 1

)

+Rn,2[ f ], (48)
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∫ 1

−1
w4(t) f (t)dt =

4π

2n+ 1

n

∑
k=1

sin2 kπ

2n+ 1
f

(

cos
2kπ

2n+ 1

)

+Rn,4[ f ], (49)

where Rn,ν( f ) = 0, ν = 1,2,4, for all algebraic polynomials of degree at most 2n−1.

In the class of functions C2n[−1,1], the remainder term of these Gaussian formulas

can be done in the form (cf. [58, p. 333])

Rn,ν [ f ] =
‖πn,ν‖2

(2n)!
f (2n)(ξ ), −1 < ξ < 1,

where the norms of the corresponding orthogonal polynomials πn,ν can be expressed

by the coefficients βk,ν in their three-term recurrence relations

πk+1,ν(t) = (t −αk,ν)πk,ν (t)−βk,νπk−1,ν(t), k = 1,2, . . . ,

π0,ν(t) = 1, π−1,ν(t) = 0,

as ‖πn,ν‖2 = β0,νβ1,ν · · ·βn,ν , with

β0,ν = µ0,ν =

∫ 1

−1
wν(t)dt.

The recurrence coefficients for these Chebyshev weights, as well as the corre-

sponding values of ‖πn,ν‖2 are presented in Table 1 (cf. [35, p. 29]). For complete-

ness, we also give parameters for the Chebyshev weight of the third kind w3. The

Table 1 Recurrence coefficients for different kind of Chebyshev polynomials

Weight function Recurrence coefficients ‖πn,ν‖2

Chebyshev I αk,1 = 0 (k ≥ 0)
2π

4n

(ν = 1) β0,1 = π , β1,1 =
1

2
, βk,1 =

1

4
(k ≥ 1)

Chebyshev II αk,2 = 0 (k ≥ 0) π

22n+1

(ν = 2) β0,2 =
π

2
, βk,2 =

1

4
(k ≥ 1)

Chebyshev III α0,3 =
1

2
, αk,3 = 0 (k ≥ 1)

π

4n

(ν = 3) β0,3 = π , βk,3 =
1

4
(k ≥ 1)

Chebyshev IV α0,4 =−1

2
, αk,4 = 0 (k ≥ 1)

π

4n

(ν = 4) β0,4 = π , βk,4 =
1

4
(k ≥ 1)
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corresponding quadrature formula for w3 (cf. [61]),

∫ 1

−1
w3(t) f (t)dt =

4π

2n+ 1

n

∑
k=1

cos2 (2k− 1)π

2(2n+ 1)
f

(

cos
(2k− 1)π

2n+ 1

)

+Rn,3[ f ], (50)

can be obtained by changing t :=−t and using (49), as well as

∫ 1

−1
w3(t) f (t)dt =

∫ 1

−1
w4(t) f (−t)dt = Qn,4( f (−·))+Rn,3[ f ].

Taking certain algebraic polynomials of degree at most 2n and integrating them

by using some of quadrature formulas (47)–(49) and (50), we can obtain some

trigonometric sums. For example, by a polynomial pm(t) of degree m < 2n, using

the quadrature formula (47) we get

n

∑
k=1

pm

(

cos
(2k− 1)π

2n

)

=
n

π

∫ 1

−1

pm(t)√
1− t2

dt,

but if p2n(t) = At2n + terms of lower degree, then

n

∑
k=1

p2n

(

cos
(2k− 1)π

2n

)

=
n

π

∫ 1

−1

p2n(t)√
1− t2

dt − 2nA

4n
.

Thus, we need to compute only integrals of the forms
∫ 1
−1 pm(t)wν (t)dt for ν =

1,2,3,4. As usual (s)n is the well known Pochhammer symbol defined by

(s)n = s(s+ 1) · · ·(s+ n− 1) =
Γ (s+ n)

Γ (s)
(Γ is the gamma function).

If we take

pm(t) =Um(ct) = 2mcmtm + terms of lower degree, c ∈ R,

where Um is the Chebyshev polynomial of the second kind and degree m and use the

integral (cf. [71, p. 456])

∫ 1

−1

U2m(cx)√
1− x2

dx = πPm(2c2 − 1),

where Pm is the Legendre polynomial of degree m, we get the following statement:

Theorem 19. Let Um be Chebyshev polynomial of the second kind and degree m and

c ∈ R. We have

n

∑
ν=1

Um

(

ccos
(2ν − 1)π

2n

)

=















0, m is odd (m ≥ 1),

nPm/2(2c2 − 1), m is even (0 ≤ m < 2n),

n
(

Pn(2c2 − 1)− 2c2n
)

, m = 2n,
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where Pn is the Legendre polynomial of degree n.

Similarly, using the Legendre polynomials

Pm(t) =
(n+ 1)n

2nn!
tn + terms of lower degree,

defined by the generating function (cf. [58, p. 129]

1√
1− 2xt+ x2

=
∞

∑
m=0

Pm(t)x
m,

for which the following integrals are true (see [71, p. 423])

∫ 1

−1

P2m(x)√
1− x2

dx = π

(

(1/2)m

m!

)2

and
∫ 1

−1

xP2m+1(x)√
1− x2

dx = π

(

(1/2)m

m!

)2
2m+ 1

2m+ 2
,

we can prove the following statement:

Theorem 20. Let Pm be the Legendre polynomial of degree n. Then

n

∑
ν=1

Pm

(

cos
(2ν − 1)π

2n

)

=



























0, m is odd (m ≥ 1),

n

4m

( m

m/2

)2

, m is even (0 ≤ m < 2n),

n

42n

((2n

n

)2

− 2
(4n

2n

))

, m = 2n,

and

n

∑
ν=1

cos
(2ν − 1)π

2n
Pm−1

(

cos
(2ν − 1)π

2n

)

=



























0, m is odd (m ≥ 1),

n

4m−2

m− 1

m

( m− 2

(m− 1)/2

)2

, m is even (0 < m < 2n),

1

42n−1

(

2(2n− 1)
(2n− 2

n− 1

)2

− n

(4n− 2

2n− 1

))

, m = 2n.

Now, we use the following weighted integral for Legendre polynomials, ex-

pressed in terms of the hypergeometric function (see [71, p. 422]),

Iβ (m) =
∫ 1

−1
(1− x2)β−1Pm(x)dx = (−1)m

√
π

Γ (β )

Γ
(

β + 1
2

) 3F2

[

−m, m+ 1, β

2β , 1
; 1

]

.
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For odd m this integral vanishes. We need now its value for β = 3/2 and even m,

i.e.,

I3/2(m) =
π

2
3F2

[

−m, m+ 1, 3/2

3, 1
; 1

]

=
π

2
· π

2Γ
(

1
2
− m

2

)

Γ
(

3
2
− m

2

)

Γ
(

m
2
+ 1
)

Γ
(

m
2
+ 2
) .

Since Γ (z) = Γ (z+ k)/(z)k (k ∈ N), we have

Γ
(1

2
− m

2

)

=
Γ
(1

2

)

(1

2
− m

2

)

m/2

= (−1)m/2 2m
√

π

m!

(m

2

)

!,

so that the previous integral becomes

I3/2(m) =− π

4m(m− 1)(m+ 2)

( m

m/2

)2

.

Setting pm(t) = Pm(t) in (48) we get the following result:

Theorem 21. Let Pm be the Legendre polynomial of degree n. Then

n

∑
ν=1

sin2 kπ

n+ 1
Pm

(

cos
kπ

n+ 1

)

=



























0, m is odd (m ≥ 1),

− n+ 1

4m(m+ 2)(m− 1)

( m

m/2

)2

, m is even (0 ≤ m < 2n),

− 2

42n+1

( 1

2n− 1

(2n

n

)2

+(n+ 1)
(4n

2n

))

, m = 2n.

In the sequel we give trigonometric sums obtained by monomials pm(t) = tm in

the quadrature formulas (47)–(49). Because of that, we need the moments

µm,ν =

∫ 1

−1
wν (t)t

m dt, ν = 1,2,3,4.

These moments are

µm,1 =

√
π ((−1)m + 1)Γ

(

m+1
2

)

mΓ
(

m
2

) =







0, m is odd,

π

2m

( m

m/2

)

, m is even;
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µm,2 =

√
π ((−1)m + 1)Γ

(

m+1
2

)

4Γ
(

m
2
+ 2
) =







0, m is odd,

π

2m(m+ 2)

( m

m/2

)

, m is even;

µm,4 =
2m
(

((−1)m − 1)Γ
(

m
2
+ 1
)2
+((−1)m + 1)Γ

(

m+1
2

)

Γ
(

m+3
2

)

)

Γ (m+ 2)

=















− π

2m+1

( m+ 1

(m+ 1)/2

)

, m is odd,

π

2m

( m

m/2

)

, m is even.

Note that µm,3 = (−1)mµm,4.

According to (47)–(49) we conclude that the following results hold.

Theorem 22. We have

n

∑
ν=1

cosm (2ν − 1)π

2n
=























0, m is odd (m ≥ 1),

n

2m

( m

m/2

)

, m is even (0 ≤ m < 2n),

n

4n

((2n

n

)

− 2
)

, m = 2n;

n

∑
ν=1

sin2 νπ

n+ 1
cosm νπ

n+ 1
=























0, m is odd (m ≥ 1),

n+ 1

(m+ 2)2m

( m

m/2

)

, m is even (0 ≤ m < 2n),

1

22n+1

((2n

n

)

− n− 1
)

, m = 2n;

n

∑
ν=1

sin2 νπ

2n+ 1
cosm 2νπ

2n+ 1
=































2n+ 1

2m+2

( m

m/2

)

, m is even (0 ≤ m < 2n),

−2n+ 1

2m+3

( m+ 1

(m+ 1)/2

)

, m is odd (0 ≤ m < 2n),

2n+ 1

4n+1

((2n

n

)

− 1
)

, m = 2n.

Trigonometric sums can be also obtained in a similar way using quadrature for-

mulas of Radau and Lobatto type with respect to Chebyshev weights. We mention

that shortly after Stieltjes’ results [95], Markov [57] (see also [61]) obtained the ex-

plicit expressions for Gauss-Radau and Gauss-Lobatto formulas, with respect to the

Chebyshev weight of the first kind w1(t) (for both endpoints),

∫ 1

−1
w1(t) f (t)dt =

2π

2n+ 1

[

1

2
f (−1)+

n

∑
k=1

f

(

cos
(2k− 1)π

2n+ 1

)

]

+R
(−1)
n+1,1[ f ],
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∫ 1

−1
w1(t) f (t)dt =

2π

2n+ 1

[

1

2
f (1)+

n

∑
k=1

f

(

cos
2kπ

2n+ 1

)

]

+R
(+1)
n+1,1[ f ],

and

∫ 1

−1
w1(t) f (t)dt =

π

n+ 1

[

1

2
f (−1)+

n

∑
k=1

f

(

cos
kπ

n+ 1

)

+
1

2
f (1)

]

+RL
n+2,1[ f ],

respectively, where

R
(∓1)
n+1,1[ f ] =±π f (2n+1)(ξ )

(2n+ 1)!22n
( f ∈C2n+1[−1,1])

and

RL
n+2,1[ f ] =− π f (2n+2)(ξ )

(2n+ 2)!22n+1
, ( f ∈C2n+2[−1,1])

and ξ ∈ (−1,1). These Gauss-Radau formulas are exact for all algebraic polyno-

mials of degree at most 2n, while the Gauss-Lobatto is exact for polynomials up to

degree 2n+1, so that we can obtain trigonometric sums taking monomials xm in the

previous formulas for all m ≤ 2n+ 1 and m ≤ 2n+ 2, respectively.

There are also similar quadrature formulas for other Chebyshev weights wν (t),
ν = 2,3,4. For details see [36], [37], [34], [78], [67], [69]. A general approach

in construction of Gauss-Radau and Gauss-Lobatto formulas can be found in [58,

pp. 328–332]. In some of these cases the nodes of quadratures can be expressed

in terms of trigonometric functions, and such quadratures can be used for getting

trigonometric sums.

Some more complex trigonometric sums can be obtained using quadrature for-

mulas of Turán type (quadrature with multiple nodes) with respect to the Chebyshev

weight functions. For some details on such quadrature formulas see [97], [39], [59],

[38], [60], [64], [79], [80], [81].

10 Sums Obtained From Trigonometric Quadrature Rules

Another way for getting trigonometric sums is based on quadrature rules with max-

imal trigonometric degree of exactness. With Td we denote the linear space of all

trigonometric polynomials of degree less than or equal to d,

td(x) =
a0

2
+

d

∑
k=1

(

ak coskx+ sinkx
)

(ak,bk ∈ R).

If |ad |+ |bd|> 0 the degree of td is strictly d.

We say that a quadrature formula of the form
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∫ 2π

0
f (x)w(x)dx =

n

∑
ν=0

wν f (xν )+Rn( f ), 0 ≤ x0 < x1 < · · ·< xn < 2π ,

has trigonometric degree of exactness equal to d if the remainder term Rn( f ) = 0

for all f ∈ Td and there exists some g in Td+1 such that Rn(g) 6= 0.

Quadrature rules with a maximal trigonometric degree of exactness are known in

the literature as trigonometric quadrature rules of Gaussian type. Maximal trigono-

metric degree of exactness for quadrature rule with n+ 1 nodes is n.

A brief historical survey of available approaches for the construction of quadra-

ture rules with maximal trigonometric degree of exactness has been given in [61]

(see also [62], [68]). Here, we consider only a simple case of the (2n+ 1)-point

trigonometric quadrature formula

∫ 2π

0
f (x)dx =

2π

2n+ 1

2n

∑
k=0

f (xk)+R2n+1[ f ], (51)

with the nodes

xk = θ +
2kπ

2n+ 1
, k = 0,1, . . . ,2n,

where 0 ≤ θ < 2π/(2n+ 1). Formula (51) is exact for every trigonometric polyno-

mial of degree at most 2n (cf. [98]). Such kind of quadratures have applications in

numerical integration of 2π-periodic functions. Two special cases of the quadrature

formula (51) for which θ = 0 and θ = π/(2n+ 1) are very interesting in applica-

tions. Their quadrature sums are

QT
2n+1( f ) =

2π

2n+ 1

2n

∑
k=0

f

(

2kπ

2n+ 1

)

(52)

and

QM
2n+1( f ) =

2π

2n+ 1

2n

∑
k=0

f

(

(2k+ 1)π

2n+ 1

)

, (53)

respectively. Some details on QT
2n+1( f ) and its applications in the trigonometric

approximation can be found in [58, Chap. 3]. The second formula QM
2n+1( f ) has

been analyzed in [62].

Remark 6. Putting h= 2π/(2n+1) and fα ≡ f (αh), we can write the formulas (52)

and (53) in the forms

QT
2n+1( f ) = h

{

1

2
f0 + f1 + · · ·+ f2n +

1

2
f2n+1

}

and

QM
2n+1( f ) = h

{

f1/2 + f3/2 + · · ·+ f2n + f2n+1/2

}

,

where, because of periodicity, we introduced f2n+1 = f (2π) = f (0) = f0. These

quadratures (52) and (53) are symmetric with respect to the point x=π , and they are,
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in fact, the composite trapezoidal and midpoint rules, respectively. Also, they are

equivalent to the trigonometric version of the Gauss-Radau formulas with respect to

the Chebyshev weight of the first kind on (−1,1) (cf. [61]).

Taking f (x) = cos2m−2ν x sin2ν x in (51), where 0 ≤ m ≤ n and 0 ≤ ν ≤ m, we

get the following result:

Theorem 23. If n,m,ν ∈ N and 0 ≤ ν ≤ m ≤ n, we have

2n

∑
k=0

cos2m−2ν

(

θ +
2kπ

2n+ 1

)

sin2ν

(

θ +
2kπ

2n+ 1

)

=
2n+ 1

4m

(

2m
m

)(

m
ν

)

(

2m
2∋

)

for each real θ .

Here, we see that f ∈ T2m, as well as that

Im,ν =
∫ 2π

0
cos2m−2ν xsin2ν xdx = 4

∫ π/2

0
cos2m−2ν xsin2ν xdx

= 2

∫ 1

0
tν−1/2(1− t)m−ν−1/2 dt

=
2

m!
Γ
(

ν +
1

2

)

Γ
(

m−ν +
1

2

)

,

after the change of variables t = sin2 x. Since Γ (ν + 1/2) = (2ν − 1)!!
√

π/2ν , by

using (51), we obtain the desired result.

Selecting other functions, such that f ∈ T2n, we can get similar results as in

Section 9.
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24. Cvijović, D.: Summation formulae for finite tangent and secant sums. Appl. Math. Comput.

218, 741–745 (2011).
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58. Mastroianni, G., Milovanović, G. V.: Interpolation Processes – Basic Theory and Applica-

tions, Springer Monographs in Mathematics, Springer Verlag, Berlin – Heidelberg – New

York (2008)
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