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Abstract. In this paper, a modified approach to the multiparameter non-central
Stirling numbers via differential operators, introduced by El-Desouky, and new
explicit formulae of both kinds of these numbers are given. Also, some relations
between these numbers and the generalized Hermite and Truesdel polynomi-
als are obtained. Moreover, we investigate some new results for the generalized
Stirling-type pair of Hsu and Shiue. Furthermore some interesting special cases,
new combinatorial identities and a matrix representation are deduced.
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1. Introduction and preliminaries

Through this article we use the following notations. The falling and rising factorials
are defined, respectively by

()n =x(x=1)---(x=n+1), (x)o=1,

and
p=x(x+1)---(x+n—-1), {(x)o=1.
The generalized falling and rising factorials (x; &), and (x;&),, associated
with parameter & = (0, 01,...,0,—1) Where @;, j =0,1,...,n—1, is a sequence
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of real or complex numbers, are defined by

n—1 n—1

(x;d),,:H(x—Ocj) and (x;ét)n:H(x—l—(xj),

=0 =0
respectively. Note that if o; = ia, i =0,1,...,n— 1, then (x; &), reduces to
(xlo)y=tt—o)---(x—(n—1)a).
Hsu and Shiue [14] defined generalized Stirling-type pair
{8'(n,k),$*(n,k)} = {S(n,k;ax, B, r),S(n,k; B, o, —r)}

by the inverse relations

n

(xla)y =Y S"(n,k) (x— r|B)x (1.1)
k=0
and
(x|B)n = Z S?(n, k) (x + r| o), (1.2)
k=0

where n is a nonnegative integer and the parameters o, 8 and r are real or complex
numbers, with (¢, 3,r) # (0,0,0).
For the numbers S(n,k; a, B, r), we have the following recurrence relation
S(n+ Lk a,B,r)=Snk—1LaB,r)+ kB —na+r)S(nka,B,r), (1.3)

where n > k> 1.
These numbers have the vertical generating functions (with o8 # 0)

n B/a _ k
k!ZS(n7k;a7ﬁ,r)%=(l+ax)’/a <(1—|—Ozxg]> (1.4)

n>0

and

n>0 o

k
kY S<”’k2ﬁya’—r)z—}: = (14 Bx) "8 <(1+ﬁx>/’3—1> .

The multiparameter non-central Stirling numbers of the first and second kind,
respectively, were introduced by El-Desouky [11] with

(¥ = ¥ sk 1) (15)
and
(x:0)n = Y S(n, ks 0) () (1.6)
These numbers s(n,k; @) and S(n, k; &) satisfy the recurrence relations
s(n+ Lk o) =s(nk—1;0) + (0g — n)s(n, k; @) (1.7)
and
Sn+1,ka)=Snk—1;0)+ (k— a,)S(n,k; @), (1.8)

respectively.
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The multiparameter non-central Stirling numbers of the first kind have the
vertical exponential generating function

n k 1 aj
Zs(mk,-)izzﬂ, 1.9
n>0 nt &= (o)
¢
where ()= Tl (—@;j), k<.
J=0.j#k

Also, more generalizations and extensions of Stirling numbers are given in [4]
and [20]-[22].

Let 6 = xD, D = d/dx. Then we have some well-known and useful relations
of this differentiation operator (see [2, 10, 16] and [19]):

() 8"(x%) = a"x%,

(ii) 5"ohv)::ji (Z)S"kuSkv

k=0
(i) F(8)(x“f(x)) =x*F(8+a)f(x),
(iv) F(8)(e*Wf(x)) = e#F (8 +xg'(x))f (x)-

The paper is organized as follows. In Section 2 a modified approach via differ-
ential operator to multiparameter non-central Stirling numbers is given. Also, some
relations between these numbers and the generalized Hermite and Truesdel polyno-
mials are obtained. Moreover, we show that some of Hsu and Shiue [14] results are
investigated using the results obtained by El-Desouky [11] and consequently of this
paper. In Section 3, new explicit formulae for those numbers, some special cases and
new combinatorial identities are derived. Finally, in Section 4, a computer program
is written using Maple and executed for calculating the multiparameter non-central

Stirling matrix and some special cases and matrix representation of these numbers
is given.

2. A modified approach to multiparameter non-central Stirling
numbers

Let the differential operator & be defined by 2 = x*8x~%, where 6 = xD. Using
(iii) we get Zf (x) =x*3x~ % f(x) = (6 — &) f(x), hence Z = § — o and by induction
we get 2" = (6 — a)" = x*8"x~*. Generally, we can take the following.

Definition 2.1. Let the differential operator &, be defined by
n—1
Dy = (x%185x %) (xH05x™ %) = Hxa‘ﬁx_a", n>1

and 2, = I, the identity operator.
Then we have 7, f(x) = (6 — 1)+~ (6 — o) f(x), i.e.,

n—1
D= (8= 1) (§—a) = [[(6 — o) = (8;: @),
=0

1
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n—1 n—1
and so we have the operational formula [ [x%8x~% = [](6 — o).
i=0 i=0

This leads us to define the multiparameter non-central Stirling numbers via the
differential operator &,. Therefore, equations (1.5) and (1.6) can be represented, in
terms of operational formulae, by

n n
(8)n=x"D" =Y s(nk;a)(8:0)c = Y s(n,k; &) 2.1
k=0 k=0
and
n n
D= (8:0)n =Y. S(n,k;@)(8)i = Y S(n,k; a)x*D*, (2.2)
k=0 k=0
respectively.
Similarly, Comtet numbers (see [4] and [20]) can be defined by
n
(0;0), = Z sg(n, k)8
k=0
and
n
8" =Y Sa(n,k)(8:a).
k=0
Setting ¢; = o, then (2.1) and (2.2), respectively, yield
(8)n=x"D" =Y s(n,k; o) (8 — a)k = Y s(n.k: a)x* 8 x ¢, (2.3)
k=0 k=0
and

n n
Y =(0-a)'=Y S(nka)di=Y Shkax D, (24
k=0 k=0
where s(n,k;a) and S(n,k; o) are the non-central Stirling numbers of the first and
second kind [11], respectively.
Acting with Eq. (2.3) on e~ P*', then multiplying by ¢” we obtain

n
el X'Dle P = Z s(n,k; )P x¥ 8k x %P (2.5)
k=0
hence we have,
n
X'Hy(x,0,p) = (=1)" Y s(n,k; )T, %(x, 7, p), (2.6)
k=0

where H};(x,ct,p) and T,”%(x,r, p) are the generalized Hermite and Truesdel poly-
nomials, respectively (see [12] and [16]-[18]).
Setting » = p = 11in (2.5) , or (2.6), we get

(—1)"x" = i s(n,k; o) T, % (x).
=0

where 7, *(x) are Truesdel polynomials, see [17].
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Similarly, acting with Eq. (2.4) on e ¥, we obtain the inverse relations
n
T, *(x,r,p)=(=1)" Z S(n, k; a)x* (—1)*Hf (x,0, p)
k=0

and
T, %(x) = i s(n,ky o) (— 1)Kk,
k=0

Next, we derive some new results for Hsu and Shiue numbers [14].
Theorem 2.2. For the special case o; = —(r—iat)/B, i=0,1,...,n— 1, we have
s(n,k; @) = BX"8%(n, k) (2.7)

Proof. From equation (1.2) we get
B"(t/B)((t/B)—=1)---((/B) = (n—1)) = Zi‘,Sz(n,k)(tJrrIa)k-

k=0
Setting ¢/ = x, we have
Bix(x—1)---(x—(n—1)) = Zn:Sz(n,k)(ﬁx+r)(ﬁx+r—a)~-(ﬁx—l—r—(k—l)a),
k=0

hence

()n =Y. B"S*(n,k) (x+71/B) (x+ (r—a)/B) -+ (x+ (r— (k—1)a)/B).
k=0
Comparing this equation with (1.5) yields (2.7). U
Also, it can be shown that S(n,k; &) = B8 (n,k) if o = (iot —r) / B.
Furthermore, we show that the generating function (1.4), see [14], of Hsu-

Shiue numbers can be investigated from the generating function (1.9), see [11],
where o; = (r+iff) /o, i=0,1,...,n—1.

Theorem 2.3. For the special case o = (r+if)/a, i=0,1,...,n— 1, the generat-
ing function (1.9) is reduced to the generating function (1.4) and

S'(n,k) = o"*s(n, k; ).

Proof. If we start from (1.9)
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and setting o; =r/a+ jB/a, j=0,1,

.k, we get
r B r B
(14+g)e*/a (14+g)e*/a
MR R G B o
J=0i#] 4 bz
(1+2)@ i (1+z)/§ (142)@ i (1+z)/%
(&) 2 pp -0 (5) SO
i=0,i#j
1 (1+2)@ & (k) . 51 (142)@ Bk
=— D) (A4 z) e = — l+z)e—1),
k!(ﬁ)kj:ZM()( Ye = ﬁ)k(< )« 1)
o [0
where we used the identity,
. k
[T G-=ED) k=t
i=0,i#]
Thus, putting z = ot in (1.9) we get

ank a"t” 1

n!

k
1+ at)P/*—1
1 ¢ r/o (
hence by virtue of (1.4) we have

ZSlnk

| 14 ar)P/*—1
Zan kg n7 : 7'77(1+at)r/a (—i—Ot)
n>0 S0 nl k!
where o; = (i +7r)/a.

In fact, this equation shows that

k
)

n — 1. This completes the proof.
Now, setting o; = (i —r)/B,i=0,1,
new operational formula for Hsu-Shiue numbers

SY(n,k) = o Ks(n, k; @),
where o; = (i +r)/a, i =0,1

]
n—11in (2.2) we get the following
n
[T /Boxlie=n/B = ¥ BE! (n,k)(8)s. (2.8)
i=0 k=0
Remark 2.4. Note that equations (2.2) and (2.8) for a; =0,i =0, 1,
o =0, B =1 and r =0, respectively, are reduced to the well known operational
representation of the ordinary Stirling numbers of the second kind

,n—1 and
0" = Z S(n, k)x*DF.

k=0
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3. New explicit formulae and combinatorial identities

We derive new explicit formulae for both kinds of the multiparametar non-central
Stirling numbers.

Theorem 3.1. The numbers S(n,k; &), have the following new explicit formula

_ —0p\ (1—o1—ip n—1—0u_1—ip——ip2
Stk =), (i >< i >< " )
L_1=n—k 0 1 n—1

where ij €{0,1}, j€{0,1,...,n—1}, and I,_y :=io+i1 +- - +in1.
Proof. The statement for kK = 0 gives that
S(n,0;a) = (—1)"apoty -+ - 01,

which agrees with the definition of S(n,k; &) (see [11]).
Also, if i,—1 € {0,1}, we have that

_ -\ (1—o0y —ig
T o et
Iy a=(n=1)=(k=1) \ 10 !
(n—2—06n—2—i0—"'—in—3>
X .
In—2

S M BN S ) T G

Ii_2=(n—1)—k 1o h
n—2—0ph 2—ig—"+—ip_3
X . N
Ip—2

S(nyk;a)=S(n—1,k—1;0) + (k— a,—1)S(n— 1,k; &).

ie.,

Therefore, by (1.8) and induction we get the desired result. (]

Remark 3.2. We used oy =0 < ip =0.

Theorem 3.3. The multiparameter non-central Stirling numbers of the first kind
have the following new explicit expression

] o; ] oG 1, — 1 B O 4ooj — 1
sika)y= Y <’1]:11><’2+ i+ )...(’1* ey >

i+ in=k 1-1 1=
ijE{O,l}
(3.1)
Proof. For k =0 we have

s(n,0;a) =op(og—1)---(ap—n+1) = (),
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and if i, € {0, 1}, we have
simkia)= Y <i1 M 9"'1> <in1 + Ol "*2)
. e 1—1i;
iyt =k—1

i1+ 1+ 4yi  —n+2
+ Z (ai1+"'+l'n71 _n+1) ( lll,]ll> (ﬂ 1 i+t )

iVt 1=k 1- In—1

1 =iy

=sn—Lk—1La)+ (g —n+1)s(n—1,k;&),
where iy + - - +i,—1 = k. By virtue of (1.7), this completes the proof. O
It is worth noting that setting o; = (r+if8)/co, i € {0,1,...,n— 1} in the
recurrence relation (1.7) for multiparameter non-central Stirling numbers of the first
kind, we can get the recurrence relation (1.3), and hence
s(n,k; @) = ok "8 (n, k).

Furthermore, Corcino, Hsu and Tan [9] mentioned that the multiparameter
non-central Stirling numbers are related with the generalized Stirling-type pair of
Hsu-Shiue (see also [23]) by S(n,k; 1, t,0) = s(n, k; &) and S(n,k; ¢, 1,0) = S(n, k; @)
for special case o; = icx, i =0,1,...,n— 1.

Corollary 3.4. A new explicit expression for generalized Stirling numbers (Hsu-
Shiue numbers type (1.3)) is given by

S(n ks, B,r) =" Y <r/[3)<1+(’_9‘)//3_i0>...

In_lin*k lO ll
ijG{O,l}
(n—1+(r—(n—l)a)/ﬁ—io—---—in_z)
in—1

or in the modified form

Sikapr= Y (r> (r+B—.a—[3io> (H—Z(ﬁ—a?—ﬁ(tb—kh))

I, =n—k o 1 2
l‘jE{OJ}

N <r+("—1)(/3—05)—/3(i0+i1 +'“+in2)>
infl ’

where we use ip =0 r=20.

Proof. The proof of this result follows directly from Theorem 3.1. Namely, by set-
ting oy = (i —r)/B,i=0,1,...,n— 1, we get the statement. O

The previous corollary implies new explicit expressions for the usual Stirling
numbers of the second and first kind

1 2—1i o | i
S(n.k:0,1,0)=S(nk) = Y ()( ' ’1>...<" it in 2)
i+tip_=n—k \!1 2 In—1

ijE{O,l}
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and
-1\ /-2 —(n—1
S(n,k;1,0,0) = s(n,k) = Y ( )( )( (.n )>
iyt =n—k i 2 In—1
ije{O,l}
i1+t =n—k i1 b In-1 )
116{01}
respectively.

Remark 3.5. From the above corollary we obtain the explicit formula for the num-
bers Fy y(n, k) (see [7]), defined by the triangular recurrence relation
Foy(n+1,k) = Foy(n,k—1) + (Y —not)Fy y(n,k),

where Fy y(0,0) = 1 and Fy y(n,k) =0 when n < 0, k < 0 and n < k. Namely, for
B =0 and r = ¥, the modified form of S(n,k, ¢, B,r) in Corollary 3.4 reduces to

Foy(n,k) = S(n,k; 0,0,) = 1,,,12:‘271( (3;) (Yl_] O‘) .. (7— (l”jl UO‘) ,

ij€{071}

Note that some properties and identities on S(n,k; o, B,r) cannot be obtained
for B = 0, which is a reason why the explicit formula, i.e., the modified form (from
Corollary 3.4), is very convenient to use.

Corcino et al. [8] defined the (r, B)-Stirling numbers, denoted by < Z > us-

N
ing the following recurrence relation

CED, =, (),

n
k I
explicit formula for (r, B)-Stirling numbers from Corollary 3.4

<Z>ﬁ = S(n,k:0,B,r)

LT

ije{0,1}

It is easy to conclude that < >[3 = S(n,k,0,B,r). Thus, we can obtain an
N

Moreover, El-Desouky [11, Theorem 2.1] derived the following explicit for-
mula for s(n, k; @)

(o)=Y (C1yrty Loy (32)

s\n, k; = - ) ; . ) .
ri= i i (0,

where, in the second sum, the summation extends over all ordered n-tuples of in-

tegers (i,is,...i,) satisfying the condition ij +i» +---+i, =n and i; >0, j =

1,2,...,r.
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From (3.1) and (3.2), we obtain the following new combinatorial identity

Z (i] + Ot,'1> <i2—|—06i1+,'2 — 1) (in—‘r Oy ttiy — N+ 1)
i+ +ip=n—k 1-i 1—ip =iy

ijE{O,l}
1 k (Xjr

n
_1 n— r .
; Z i "'irj:o (a))y

Remark 3.6. Now, it is worth noting that all special cases, (i)—(xi), derived in [14],
are special cases of the multiparameter non-central Stirling numbers.

Corcino, Hsu and Tan [9] proved that

S k) = i( 1Yk (/;> ((ﬁ/a)H (r/a)>. (3.3)

n

From (3.3) and Corollary 3.4, we have the combinatorial identity

o f (B (@it "X ("7F) <

n
ijE{O,l}

o B

il infl

Hongquan Yu [23, Theorem 4 and Corollary 5] proved that

S(p+1,kB,0,00=0 (mod p), (3.4)
where p is a prime number, k and [ are integers such that / 4+ 1 < k < p and
S(p. ks, B,r) =0 (mod p), (3.5)

where a, 8 and r are integers and p is a prime, 1 < k < p.
By virtue of (3.4), (3.5) and Corollary 3.4, we obtain the combinatorial iden-
tities

ap+i‘1_:..+ip§1:p+lfk (l _ill;/a> (2(1 _Bléa) : il)

ije{0,1}
x((pﬂl)(lﬁ/a)il s

. ’1’+"2> =0 (mod p), [+1<k<p,
Ip+i-1

and

pri x (B (rem By

11771:])7/( lo h
ij€{0,1}
-1 —(p—1 g — e — i
X (p +r=(p ).oc)/ﬁ 0 » 2) =0 (mod p), 1 <k<p.
Ip1

The degenerate weighted Stirling numbers, denoted by S(n,k,A|0), are the
pair (0,1,1) (see [13]).
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Howard [13] derived the following explicit formula

1 ¢ k
S(n,k,A10)=— Y (—1)F! A+1]6),. 3.6
(k210 = g R0 ) Ao+l (3.6)
Next, we find new explicit formulae for the following special cases of Stirling
numbers.

Corollary 3.7. The degenerate weighted Stirling numbers S(n,k,A|0) have the fol-
lowing explicit formula

Snkale) = Y (/1) (Aeﬂio) </l+2(1.9)i0i1>m

1)171:”7]() io h 2
ijE{O,l}
" <l =D =8)—lo+i+ir+: ~~+inz)>. 37)
In—1
Proof. The proof follows by setting o = 6, B =1 and r = A in the modified form
of Corollary 3.4. U

From (3.6) and (3.7) we have the new combinatorial identity

In_lgnik <l);> <7L N 9: 1 —io) (/l +2(1 —iz)) —io—i1>

ijE{O,l}

In—1

o <l-‘r(n— 1)(1 —9).— (io+i1+"'+in_2)>

1 & k
= HIZO(—1)’<+’ (z) (A+1]6),.

Also, setting A = 0 in (3.7) (see [13, Lemma 2.1]), we have a new explicit
formula for degenerate Stirling numbers

swale) = x (U (TIT)

ij e tiy_1=n—k
ije{O,l}

" ((n 1)(1—0)— (i +i2+~~.+in2)>
In—1 '
In the special case & = A = 0 we obtain the identity

TN O G Sl

i_/E{O,l}
1 & k
- (1)k+l< >ln
k= !

n

o(t/a)((t/a) = 1) ((t/a) = (n—1)) = Y S' (n.k)(t = r|B);

k=0

From (1.1) we get
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Setting t /ot = x,
o x(x— 1)~~~(x—(n—l))zZn:Sl(n,k)(ax—r)(ax—r—ﬁ)--~(Otx—r—(k—1)ﬁ),
k=0

hence

(W= ¥ 78! (n,K) (x— (/)| (B ). (3:8)

k=0
From (1.1) and (3.8), we obtain ¥ S (n,k) = S(n,k; 1,7/, B/ ), whence
S(n,k; o, B,r) = a"*S(n,k; 1,8/, r/ ). (3.9)
Similarly, we can prove that
S(n, ke, B,r) =B *S(n,k; /B, 1,7/B). (3.10)

Indeed (3.9) and (3.10) (see [1]) can be investigated from (1.4).

Using (3.10), as well as the fact that the degenerate weighted Stirling numbers
S(n,k,A|0) are the pair (0,1, 1), then the numbers S(n, k; &, B, r) can be represented
in terms of S(n,k,A|0) where

S(n.k; o, B,r) = B S(n.k, (r/B)|(et/B))- G.11)
Remark 3.8. In fact, (3.11) agrees with Corollary 3.4.

Furthermore, Munagi [15] defined S, (n, k), the B-Stirling numbers of the sec-
ond kind, by

Sp(n,k) =Sp(n—1,k— 1)+ (k+b—1)Sp(n— 1,k), n>k,
Sp(n,0) = 8,0, Sp(n,1) =b"~1, where 0;,j is the Kronecker delta.

Corollary 3.9. The B-Stirling numbers of the second kind, Sy(n,k), have the fol-
lowing new explicit formula

Sp(n+1,k+1) = S(n,k;0,1,b)

_ Z (b)<b+1—io><b+2—(io+i1)>“.
I,_1=n—k i() il i2
i_/E{O,l}
" (b+n—1—(io+i1+~~-+in—2)
infl

), (3.12)

where b > 0 and we use ip =0< b =0.

Proof. The proof follows by setting o; = —b, i =0,1,...,n— 1, in Theorem 3.1 (or
setting @ =0, B = 1 and r = b in Corollary 3.4). O

This show that the B-Stirling numbers of the second kind is a special case
of the multiparameter non-central Stirling numbers and consequently of Hsu-Shiue
numbers.
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From (3.12) and [15, Corollary 6.2] we obtain the new combinatorial identity

y <b><b+1—io>___<b+n—1—(io+i1+---+i,,_z)>
I, 1=n—k io i infl

i_/'E{O,l}

k kjb
j=0

4. The matrix representation

Lets,S; s(@),S(a) and S',5? be (n+ 1) x (n+ 1) lower triangular matrices, where
s and S are the matrices whose entries are the Stirling numbers of the first and
second kinds (i.e., s = [sij]; j>0 and § = [S;;]; j>0); s(@) and S(@) are the matrices
whose entries are the multiparameter non-central Stirling numbers of the first and
second kinds (i.e., s(@) = [s(@);;];, j>0 and (&) = [S(@);;); j>0) and S',S? are the
matrices whose entries are the generalized Stirling-type pair of Hsu and Shiue (i.e.,
st = [Su]’ j>0 and §% = [S,-zj]i,jzo)7 respectively.

The multiparameter non-central Stirling numbers of the first and second kinds,
Egs. (2.1) and (2.2), can be represented in a matrix form as

§=s(@2 and 2 =S5(a),

respectively, where & = ((8)o, (8)1,...,(8),)" and Z = (%, D1,..., 2" .

A computer program is written using Maple and executed for calculating the
multiparameter non-central Stirling matrix of the first kind s(@) (and S(@) = s~ (@)
of the second kind) and the generalized Stirling-type pair of Hsu and Shlue as a
special case when o; = (r+if})/ .

For example if 0 < n < 3, then

1 0 0 0
. [0 1 0 0
s(@) = oo —1) op+oy—1 1 0
ap(ap—1)(ap—2) ooy —3a+0f —3a+at+2 og+oy+op—3 1
and
1 0 0 0
g r 1 0 0
r(r—a) 2r+B—a 1 0
rir—a)(r—2a) 3r2—6ra+3Br+B>—-3Ba+2a*> 3r+3B—-3a 1

Remark 4.1. Note that there are some missing terms in [23, Table 1].

Similarly, the degenerate weighted Stirling matrix S(A|6), the degenerate Stir-
ling matrix S(0) and the Stirling matrix of the second kind S are given by

1 0 0 0
A 1 0 0

S(A16) = A(h—8) 2A+1-6 1 0|
AA=0)(r—20) 3A2—610+31+1-360+20> 3A+3-360 1
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1 0 0 0
0 1 0 0
S@)=1 1-0 1 0|’
0 (1-0)(1-20) 3(1-6) 1
and
S =

0
1
1
1

S O O =
W= O O
- o O O

respectively, as special cases.

Acknowledgements. The authors would like to thank the anonymous referee
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