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Abstract. In this paper, a modified approach to the multiparameter non-central
Stirling numbers via differential operators, introduced by El-Desouky, and new
explicit formulae of both kinds of these numbers are given. Also, some relations
between these numbers and the generalized Hermite and Truesdel polynomi-
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1. Introduction and preliminaries
Through this article we use the following notations. The falling and rising factorials
are defined, respectively by

(x)n = x(x−1) · · ·(x−n+1), (x)0 = 1,

and
〈x〉n = x(x+1) · · ·(x+n−1), 〈x〉0 = 1.

The generalized falling and rising factorials (x; ᾱ)n and 〈x; ᾱ〉n, associated
with parameter ᾱ = (α0,α1, . . . ,αn−1) where α j, j = 0,1, . . . ,n− 1, is a sequence
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of real or complex numbers, are defined by

(x; ᾱ)n =
n−1

∏
j=0

(x−α j) and 〈x; ᾱ〉n =
n−1

∏
j=0

(x+α j),

respectively. Note that if αi = iα , i = 0,1, . . . ,n−1, then (x; ᾱ)n reduces to

(x|α)n = t(t−α) · · ·(x− (n−1)α).

Hsu and Shiue [14] defined generalized Stirling-type pair

{S1(n,k),S2(n,k)} ≡ {S(n,k;α,β ,r),S(n,k;β ,α,−r)}

by the inverse relations

(x|α)n =
n

∑
k=0

S1(n,k)(x− r|β )k (1.1)

and

(x|β )n =
n

∑
k=0

S2(n,k)(x+ r|α)k, (1.2)

where n is a nonnegative integer and the parameters α,β and r are real or complex
numbers, with (α,β ,r) 6= (0,0,0).

For the numbers S(n,k;α,β ,r), we have the following recurrence relation

S(n+1,k;α,β ,r) = S(n,k−1;α,β ,r)+(kβ −nα + r)S(n,k;α,β ,r), (1.3)

where n≥ k ≥ 1.
These numbers have the vertical generating functions (with αβ 6= 0)

k! ∑
n≥0

S(n,k;α,β ,r)
xn

n!
= (1+αx)r/α

(
(1+αx)β/α −1

β

)k

(1.4)

and

k! ∑
n≥0

S(n,k;β ,α,−r)
xn

n!
= (1+βx)−r/β

(
(1+βx)α/β −1

α

)k

.

The multiparameter non-central Stirling numbers of the first and second kind,
respectively, were introduced by El-Desouky [11] with

(x)n =
n

∑
k=0

s(n,k; ᾱ)(x; ᾱ)k (1.5)

and
(x; ᾱ)n = ∑S(n,k; ᾱ)(x)k. (1.6)

These numbers s(n,k; ᾱ) and S(n,k; ᾱ) satisfy the recurrence relations

s(n+1,k; ᾱ) = s(n,k−1; ᾱ)+(αk−n)s(n,k; ᾱ) (1.7)

and
S(n+1,k; ᾱ) = S(n,k−1; ᾱ)+(k−αn)S(n,k; ᾱ), (1.8)

respectively.
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The multiparameter non-central Stirling numbers of the first kind have the
vertical exponential generating function

∑
n≥0

s(n,k; ᾱ)
xn

n!
=

k

∑
j=0

(1+ x)α j

(α j)k
, (1.9)

where (αk)` =
`

∏
j=0, j 6=k

(αk−α j), k ≤ `.

Also, more generalizations and extensions of Stirling numbers are given in [4]
and [20]–[22].

Let δ = xD, D = d/dx. Then we have some well-known and useful relations
of this differentiation operator (see [2, 10, 16] and [19]):

(i) δ
n(xα) = α

nxα ,

(ii) δ
n(u · v) =

n

∑
k=0

(
n
k

)
δ

n−ku δ
kv,

(iii) F(δ )(xα f (x)) = xα F(δ +α) f (x),

(iv) F(δ )(eg(x) f (x)) = eg(x)F(δ + xg′(x)) f (x).

The paper is organized as follows. In Section 2 a modified approach via differ-
ential operator to multiparameter non-central Stirling numbers is given. Also, some
relations between these numbers and the generalized Hermite and Truesdel polyno-
mials are obtained. Moreover, we show that some of Hsu and Shiue [14] results are
investigated using the results obtained by El-Desouky [11] and consequently of this
paper. In Section 3, new explicit formulae for those numbers, some special cases and
new combinatorial identities are derived. Finally, in Section 4, a computer program
is written using Maple and executed for calculating the multiparameter non-central
Stirling matrix and some special cases and matrix representation of these numbers
is given.

2. A modified approach to multiparameter non-central Stirling
numbers

Let the differential operator D be defined by D = xα δx−α , where δ = xD. Using
(iii) we get D f (x) = xα δx−α f (x) = (δ−α) f (x), hence D = δ−α and by induction
we get Dn = (δ −α)n = xα δ nx−α . Generally, we can take the following.

Definition 2.1. Let the differential operator Dn be defined by

Dn = (xαn−1δx−αn−1) · · ·(xα0δx−α0) =
n−1

∏
i=0

xαiδx−αi , n≥ 1

and D0 = I, the identity operator.

Then we have Dn f (x) = (δ −αn−1) · · ·(δ −α0) f (x), i.e.,

Dn = (δ −αn−1) · · ·(δ −α0) =
n−1

∏
i=0

(δ −αi) = (δ ; ᾱ)n,
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and so we have the operational formula
n−1

∏
i=0

xαiδx−αi =
n−1

∏
i=0

(δ −αi).

This leads us to define the multiparameter non-central Stirling numbers via the
differential operator Dn. Therefore, equations (1.5) and (1.6) can be represented, in
terms of operational formulae, by

(δ )n = xnDn =
n

∑
k=0

s(n,k; ᾱ)(δ ; ᾱ)k =
n

∑
k=0

s(n,k; ᾱ)Dk (2.1)

and

Dn = (δ ; ᾱ)n =
n

∑
k=0

S(n,k; ᾱ)(δ )k =
n

∑
k=0

S(n,k; ᾱ)xkDk, (2.2)

respectively.
Similarly, Comtet numbers (see [4] and [20]) can be defined by

(δ ; ᾱ)n =
n

∑
k=0

sᾱ(n,k)δ k

and

δ
n =

n

∑
k=0

Sᾱ(n,k)(δ ; ᾱ)k.

Setting αi = α , then (2.1) and (2.2), respectively, yield

(δ )n = xnDn =
n

∑
k=0

s(n,k;α)(δ −α)k =
n

∑
k=0

s(n,k;α)xα
δ

kx−α . (2.3)

and

xα
δ

nx−α = (δ −α)n =
n

∑
k=0

S(n,k;α)(δ )k =
n

∑
k=0

S(n,k;α)xkDk, (2.4)

where s(n,k;α) and S(n,k;α) are the non-central Stirling numbers of the first and
second kind [11], respectively.

Acting with Eq. (2.3) on e−pxr
, then multiplying by epxr

we obtain

epxr
xnDne−pxr

=
n

∑
k=0

s(n,k;α)epxr
xα

δ
kx−α e−pxr

, (2.5)

hence we have,

xnHr
n(x,0, p) = (−1)n

n

∑
k=0

s(n,k;α)T−α

k (x,r, p), (2.6)

where Hr
n(x,α, p) and T−α

k (x,r, p) are the generalized Hermite and Truesdel poly-
nomials, respectively (see [12] and [16]-[18]).

Setting r = p = 1 in (2.5) , or (2.6), we get

(−1)nxn =
n

∑
k=0

s(n,k;α)T−α

k (x).

where T−α
n (x) are Truesdel polynomials, see [17].
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Similarly, acting with Eq. (2.4) on e−pxr
, we obtain the inverse relations

T−α
n (x,r, p) = (−1)n

n

∑
k=0

S(n,k;α)xk(−1)kHr
k (x,0, p)

and

T−α

k (x) =
n

∑
k=0

s(n,k;α)(−1)kxk.

Next, we derive some new results for Hsu and Shiue numbers [14].

Theorem 2.2. For the special case αi =−(r− iα)/β , i = 0,1, . . . ,n−1, we have

s(n,k; ᾱ) = β
k−nS2(n,k) (2.7)

Proof. From equation (1.2) we get

β
n(t/β )((t/β )−1) · · ·((t/β )− (n−1)) =

n

∑
k=0

S2(n,k)(t + r|α)k.

Setting t/β = x, we have

β
nx(x−1) · · ·(x−(n−1)) =

n

∑
k=0

S2(n,k)(βx+r)(βx+r−α) · · ·(βx+r−(k−1)α),

hence

(x)n =
n

∑
k=0

β
k−nS2(n,k)(x+ r/β )(x+(r−α)/β ) · · ·(x+(r− (k−1)α)/β ) .

Comparing this equation with (1.5) yields (2.7). �

Also, it can be shown that S(n,k; ᾱ) = β
k−nS1(n,k) if αi = (iα− r)/β .

Furthermore, we show that the generating function (1.4), see [14], of Hsu-
Shiue numbers can be investigated from the generating function (1.9), see [11],
where αi = (r + iβ )/α , i = 0,1, . . . ,n−1.

Theorem 2.3. For the special case αi = (r + iβ )/α , i = 0,1, . . . ,n−1, the generat-
ing function (1.9) is reduced to the generating function (1.4) and

S1(n,k) = α
n−ks(n,k; ᾱ).

Proof. If we start from (1.9)

∑
n≥0

s(n,k; ᾱ)
zn

n!
=

k

∑
j=0

(1+ z)α j

(α j)k
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and setting α j = r/α + jβ/α , j = 0,1, . . . ,k, we get

RHS =
k

∑
j=0

(1+ z)
r
α

+ j β

α

k
∏

j=0,i 6= j

((
r
α

+ j β

α

)
−
(

r
α

+ i β

α

)) =
k

∑
j=0

(1+ z)
r
α

+ j β

α(
β

α

)k k

∏
i=0,i6= j

( j− i)

=
(1+ z)

r
α(

β

α

)k

k

∑
j=0

(1+ z) j β

α

k

∏
i=0,i6= j

( j− i)

=
(1+ z)

r
α(

β

α

)k

k

∑
j=0

(1+ z) j β

α

(−1)k− j(k− j)! j!

=
1
k!

(1+ z)
r
α(

β

α

)k

k

∑
j=0

(
k
j

)
(−1)k− j(1+ z) j β

α =
1
k!

(1+ z)
r
α(

β

α

)k

(
(1+ z)

β

α −1
)k

,

where we used the identity,

k

∏
i=0,i6= j

( j− i) = (−1)k− j(k− j)! j!.

Thus, putting z = αt in (1.9) we get

∑
n≥0

s(n,k; ᾱ)
αntn

n!
=

1
k!

α
k(1+αt)r/α

(
(1+αt)β/α −1

β

)k

,

hence by virtue of (1.4) we have

∑
n≥0

S1(n,k)
tn

n!
= ∑

n≥0
α

n−ks(n,k; ᾱ)
tn

n!
=

1
k!

(1+αt)r/α

(
(1+αt)β/α −1

β

)k

,

where αi = (iβ + r)/α .
In fact, this equation shows that

S1(n,k) = α
n−ks(n,k; ᾱ),

where αi = (iβ + r)/α , i = 0,1, . . . ,n−1. This completes the proof. �

Now, setting αi = (iα− r)/β , i = 0,1, . . . ,n−1 in (2.2) we get the following
new operational formula for Hsu-Shiue numbers:

n−1

∏
i=0

x(iα−r)/β
δx−(iα−r)/β =

n

∑
k=0

β
k−nS1(n,k)(δ )k. (2.8)

Remark 2.4. Note that equations (2.2) and (2.8) for αi = 0, i = 0,1, . . . ,n−1 and
α = 0, β = 1 and r = 0, respectively, are reduced to the well known operational
representation of the ordinary Stirling numbers of the second kind

δ
n =

n

∑
k=0

S(n,k)xkDk.
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3. New explicit formulae and combinatorial identities
We derive new explicit formulae for both kinds of the multiparametar non-central
Stirling numbers.

Theorem 3.1. The numbers S(n,k; ᾱ), have the following new explicit formula

S(n,k; ᾱ) = ∑
In−1=n−k

(
−α0

i0

)(
1−α1− i0

i1

)
· · ·
(

n−1−αn−1− i0−·· ·− in−2

in−1

)
,

where i j ∈ {0,1}, j ∈ {0,1, . . . ,n−1}, and In−1 := i0 + i1 + · · ·+ in−1.

Proof. The statement for k = 0 gives that

S(n,0; ᾱ) = (−1)n
α0α1 · · ·αn−1,

which agrees with the definition of S(n,k; ᾱ) (see [11]).
Also, if in−1 ∈ {0,1}, we have that

S(n,k; ᾱ) = ∑
In−2=(n−1)−(k−1)

(
−α0

i0

)(
1−α1− i0

i1

)
· · ·

×
(

n−2−αn−2− i0−·· ·− in−3

in−2

)

+ ∑
In−2=(n−1)−k

[n−1−αn−1− (n− k−1)]
(
−α0

i0

)(
1−α1− i0

i1

)
· · ·

×
(

n−2−αn−2− i0−·· ·− in−3

in−2

)
,

i.e.,

S(n,k; ᾱ) = S(n−1,k−1; ᾱ)+(k−αn−1)S(n−1,k; ᾱ).

Therefore, by (1.8) and induction we get the desired result. �

Remark 3.2. We used α0 = 0⇔ i0 = 0.

Theorem 3.3. The multiparameter non-central Stirling numbers of the first kind
have the following new explicit expression

s(n,k; ᾱ) = ∑
i1+···+in=k

i j∈{0,1}

(
i1 +αi1
1− i1

)(
i2 +αi1+i2 −1

1− i2

)
· · ·
(

in +αi1+···+in −n+1
1− in

)
.

(3.1)

Proof. For k = 0 we have

s(n,0; ᾱ) = α0(α0−1) · · ·(α0−n+1) = (α0)n
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and if in ∈ {0,1}, we have

s(n,k; ᾱ) = ∑
i1+···+in−1=k−1

(
i1 +αi1
1− i1

)
· · ·
(

in−1 +αi1+···+in−1 −n+2
1− in−1

)
+ ∑

i1+···+in−1=k

(
αi1+···+in−1 −n+1

)(i1 +αi1
1− i1

)(
in−1 +αi1+···+in−1 −n+2

1− in−1

)
= s(n−1,k−1; ᾱ)+(αk−n+1)s(n−1,k; ᾱ),

where i1 + · · ·+ in−1 = k. By virtue of (1.7), this completes the proof. �

It is worth noting that setting αi = (r + iβ )/α , i ∈ {0,1, . . . ,n− 1} in the
recurrence relation (1.7) for multiparameter non-central Stirling numbers of the first
kind, we can get the recurrence relation (1.3), and hence

s(n,k; ᾱ) = α
k−nS1(n,k).

Furthermore, Corcino, Hsu and Tan [9] mentioned that the multiparameter
non-central Stirling numbers are related with the generalized Stirling-type pair of
Hsu-Shiue (see also [23]) by S(n,k;1,α,0)= s(n,k; ᾱ) and S(n,k;α,1,0)= S(n,k; ᾱ)
for special case αi = iα, i = 0,1, . . . ,n−1.

Corollary 3.4. A new explicit expression for generalized Stirling numbers (Hsu-
Shiue numbers type (1.3)) is given by

S(n,k;α,β ,r) = β
n−k

∑
In−1=n−k
i j∈{0,1}

(
r/β

i0

)(
1+(r−α)/β − i0

i1

)
· · ·

· · ·
(

n−1+(r− (n−1)α)/β − i0−·· ·− in−2

in−1

)
or in the modified form

S(n,k;α,β ,r) = ∑
In−1=n−k
i j∈{0,1}

(
r
i0

)(
r +β −α−β i0

i1

)(
r +2(β −α)−β (i0 + i1)

i2

)
· · ·

· · ·
(

r +(n−1)(β −α)−β (i0 + i1 + · · ·+ in−2)
in−1

)
,

where we use i0 = 0⇔ r = 0.

Proof. The proof of this result follows directly from Theorem 3.1. Namely, by set-
ting αi = (iα− r)/β , i = 0,1, . . . ,n−1, we get the statement. �

The previous corollary implies new explicit expressions for the usual Stirling
numbers of the second and first kind

S(n,k;0,1,0) = S(n,k) = ∑
i1+···+in−1=n−k

i j∈{0,1}

(
1
i1

)(
2− i1

i2

)
· · ·
(

n−1− i1−·· ·− in−2

in−1

)
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and

S(n,k;1,0,0) = s(n,k) = ∑
i1+···+in−1=n−k

i j∈{0,1}

(
−1
i1

)(
−2
i2

)
· · ·
(
−(n−1)

in−1

)

= (−1)n−k
∑

i1+···+in−1=n−k
i j∈{0,1}

(
i1
i1

)(
1+ i2

i2

)
· · ·
(

n−2+ in−1

in−1

)
,

respectively.

Remark 3.5. From the above corollary we obtain the explicit formula for the num-
bers Fα,γ(n,k) (see [7]), defined by the triangular recurrence relation

Fα,γ(n+1,k) = Fα,γ(n,k−1)+(γ−nα)Fα,γ(n,k),

where Fα,γ(0,0) = 1 and Fα,γ(n,k) = 0 when n < 0, k < 0 and n < k. Namely, for
β = 0 and r = γ , the modified form of S(n,k,α,β ,r) in Corollary 3.4 reduces to

Fα,γ(n,k) = S(n,k;α,0,γ) = ∑
In−1=n−k
i j∈{0,1}

(
γ

i0

)(
γ−α

i1

)
· · ·
(

γ− (n−1)α
in−1

)
.

Note that some properties and identities on S(n,k;α,β ,r) cannot be obtained
for β = 0, which is a reason why the explicit formula, i.e., the modified form (from
Corollary 3.4), is very convenient to use.

Corcino et al. [8] defined the (r,β )-Stirling numbers, denoted by
〈 n

k

〉
β ,r

us-

ing the following recurrence relation〈
n+1

k

〉
β ,r

=
〈

n
k−1

〉
β ,r

+(kβ + r)
〈

n
k

〉
β ,r

.

It is easy to conclude that
〈 n

k

〉
β ,r

= S(n,k,0,β ,r). Thus, we can obtain an

explicit formula for (r,β )-Stirling numbers from Corollary 3.4〈
n
k

〉
β ,r

= S(n,k;0,β ,r)

= ∑
In−1=n−k
i j∈{0,1}

(
r/β

i0

)(
1+ r/β − i0

i1

)
· · ·
(

n−1+ r/β − i0−·· ·− in−2

in−1

)
.

Moreover, El-Desouky [11, Theorem 2.1] derived the following explicit for-
mula for s(n,k; ᾱ)

s(n,k; ᾱ) =
n

∑
r=k

(−1)n−r n!
r! ∑

1
i1 · · · ir

k

∑
j=0

α j
r

(α j)k
, (3.2)

where, in the second sum, the summation extends over all ordered n-tuples of in-
tegers (i1, i2, . . . ir) satisfying the condition i1 + i2 + · · ·+ ir = n and i j ≥ 0, j =
1,2, . . . ,r.
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From (3.1) and (3.2), we obtain the following new combinatorial identity

∑
i1+···+in=n−k

i j∈{0,1}

(
i1 +αi1
1− i1

)(
i2 +αi1+i2 −1

1− i2

)
· · ·
(

in +αi1+···+in −n+1
1− in

)

=
n

∑
r=k

(−1)n−r n!
r! ∑

1
i1 · · · ir

k

∑
j=0

α j
r

(α j)k
.

Remark 3.6. Now, it is worth noting that all special cases, (i)–(xi), derived in [14],
are special cases of the multiparameter non-central Stirling numbers.

Corcino, Hsu and Tan [9] proved that

S1(n,k) =
n!αn

k!β k

k

∑
j=0

(−1)k− j
(

k
j

)(
(β/α) j +(r/a)

n

)
. (3.3)

From (3.3) and Corollary 3.4, we have the combinatorial identity

n!αn

k!

k

∑
j=0

(−1)k− j
(

k
j

)(
(β/α) j +(r/a)

n

)
= β

n
∑

In−1=n−k
i j∈{0,1}

(
r/β

i0

)
×

×
(

1+(r−α)/β − i0
i1

)
· · ·
(

n−1+(r− (n−1)α)/β − i0−·· ·− in−2

in−1

)
.

Hongquan Yu [23, Theorem 4 and Corollary 5] proved that

S(p+ l,k;β ,α,0)≡ 0 (mod p), (3.4)

where p is a prime number, k and l are integers such that l +1 < k < p and

S(p,k;α,β ,r)≡ 0 (mod p), (3.5)

where α , β and r are integers and p is a prime, 1 < k < p.
By virtue of (3.4), (3.5) and Corollary 3.4, we obtain the combinatorial iden-

tities

α
p+l−k

∑
i1+···+ip+l−1=p+l−k

i j∈{0,1}

(
1−β/α

i1

)(
2(1−β/α)− i1

i2

)
· · ·

×
(

(p+ l−1)(1−β/α)− i1−·· ·− ip+l−2

ip+l−1

)
≡ 0 (mod p), l +1 < k < p,

and

β
p−k

∑
Ip−1=p−k
i j∈{0,1}

(
r/β

i0

)(
1+(r−α)/β − i0

i1

)
· · ·

×
(

p−1+(r− (p−1)α)/β − i0−·· ·− ip−2

ip−1

)
≡ 0 (mod p), 1 < k < p.

The degenerate weighted Stirling numbers, denoted by S(n,k,λ |θ), are the
pair 〈θ ,1,λ 〉 (see [13]).
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Howard [13] derived the following explicit formula

S(n,k,λ |θ) =
1
k!

k

∑
l=0

(−1)k+l
(

k
l

)
(λ + l|θ)n. (3.6)

Next, we find new explicit formulae for the following special cases of Stirling
numbers.

Corollary 3.7. The degenerate weighted Stirling numbers S(n,k,λ |θ) have the fol-
lowing explicit formula

S(n,k,λ |θ) = ∑
In−1=n−k,
i j∈{0,1}

(
λ

i0

)(
λ −θ +1− i0

i1

)(
λ +2(1−θ)− i0− i1

i2

)
· · ·

×
(

λ +(n−1)(1−θ)− (i0 + i1 + i2 + · · ·+ in−2)
in−1

)
. (3.7)

Proof. The proof follows by setting α = θ , β = 1 and r = λ in the modified form
of Corollary 3.4. �

From (3.6) and (3.7) we have the new combinatorial identity

∑
In−1=n−k
i j∈{0,1}

(
λ

i0

)(
λ −θ +1− i0

i1

)(
λ +2(1−θ)− i0− i1

i2

)
· · ·

×
(

λ +(n−1)(1−θ)− (i0 + i1 + · · ·+ in−2)
in−1

)
=

1
k!

k

∑
l=0

(−1)k+l
(

k
l

)
(λ + l|θ)n.

Also, setting λ = 0 in (3.7) (see [13, Lemma 2.1]), we have a new explicit
formula for degenerate Stirling numbers

S(n,k|θ) = ∑
i1+···+in−1=n−k

i j∈{0,1}

(
(1−θ)

i1

)(
2(1−θ)− i1

i2

)
· · ·

×
(

(n−1)(1−θ)− (i1 + i2 + · · ·+ in−2)
in−1

)
.

In the special case θ = λ = 0 we obtain the identity

∑
i1+···+in−1=n−k

i j∈{0,1}

(
1
i1

)(
2− i1

i2

)
· · ·
(

(n−1)− (i1 + i2 + · · ·+ in−2)
in−1

)

=
1
k!

k

∑
l=0

(−1)k+l
(

k
l

)
ln.

From (1.1) we get

α
n(t/α)((t/α)−1) · · ·((t/α)− (n−1)) =

n

∑
k=0

S1(n,k)(t− r|β )k.
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Setting t/α = x,

α
nx(x−1) · · ·(x−(n−1))=

n

∑
k=0

S1(n,k)(αx−r)(αx−r−β ) · · ·(αx−r−(k−1)β ),

hence

(x)n =
n

∑
k=0

α
k−nS1(n,k)(x− (r/α)|(β/α))k. (3.8)

From (1.1) and (3.8), we obtain αk−nS1(n,k) = S(n,k;1,r/α,β/α), whence

S(n,k;α,β ,r) = α
n−kS(n,k;1,β/α,r/α). (3.9)

Similarly, we can prove that

S(n,k;α,β ,r) = β
n−kS(n,k;α/β ,1,r/β ). (3.10)

Indeed (3.9) and (3.10) (see [1]) can be investigated from (1.4).
Using (3.10), as well as the fact that the degenerate weighted Stirling numbers

S(n,k,λ |θ) are the pair 〈θ ,1,λ 〉, then the numbers S(n,k;α,β ,r) can be represented
in terms of S(n,k,λ |θ) where

S(n,k;α,β ,r) = β
n−kS(n,k,(r/β )|(α/β )). (3.11)

Remark 3.8. In fact, (3.11) agrees with Corollary 3.4.

Furthermore, Munagi [15] defined Sb(n,k), the B-Stirling numbers of the sec-
ond kind, by

Sb(n,k) = Sb(n−1,k−1)+(k +b−1)Sb(n−1,k), n≥ k,

Sb(n,0) = δn,0, Sb(n,1) = bn−1, where δi, j is the Kronecker delta.

Corollary 3.9. The B-Stirling numbers of the second kind, Sb(n,k), have the fol-
lowing new explicit formula

Sb(n+1,k +1) = S(n,k;0,1,b)

= ∑
In−1=n−k
i j∈{0,1}

(
b
i0

)(
b+1− i0

i1

)(
b+2− (i0 + i1)

i2

)
· · ·

×
(

b+n−1− (i0 + i1 + · · ·+ in−2)
in−1

)
, (3.12)

where b≥ 0 and we use i0 = 0⇔ b = 0.

Proof. The proof follows by setting αi =−b, i = 0,1, . . . ,n−1, in Theorem 3.1 (or
setting α = 0, β = 1 and r = b in Corollary 3.4). �

This show that the B-Stirling numbers of the second kind is a special case
of the multiparameter non-central Stirling numbers and consequently of Hsu-Shiue
numbers.
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From (3.12) and [15, Corollary 6.2] we obtain the new combinatorial identity

∑
In−1=n−k
i j∈{0,1}

(
b
i0

)(
b+1− i0

i1

)
· · ·
(

b+n−1− (i0 + i1 + · · ·+ in−2)
in−1

)

=
k

∑
j=0

(−1)k− j(b+ j)n

j!(k− j)!
.

4. The matrix representation
Let s,S; s(α),S(α) and S1,S2 be (n+1)× (n+1) lower triangular matrices, where
s and S are the matrices whose entries are the Stirling numbers of the first and
second kinds (i.e., s = [si j]i, j≥0 and S = [Si j]i, j≥0); s(α) and S(α) are the matrices
whose entries are the multiparameter non-central Stirling numbers of the first and
second kinds (i.e., s(α) = [s(α)i j]i, j≥0 and S(α) = [S(α)i j]i, j≥0) and S1,S2 are the
matrices whose entries are the generalized Stirling-type pair of Hsu and Shiue (i.e.,
S1 = [S1

i j]i, j≥0 and S2 = [S2
i j]i, j≥0), respectively.

The multiparameter non-central Stirling numbers of the first and second kinds,
Eqs. (2.1) and (2.2), can be represented in a matrix form as

δ̃ = s(α)D̃ and D̃ = S(α)δ̃ ,

respectively, where δ̃ = ((δ )0,(δ )1, . . . ,(δ )n)T and D̃ = (D0, D1, . . . ,Dn)T .
A computer program is written using Maple and executed for calculating the

multiparameter non-central Stirling matrix of the first kind s(α) (and S(α) = s−1(α)
of the second kind) and the generalized Stirling-type pair of Hsu and Shiue as a
special case when αi = (r + iβ )/α .

For example if 0≤ n≤ 3, then

s(α) =


1 0 0 0

α0 1 0 0
α0(α0−1) α0 +α1−1 1 0

α0(α0−1)(α0−2) α0α1−3α0 +α2
0 −3α1 +α2

1 +2 α0 +α1 +α2−3 1


and

S1 =


1 0 0 0
r 1 0 0

r(r−α) 2r +β −α 1 0
r(r−α)(r−2α) 3r2−6rα +3β r +β 2−3βα +2α2 3r +3β −3α 1

 .

Remark 4.1. Note that there are some missing terms in [23, Table 1].

Similarly, the degenerate weighted Stirling matrix S(λ |θ), the degenerate Stir-
ling matrix S(θ) and the Stirling matrix of the second kind S are given by

S(λ |θ) =


1 0 0 0
λ 1 0 0

λ (λ −θ) 2λ +1−θ 1 0
λ (λ −θ)(r−2θ) 3λ 2−6λθ +3λ +1−3θ +2θ 2 3λ +3−3θ 1

 ,
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S(θ) =


1 0 0 0
0 1 0 0
0 1−θ 1 0
0 (1−θ)(1−2θ) 3(1−θ) 1

 ,

and

S =


1 0 0 0
0 1 0 0
0 1 1 0
0 1 3 1

 ,

respectively, as special cases.
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