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KRONROD EXTENSIONS OF GAUSSIAN QUADRATURES
WITH MULTIPLE NODES
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Abstract — In this paper, general real Kronrod extensions of Gaussian quadrature
formulas with multiple nodes are introduced. A proof of their existence and uniqueness
is given. In some cases, the explicit expressions of polynomials, whose zeros are the
nodes of the considered quadratures, are determined. Very effective error bounds of
the Gauss — Turan — Kronrod quadrature formulas, with Gori — Micchelli weight
functions, for functions analytic on confocal ellipses, are derived.
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1. Introduction

Let w be an integrable weight function on interval (a,b). It is well-known that the Gauss —
Turan quadrature formula with multiple nodes

b n 2s
/j@muyﬁZEZZ)%J@m)+ng% neN, seN, (1.1)
o v=1 1=0

is exact for all algebraic polynomials of degree 2(s+1)n—1 at most. Its nodes 7, are the zeros
of the corresponding (monic) s-orthogonal polynomial ,, (t) of degree n that minimizes the

following integral
b

olag,ary. .., 0p_1) = /Wn(t)2s+2w(t) dt,

a

where ,(t) = t" + Qp_1t" 1+ -+ ait + ag. In order to minimize ¢ we must have

b
/w(t)wn(t)2s+1tk gt =0, k=01, . .n—1 (1.2)

a
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which are the corresponding orthogonality relations. For s = 0 we have a case of the standard
orthogonal polynomials. For more details on Gauss — Turdn quadratures see the book [7]
and the survey paper [13].

Take now a sequence of nonnegative integers o = (s1, $2,...). For any n € N we denote
the corresponding finite sequence (sq, Sg, .. ., $,) by 0, and consider the generalization of the
Gauss — Turdn quadrature formula (1.1) to rules having nodes with arbitrary multiplicities

b n 2s,
[ HOw@dt =33 4,59 w) + R, (13)
" v=1 =0
where A;, = AET:,’U), =" (i=0,1,.... 28, v=1,... ,n). Such formulas were derived

independently Hy Chakalov and Popoviciu. A deep theoretical progress in this subject was
made by Stancu (see [13] and references therein).

In this case, it is important to assume that the nodes 7, (= T,S"’U)) are ordered, say

T <Ty<-<T, T,€ labl, (1.4)

with odd multiplicities 2s;+1, 2s9+1, ..., 2s,4 1, respectively, in order to have uniqueness
of the Chakalov-Popoviciu quadrature formula (1.3) (cf. Karlin and Pinkus [11]). Then this
quadrature formula has the maximum degree of exactness dp,. = 2 ZZ:1 s, +2n—11if and
only if

n

b
/H(t — 1) wt)dt =0, k=0,1,...,n— 1. (1.5)

=1

The last orthogonality conditions correspond to (1.2). The existence of such quadrature rules
was proved by Chakalov, Popoviciu, Morelli and Verna, and the existence and uniqueness
subject to (1.4) was proved by Ghizzetti and Ossicini (see [13] for references), and also by
Milovanovi¢ and Spalevié¢ [14].

Conditions (1.4) define the sequence of polynomials {7, o }nen,

n

Tuol(t) = [t = 77), 7" <7 << 7m) 29 e a8,
v=1

such that b .
/m,g(t) [ -7 wtydt=0, k=0,1,...,n—1.

v=1
a

These polynomials are called o-orthogonal polynomials and correspond to the sequence o =
(s1,82,...). We will often write simple 7, instead of 79 If we have o = (s,s,...), the
above polynomials reduce to the s-orthogonal polynomials.

Numerically stable methods for constructing nodes 7, and coefficients A;, in Gauss —
Turan and Chakalov — Popoviciu quadrature formulas with multiple nodes can be found in
[5,14,19].

The generalized Chebyshev weight functions w(t) = w;(t):

(a) wi(t) = (1 — #2)71/2,

(b) wy(t) = (1 —2)1/2+s,
(c) ws(t) = (1 — ¢)"H2(1 + t)4/2Fs,
(d) wa(t) = (1 —t)/2Fs(1 4 1)1/2

will be of interest in the following.
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In 1930, S. Bernstein [1] showed that the monic Chebyshev polynomial (orthogonal with
respect to wy(t)) Tp,(t)/2" ! minimizes all integrals of the form

k+1
/ @O ko
V1—1t2
This means that the Chebyshev polynomials 7,, are s-orthogonal on (—1,1) for each s > 0.
Ossicini and Rosati [23] found three other weight functions w;(t) (i = 2,3,4) for which the

s-orthogonal polynomials can be identified as Chebyshev polynomials of the second, third,
and fourth kind U, V,,, and W,,, which are defined by

cos(n +1/2)0
cos(6/2)

sin(n + 1)6
sin

sin(n +1/2)6

Un(t) = in(6/2)

Vn(t) = Wn<t) =
respectively (cf. Gautschi [4]; Gautschi and Notaris [6]), where ¢ = cosf. However, these
weight functions depend on s (see (), (¢), (d)). It is easy to see that W,,(—t) = (—1)"V,,(t), so
that in the investigation it is sufficient to study only the first three weights w;(t), i = 1,2, 3.

For each n € N, Gori and Micchelli [9] introduced an interesting class of weight functions
defined on [—1, 1] for which explicit Gauss — Turdn quadrature formulas of all orders can
be found. In other words, these classes of weight functions have the peculiarity that the
corresponding s-orthogonal polynomials, of the same degree, are independent of s. This
class includes certain generalized Jacobi weight functions wy, ,(t) = |Un—1(t)/n[*T1(1 —t2)*,
where U,,_1(cos#) = sinnf/sinf (Chebyshev polynomial of the second kind) and p > —1.
In this case, the Chebyshev polynomials T}, appear as s-orthogonal polynomials.

This paper is organized as follows. In Section 2, general real Kronrod extensions of the
quadratures with multiple nodes (1.3) (particularly (1.1)) are introduced. A proof of their
existence and uniqueness is given. In some cases, the explicit expressions of the polynomials,
whose zeros are the nodes of the considered quadratures, are obtained in Section 3. Finally,
the very effective error bounds of the Gauss — Turan — Kronrod quadrature formulas,
with Gori — Micchelli weight functions, for the functions analytic on confocal ellipses, are
considered in Section 4.

2. General real Kronrod extensions of Chakalov — Popoviciu
quadratures
Let o5, = (81,83 ---,8n), s;, € No, p = 1,2,...,m. Following the well-known idea of
Kronrod [3] (see also [21,22]), we extend formula (1.3) to the interpolatory quadrature
formula
b n 2s, m
[ row@d =33 B +Z () + Bun( ), (2)
o v=1 =0 p=1 j=0

where 7, denotes the same nodes as in (1.3), and the new nodes T: and new weights B; ,, C’*
are chosen to maximize the degree of exactness of (2.1) which is greater than or equal to

n m

2(28,,—1—1)—{—2(23;—1—1)—1—7)1—1:2<Zn28,,+§:82) +n+2m—1.
v=1 pn=1

v=1 ,LL:1
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We call the quadrature formula (2.1) Chakalov — Popoviciu — Kronrod quadrature formula.
A particular case of this formula is the Gauss — Turan — Kronrod quadrature formula, if
S] =8y ="+++=8, =S§.

The well-known Gauss — Kronrod quadrature formula, if 51 = sy =--- =35, =0, 5] =
sy =---=s; =0,and m =n+ 1, is a particular case of both above-mentioned quadrature
formulas. In the theory of Gauss — Kronrod quadrature formulas, the Sieltjes polynomials
E,11(x), whose zeros are the nodes 7%, namely E,,1(7) = Ep1(z, w) := HZi}(t — ), play
an important role. Also, of foremost interest are weight functions for which the Gauss —
Kronrod quadrature formula has the property that:

(¢) All n + 1 nodes 7; are in (a,b) and are simple (i.e., that all zeros of the Stieltjes
polynomial E,;(z) are in (a,b) and are simple).

Also, desirable are weight functions which have in addition to (i) the following properties:

(i) The interlacing property. Namely, the nodes 7, and 7, separate each other (i.e.,

the n + 1 zeros of E,,(x) separate the n zeros of the orthogonal polynomial P,(z) :=
[Ty (t - 7)); and

(7i1) all quadrature weights are positive.

On the basis of the above facts, it seems it most natural to consider the Chakalov —
Popoviciu — Kronrod quadratures (2.1) in which m =n + 1, i.e.,

b n  2sy n+l 2s,
JECECEED 9 SEREIOED 9 SNEIARY AL NS
" v=1 =0 pn=1 j=0

We know that in the general case of quadratures with multiple nodes not all quadrature
weights have to be positive. Therefore, for Kronrod extensions of Gaussian quadrature
formulas with multiple nodes we cannot consider the property (zm) as desirable.

On the other hand, it is desirable that the nodes 7;, 1 = 1,...,n + 1 be all real and
ordered, say

< Ty << Thyy, T, E€ER, (2.3)

as well as satisfy the interlacing property, i.e.,
T <N <Ty <Tp<- - <Tp<Thiy (2.4)

In the following, we are interested in the Chakalov — Popoviciu — Kronrod quadratures
(2.2) in which the nodes 7;, = 1,...,n + 1 satisfy property (2.3).

Proposition 2.1. Let (1.4), (2.3) hold. Then the interpoatory quadrature formula (2.2)
with multiple nodes has the degree of exactness 2(>._, s, + ZT% s5,) +3n + 1 if and only
if the orthogonality conditions

n n+1
/H P [ =t P w(t)dt =0, k=0,1,....n, (2.5)
v=1

pn=1
hold.
Proof. Let m,(t) = mp0(t) = [[_,(t — 7,) be the g-orthogonal polynomial based on the

nodes 7, and Ef;;l (t) H”H( —7) be the corresponding generalized Stieltjes polynomial
based on the nodes 7, Condltlons (2.5) can be reinterpreted in the form

b
/ E) ) o) t"@(t)dt =0, k=0,1,...,n, (2.6)

a
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where w(t) = w(t) [[L_,(t—7,)* HnH(t 7)?% is the new implicitly given weight function
(see Engels [2, pp.214-226]). Therefore because of (2.6), the generalized (monic) Stieltjes
polynomial Efl +1) (t) is uniquely determined (cf. [21, p. 145]).

Suppose now that the quadrature formula (2.2) has the degree of exactness 2(>""_, s, +
S s*) +3n 41, and let

p=1 S
n n+1
f&y=JJe-n)y " [ —m)> 5, ke{o,1,...,n}.
v=1 pn=1

Then, we have that

n n+1 n+1
deg(f)<22sl, +ZZS +1 <ZSV—|—Z )+3n+1.
v=1

Let us determine, for instance, f®(r;), i =0, 1,...,2s;. Using the following representa-
tion f(t) = (t — 71)*' " uy(t), where

n n+1
up(t) = [ [t = n)> " [Jt — )b, ked{o1,... n},
v=2 ,LL:1

and the Leibnitz formula, we have
1om=>2 (Z) uf OO =)=, =01 2
(=0

Therefore, f@ (1) =0,i=0,1,...,2s.
Likewise, we conclude that

f(i)(TV):Q; 1=0,1,...,2s,, v=2,...,n,

f(i)(T;)ZO; Z—O,l,...2z, ,[1,:17”_77@4_1'
Using these facts, for the given function f(t) we have that

n 2s, n+123
S5 B0 £ S0S L 9
v=1 =0 p=1 j=0

Because of the latter and since R, (f) = 0, from (2.2) we conclude that (2.5) holds.
Now, let the orthogonality conditions (2.5) hold. Consider an arbitrary polynomial g(t)
of degree < 2(3°0_, s, + 3.1 s*) + 3n + 1, which can be represented in the form

p=1 S
n n+1
g(t) = H(t —7,) % H(t - 7—;)28:1“ un(t) + v4(t),
v=1 p=1

where u,, (t), v,(t) are polynomials of degrees n, g, respectively, and ¢ = 2(>_"_, sﬁ—ZT} s+

n). As an interpolatory quadrature formula (2.2) is exact for each polynomial of degree
<2000 s, + S0 55 +n), ie., Ry(v,) = 0.

p=1"p
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Therefore, because of the last facts and (2.5),
. b

/ o8 w(t) dt = / T = 72 T = 75w (8) wie) dit + / v (Ew(t) dt =

v=1 pn=1 a
n  2sy n+1 2s;
[ttty =33 Bld )+ 575 € + Bafn) -
" v=1 i=0 pn=1 j=0
n  2sy n+1 25
33 Bl )+ YD il
v=1 =0 p=1 j3=0
Because of

g()(,,):vél)(,,) v=1,....,n, 1=0,...,2s,,
g =09 p=1,...,n+1, j=0,...,2s}
the previous formula reduces to

b

/g(t) w(t)dt = Z XV: Bi,yg(i)<7—ll) + Z i C

" v=1 =0 pn=1 j=0
which means that the quadrature formula (2.2) has the degree of exactness 2(>_, s,+
Soniish) +3n+ 1. O

Remark 2.1. The above results can also be obtained for a more general case of the
quadrature formula (2.2). Namely, for each node 7 ¢ (a,b) instead of the multiplicity
257 + 1 the multiplicity n¥ 4+ 1 (n}, € Ny) can be considered, since the factor (& — 77%)"*!
holds the same sign on (—1,1). Because of that, the function w(t) remains to be a weight
function.

Remark 2.2. For the numerically stable method of calculating the weight coefficients
n (2.2) see [19].

3. Explicit expressions of the generalized Stieltjes polynomials

We now study in detail some cases of the quadrature formula (2.2) for a subclass of Gori —
Micchelli weight functions, as well as for the generalized Chebyshev weights.
First, consider the subclass of Gori — Micchelli weight functions

Up-1(t)

wno(t) = { rz(l — )12 e fo,1,..., s} (3.1)

In the particular case that ¢ = 0, (3.1) reduces to the Chebyshev weight function of the
first kind w, o(t) = (1 — 2)~Y/2,
Recall that for the weight functions (3.1) the Chebyshev polynomials of the first kind
T, (t) appear to be s-orthogonal. In this case (g,, = (s, s, ..., s)), the orthogonality conditions
(2.5) have the form

1 n+1
/[Tn(t)]2s+1 [[ -t v, (@ — ) "2dt =0, k=0,1,....n (3.2)
-1

p=1
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If HnH( —T

)2t = [Upy (£)]2*H12(#2 —1)**17¢, where o is a normalization constant,
then conditions (3.2) take the form

1
/[Un_l(t)Tn(t)]2s+1 L= =0, k=0,1,....n,
—1
i.e., subject to 27,,(t)Up—1(t) = Usp—1(t) (cf. [21, p. 143, eq. (21)]),
1
/[Uzn_l(t)]2s+1 (1 —tHY** e dt =0, k=0,1,....n
—1

In fact, the last conditions hold for k = 0,1,...,2n — 2 (see [23]), which means that it
has to be 2n —2 > n, ie., n > 2.

Therefore, in this case (n > 2, o5, = ((s ={)/2,s = {,...,s =, (s — {)/2)), when the
quadrature formula (2.2) has the form (7 = —1,7},, = 1)
n n 2(s—
/ f Wh, K dt Z Z Bz l/f 7_1/ Z
— v=1 i=0 p=2 j=0
2GSV (1) + Gl SU (1) + Bal), (34)
=0

we have just proved the following statement.

Theorem 3.1. In the Kronrod extension (3.4) of the Gauss — Turdn quadrature formula
(1.1) with the weight function (3.1), and for n > 2, the corresponding generalized Stieltjes

polynomial Eﬁf:fl)(t) (grii=(s—=0)/2,s—1,...,5s =1, (s=1{)/2)) is given by
EV(t) = (2 = 1) Uy (8),
i.e., the nodes 7;, p = 2,...,n are the zeros of Un_1(t) (Chebyshev polynomial of the second
kind of degree n — 1), and 7{ = =1, 7, = 1.
The zeros of T,,(t) and Er(:ll) (t) interlace (i.e., satisfy property (2.4)), since

2(t* — 1)Up_1(t) = 2(t* — DTL(t) /n

(cf. [24, p. 180, Lemma 1]).

Consider now the generalized Chebyshev weight functions of the second, third and fourth
kind.

Let 0, = (s,...,s) and w(t) = wy(t) = (1 — )12, In this case, the orthogonality
conditions (2.5) reduce to

1 n+1

/[Un(t)]?s+1 H(t — TP (1= )P dt =0, k=0,1,...,n (3.5)
-1 p=1
If ﬁH"+1( )2t = T24(t), where § is a normalization constant and o7, =
(s, s, ) then conditions (3.5) take the form, since 1,11 (t)Un(t) = Ugpni1(t)/2,

1
/[U2n+1(t)]25+1 L= g =0, k=0,1,....n.
21
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In fact, the last conditions hold for £ =0,1,...,2n.
Therefore, in this case, when the quadrature formula (2.2) has the form

1

n n+1l 2s
/f(t)( )12 gy ZZBwf )+ SO R, (36)
] v=1 =0 p=1 j=0

we have just proved the following statement.

Theorem 3.2. In the Kronrod extension (3.6) of the Gauss — Turdn quadrature formula
(1.1) with the weight function wg(t) = (1 — t*)/%*5 the corresponding generalized Sticltjes
polynomial Eflil)(t) (pi1=(s,8,...,8)) is given by

B () = T (0),
e., the nodes 77, p = 1,...,n+ 1, are the zeros of Toy1(t) (Chebyshev polynomial of the
first kind of degree n + 1).
It is obvious that in this case the interlacing property (2.4) holds, since it holds for the
polynomials U, (t), T},+1(t).
Further, let o, = (s,...,s) and w(t) = ws(t) = (1 —t)"/?**(1 +¢)~/2. The orthogonality
conditions (2.5) reduce in this case to

1 n+1

/[Pgl/l—l/” O ][ —mp)Poett (L= )2 (14 4)"2dt =0, k=0,1,...,n, (3.7)

-1 pu=1

where PM* 712 (t) is the Jacobi polynomial orthogonal on (—1, 1) with respect to the weight
function (1 —)Y2(1 +¢)~Y/2 (see [23]).
If v HT% (t—72)*ett = (1 )L PTYAYD (4))2541 ) where  is a normalization constant
and o, = (s/2,s,...,s), then conditions (3.7) reduce to the form
1

/[Ugn(t)]Q‘SH Q-2 dt =0, k=0,1,...,n,
-1

since P22 () PSTYEYD (1) = const - Usy(t) (cf. [21, p. 147, eq. (33)]).
In fact, these conditions hold for £ =0,1,...,2n — 1.

Therefore, in this case, when the quadrature formula (2.2) has the form (7f = —1)
n n+1 2s
Jroa-pe - Zszf SRS WL
v=1 =0 pn=2 j=0

ZC’* )(—1) + R.(f), (3.8)

we have just proved the following statement:

Theorem 3.3. In the Kronrod extension (3.8) of the Gauss — Turdn quadrature formula
(1.1) with the weight function ws(t) = (1 — t)1/2+s(1 + )72 the corresponding generalized
Stieltjes polynomial Ef;;l) (t) (0p = (5/2,8,...,8)) is given by

EY () = (t+ 1>P7§-1/2’1/2> (1),

i.e., the nodes 77, p=2,...,n+1, are the zeros of piEy2) (t) (the Chebyshev polynomial
of the fourth kind of degree n), and 71 = —1.
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It is obvious that for this case the interlacing property (2.4) holds, since it holds for the
polynomials P{Y*72(¢) and (t + 1) P22 (1),
When the quadrature formula (2.2) has the form (7, = 1)

/f wy(t) dt = Xn:ZBwf Ty+iz

1/110 pn=1 =0

Z w9 (1) + Ru(f), (3.9)

where wy(t) = (1 —)7Y2(1 + t)1/2+5 is a Chebyshev weight of the fourth kind as in the
previous case the following statement can be proved.

Theorem 3.4. In the Kronrod extension (3.9) of the Gauss — Turdn quadrature formula
(1.1) with the weight function wy(t) = (1 —t)~Y2(1 + )Y/2+5 the corresponding generalized

*

Stieltjes polynomial Eéil) (t) (0p = (5,...,8,5/2)) is given by

EY () = (t — 1) P22 (),

(1/2,— 1/2)(15) (

, the nodes 7;, = 1,...,n, are the zeros of Py Chebyshev polynomial of the

thzrd kind of degree n), cmd Top1 = L.

4. Error bounds of Gauss — Turan — Kronrod quadratures
with Gori — Micchelli weight functions for analytic functions

Let I' be a simple closed curve in the complex plane surrounding the interval [—1, 1] and D
be its interior. Suppose that f is an analytic function in D and continuous on D. Taking
any system of m distinct points {&;,...,&,} in D and m nonnegative integers ny, ..., ny,,
the error in the Hermite interpolating polynomial of f at the point ¢ (€ D) can be expressed
in the form (see, e.g., Goncarov [8, Chapter 5])

U 1 f(Z)Qm(t)
T'm ( ZZ&V 1/ _27T2F%(Z—t)9m(2) dZ, (41)

v=1 i=0

where /; ,(t) denote the fundamental functions of Hermite interpolation and
Qn(2) = H(z — &), (4.2)
v=1
Multiplying (4.1) by the weight function w(t) and integrating in ¢t over (—1,1), we get
a contour integral representation of the remainder term R,,(f) in the quadrature formula
with multiple nodes,

m ny—1

Ro(f) = I(f;w) — ;;Azyf (&) _QWZfK z,w) f(z) dz, (4.3)
where A;, = f_ll ;. (t)w(t) dt and the kernel K,,(z) = K,,(z, w) is given by
1
O,
K (z,w) = Qij{;;)), P (25 W) / . _(tt) w(t)dt, zeC\[-1,1]. (4.4)
5
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The integral representation (4.3) leads directly to the error estimate

()] < 2 (e 2] ) (el 2 ), (45)

2T zel

where £(I") is the length of the contour I
A general estimate can be obtained by Holder’s inequality. Thus,

<5(f |Km<z>|p|dz|)1/p( [ |f(Z)IquZI>1/q,

1
[Bin ()] < o 1 Emllpll fllos (4.6)

where 1 < p < +o0, 1/p+1/¢=1, and

1/p
(75|f<z>|p|dz|) 1<p< oo,
T

max|f(2)], p = +oo.

Rl = 52| § Knl2)f2)

ie.,

| fllp ==

The case p = +00 (¢ = 1) gives

(91 < 5 (e e ) ( F 17101 ) < S22 (e 16t (mael )

i.e., (4.5). On the other hand, for p =1 (¢ = +00) estimate (4.6) reduces to

Ral0)] < 5 ( F 1) (e 001 ) (@7)

which is evidently stronger than (4.5) because of the inequality
1] < 1) (mae 2] ).
ze
T

To obtain estimate (4.5) or (4.7), it is necessary to study the magnitude of | K, (2)| on I'
or the quantity

L) = o f Kon(2)] |d2], (48)

respectively.
Taking the contour I' as a confocal ellipse with foci at the points F1 and the sum of
semi-axes 0 > 1,

1 ) )
E, = {zE(C: z:i(gele—l—g_leﬂe), O<9<27r}, (4.9)
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and w as one of the four generalized Chebyshev weight functions (a)—(d), we studied in

detail for the Gauss — Turdan quadrature formulae (n, = 2s+1, v =1,2,...,n; s € Ny)

estimates (4.5) (see [15], [20]) and (4.7) (see [17] and references therein), respectively.
Since z = (£ +¢71)/2, € = pe?, and |dz| = 27Y/2\/ay — cos 20 df), where we put

(4.8) reduces to
2m
1 |pm (23 w)|(ag — cos 260)1/2
L, (E,) := de. 4.11
o 2m/§0/ 2,0 1

This integral can be evaluated numerically by using a quadrature formula. However, if w(t)
is one of the four weight functions (a) - (d), we obtain explicit expressions for L,,(E,) or for
their bounds (see [17]) in the case of Gauss — Turdn quadrature formulae.

In the following, for practical reasons, we will take €2, to be given in the form (4.2) or
to be the same expression multiplied by some number (# 0), since K,,(z,w) in both cases
has the same value (cf. (4.4)).

In the rest of this section, for the Gori — Micchelli weight functions (3.1) in the case
of the Gauss — Turdn — Kronrod quadratures of the type of (3.4) we succeeded to find
explicit expressions for L,,(E,) = La,4+1(E,) or for their bounds.

First, we have

z—1

h 2t 25+1 25+1—20(1 _ 42\s+1—¢
pons1(z;w) :/ {Un—l(t)l (1— t2)£—1/2 [T ()] [Un—1()] (1—1¢) g —

1 1
1 2\s+1/2 [Tn(t)Un—l(t)PsH _ 1 2\s+1/2 [UQn—l(t)PsH
-1 -1

By substituting ¢t = cos 6, we obtain (see [15, pp. 1863-1864])
' (-1 (25 +1 1
pan1(z;w) = n2t 24s+1 ¢2n ;<_1) y £2s—v)2n”

For this case, we have
Qn(2) = Qs (2) 1= (1= 2) [T () [ (2) 717 =

2—25—1(1 - Z2)s+1—Z[U2n_1(Z)]25+1 [Un—l(z)]_2é~

In the following, we will use the known facts

-2 =1 e €N = (- 12| = o — con20),

1
4

Aoy, — COS 216 1/2
T (2)] = —) :

n 2n0)"2, |Unoa(2)] =
(agn + cos2nd) /=, |U,—1(2)| < ay — cos 20

1
V2
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On the basis of the last facts, (4.11) reduces to

7(ag — cos 26)/?

Q2n n2€ 94s+1

do

> (2s+1 1
;(_1) ( v )62(5—1/)271

V=

Loy, 1 = /
* 27T\/_ (ap — cos20)s+1=¢ <a4n — cos 4n6’)5+1/2 <a2n — cos 2n6’)_e

93s5+2— l

ay — cos 20 as — cos 20

Putting in order the last expression, we obtain

2T
2n _ 20
1 \/|W nf) Plas, —cosmO) L

Lopii(E
n+ ( ) s+E+1/2 n2é 2n(s+1) a4n — oS 4m9)2s+1

where W,(0,0) := S _o(=1) (P 02 =5/2)0 was defined in [17, eq. (5.4)].
Let = o' (r > 0, 0 > 1). Recall that [W,(o",0)]> = Sr_o(=1)fAgcos 8 (cf. [17,

eq. (5.5)]), where
1 < (2s+1\°
AOZWE:( iy >g; (4.13)

v=0

s—{
2 2s+1\ (25s+1\ ,
Ag:WE ( , ><V+€)x, (=1,...,s. (4.14)

v=0

and

The integrand in (4.12) depends on 6 via cos 2nf and cos4nff (n € N, £ € {1,...,s},s € Ny).
It is a continuous function of the form ¢(2n#), where

g(0) = g(cos b, cos20,cos4b, ..., cos2s0).

Because of periodicity, it is easy to prove that fo (2n)d§ = 2 [ g(0)dh. Therefore,
Lon+1(E,) reduces to

! [ [1Wa(02, 26)[2(az, — cos 0)*
Loni1(By) = 5orir pees) / \/ o cos 20T do. (4.15)

Applying Cauchy’s inequality to (4.15), we obtain

V2 [ @0k NP o gg)”
Loni1(E,) < DT 2 o) (/ (G — cos BT d@) (/(agn — cosf) d@) . (4.16)
0 0

Therefore, in our case r = 2n, i.e., we take = ¢, since ay, = (v +1)/(2y/7).

Let (see [17, eq. (5.8)]) . <Q_TQ_1> ’fpk(giu gj)’ (4.17)

where P, is the Legendre polynomial of degree k.
We obtain that (cf. [10, eq.3.661.3])

T

o0 B Q2n _ Q—2n 2¢ Q + Q—2n B 1/4
(CLQn — COS 9) df = # ng ﬁ = WMQ@(.I’ ) (418)
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Further,

S

(—1)“ Ay cos (0 db

A / :

v = = ApJi(as,), 4.19
/ (@4, — cos 0)2s+1 G4y — COS 0)25+1 -~ eJe(an) (4.19)
0 0 —

where

costdd ] cos 0 df
gn — €08 0)25+L | (ay, + cos )2s+1

To(aam) = (~1)¢ / :

The integrals Jy(as,) (recall that z = ¢®) we calculate by

9251 (1) gs—(U=1/2 25 196 4 1\ (25 + ¢ 3
Jo(agn) = (=1) Z ( ) ( )(g; — 1) (4.20)
0

(x — 1)4sH+l v (+v

(see [17, Lemma 4.2], or the book [10, eq. 3.616.7]).
Using (4.20), (4.19) reduces to (see [17, p. 128])

228+17T.T(8+1)/2

(z — 1)4s+1 Qs(z), (4.21)

/”( W, (0%, 6)]2

A4y — COs )25t

d@ = ZA@J[((MR) =
£=0

where Q,(z) isogiven by (cf. [17, eq. (4.19)])
i (S () (N e )

Note that deg Qs(z) = 3s.
Using (4.18), (4.21), (4.16) reduces to

T
Lont1(E,) < 50—1 20 Mo(0*") ®s(), (4.22)

where ®,(z) = \/Qs(x)/(x — 1)%s+L.

Thus, we have just proved the following statement.

Theorem 4.1. Let x = ¢*", n > 2, and a;, Ay and Ay be defined by (4.10), (4.13) and
(4.14), respectively. Then, for the Gori — Micchelli weight functions (3.1), we have that

1 ] Zz_o(_l)kAk cos 2k6 (ag, — cos §)

= 2s+€—1/2 n2é Q2n(s+1) (a4n — cos 29)2s+1
0

Lonir(E,) do.  (4.23)

Moreover, an estimate of the form (4.22) holds.
Example 4.1. Consider the weight function

U? (t
W1 (t) = %() (1— 1312
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which belongs to class (3.1) with ¢ = 1 and the corresponding Gauss — Turdn — Kron-
rod quadrature formula (3.4). Figure4.1 presents the value of logy(Lant1(E,)), for s =
2, as a function of p (solid line), when n = 5 (left) and n = 10 (right). The value
of Ly,+1(FE,) was calculated by (4.23). We also present the corresponding graphs o —
log,(m/ Mag(02")®4(x) /(257 10n%)) (see (4.22)), for £ = 1,5 = 2, by dashed lines. As we can
see, the error bound (4.22) is very precise especially for larger values of n and p.

Remark 4.1. Some of the introduced Gauss — Turan — Kronrod quadrature formu-
las in Section 3, as well as L'-error bounds of the type of (4.7) for integrands analytic
on confocal ellipses (4.9), were considered a few years ago in [16] (see also [25]). Namely,
the Gauss — Turdn quadratures of Lobatto type (3.4) (with (3.5)) from [16] for k =m =0

\ . . . 2 . . . .
1.00 1.05 1.10 1.15 .20 1.25 1.00 1.05 1.10 1.15 .20 1.25

Fig. 4.1. Log;, of the values La,41(E,) (solid line) and their bounds given by (4.22) (dashed line)
for n =5 (left) and n = 10 (right), for ¢ € [1.01, 1.25]

reduce to our Gauss — Turdn — Kronrod quadratures (3.4) with £ =0 (n > 2). Also, these
quadrature formulas appear as a particular case (m = r = 2s+2) of the quadrature formulas
considered by Shi (see [25, Egs. (1.1) = (1.6)]). The Gauss — Turdn quadratures (3.4) (with
(3.5)) from [16] for k = m = s+ 1 (see also [17]) reduce to our Gauss — Turdn — Kronrod
quadratures (3.6). The Gauss — Turdn quadratures of the Radau type (3.4) (with (3.5))
from [16] for k =s+1,m =0 (k =0,m = s+ 1) reduce to the Gauss — Turan — Kronrod
quadratures (3.8) ((3.9)) in this paper. Finally, the quadrature formula (3.4) for ¢ = s
(n > 2) is a new formula in the class of Kronrod extensions of Gauss — Turdn quadrature
formulas introduced by Li [12] (see also [18]), for which explicit expressions of the generalized
Stieltjes polynomials are known.
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