
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, Vol.6(2006), No.3, pp.291–305
c© 2006 Institute of Mathematics of the National Academy of Sciences of Belarus

KRONROD EXTENSIONS OF GAUSSIAN QUADRATURES

WITH MULTIPLE NODES

G.V.MILOVANOVIĆ1, M.M. SPALEVIĆ2, AND LJ.GALJAK3

Abstract — In this paper, general real Kronrod extensions of Gaussian quadrature
formulas with multiple nodes are introduced. A proof of their existence and uniqueness
is given. In some cases, the explicit expressions of polynomials, whose zeros are the
nodes of the considered quadratures, are determined. Very effective error bounds of
the Gauss — Turán — Kronrod quadrature formulas, with Gori — Micchelli weight
functions, for functions analytic on confocal ellipses, are derived.
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1. Introduction

Let w be an integrable weight function on interval (a, b). It is well-known that the Gauss —
Turán quadrature formula with multiple nodes

b∫
a

f(t)w(t) dt =

n∑
ν=1

2s∑
i=0

Ai,νf
(i)(τν) + R̄n,s(f), n ∈ N, s ∈ N0, (1.1)

is exact for all algebraic polynomials of degree 2(s+1)n−1 at most. Its nodes τν are the zeros
of the corresponding (monic) s-orthogonal polynomial πn,s(t) of degree n that minimizes the
following integral

ϕ(a0, a1, . . . , an−1) =

b∫
a

πn(t)2s+2w(t) dt,

where πn(t) = tn + an−1t
n−1 + · · · + a1t + a0. In order to minimize ϕ we must have

b∫
a

w(t)πn(t)2s+1tk dt = 0, k = 0, 1, . . . , n − 1, (1.2)
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which are the corresponding orthogonality relations. For s = 0 we have a case of the standard
orthogonal polynomials. For more details on Gauss — Turán quadratures see the book [7]
and the survey paper [13].

Take now a sequence of nonnegative integers σ = (s1, s2, . . .). For any n ∈ N we denote
the corresponding finite sequence (s1, s2, . . . , sn) by σn and consider the generalization of the
Gauss — Turán quadrature formula (1.1) to rules having nodes with arbitrary multiplicities

b∫
a

f(t)w(t) dt =
n∑

ν=1

2sν∑
i=0

Ai,νf
(i)(τν) + R̄(f), (1.3)

where Ai,ν = A
(n,σ)
i,ν , τν = τ

(n,σ)
ν (i = 0, 1, . . . , 2sν ; ν = 1, . . . , n). Such formulas were derived

independently by Chakalov and Popoviciu. A deep theoretical progress in this subject was
made by Stancu (see [13] and references therein).

In this case, it is important to assume that the nodes τν (= τ
(n,σ)
ν ) are ordered, say

τ1 < τ2 < · · · < τn, τν ∈ [a, b], (1.4)

with odd multiplicities 2s1+1, 2s2+1, . . . , 2sn+1, respectively, in order to have uniqueness
of the Chakalov-Popoviciu quadrature formula (1.3) (cf. Karlin and Pinkus [11]). Then this
quadrature formula has the maximum degree of exactness dmax = 2

∑n
ν=1 sν + 2n − 1 if and

only if b∫
a

n∏
ν=1

(t − τν)
2sν+1tk w(t) dt = 0, k = 0, 1, . . . , n − 1. (1.5)

The last orthogonality conditions correspond to (1.2). The existence of such quadrature rules
was proved by Chakalov, Popoviciu, Morelli and Verna, and the existence and uniqueness
subject to (1.4) was proved by Ghizzetti and Ossicini (see [13] for references), and also by
Milovanović and Spalević [14].

Conditions (1.4) define the sequence of polynomials {πn,σ}n∈N0 ,

πn,σ(t) =

n∏
ν=1

(t − τ (n,σ)
ν ), τ

(n,σ)
1 < τ

(n,σ)
2 < · · · < τ (n,σ)

n , τ (n,σ)
ν ∈ [a, b],

such that b∫
a

πk,σ(t)
n∏

ν=1

(t − τ (n,σ)
ν )2sν+1 w(t) dt = 0, k = 0, 1, . . . , n − 1.

These polynomials are called σ-orthogonal polynomials and correspond to the sequence σ =
(s1, s2, . . .). We will often write simple τν instead of τ

(n,σ)
ν . If we have σ = (s, s, . . .), the

above polynomials reduce to the s-orthogonal polynomials.
Numerically stable methods for constructing nodes τν and coefficients Ai,ν in Gauss —

Turán and Chakalov — Popoviciu quadrature formulas with multiple nodes can be found in
[5, 14, 19].

The generalized Chebyshev weight functions w(t) = wi(t):
(a) w1(t) = (1 − t2)−1/2,
(b) w2(t) = (1 − t2)1/2+s,
(c) w3(t) = (1 − t)−1/2(1 + t)1/2+s,
(d) w4(t) = (1 − t)1/2+s(1 + t)1/2

will be of interest in the following.
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In 1930, S. Bernstein [1] showed that the monic Chebyshev polynomial (orthogonal with
respect to w1(t)) Tn(t)/2n−1 minimizes all integrals of the form

1∫
−1

|πn(t)|k+1

√
1 − t2

dt, k � 0.

This means that the Chebyshev polynomials Tn are s-orthogonal on (−1, 1) for each s � 0.
Ossicini and Rosati [23] found three other weight functions wi(t) (i = 2, 3, 4) for which the
s-orthogonal polynomials can be identified as Chebyshev polynomials of the second, third,
and fourth kind Un, Vn, and Wn, which are defined by

Un(t) =
sin(n + 1)θ

sin θ
, Vn(t) =

cos(n + 1/2)θ

cos(θ/2)
, Wn(t) =

sin(n + 1/2)θ

sin(θ/2)
,

respectively (cf. Gautschi [4]; Gautschi and Notaris [6]), where t = cos θ. However, these
weight functions depend on s (see (b), (c), (d)). It is easy to see that Wn(−t) = (−1)nVn(t), so
that in the investigation it is sufficient to study only the first three weights wi(t), i = 1, 2, 3.

For each n ∈ N, Gori and Micchelli [9] introduced an interesting class of weight functions
defined on [−1, 1] for which explicit Gauss — Turán quadrature formulas of all orders can
be found. In other words, these classes of weight functions have the peculiarity that the
corresponding s-orthogonal polynomials, of the same degree, are independent of s. This
class includes certain generalized Jacobi weight functions wn,µ(t) = |Un−1(t)/n|2µ+1(1− t2)µ,
where Un−1(cos θ) = sin nθ/ sin θ (Chebyshev polynomial of the second kind) and µ > −1.
In this case, the Chebyshev polynomials Tn appear as s-orthogonal polynomials.

This paper is organized as follows. In Section 2, general real Kronrod extensions of the
quadratures with multiple nodes (1.3) (particularly (1.1)) are introduced. A proof of their
existence and uniqueness is given. In some cases, the explicit expressions of the polynomials,
whose zeros are the nodes of the considered quadratures, are obtained in Section 3. Finally,
the very effective error bounds of the Gauss — Turán — Kronrod quadrature formulas,
with Gori — Micchelli weight functions, for the functions analytic on confocal ellipses, are
considered in Section 4.

2. General real Kronrod extensions of Chakalov — Popoviciu

quadratures

Let σ∗
m = (s∗1, s

∗
2, . . . , s

∗
m), s∗µ ∈ N0, µ = 1, 2, . . . , m. Following the well-known idea of

Kronrod [3] (see also [21, 22]), we extend formula (1.3) to the interpolatory quadrature
formula

b∫
a

f(t)w(t) dt =
n∑

ν=1

2sν∑
i=0

Bi,νf
(i)(τν) +

m∑
µ=1

2s∗µ∑
j=0

C∗
j,µf

(j)(τ ∗
µ) + Rn,m(f), (2.1)

where τν denotes the same nodes as in (1.3), and the new nodes τ ∗
µ and new weights Bi,ν , C

∗
j,µ

are chosen to maximize the degree of exactness of (2.1) which is greater than or equal to

n∑
ν=1

(2sν + 1) +

m∑
µ=1

(2s∗µ + 1) + m − 1 = 2

( n∑
ν=1

sν +

m∑
µ=1

s∗µ

)
+ n + 2m − 1.
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We call the quadrature formula (2.1) Chakalov — Popoviciu — Kronrod quadrature formula.
A particular case of this formula is the Gauss — Turán — Kronrod quadrature formula, if
s1 = s2 = · · · = sn = s.

The well-known Gauss — Kronrod quadrature formula, if s1 = s2 = · · · = sn = 0, s∗1 =
s∗2 = · · · = s∗m = 0, and m = n + 1, is a particular case of both above-mentioned quadrature
formulas. In the theory of Gauss — Kronrod quadrature formulas, the Sieltjes polynomials
En+1(x), whose zeros are the nodes τ ∗

µ, namely En+1(x) ≡ En+1(x, w) :=
∏n+1

µ=1(t− τ ∗
µ), play

an important role. Also, of foremost interest are weight functions for which the Gauss —
Kronrod quadrature formula has the property that:

(i) All n + 1 nodes τ ∗
µ are in (a, b) and are simple (i.e., that all zeros of the Stieltjes

polynomial En+1(x) are in (a, b) and are simple).
Also, desirable are weight functions which have in addition to (i) the following properties:
(ii) The interlacing property. Namely, the nodes τ ∗

µ and τν separate each other (i.e.,

the n + 1 zeros of En+1(x) separate the n zeros of the orthogonal polynomial P̃n(x) :=∏n
ν=1(t − τν)); and
(iii) all quadrature weights are positive.
On the basis of the above facts, it seems it most natural to consider the Chakalov —

Popoviciu — Kronrod quadratures (2.1) in which m = n + 1, i.e.,

b∫
a

f(t)w(t) dt =

n∑
ν=1

2sν∑
i=0

Bi,νf
(i)(τν) +

n+1∑
µ=1

2s∗µ∑
j=0

C∗
j,µf

(j)(τ ∗
µ) + Rn(f). (2.2)

We know that in the general case of quadratures with multiple nodes not all quadrature
weights have to be positive. Therefore, for Kronrod extensions of Gaussian quadrature
formulas with multiple nodes we cannot consider the property (iii) as desirable.

On the other hand, it is desirable that the nodes τ ∗
µ , µ = 1, . . . , n + 1 be all real and

ordered, say
τ ∗
1 < τ ∗

2 < · · · < τ ∗
n+1, τ ∗

µ ∈ R, (2.3)

as well as satisfy the interlacing property, i.e.,

τ ∗
1 < τ1 < τ ∗

2 < τ2 < · · · < τn < τ ∗
n+1. (2.4)

In the following, we are interested in the Chakalov — Popoviciu — Kronrod quadratures
(2.2) in which the nodes τ ∗

µ , µ = 1, . . . , n + 1 satisfy property (2.3).

Proposition 2.1. Let (1.4), (2.3) hold. Then the interpoatory quadrature formula (2.2)
with multiple nodes has the degree of exactness 2(

∑n
ν=1 sν +

∑n+1
µ=1 s∗µ) + 3n + 1 if and only

if the orthogonality conditions

b∫
a

n∏
ν=1

(t − τν)
2sν+1

n+1∏
µ=1

(t − τ ∗
µ)2s∗µ+1tk w(t) dt = 0, k = 0, 1, . . . , n, (2.5)

hold.

Proof. Let πn(t) ≡ πn,σ(t) =
∏n

ν=1(t − τν) be the σ-orthogonal polynomial based on the

nodes τν , and E
(σ∗)
n+1(t) =

∏n+1
µ=1(t− τ ∗

µ) be the corresponding generalized Stieltjes polynomial
based on the nodes τ ∗

µ . Conditions (2.5) can be reinterpreted in the form

b∫
a

E
(σ∗)
n+1(t) πn,σ(t) tk w̃(t) dt = 0, k = 0, 1, . . . , n, (2.6)
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where w̃(t) = w(t)
∏n

ν=1(t−τν)
2sν

∏n+1
µ=1(t−τ ∗

µ)2s∗µ is the new implicitly given weight function
(see Engels [2, pp. 214–226]). Therefore, because of (2.6), the generalized (monic) Stieltjes

polynomial E
(σ∗)
n+1(t) is uniquely determined (cf. [21, p. 145]).

Suppose now that the quadrature formula (2.2) has the degree of exactness 2(
∑n

ν=1 sν +∑n+1
µ=1 s∗µ) + 3n + 1, and let

f(t) =

n∏
ν=1

(t − τν)
2sν+1

n+1∏
µ=1

(t − τ ∗
µ)2s∗µ+1 tk, k ∈ {0, 1, . . . , n}.

Then, we have that

deg(f) �
n∑

ν=1

(2sν + 1) +

n+1∑
µ=1

(2s∗µ + 1) + n = 2

( n∑
ν=1

sν +

n+1∑
µ=1

s∗µ

)
+ 3n + 1.

Let us determine, for instance, f (i)(τ1), i = 0, 1, . . . , 2s1. Using the following representa-
tion f(t) = (t − τ1)

2s1+1 uk(t), where

uk(t) =

n∏
ν=2

(t − τν)
2sν+1

n+1∏
µ=1

(t − τ ∗
µ)2s∗µ+1 tk, k ∈ {0, 1, . . . , n},

and the Leibnitz formula, we have

f (i)(t) =
i∑

�=0

(
i

�

)
u

(i−�)
k (t)((t − τ1)

2s1+1)(�), i = 0, 1, . . . , 2s1.

Therefore, f (i)(τ1) = 0, i = 0, 1, . . . , 2s1.
Likewise, we conclude that

f (i)(τν) = 0; i = 0, 1, . . . , 2sν, ν = 2, . . . , n,

f (i)(τ ∗
µ) = 0; i = 0, 1, . . . , 2s∗µ, µ = 1, . . . , n + 1.

Using these facts, for the given function f(t) we have that

n∑
ν=1

2sν∑
i=0

Bi,νf
(i)(τν) +

n+1∑
µ=1

2s∗µ∑
j=0

C∗
j,µf

(j)(τ ∗
µ) = 0.

Because of the latter and since Rn(f) = 0, from (2.2) we conclude that (2.5) holds.
Now, let the orthogonality conditions (2.5) hold. Consider an arbitrary polynomial g(t)

of degree � 2(
∑n

ν=1 sν +
∑n+1

µ=1 s∗µ) + 3n + 1, which can be represented in the form

g(t) =
n∏

ν=1

(t − τν)
2sν+1

n+1∏
µ=1

(t − τ ∗
µ)2s∗µ+1 un(t) + vq(t),

where un(t), vq(t) are polynomials of degrees n, q, respectively, and q = 2(
∑n

ν=1 sν+
∑n+1

µ=1 s∗µ+
n). As an interpolatory quadrature formula (2.2) is exact for each polynomial of degree
� 2(

∑n
ν=1 sν +

∑n+1
µ=1 s∗µ + n), i.e., Rn(vq) = 0.
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Therefore, because of the last facts and (2.5),

b∫
a

g(t) w(t) dt =

b∫
a

n∏
ν=1

(t − τν)
2sν+1

n∏
µ=1

(t − τ ∗
µ)2s∗µ+1 un(t) w(t) dt +

b∫
a

vq(t)w(t) dt =

b∫
a

vq(t)w(t) dt =

n∑
ν=1

2sν∑
i=0

Bi,νv
(i)
q (τν) +

n+1∑
µ=1

2s∗µ∑
j=0

C∗
j,µv

(j)
q (τ ∗

µ) + Rn(vq) =

n∑
ν=1

2sν∑
i=0

Bi,νv
(i)
q (τν) +

n+1∑
µ=1

2s∗µ∑
j=0

C∗
j,µv

(j)
q (τ ∗

µ).

Because of
g(i)(τν) = v(i)

q (τν); ν = 1, . . . , n, i = 0, . . . , 2sν ,

g(j)(τ ∗
µ) = v(j)

q (τ ∗
µ); µ = 1, . . . , n + 1, j = 0, . . . , 2s∗µ,

the previous formula reduces to

b∫
a

g(t) w(t) dt =

n∑
ν=1

2sν∑
i=0

Bi,νg
(i)(τν) +

n+1∑
µ=1

2s∗µ∑
j=0

C∗
j,µg

(j)(τ ∗
µ),

which means that the quadrature formula (2.2) has the degree of exactness 2(
∑n

ν=1 sν+∑n+1
µ=1 s∗µ) + 3n + 1. �
Remark 2.1. The above results can also be obtained for a more general case of the

quadrature formula (2.2). Namely, for each node τ ∗
µ /∈ (a, b) instead of the multiplicity

2s∗µ + 1 the multiplicity n∗
µ + 1 (n∗

µ ∈ N0) can be considered, since the factor (t − τ ∗
µ)n∗

µ+1

holds the same sign on (−1, 1). Because of that, the function ω̃(t) remains to be a weight
function.

Remark 2.2. For the numerically stable method of calculating the weight coefficients
in (2.2) see [19].

3. Explicit expressions of the generalized Stieltjes polynomials

We now study in detail some cases of the quadrature formula (2.2) for a subclass of Gori —
Micchelli weight functions, as well as for the generalized Chebyshev weights.

First, consider the subclass of Gori — Micchelli weight functions

ωn,�(t) =

[
Un−1(t)

n

]2�

(1 − t2)�−1/2, � ∈ {0, 1, . . . , s}. (3.1)

In the particular case that � = 0, (3.1) reduces to the Chebyshev weight function of the
first kind ωn,0(t) = (1 − t2)−1/2.

Recall that for the weight functions (3.1) the Chebyshev polynomials of the first kind
Tn(t) appear to be s-orthogonal. In this case (σn = (s, s, . . . , s)), the orthogonality conditions
(2.5) have the form

1∫
−1

[Tn(t)]2s+1

n+1∏
µ=1

(t − τ ∗
µ)2s∗µ+1 tk U2�

n−1(t)(1 − t2)�−1/2 dt = 0, k = 0, 1, . . . , n. (3.2)
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If α
∏n+1

µ=1(t−τ ∗
µ)2s∗µ+1 = [Un−1(t)]

2s+1−2�(t2−1)s+1−�, where α is a normalization constant,
then conditions (3.2) take the form

1∫
−1

[Un−1(t)Tn(t)]2s+1 tk (1 − t2)1/2+s dt = 0, k = 0, 1, . . . , n,

i.e., subject to 2Tn(t)Un−1(t) = U2n−1(t) (cf. [21, p. 143, eq. (21)]),

1∫
−1

[U2n−1(t)]
2s+1 tk (1 − t2)1/2+s dt = 0, k = 0, 1, . . . , n.

In fact, the last conditions hold for k = 0, 1, . . . , 2n − 2 (see [23]), which means that it
has to be 2n − 2 � n, i.e., n � 2.

Therefore, in this case (n � 2, σ∗
n+1 = ((s − �)/2, s − �, . . . , s − �, (s − �)/2)), when the

quadrature formula (2.2) has the form (τ ∗
1 = −1, τ ∗

n+1 = 1)

1∫
−1

f(t) ωn,�(t) dt =

n∑
ν=1

2s∑
i=0

Bi,νf
(i)(τν) +

n∑
µ=2

2(s−�)∑
j=0

C∗
j,µf

(j)(τ ∗
µ)+

s−�∑
j=0

(C∗
j,1f

(j)(−1) + C∗
j,n+1f

(j)(1)) + Rn(f), (3.4)

we have just proved the following statement.

Theorem 3.1. In the Kronrod extension (3.4) of the Gauss — Turán quadrature formula
(1.1) with the weight function (3.1), and for n � 2, the corresponding generalized Stieltjes

polynomial E
(σ∗)
n+1(t) (σ∗

n+1 = ((s − �)/2, s − �, . . . , s − �, (s − �)/2)) is given by

E
(σ∗)
n+1(t) ≡ (t2 − 1) Un−1(t),

i.e., the nodes τ ∗
µ, µ = 2, . . . , n are the zeros of Un−1(t) (Chebyshev polynomial of the second

kind of degree n − 1), and τ ∗
1 = −1, τ ∗

n+1 = 1.

The zeros of Tn(t) and E
(σ∗)
n+1(t) interlace (i.e., satisfy property (2.4)), since

2(t2 − 1)Un−1(t) = 2(t2 − 1)T ′
n(t)/n

(cf. [24, p. 180, Lemma 1]).
Consider now the generalized Chebyshev weight functions of the second, third and fourth

kind.
Let σn = (s, . . . , s) and w(t) ≡ w2(t) = (1 − t2)1/2+s. In this case, the orthogonality

conditions (2.5) reduce to

1∫
−1

[Un(t)]2s+1

n+1∏
µ=1

(t − τ ∗
µ)2s∗µ+1 tk (1 − t2)1/2+s dt = 0, k = 0, 1, . . . , n. (3.5)

If β
∏n+1

µ=1(t − τ ∗
µ)2s∗µ+1 = T 2s+1

n+1 (t), where β is a normalization constant and σ∗
n+1 =

(s, s, . . . , s), then conditions (3.5) take the form, since Tn+1(t)Un(t) = U2n+1(t)/2,

1∫
−1

[U2n+1(t)]
2s+1 tk (1 − t2)1/2+s dt = 0, k = 0, 1, . . . , n.
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In fact, the last conditions hold for k = 0, 1, . . . , 2n.
Therefore, in this case, when the quadrature formula (2.2) has the form

1∫
−1

f(t) (1 − t2)1/2+s dt =

n∑
ν=1

2s∑
i=0

Bi,νf
(i)(τν) +

n+1∑
µ=1

2s∑
j=0

C∗
j,µf

(j)(τ ∗
µ) + Rn(f), (3.6)

we have just proved the following statement.

Theorem 3.2. In the Kronrod extension (3.6) of the Gauss — Turán quadrature formula
(1.1) with the weight function w2(t) = (1 − t2)1/2+s the corresponding generalized Stieltjes

polynomial E
(σ∗)
n+1(t) (σ∗

n+1 = (s, s, . . . , s)) is given by

E
(σ∗)
n+1(t) ≡ Tn+1(t),

i.e., the nodes τ ∗
µ, µ = 1, . . . , n + 1, are the zeros of Tn+1(t) (Chebyshev polynomial of the

first kind of degree n + 1).

It is obvious that in this case the interlacing property (2.4) holds, since it holds for the
polynomials Un(t), Tn+1(t).

Further, let σn = (s, . . . , s) and w(t) ≡ w3(t) = (1− t)1/2+s(1+ t)−1/2. The orthogonality
conditions (2.5) reduce in this case to

1∫
−1

[P (1/2,−1/2)
n (t)]2s+1

n+1∏
µ=1

(t− τ ∗
µ)2s∗µ+1 tk (1− t)1/2+s(1 + t)−1/2 dt = 0, k = 0, 1, . . . , n, (3.7)

where P
(1/2,−1/2)
n (t) is the Jacobi polynomial orthogonal on (−1, 1) with respect to the weight

function (1 − t)1/2(1 + t)−1/2 (see [23]).

If γ
∏n+1

µ=1(t−τ ∗
µ)2s∗µ+1 = (1+ t)s+1[P

(−1/2,1/2)
n (t)]2s+1, where γ is a normalization constant

and σ∗
n+1 = (s/2, s, . . . , s), then conditions (3.7) reduce to the form

1∫
−1

[U2n(t)]2s+1 tk (1 − t2)1/2+s dt = 0, k = 0, 1, . . . , n,

since P
(1/2,−1/2)
n (t)P

(−1/2,1/2)
n (t) = const · U2n(t) (cf. [21, p. 147, eq. (33)]).

In fact, these conditions hold for k = 0, 1, . . . , 2n − 1.
Therefore, in this case, when the quadrature formula (2.2) has the form (τ ∗

1 = −1)

1∫
−1

f(t) (1 − t)1/2+s(1 + t)−1/2 dt =
n∑

ν=1

2s∑
i=0

Bi,νf
(i)(τν) +

n+1∑
µ=2

2s∑
j=0

C∗
j,µf

(j)(τ ∗
µ)+

s∑
j=0

C∗
j,1f

(j)(−1) + Rn(f), (3.8)

we have just proved the following statement:

Theorem 3.3. In the Kronrod extension (3.8) of the Gauss — Turán quadrature formula
(1.1) with the weight function w3(t) = (1 − t)1/2+s(1 + t)−1/2 the corresponding generalized

Stieltjes polynomial E
(σ∗)
n+1(t) (σ∗

n+1 = (s/2, s, . . . , s)) is given by

E
(σ∗)
n+1(t) ≡ (t + 1)P (−1/2,1/2)

n (t),

i.e., the nodes τ ∗
µ, µ = 2, . . . , n + 1, are the zeros of P

(−1/2,1/2)
n (t) (the Chebyshev polynomial

of the fourth kind of degree n), and τ ∗
1 = −1.
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It is obvious that for this case the interlacing property (2.4) holds, since it holds for the

polynomials P
(1/2,−1/2)
n (t) and (t + 1)P

(−1/2,1/2)
n (t).

When the quadrature formula (2.2) has the form (τ ∗
n+1 = 1)

1∫
−1

f(t) ω4(t) dt =
n∑

ν=1

2s∑
i=0

Bi,νf
(i)(τν) +

n∑
µ=1

2s∑
j=0

C∗
j,µf

(j)(τ ∗
µ)+

s∑
j=0

C∗
j,n+1f

(j)(1) + Rn(f), (3.9)

where ω4(t) = (1 − t)−1/2(1 + t)1/2+s is a Chebyshev weight of the fourth kind as in the
previous case the following statement can be proved.

Theorem 3.4. In the Kronrod extension (3.9) of the Gauss — Turán quadrature formula
(1.1) with the weight function w4(t) = (1 − t)−1/2(1 + t)1/2+s the corresponding generalized

Stieltjes polynomial E
(σ∗)
n+1(t) (σ∗

n+1 = (s, . . . , s, s/2)) is given by

E
(σ∗)
n+1(t) ≡ (t − 1)P (1/2,−1/2)

n (t),

i.e., the nodes τ ∗
µ, µ = 1, . . . , n, are the zeros of P

(1/2,−1/2)
n (t) (Chebyshev polynomial of the

third kind of degree n), and τ ∗
n+1 = 1.

4. Error bounds of Gauss — Turán — Kronrod quadratures
with Gori — Micchelli weight functions for analytic functions

Let Γ be a simple closed curve in the complex plane surrounding the interval [−1, 1] and D

be its interior. Suppose that f is an analytic function in D and continuous on D̄. Taking
any system of m distinct points {ξ1, . . . , ξm} in D and m nonnegative integers n1, . . . , nm,
the error in the Hermite interpolating polynomial of f at the point t (∈ D) can be expressed
in the form (see, e. g., Gončarov [8, Chapter 5])

rm(f ; t) = f(t) −
m∑

ν=1

nν−1∑
i=0

�i,ν(t)f
(i)(ξν) =

1

2π i

∮
Γ

f(z)Ωm(t)

(z − t)Ωm(z)
dz, (4.1)

where �i,ν(t) denote the fundamental functions of Hermite interpolation and

Ωm(z) =
m∏

ν=1

(z − ξν)
nν . (4.2)

Multiplying (4.1) by the weight function w(t) and integrating in t over (−1, 1), we get
a contour integral representation of the remainder term Rm(f) in the quadrature formula
with multiple nodes,

Rm(f) = I(f ; w)−
m∑

ν=1

nν−1∑
i=0

Ai,νf
(i)(ξν) =

1

2π i

∮
Γ

Km(z, w)f(z) dz, (4.3)

where Ai,ν =
∫ 1

−1
�i,ν(t)w(t) dt and the kernel Km(z) = Km(z, w) is given by

Km(z, w) =
ρm(z; w)

Ωm(z)
, ρm(z; w) =

1∫
−1

Ωm(t)

z − t
w(t) dt, z ∈ C \ [−1, 1]. (4.4)
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The integral representation (4.3) leads directly to the error estimate

|Rm(f)| � �̄(Γ)

2π

(
max
z∈Γ

|Km(z)|
)(

max
z∈Γ

|f(z)|
)

, (4.5)

where �̄(Γ) is the length of the contour Γ.
A general estimate can be obtained by Hölder’s inequality. Thus,

|Rm(f)| =
1

2π

∣∣∣∣ ∮
Γ

Km(z)f(z) dz

∣∣∣∣ � 1

2π

( ∮
Γ

|Km(z)|p|dz|
)1/p( ∮

Γ

|f(z)|q|dz|
)1/q

,

i.e.,

|Rm(f)| � 1

2π
‖Km‖p‖ f‖q, (4.6)

where 1 � p � +∞, 1/p + 1/q = 1, and

‖ f‖p :=


(∮

Γ

|f(z)|p|dz|
)1/p

, 1 � p < +∞,

max
z∈Γ

|f(z)|, p = +∞.

The case p = +∞ (q = 1) gives

|Rm(f)| � 1

2π

(
max
z∈Γ

|Km(z)|
)( ∮

Γ

|f(z)| |dz|
)

� �̄(Γ)

2π

(
max
z∈Γ

|Km(z)|
)(

max
z∈Γ

|f(z)|
)

,

i.e., (4.5). On the other hand, for p = 1 (q = +∞) estimate (4.6) reduces to

|Rm(f)| � 1

2π

( ∮
Γ

|Km(z)| |dz|
)(

max
z∈Γ

|f(z)|
)

, (4.7)

which is evidently stronger than (4.5) because of the inequality∮
Γ

|Km(z)| |dz| � �̄(Γ)

(
max
z∈Γ

|Km(z)|
)

.

To obtain estimate (4.5) or (4.7), it is necessary to study the magnitude of |Km(z)| on Γ
or the quantity

Lm(Γ) :=
1

2π

∮
Γ

|Km(z)| |dz|, (4.8)

respectively.
Taking the contour Γ as a confocal ellipse with foci at the points ∓1 and the sum of

semi-axes � > 1,

E� =

{
z ∈ C : z =

1

2
(�eiθ + �−1e−iθ), 0 � θ � 2π

}
, (4.9)
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and w as one of the four generalized Chebyshev weight functions (a) – (d), we studied in
detail for the Gauss — Turán quadrature formulae (nν = 2s + 1, ν = 1, 2, . . . , n; s ∈ N0)
estimates (4.5) (see [15], [20]) and (4.7) (see [17] and references therein), respectively.

Since z = (ξ + ξ−1)/2, ξ = �eiθ, and |dz| = 2−1/2
√

a2 − cos 2θ dθ, where we put

aj = aj(�) = (�j + �−j)/2, j ∈ N, � > 1, (4.10)

(4.8) reduces to

Lm(E�) :=
1

2π
√

2

2π∫
0

|ρm(z; w)|(a2 − cos 2θ)1/2

|Ωm(z)| dθ. (4.11)

This integral can be evaluated numerically by using a quadrature formula. However, if w(t)
is one of the four weight functions (a) – (d), we obtain explicit expressions for Lm(E�) or for
their bounds (see [17]) in the case of Gauss — Turán quadrature formulae.

In the following, for practical reasons, we will take Ωm to be given in the form (4.2) or
to be the same expression multiplied by some number (�= 0), since Km(z, w) in both cases
has the same value (cf. (4.4)).

In the rest of this section, for the Gori — Micchelli weight functions (3.1) in the case
of the Gauss — Turán — Kronrod quadratures of the type of (3.4) we succeeded to find
explicit expressions for Lm(E�) ≡ L2n+1(E�) or for their bounds.

First, we have

ρ2n+1(z; w) =

1∫
−1

[
Un−1(t)

n

]2�

(1 − t2)�−1/2 [Tn(t)]2s+1[Un−1(t)]
2s+1−2�(1 − t2)s+1−�

z − t
dt =

1

n2�

1∫
−1

(1 − t2)s+1/2 [Tn(t)Un−1(t)]
2s+1

z − t
dt =

1

n2� 22s+1

1∫
−1

(1 − t2)s+1/2 [U2n−1(t)]
2s+1

z − t
dt.

By substituting t = cos θ, we obtain (see [15, pp. 1863–1864])

ρ2n+1(z; w) =
(−1)sπ

n2� 24s+1 ξ2n

s∑
ν=0

(−1)ν

(
2s + 1

ν

)
1

ξ2(s−ν) 2n
.

For this case, we have

Ωm(z) ≡ Ω2n+1(z) := (1 − z2)s+1−�[Tn(z)]2s+1 [Un−1(z)]2s+1−2� =

2−2s−1(1 − z2)s+1−�[U2n−1(z)]2s+1 [Un−1(z)]−2�.

In the following, we will use the known facts

1 − z2 = 1 − 1

4
(ξ + ξ−1)2 = −1

4
(ξ − ξ−1)2, |1 − z2| =

1

2
(a2 − cos 2θ)1/2,

|Tn(z)| =
1√
2
(a2n + cos 2nθ)1/2, |Un−1(z)| =

(
a2n − cos 2nθ

a2 − cos 2θ

)1/2

.
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On the basis of the last facts, (4.11) reduces to

L2n+1(E�) :=
1

2π
√

2

2π∫
0

π(a2 − cos 2θ)1/2

�2n n2� 24s+1

∣∣∣∣ s∑
ν=0

(−1)ν

(
2s + 1

ν

)
1

ξ2(s−ν) 2n

∣∣∣∣ dθ

(a2 − cos 2θ)s+1−�

23s+2−�

(
a4n − cos 4nθ

a2 − cos 2θ

)s+1/2(
a2n − cos 2nθ

a2 − cos 2θ

)−�
.

Putting in order the last expression, we obtain

L2n+1(E�) =
1

2s+�+1/2 n2� �2n(s+1)

2π∫
0

√
|W̃s(�2n, 4nθ)|2(a2n − cos 2nθ)2�

(a4n − cos 4nθ)2s+1
dθ, (4.12)

where W̃s(�, θ) :=
∑s

ν=0(−1)ν
(
2s+1

ν

)
�2ν−s ei(ν−s/2)θ was defined in [17, eq. (5.4)].

Let x = �4r (r > 0, � > 1). Recall that |W̃s(�
r, θ)|2 =

∑s
�=0(−1)�A� cos �θ (cf. [17,

eq. (5.5)]), where

A0 =
1

xs/2

s∑
ν=0

(
2s + 1

ν

)2

xν (4.13)

and

A� =
2

x(s−�)/2

s−�∑
ν=0

(
2s + 1

ν

)(
2s + 1

ν + �

)
xν , � = 1, . . . , s. (4.14)

The integrand in (4.12) depends on θ via cos 2nθ and cos 4n�θ (n ∈ N, � ∈ {1, . . . , s}, s ∈ N0).
It is a continuous function of the form g(2nθ), where

g(θ) ≡ g(cos θ, cos 2θ, cos 4θ, . . . , cos 2sθ).

Because of periodicity, it is easy to prove that
∫ 2π

0
g(2nθ) dθ = 2

∫ π

0
g(θ) dθ. Therefore,

L2n+1(E�) reduces to

L2n+1(E�) =
1

2s+�−1/2 n2� �2n(s+1)

π∫
0

√
|W̃s(�2n, 2θ)|2(a2n − cos θ)2�

(a4n − cos 2θ)2s+1
dθ. (4.15)

Applying Cauchy’s inequality to (4.15), we obtain

L2n+1(E�) �
√

2

2s+� n2� �2n(s+1)

( π∫
0

|W̃s(�
2n, θ)|2

(a4n − cos θ)2s+1
dθ

)1/2( π∫
0

(a2n − cos θ)2� dθ

)1/2

. (4.16)

Therefore, in our case r = 2n, i.e., we take x = �8n, since a4n = (x + 1)/(2
√

x).
Let (see [17, eq. (5.8)])

Mk(�) :=

(
� − �−1

2

)k

Pk

(
� + �−1

� − �−1

)
, (4.17)

where Pk is the Legendre polynomial of degree k.
We obtain that (cf. [10, eq. 3.661.3])

π∫
0

(a2n − cos θ)2� dθ = π

(
�2n − �−2n

2

)2�

P2�

(
�2n + �−2n

�2n − �−2n

)
= πM2�(x

1/4). (4.18)
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Further,

π∫
0

|W̃s(�
2n, θ)|2

(a4n − cos θ)2s+1
dθ =

π∫
0

s∑
�=0

(−1)�A� cos �θ dθ

(a4n − cos θ)2s+1
=

s∑
�=0

A�J�(a4n), (4.19)

where

J�(a4n) = (−1)�

π∫
0

cos �θ dθ

(a4n − cos θ)2s+1
=

π∫
0

cos �θ dθ

(a4n + cos θ)2s+1
.

The integrals J�(a4n) (recall that x = �8n) we calculate by

J�(a4n) =
22s+1π(−1)�xs−(�−1)/2

(x − 1)4s+1

2s∑
ν=0

(
2s + ν

ν

)(
2s + �

� + ν

)
(x − 1)2s−ν (4.20)

(see [17, Lemma 4.2], or the book [10, eq. 3.616.7]).
Using (4.20), (4.19) reduces to (see [17, p. 128])

π∫
0

|W̃s(�
2n, θ)|2

(a4n − cos θ)2s+1
dθ =

s∑
�=0

A�J�(a4n) =
22s+1πx(s+1)/2

(x − 1)4s+1
Qs(x), (4.21)

where Qs(x) is given by (cf. [17, eq. (4.19)])

Qs(x) := 2

s∑
�=0

′ (−1)�

( s−�∑
ν=0

(
2s + 1

ν

)(
2s + 1

ν + �

)
xν

)( 2s∑
ν=0

(
2s + ν

ν

)(
2s + �

� + ν

)
(x − 1)2s−ν

)
.

Note that deg Qs(x) = 3s.
Using (4.18), (4.21), (4.16) reduces to

L2n+1(E�) � π

2�−1 n2�

√
M2�(�2n)Φs(x), (4.22)

where Φs(x) =
√

Qs(x)/(x − 1)4s+1.
Thus, we have just proved the following statement.

Theorem 4.1. Let x = �8n, n � 2, and aj , A0 and Ak be defined by (4.10), (4.13) and
(4.14), respectively. Then, for the Gori — Micchelli weight functions (3.1), we have that

L2n+1(E�) =
1

2s+�−1/2 n2� �2n(s+1)

π∫
0

√√√√∑s

k=0
(−1)kAk cos 2kθ (a2n − cos θ)2�

(a4n − cos 2θ)2s+1
dθ. (4.23)

Moreover, an estimate of the form (4.22) holds.

Example 4.1. Consider the weight function

ωn,1(t) =
U2

n−1(t)

n2
(1 − t2)1/2
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which belongs to class (3.1) with � = 1 and the corresponding Gauss — Turán — Kron-
rod quadrature formula (3.4). Figure 4.1 presents the value of log10(L2n+1(E�)), for s =
2, as a function of � (solid line), when n = 5 (left) and n = 10 (right). The value
of L2n+1(E�) was calculated by (4.23). We also present the corresponding graphs � 	→
log10(π

√
M2�(�2n)Φs(x)/(2�−1n2�)) (see (4.22)), for � = 1, s = 2, by dashed lines. As we can

see, the error bound (4.22) is very precise especially for larger values of n and �.

Remark 4.1. Some of the introduced Gauss — Turán — Kronrod quadrature formu-
las in Section 3, as well as L1-error bounds of the type of (4.7) for integrands analytic
on confocal ellipses (4.9), were considered a few years ago in [16] (see also [25]). Namely,
the Gauss — Turán quadratures of Lobatto type (3.4) (with (3.5)) from [16] for k = m = 0

F i g. 4.1. Log10 of the values L2n+1(E�) (solid line) and their bounds given by (4.22) (dashed line)
for n = 5 (left) and n = 10 (right), for � ∈ [1.01, 1.25]

reduce to our Gauss — Turán — Kronrod quadratures (3.4) with � = 0 (n � 2). Also, these
quadrature formulas appear as a particular case (m = r = 2s+2) of the quadrature formulas
considered by Shi (see [25, Eqs. (1.1) – (1.6)]). The Gauss — Turán quadratures (3.4) (with
(3.5)) from [16] for k = m = s + 1 (see also [17]) reduce to our Gauss — Turán — Kronrod
quadratures (3.6). The Gauss — Turán quadratures of the Radau type (3.4) (with (3.5))
from [16] for k = s + 1, m = 0 (k = 0, m = s + 1) reduce to the Gauss — Turán — Kronrod
quadratures (3.8) ((3.9)) in this paper. Finally, the quadrature formula (3.4) for � = s
(n � 2) is a new formula in the class of Kronrod extensions of Gauss — Turán quadrature
formulas introduced by Li [12] (see also [18]), for which explicit expressions of the generalized
Stieltjes polynomials are known.
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