FACULTY OF ELECTRONIC ENGINEERING

NUMERICAL METHODS AND APPROXIMATION THEORY Wiš, September 26-28, 7989

Edited by G. V. Milovanovic

Wiš. 1984

Numerical Methods and
Approximation Theory
Niš, September 26-28, 1984

ON A CLASS OF COMPLEX POLYNOMIALS HAVING ALL ZEROS IN A HALF DISC

WALTER GAUTSCHI AND GRADIMIR V. MILOVANOVIĆ

ABSTRACT:

Ve study the location of the zeros of the polynomial $p_{n}(z)=\pi_{n}(z)-$ - $i \theta_{n-1} \pi_{n-1}(z)$, where $\left\{\pi_{k}\right\}$ is a system of monic polynomials orthogolat with respect to an even weight function on $(-a, a), 0<a<\infty$, and $\theta n-1$ is a real constont. We show that all zeros of p_{n} lie in the upper half lisc $|z|<a \wedge \operatorname{Im} z>0$, if $0<\theta_{n-1}<\pi_{n}(\alpha) / \pi_{n-1}(\alpha)$, and in the lower :alf disc $|z|<a \wedge \operatorname{Im} z<0$, if $-\pi_{n}(a) / \pi_{n-1}(\alpha)<\theta_{n-1}<0$. The ultrasphrical weight function is considered as an example.

O KLASI KOMPLEKSNH POLBNOMA KOJI IMAJU SVE NULE U POLUKRUGU.U radU se razmatra problem Lokatizacije nula polinoma $p_{n}(z)=\pi_{n}(z)-i \theta_{n-1} \pi_{n-1}(z)$, gde je $\left\{\pi_{k}\right\}$ sistem moniänih polinoma ortogonalnih u odnosu na parnu težinsku funkciju na $(-a, a), 0<a<\infty, a \theta_{n-1}$ realna konstanta. Dokazujemo da sve nule polinoma p_{n} lez̃e u gornjem polukrugu $|z|<a \wedge I m z>0$, ako je $0<\theta_{n-1}<\pi_{n}(a) / \pi_{n-1}(a)$, a u donjem potukrugu $|z|<a \wedge I m z<0$, ako je $-\pi_{n}(a) / \pi_{n-1}(a)<\theta_{n-1}<0$. Kao primer razmatrana je ultrasferma tez̈inska funkcija.

1. INTRODUCTION

In a series of papers, Specht [2] studied the location of the zeros of polynomials expressed as linear combinations of orthogonal polynomials. He obtained various bounds for the modulus of the imaginary part of an arbitrary zero in terms of the expansion coefficients and certain quantities depending only on the respective orthogonal polynomials. Giroux [1] sharpened some of these results by providing bounds for the sum of the moduli of the imaginary parts of all zeros. In the process of doing so, he also stated as a corollary the following result.

Theorem A. Let

$$
\begin{aligned}
& f(x)=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right), \\
& g(x)=\left(x-y_{1}\right)\left(x-y_{2}\right) \ldots\left(x-y_{n}\right)
\end{aligned}
$$

with $x_{1}<y_{1}<x_{2}<\ldots<y_{n-1}<x_{n}$. Then, for any real number c, the zeros of the polynomial $h(x)=f(x)+i c g(x)$ are all in the half strip $\operatorname{Im} z \geq 0, x_{1} \leqq \operatorname{Re} z \leqq x_{n}$, or all are in the conjugate half strip.

Here we consider special linear combinations of the form

$$
\begin{equation*}
p_{n}(z)=\pi_{n}(z)-i \theta_{n-1} \pi_{n-1}(z), \tag{1.1}
\end{equation*}
$$

where $\left\{\pi_{k}\right\}$ is a system of monic polynomials orthogonal with respect to an even weight function on $(-a, a), 0<a<\infty$, and ${ }^{\theta}{ }_{n-1}$ is a real constant. We combine Theorem A with Rouche's theorem to show, in this case, that all zeros of p_{n}, under appropriate restrictions on θ_{n-1}, are contained in a half disc of radius a. The result is illustrated in the case of Gegenbauer polynomials.

2. LOCATION OF THE ZEROS OF $p_{n}(z)$

Let $\omega(x)$ be an even weight function on ($-\mathrm{a}, \mathrm{a}$) , $0<\mathrm{a}<\infty$. Then the monic polynomials orthogonal with respect to $\omega(x)$ satisfy a three-term recurrence relation of the form

$$
\left\{\begin{array}{l}
\pi_{k+1}(z)=z_{k}(z)-\beta_{k} \pi_{k-1}(z), \quad k=0,1, \ldots, \tag{2.1}\\
\pi_{-1}(z)=0, \pi_{0}(z)=1,
\end{array}\right.
$$

where $\beta_{k}>0$. Since $\pi_{k}(-z)=(-1)^{k_{k}} \pi_{k}(z), k=0,1, \ldots$, the polynomial (1.1) can be expanded in the form

$$
p_{n}(z)=z^{n}-i \theta_{n-1} z^{n-1}+\ldots
$$

so that

$$
\sum_{k=1}^{n} \zeta_{k}=i \theta_{n-1},
$$

hence

$$
\sum_{k=1}^{n} \operatorname{Im} \tau_{k}=\theta_{n-1}
$$

here $\zeta_{1}, \zeta_{2}, \ldots . \zeta_{n}$ are the zeros of the polynomial (1.1).
By Theorem A and (2.2) all zeros of the polynomial
,1.1) lie in the half strip
$\operatorname{Im} z>0,-a<\operatorname{Re} z<a$ if $\theta_{n-1}>0$,
or
(2. 3') $\quad \operatorname{Im} z<0, \quad-a<\operatorname{Re} z<a \quad$ if $\theta_{n-1}<0$,
strict inequality holding in the imaginary part, since $p_{n}(z)$ for $\theta_{n-1} \neq 0$ cannot have real zeros. Of course, if $\theta_{n-1}=0$, all zeros lie in $(-a, a)$.

Let D_{a} be the disc $D_{a}=\{z:|z|<a\}$ and ∂D_{a} its boundary. Ne first prove the following auxiliary result.

Lemma. For each $z \in \partial D$ a one has

$$
\begin{equation*}
\left|\frac{\pi_{k}(z)}{\pi_{k-1}(z)}\right| \geq \frac{\pi_{k}(a)}{\pi_{k-1}(a)}, \quad k=1,2, \ldots \tag{2.4}
\end{equation*}
$$

Proof. Let $r_{k}(z)=\pi_{k}(z) / \pi_{k-1}(z)$ and $z \in \partial D_{a}$. We seek
lower bounds r_{k} (not depending on z) of $\left|x_{k}(z)\right|$ for $z \in \partial D_{a}$,

$$
\left|r_{k}(z)\right| \geq r_{k}, \quad z \in \partial D_{a}
$$

From the recurrence relation (2.1) there follows

$$
\begin{equation*}
r_{k}(z)=z-\frac{{ }^{\beta} k-1}{r_{k-1}(z)}, \quad k=2,3, \ldots \tag{2.5}
\end{equation*}
$$

where $r_{1}(z)=z$. We can take, therefore,

$$
\begin{equation*}
r_{1}=a, \quad r_{k}=a-\frac{\beta_{k-1}}{r_{k-1}}, \quad k=2,3, \ldots \tag{2,6}
\end{equation*}
$$

Using the usual notation of continued fraction, we obtain from (2.6)

$$
r_{k}=a-\frac{\beta_{k-1}}{a-} \frac{\beta_{k-2}}{a-} \cdots \frac{\beta_{1}}{a}
$$

It is easily seen that $r_{k}=\pi_{k}(a) / \pi_{k-1}(a), k \geq 1$. Indeed, using (2.1).

$$
r_{k}=a-\frac{\beta_{k-1}}{r_{k-1}}=a-\beta_{k-1} \frac{\pi_{k-2}(a)}{\pi_{k-1}(a)}=\frac{\pi_{k}(a)}{\pi_{k-1}(a)}
$$

By a similar argument one could show that

$$
2 a-\frac{\pi_{k}(a)}{\pi_{k-1}(a)} \geq\left|\frac{\pi_{k}(z)}{\pi_{k-1}(z)}\right| \quad, \quad z \in \partial D_{a^{\prime}}
$$

but this will not be needed in the following.

Theorem. If the constant θ_{n-1} satisfies $0<\theta_{n-1}<$ $<\pi_{n}(a) / \pi_{n-1}(a)$, then all zeros of the polynomial (1.1) lie in the upper half disc

$$
|z|<a \wedge \operatorname{Im} z>0
$$

If $-\pi_{n}(a) / \pi_{n-1}(a)<\theta_{n=1}<0$, then all zeros of (1.1) are in the lower half disc

$$
|z|<a \wedge \operatorname{Im} z<0
$$

Proof. By (2.4) we have

$$
\begin{equation*}
\left|\frac{\pi_{n}(z)}{\pi_{n-1}(z)}\right| \geq \frac{\pi_{n}(a)}{\pi_{n-1}(a)}, \quad z \in \partial D_{a} \tag{2.7}
\end{equation*}
$$

hence, if $\pi_{n}(a) / \pi_{n-1}(a)>\left|\theta_{n-1}\right|$,

$$
\left|\pi_{n}(z)\right|>\left|\theta_{n-1} \pi_{n-1}(z)\right|, \quad z \in \partial D_{a} .
$$

Applying Rouche's theorem to (1.1), we conclude that all zeros of the polynomial p_{n} lie in the open disc D_{a}. Combining this with (2.3) or (2.3), we obtain the assertions of the theorem.

3. EXAMPLE: GEGENBAUER POLYNOMIALS

We now consider the ultraspherical weight function $\omega(x)=\left(1-x^{2}\right)^{\lambda-1 / 2}(\lambda>-1 / 2)$ on $(-1,1)$. In this case, $a=1$, and $\pi_{k}(z)=\frac{k!}{2^{k}(\lambda)_{k}} C_{k}^{\lambda}(x)$, where $C_{k}^{\lambda}(x)$ is the Gegenbauer polyno-
mial and $(\lambda)_{k}$ Pochhammer ${ }^{\prime}$ s symbol, $(\lambda)_{k}=\lambda(\lambda+1) \ldots(\lambda+\mathrm{k}-1)$.

Since

$$
\frac{\pi_{k}(1)}{\pi_{k-1}(1)}=\frac{k}{2(\lambda+k-1)} \cdot \frac{C_{k}^{\lambda}(1)}{C_{k-1}^{\lambda}(1)}=\frac{2 \lambda+k-1}{2(\lambda+k-1)}
$$

ind

$$
D^{m} C_{k}^{\lambda}(x)=2^{m}(\lambda)_{m} C_{k-m}^{\lambda+m}(x), \quad m \leqq k
$$

here D is the differentiation operator, our theorem implies -he following

Corollary, Let $\pi_{k}(z)$ denote the monic Gegenbauer poly Iomial of degree k with parameter λ. If the constant θ_{n-1} saisfies $0<\theta_{n-1}<\frac{2 \lambda+n-1}{2(\lambda+n-1)}$, then all zeros of the polynomial ${ }_{n}(z)=\pi_{n}(z)-i \theta_{n-1} \pi_{n-1}(z)$ and of its derivatives lie in the pper half disc $|z|<1 \wedge \operatorname{Im} z>0$. If $-\frac{2 \lambda+n-1}{2(\lambda+n-1)}<\theta_{n-1}<0$, then they are all in the lower half disc $|z|<1 \wedge \operatorname{Im} z<0$.

The upper bound $(2 \lambda+n-1) /(2(\lambda+n-1))$ for $\left|\theta_{n-1}\right|$ becomes $n /(2 n-1)$ in the case of Legendre polynomials $(\lambda=1 / 2)$, and $1 / 2$ in the case of Chebyshev polynomials $(\lambda=0)$.

REFERENCES

1. GIROUX A.: Estimates for the imaginary parts of the zeros of a polynomial. Proc. Amer. Math. Soc. 44(1974), 61-67.
2. SPECHT W.: Die Lage der NuZZsteZZen eines Potynomes, I-IV. Math. Nachr. 15(1956), 353-374; 16(1957), 257-263; 16 (1957), 369-389: 21(1960), 201-222.
