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4BSTRACT:

Je study the location of thé zeros of the polynomial pn(z) = nn(z) -

-1 0, T (2) , where {TTk} is a system of monic polynomials orthogo-

al with respect to an even weight function on (-a,a), 0<a<«, and en—l
's a real constant. We shaw that all zeros of p, lie in the upper half
lise |zl <a N Imz>0, <f 0 < 8, < nn(a)/nn_l(a), and in the lower

walf dise |z| <a NImz < 0, if —nn(a)/nn“_l(a) <8, < 0. The ultrasph-

rical wetght function is considered as an example.

0 KLASI KOMPLEKSNIH POLINOMA KOJI IMAJU SVE NULE U POLUKRUGU.U radu se raz-

T 2
1Ty (B)s

gde je {ﬂk} sistem monidnih polinoma ortogonalnih u odnosu na parnu te-

matra problem lokalizacije nula polinoma pn(z) = nn(z) - 18

Finsku funkciju na (~a,a), 0<a < =, a en realna konstanta. Dokazujemo

-1
da sve nule polinoma p, lefe u gornjem polukrugu |z]<a ANImz> 0, ako

je 0 < 8, < ﬂn(a)/nn__l(a), a u donjem polukrugu |z| <a NImz<0, dako

1
Je - (a)/ﬂn_l(a) < eﬂ_l < 0. Kao primer razmatrana je ultrasferna te-

Finska funkcija.

1. INTRODUCTION

In a series of papers, Specht [2] studied the location
of the zeros of polynomials expressed as linear combinations
of orthogonal polynomials. He obtained various bounds for the
modulus of the imaginary part of an arbitrary zero in terms
of the expansion coefficients and certain quantities depending
only on the respective orthogonal polynomials. Giroux [1]
sharpened some of these results by providing bounds for the
sum of the moduli of the imaginary parts of all zeros. In the
process of doing so, he also stated as a corollary the follo-
wing result.
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Theorem A, Let

f(x)==(x—xl)(x—x2)...(x—xn),
g(X)==(x—yl)(x—y2)...(x—yn),
with X)SY) Xy e <Yy <X Then, for any real number c,

half strip Imz2>0, x
half strip.

Here we consider special linear combinations of the

1 n’ 9% 2== 225 22 =

form

(1.1) pn(z) zﬂn(Z) “ien_lﬂn_‘l(z))

where {nk} is a system of monic polynomials orthogonal with
respect to an even weight function on (-a,a), 0 <a<e , and
en—l is a real constant. We combine Theorem A with Rouché& “g
theorem to show, in this case, that all zeros of P, under
appropriate restrictions on en—l’ are contained in a half disc
of radius a. The result is illustrated in the case of Gegen-

bauver polynomials.

2. LOCATION OF THE ZEROS OF py,(z)

Let w(x) be an even weight function on (-a,a),0<a <.
Then the monic polynomials orthogonal with respect to w(x)

satisfy a three-term recurrence relation of the form

wk+l(2) =ZTrk(Z) = Byeme_1(2), k=0,1,...,
(2.1)

T\'_l(Z) =0, n,(z) =1,

0

where Bk >0. Since ﬂk(—z)= (—1)kwk(z), k=0,1,..., the polyno-

mial (1.1) can be expanded in the form

pn(z)=:z -ie, 2 + .
so that
n
kilﬁ<=len—l’
hence
n
EImcy, =6 .,



here 1;1, 62’ ...,gn are the zeros of the polynomial (1.1).

By Theorem A and (2.2) all zeros of the polynomial
1.1) lie in the half strip

v

(2.3) Imz >0, ~a<Rez< a 1if en_l>0,
or
(2.37) Imz <0, =-a<Rez< a 1if en—l<0’

strict inequality holding in the imaginary part, since pn(z)
for en_l7é0 cannot have real zeros. Of course, if en_’l=0,

all zeros lie in (-a,a).

Let Da be the disc Da= {z: z[<a} and BDa its boundary.

Je first prove the following auxiliary result.

Lemma., For each z& BDa one has

1Tk(Z) Trk(a)

Itv

, k=1,2,..

-1 (%) -1 (2)

Proof. Let ry (2) =TTk(Z)/1Tk_l(Z) and z&9D, . We seek
lower bounds T (not depending on z) of frk(z)[ for zEBDa,
]rk(z)] 21, zEBDa.

From the recurrence relation (2.1) there follows

B8

k~-1
(2.5) rk(z)=z—--—-————, k=2,3,...,

Tie-1(2) ’

where rl(z) =2z. We can take, therefore,

8
(2.6) r,=a, r = a- k-1 x=2,3,...

Fr-1

Using the usual notation of continued fraction, we ob-

tain from (2.6)

o1 Proz By

a - a = .a

It is easily seen that rk=nk(a)/nk_l(a) ;, k>1. Indeed, using
(2.1),
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Br_1 Mo (@) _ m (@) O
rk= a - = a = Bk-l = .
Tyel -1 (@) T (@) -
By a similar argument one could show that
w, {a) m, (2z)
2a - . > k R zEBDa,
ALY M1 (2)
but this will not be needed in the following.
Theorem. If the constant 6_ satisfies 0 <@ <
_—— n-1 —= n-1

<Tl'n(a)/7Tn_l(a), then all zeros of the polynomial (1.1) lie

in the upper half disc
lz] ~a A Imz -0.

If -nn(a)/nn_l(a) <en=—l <0, then all zeros of (1.l) are in

the lower half disc

|z| <a A Imz< 0.

Proof. By (2.4) we have

T (z) m_(a)
(2.7) n ' > 0 . zEBDa,
"-1(2) -1 (a)
hence, if «w (a)/m _,(a)> len-—l| ,
|nn(z)l > |6n_lwn__l(z)|, z&3D,.

Applying Rouché'’s theorem to (1.1), we conclude that all ze-
ros of the polynomial P, lie in the open disc Da' Combining
this with (2.3) or (2.37), we obtain the assertions of the

theorem. ]

3. EXAMPLE: GEGENBAUER POLYNOMIALS

We now consider the ultraspherical weight function

w(x) = (l—xz))‘—l/2 (A>~=1/2) on (-1,1). In this case, a=1, and

1
z) = _ Kkt C]ﬁ(x) , where C]i

2k(x)k
mial and (“k Pochhammer’s symbol, ())

Trk( (x) is the Gegenbauer polyno-

k= A(A+1) ... (A+k-1) .
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Since
AR " ) ke
n_ (D) 20k-1) ¢l_ (1) 20vk-1)
ind
e (x) = 2" TNy, mck,

there D is the differentiation operator, our theorem implies

-he following

Gorollary. Let nk(z) denote the monic Gegenbauer poly-

iomial of degree k with parameter . If the constant en— sa-

1
:isfies O <01 < _2itn-1 , then all zeros of the polynomial
) 2 (A+n-1)
>n(z) = nn(z) —1en_lnn_l(z) and of its derivatives lie in the
pper half disc |z|<1 A Imz>0. If - 2am-l < 0, then
== n-1 _—
2(x+n-1)

The upper bound (2x+n-1)/(2(x+n-1)) for!en—ll becomes
n/(2n-1) in the case of Legendre polynomials (A=1/2), and 1/2

in the case of Chebyshev polynomials (A=0).
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