A solution to exponential operators

Vijay Gupta • Gradimir V. Milovanovic

Received: date / Accepted: date

Abstract

The present article provides a solution to the open problem on the exponential type operators, connected with $1+x^{2}$. We are able to achieve the semi-exponential extension of such operators.

Keywords Semi-exponential operators • Ismail-May operators • operators.
Mathematics Subject Classification (2010) 41A35

1 Operators connected with $1+x^{2}$

The exponential operators (see [4]) connected with $1+x^{2}$ are defined by

$$
\begin{aligned}
\left(T_{\lambda} f\right)(x) & =\int_{-\infty}^{\infty} \kappa_{\lambda}(x, t) f(t) d t \\
& =\frac{1}{\left(1+x^{2}\right)^{\lambda / 2}} \frac{2^{\lambda-2} \lambda}{\pi \Gamma(\lambda)} \int_{-\infty}^{\infty}\left|\Gamma\left(\lambda \frac{1+i t}{2}\right)\right|^{2} e^{\lambda t \arctan x} f(t) d t
\end{aligned}
$$

Vijay Gupta
Department of Mathematics
Netaji Subhas University of Technology
Sector 3 Dwarka, New Delhi 110078, India
E-mail: vijaygupta2001@hotmail.com
Gradimir V. Milovanovic
Serbian Academy of Sciences and Arts
Mathematical Institute of SASA
11000 Belgrade, Serbia
\& University of Niš
Faculty of Sciences and Mathematics
18000 Niš, Serbia
E-mail: gvm@mi.sanu.ac.rs

Following A. Tyliba and E. Wachnicki in [7] and M. Horzog [3], very recently Abel et al. [1] captured the extension of exponential type operators, but for the operators (1) authors [1] were not able to find the extension of T_{n} to its semi-exponential version and they proposed it an open problem. In this note we provide the answer to the open problem, associated with $1+x^{2}$.

2 Solution to Open Problem

The semi-exponential operators associated with $1+x^{2}$, with $\beta>0$ the kernel $\kappa_{\lambda}^{\beta}(x, t)$ satisfy the following partial differential equation

$$
\frac{\partial}{\partial x} \kappa_{\lambda}^{\beta}(x, t)=\left[\frac{\lambda(t-x)}{1+x^{2}}-\beta\right] \kappa_{\lambda}^{\beta}(x, t)
$$

integrating, we get

$$
\log \kappa_{\lambda}^{\beta}(x, t)=\lambda t \arctan x-\beta x-\frac{\lambda}{2} \log \left(1+x^{2}\right)+\log A_{T}^{\beta}(\lambda, t)
$$

i.e.,

$$
\kappa_{\lambda}^{\beta}(x, t)=A_{T}^{\beta}(\lambda, t) e^{\lambda t \arctan x-\beta x}\left(1+x^{2}\right)^{-\lambda / 2},
$$

where $A_{T}^{\beta}(\lambda, t)$ is constant of integration independent of x. The operator have the form:

$$
\left(T_{\lambda}^{\beta} f\right)(x)=\frac{e^{-\beta x}}{\left(1+x^{2}\right)^{\lambda / 2}} \int_{-\infty}^{\infty} A_{T}^{\beta}(\lambda, t) e^{\lambda t \arctan x} f(t) d t
$$

or

$$
\left(T_{\lambda}^{\beta} f\right)(x)=\frac{e^{-\beta x}}{\left(1+x^{2}\right)^{\lambda / 2}} \int_{-\infty}^{\infty} B_{T}^{\beta}(\lambda, t) e^{t \arctan x} f\left(\frac{t}{\lambda}\right) d t
$$

Our target is to find $B_{T}^{\beta}(\lambda, t)$. To have the normalization we need $B_{T}^{\beta}(\lambda, t)$ such that

$$
\begin{equation*}
\int_{-\infty}^{\infty} B_{T}^{\beta}(\lambda, t) \frac{e^{t \arctan x}}{\left(1+x^{2}\right)^{\lambda / 2}} d t=e^{\beta x} . \tag{2}
\end{equation*}
$$

The Meixner-Pollaczek polynomials $\left\{p_{n}^{(\lambda)}\right\}_{n=0}^{\infty}$ are defined by the following three-term recurrence relation (cf. [5], [2])

$$
(n+1) p_{n+1}^{(\lambda)}(t)=t p_{n}^{(\lambda)}(t)-(n-1+2 \lambda) p_{n-1}^{(\lambda)}(t), \quad n=0,1,2, \ldots,
$$

with $p_{0}^{(\lambda)}(t)=1$ and $p_{-1}^{(\lambda)}(t)=0$, where the parameter $\lambda>0$. These polynomials are orthogonal on the real line with respect to the weight function

$$
W_{\lambda}(t)=\frac{1}{2 \pi}\left|\Gamma\left(\lambda+i \frac{t}{2}\right)\right|^{2}
$$

and their generating function is

$$
\begin{equation*}
G_{\lambda}(t, x)=\frac{e^{t \arctan x}}{\left(1+x^{2}\right)^{\lambda}}=\sum_{n=0}^{\infty} p_{n}^{(\lambda)}(t) x^{n} . \tag{3}
\end{equation*}
$$

In our work we will use the corresponding monic polynomials $P_{n}^{(\lambda / 2)}(t)$ (Note the parameter λ is replaced by $\lambda / 2$), which satisfy three-term recurrence relation

$$
\begin{equation*}
P_{n+1}^{(\lambda / 2)}(t)=t P_{n}^{(\lambda / 2)}(t)-n(n-1+\lambda) P_{n-1}^{(\lambda / 2)}(t), \quad n=0,1,2, \ldots, \tag{4}
\end{equation*}
$$

with $P_{0}^{(\lambda / 2)}(t)=1$ and $P_{-1}^{(\lambda / 2)}(t)=0$. We note that $P_{n}^{(\lambda / 2)}(t)=n!p_{n}^{(\lambda / 2)}(t)$, $n \in N$, so that (3) reduces to

$$
\begin{equation*}
G_{\lambda / 2}(t, x)=\frac{e^{t \arctan x}}{\left(1+x^{2}\right)^{\lambda / 2}}=\sum_{n=0}^{\infty} P_{n}^{(\lambda / 2)}(t) \frac{x^{n}}{n!} \tag{5}
\end{equation*}
$$

Explicit expressions for these orthogonal polynomials can be given in terms of the Gauss hypergeometric function,

$$
P_{n}^{(\lambda / 2)}(t)=(\lambda)_{n} i^{n}{ }_{2} F_{1}\left(\begin{array}{c|c}
-n,(\lambda+i t) / 2 & 2 \tag{6}\\
\lambda
\end{array}\right), \quad n=0,1,2, \ldots .
$$

For example,
$P_{0}^{(\lambda / 2)}(t)=1, \quad P_{1}^{(\lambda / 2)}(t)=t, \quad P_{2}^{(\lambda / 2)}(t)=t^{2}-\lambda, \quad P_{3}^{(\lambda / 2)}(t)=t^{3}-(3 \lambda+2) t$,
$P_{4}^{(\lambda / 2)}(t)=t^{4}-2(3 \lambda+4) t^{2}+3 \lambda(\lambda+2)$,
$P_{5}^{(\lambda / 2)}(t)=t^{5}-10(\lambda+2) t^{3}+\left(15 \lambda^{2}+50 \lambda+24\right) t$,
$P_{6}^{(\lambda / 2)}(t)=t^{6}-5(3 \lambda+8) t^{4}+\left(45 \lambda^{2}+210 \lambda+184\right) t^{2}-15 \lambda(\lambda+2)(\lambda+4)$,
$P_{7}^{(\lambda / 2)}(t)=t^{7}-7(3 \lambda+10) t^{5}+7\left(15 \lambda^{2}+90 \lambda+112\right) t^{3}-3\left(35 \lambda^{3}+280 \lambda^{2}+588 \lambda+240\right) t$, etc.
According to (5), Eq. (2) can be written as

$$
\int_{-\infty}^{\infty} B_{T}^{\beta}(\lambda, t) G_{\lambda / 2}(t, x) d t=e^{\beta x}
$$

i.e,

$$
\int_{-\infty}^{\infty} B_{T}^{\beta}(\lambda, t)\left(\sum_{n=0}^{\infty} P_{n}^{(\lambda / 2)}(t) \frac{x^{n}}{n!}\right) d t=\sum_{n=0}^{\infty} \beta^{n} \frac{x^{n}}{n!}
$$

from where, by comparing the coefficients of x^{n}, we get

$$
\begin{equation*}
\int_{-\infty}^{\infty} B_{T}^{\beta}(\lambda, t) P_{n}^{(\lambda / 2)}(t) d t=\beta^{n}, \quad n=0,1,2, \ldots \tag{7}
\end{equation*}
$$

In Ismail and May case $(\beta=0)$ the previous relations become

$$
\int_{-\infty}^{\infty} B_{T}^{0}(\lambda, t) P_{n}^{(\lambda / 2)}(t) d t=\delta_{n, 0}, \quad n=0,1,2, \ldots
$$

where $\delta_{i, j}$ is Kronecker's delta, and evidently $B_{T}^{0}(\lambda, t)$ must be equal to $W_{\lambda / 2}(t)$, up to some normalization constant.

In a general case we suppose that $B_{T}^{\beta}(\lambda, t)=\Phi(t ; \lambda, \beta) W_{\lambda / 2}(t)$, where $t \mapsto \Phi(t ; \lambda, \beta)$ is an analytic function for which the following expansion in polynomials $\left\{P_{n}^{(\lambda / 2)}\right\}_{n=0}^{\infty}$,

$$
\begin{equation*}
\Phi(t ; \lambda, \beta)=\sum_{k=0}^{\infty} b_{k} P_{k}^{(\lambda / 2)}(t) \tag{8}
\end{equation*}
$$

holds, where the coefficients b_{k} depend on the parameters λ and β. Then (7) becomes

$$
\int_{-\infty}^{\infty}\left(\sum_{k=0}^{\infty} b_{k} P_{k}^{(\lambda / 2)}(t)\right) P_{n}^{(\lambda / 2)}(t) W_{\lambda / 2}(t) d t=\beta^{n}, \quad n=0,1,2, \ldots
$$

Because of orthogonality

$$
\left\langle P_{k}^{(\lambda / 2)}, P_{n}^{(\lambda / 2)}\right\rangle=\int_{-\infty}^{\infty} P_{k}^{(\lambda / 2)}(t) P_{n}^{(\lambda / 2)}(t) W_{\lambda / 2}(t) d t=\left\|P_{n}^{(\lambda / 2)}\right\|^{2} \delta_{k, n}
$$

we conclude that

$$
b_{n}\left\|P_{n}^{(\lambda / 2)}\right\|^{2}=\beta^{n}, \quad n=0,1,2, \ldots
$$

In order to find $\left\|P_{n}^{(\lambda / 2)}\right\|^{2}$ we use the recurrence coefficients $\beta_{k}=k(k-1+\lambda)$, $k=1,2, \ldots$ from (4), so that (cf. [6, p. 97])

$$
\left\|P_{n}^{(\lambda / 2)}\right\|^{2}=\beta_{0} \beta_{1} \cdots \beta_{n}=\frac{n!\Gamma(\lambda+n)}{2^{\lambda-1}}
$$

where

$$
\beta_{0}:=\int_{-\infty}^{\infty} W_{\lambda / 2}(t) d t=\frac{\Gamma(\lambda)}{2^{\lambda-1}}
$$

In this way, we obtain the coefficients b_{k} in the expansion (8) as

$$
b_{k}=\frac{2^{\lambda-1} \beta^{k}}{k!\Gamma(\lambda+k)}, \quad k=0,1,2, \ldots
$$

as well as

$$
B_{T}^{\beta}(\lambda, t)=W_{\lambda / 2}(t) \Phi(t ; \lambda, \beta)=\frac{2^{\lambda-2}}{\pi}\left|\Gamma\left(\frac{\lambda+i t}{2}\right)\right|^{2} \sum_{k=0}^{\infty} \frac{\beta^{k}}{k!\Gamma(\lambda+k)} P_{k}^{(\lambda / 2)}(t) .
$$

Then the semi-exponential operators connected with $1+x^{2}$ have the form:

$$
\left(T_{\lambda}^{\beta} f\right)(x)=\frac{2^{\lambda-2} e^{-\beta x}}{\pi} \sum_{n=0}^{\infty} \frac{\beta^{n}}{n!\Gamma(\lambda+n)} \int_{-\infty}^{\infty}\left|\Gamma\left(\frac{\lambda+i t}{2}\right)\right|^{2} P_{n}^{(\lambda / 2)}(t) G_{\lambda / 2}(t, x) f\left(\frac{t}{\lambda}\right) d t
$$

Note that for $\beta=0$ we have

$$
B_{T}^{0}(\lambda, t)=\frac{2^{\lambda-2}}{\pi \Gamma(\lambda)}\left|\Gamma\left(\frac{\lambda+i t}{2}\right)\right|^{2}
$$

3 Moments

Using the generating function (5) we have

$$
\begin{aligned}
\left(T_{\lambda}^{\beta} f\right)(x)= & \frac{2^{\lambda-2} e^{-\beta x}}{\pi} \sum_{n=0}^{\infty} \frac{\beta^{n}}{n!\Gamma(\lambda+n)} \sum_{m=0}^{\infty} \frac{x^{m}}{m!} \\
& \times \int_{-\infty}^{\infty}\left|\Gamma\left(\frac{\lambda+i t}{2}\right)\right|^{2} P_{n}^{(\lambda / 2)}(t) P_{m}^{(\lambda / 2)}(t) f\left(\frac{t}{\lambda}\right) d t .
\end{aligned}
$$

For $f(t)=e_{s}(t)=t^{s}, s=0,1,2$ we obtain the moments for the semiexponential operators as follows:

$$
\begin{aligned}
\left(T_{\lambda}^{\beta} e_{0}\right)(x) & =2^{\lambda-1} e^{-\beta x} \sum_{n=0}^{\infty} \frac{\beta^{n}}{n!\Gamma(\lambda+n)} \sum_{m=0}^{\infty} \frac{x^{m}}{m!}\left\langle P_{n}^{(\lambda / 2)}, P_{m}^{(\lambda / 2)}\right\rangle \\
& =2^{\lambda-1} e^{-\beta x} \sum_{n=0}^{\infty} \frac{\beta^{n}}{n!\Gamma(\lambda+n)} \cdot \frac{x^{n}}{n!} \cdot \frac{n!\Gamma(\lambda+n)}{2^{\lambda-1}} \\
& =1
\end{aligned}
$$

and

$$
\left(T_{\lambda}^{\beta} e_{1}\right)(x)=\frac{2^{\lambda-1} e^{-\beta x}}{\lambda} \sum_{n=0}^{\infty} \frac{\beta^{n}}{n!\Gamma(\lambda+n)} \sum_{m=0}^{\infty} \frac{x^{m}}{m!}\left\langle t P_{n}^{(\lambda / 2)}, P_{m}^{(\lambda / 2)}\right\rangle .
$$

Using three-term recurrence relation (4) it reduces to

$$
\begin{aligned}
&\left(T_{\lambda}^{\beta} e_{1}\right)(x)= \frac{2^{\lambda-1} e^{-\beta x}}{\lambda} \sum_{n=0}^{\infty} \frac{\beta^{n}}{n!\Gamma(\lambda+n)} \sum_{m=0}^{\infty} \frac{x^{m}}{m!}\left\langle P_{n+1}^{(\lambda / 2)}+\beta_{n} P_{n-1}^{(\lambda / 2)}, P_{m}^{(\lambda / 2)}\right\rangle \\
&= \frac{2^{\lambda-1} e^{-\beta x}}{\lambda}\left\{\sum_{n=0}^{\infty} \frac{\beta^{n}}{n!\Gamma(\lambda+n)} \sum_{m=0}^{\infty} \frac{x^{m}}{m!}\left\langle P_{n+1}^{(\lambda / 2)}, P_{m}^{(\lambda / 2)}\right\rangle\right. \\
&\left.\quad+\sum_{n=1}^{\infty} \frac{\beta^{n}}{n!\Gamma(\lambda+n)} \sum_{m=0}^{\infty} \frac{x^{m}}{m!} \beta_{n}\left\langle P_{n-1}^{(\lambda / 2)}, P_{m}^{(\lambda / 2)}\right\rangle\right\} \\
&= \frac{2^{\lambda-1} e^{-\beta x}}{\lambda}\left\{\sum_{n=0}^{\infty} \frac{\beta^{n}}{n!\Gamma(\lambda+n)} \cdot \frac{x^{n+1}}{(n+1)!} \cdot \frac{(n+1)!\Gamma(\lambda+n+1)}{2^{\lambda-1}}\right. \\
&\left.\quad+\sum_{n=0}^{\infty} \frac{\beta^{n+1}}{(n+1)!\Gamma(\lambda+n+1)} \cdot \frac{x^{n}}{n!} \cdot(n+1)(n+\lambda) \cdot \frac{n!\Gamma(\lambda+n)}{2^{\lambda-1}}\right\} \\
&= \frac{e^{-\beta x}}{\lambda}\left\{x(\lambda+\beta x) e^{\beta x}+\beta e^{\beta x}\right\} \\
&= x+\frac{\beta}{\lambda}\left(1+x^{2}\right) .
\end{aligned}
$$

Similarly, for $f(t)=e_{2}(t)=t^{2}$ we have

$$
\left(T_{\lambda}^{\beta} e_{2}\right)(x)=\frac{2^{\lambda-1} e^{-\beta x}}{\lambda^{2}} \sum_{n=0}^{\infty} \frac{\beta^{n}}{n!\Gamma(\lambda+n)} \sum_{m=0}^{\infty} \frac{x^{m}}{m!}\left\langle t P_{n}^{(\lambda / 2)}, t P_{m}^{(\lambda / 2)}\right\rangle
$$

i.e.,

$$
\begin{aligned}
\left(T_{\lambda}^{\beta} e_{2}\right)(x)= & \frac{2^{\lambda-1} e^{-\beta x}}{\lambda^{2}} \sum_{n=0}^{\infty} \frac{\beta^{n}}{n!\Gamma(\lambda+n)} \sum_{m=0}^{\infty} \frac{x^{m}}{m!}\left\langle P_{n+1}^{(\lambda / 2)}+\beta_{n} P_{n-1}^{(\lambda / 2)}, P_{m+1}^{(\lambda / 2)}+\beta_{m} P_{m-1}^{(\lambda / 2)}\right\rangle \\
= & \frac{2^{\lambda-1} e^{-\beta x}}{\lambda^{2}}\left\{\sum_{n=0}^{\infty} \frac{\beta^{n}}{n!\Gamma(\lambda+n)} \sum_{m=0}^{\infty} \frac{x^{m}}{m!}\left\langle P_{n+1}^{(\lambda / 2)}, P_{m+1}^{(\lambda / 2)}\right\rangle\right. \\
& +\sum_{n=0}^{\infty} \frac{\beta^{n}}{n!\Gamma(\lambda+n)} \sum_{m=1}^{\infty} \frac{x^{m}}{m!} \beta_{m}\left\langle P_{n+1}^{(\lambda / 2)}, P_{m-1}^{(\lambda / 2)}\right\rangle \\
& +\sum_{n=1}^{\infty} \frac{\beta^{n}}{n!\Gamma(\lambda+n)} \sum_{m=0}^{\infty} \frac{x^{m}}{m!} \beta_{n}\left\langle P_{n-1}^{(\lambda / 2)}, P_{m+1}^{(\lambda / 2)}\right\rangle \\
& \left.+\sum_{n=1}^{\infty} \frac{\beta^{n}}{n!\Gamma(\lambda+n)} \sum_{m=1}^{\infty} \frac{x^{m}}{m!} \beta_{n} \beta_{m}\left\langle P_{n-1}^{(\lambda / 2)}, P_{m-1}^{(\lambda / 2)}\right\rangle\right\} \\
= & \frac{2^{\lambda-1} e^{-\beta x}}{\lambda^{2}}\left\{\sum_{n=0}^{\infty} \frac{\beta^{n}}{n!\Gamma(\lambda+n)} \cdot \frac{x^{n}}{n!} \cdot \frac{(n+1)!\Gamma(\lambda+n+1)}{2^{\lambda-1}}\right. \\
& +\sum_{n=0}^{\infty} \frac{\beta^{n}}{n!\Gamma(\lambda+n)} \cdot \frac{x^{n+2}}{(n+2)!}(n+2)(n+1+\lambda) \frac{(n+1)!\Gamma(\lambda+n+1)}{2^{\lambda-1}} \\
& +\sum_{n=2}^{\infty} \frac{\beta^{n}}{n!\Gamma(\lambda+n)} \cdot \frac{x^{n-2}}{(n-2)!} n(n-1+\lambda) \frac{(n-1)!\Gamma(\lambda+n-1)}{2^{\lambda-1}} \\
& \left.+\sum_{n=1}^{\infty} \frac{\beta^{n}}{n!\Gamma(\lambda+n)} \cdot \frac{x^{n}}{n!} n^{2}(n-1+\lambda)^{2} \frac{(n-1)!\Gamma(\lambda+n-1)}{2^{\lambda-1}}\right\} \\
= & x^{2}+\frac{1}{\lambda^{2}}\left(1+x^{2}\right)\left[\beta^{2}\left(1+x^{2}\right)+2 \beta(1+\lambda) x+\lambda\right] .
\end{aligned}
$$

Acknowledgement

The work of G.V.M. was supported in part by the Serbian Academy of Sciences and Arts, Belgrade ($\Phi-96$).

References

1. U. Abel, V. Gupta and M. Sisodia, Some new semi-exponential type operators, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas RACSAM 116, 87 (2022). https://doi.org/10.1007/s13398-022-01228-2
2. T. K. Araaya, The symmetric Meixner-Pollaczek polynomials with real parameter, J. Math. Anal. Appl. 305 (2005), 411-423.
3. M. Herzog, Semi-exponential operators, Symmetry (2021), 13, 637. https://doi.org/10.3390/sym1304063
4. M. Ismail and C. P. May, On a family of approximation operators, J. Math. Anal. Appl. 63 (1978), 446-462.
5. R. Koekoek, R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Delft University of Technology and Systems, Department of Technical Mathematics and Informatics, Report No. 98-17, 1998.
6. G. Mastroianni and G. V. Milovanović, Interpolation Processes - Basic Theory and Applications, Springer Monographs in Mathematics, Springer - Verlag, Berlin - Heidelberg, 2008.
7. A. Tyliba and E. Wachnicki, On some class of exponential type operators, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 45 (2005), 59-73.
