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EXTREMAL PROBLEMS FOR COEFFICIENTS
OF ALGEBRAIC POLYNOMIALS

Gradimir V. Milovanović and Lidija Z. Marinković

Abstract. Extremal problems for coefficients of algebraic polynomials P (x) =
∑n

ν=0
aνxν

are considered. In the other words, under some restrictions of the class of all polynomials of
degree n, the upper bounds for |P (k)(0)|, which include L2-norm of P on the real line, are
investigated.

1. Introduction

Let Pn be the class of algebraic polynomials P (x) =
∑n

ν=0 aνxν of degree at
most n. We will consider some extremal problems of the form

|P (k)(0)| ≤ Cn,k‖P‖.

The first result on this subject was given by V. A. Markov [3]. Namely, if

‖P‖ = ‖P‖∞ = max
−1≤x≤1

|P (x)|

and Tn(x) =
∑n

ν=0 tn,νxν denotes the n-th Chebyshev polynomial of the first kind,
Markov proved that

(1.1) |ak| ≤
{ |tn,k| · ‖P‖∞ if n− k is even,
|tn−1,k| · ‖P‖∞ if n− k is odd.

For k = n (1.1) reduces to the well-known Chebyshev inequality

(1.2) |an| ≤ 2n−1‖P‖∞.
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Under the assumption that P (1) = 0 or P (−1) = 0, Schur [5] showed that (1.2)
can be replaced by

|an| ≤ 2n−1
(
cos

π

4n

)2n

‖P‖∞.

This result was extended by Rahman and Schmeisser [4] for polynomials with real
coefficients, which have at most n− 1 distinct zeros in (−1, 1).

In L2-norm

‖P‖ = ‖P‖2 =
(∫ 1

−1

|P (x)|2 dx

)1/2

,

Labelle [2] proved that

|ak| ≤ 1 · 3 · 5 · · · (2k − 1)
k!

(
k + 1

2

)1/2
(

[(n− k)/2] + k + 1/2
[(n− k)/2]

)
‖P‖2

for all P ∈ Pn and 0 ≤ k ≤ n, where the symbol [x] denotes as usual the integral
part of x. Equality in this case is attained only for the constant multiplies of the
polynomial

[(n−k)/2]∑
ν=0

(−1)ν(4ν + 2k + 1)
(

k + ν − 1/2
ν

)
Pk+2ν(x),

where Pm(x) denotes the Legendre polynomial of degree m.
Under restriction P (1) = 0, Tariq [6] proved that

|an| ≤ n

n + 1
· (2n)!
2n(n!)2

(
2n + 1

2

)1/2

‖P‖2,

with equality case

P (x) = Pn(x)− 1
n2

n−1∑
ν=0

(2ν + 1)Pν(x).

Also, for k = n− 1, he obtained that

(1.3) |an−1| ≤ (n2 + 2)1/2

n + 1
· (2n− 2)!
2n−1((n− 1)!)2

(
2n− 1

2

)1/2

‖P‖2,

with equality case

P (x) =
2n + 1
n2 + 2

Pn(x)− Pn−1(x) +
1

n2 + 2

n−2∑
ν=0

(2ν + 1)Pν(x).

In the absence of the hypothesis P (1) = 0 the factor (n2+2)1/2/(n+1) appearing
on the right-hand side of (1.3) is to be dropped.

In this paper we will consider more general problem including L2-norm of poly-
nomials with respect to a nonnegative measure on the real line R and using some
restricted polynomial classes.
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2. Main Result

Let dσ(x) be a given nonnegative measure on the real line R, with compact
or infinite support, for which all moments µk =

∫
R xk dσ(x), k = 0, 1, . . . , exist

and are finite, and µ0 > 0. In that case, there exists a unique set of orthonormal
polynomials π(·) = π(·; dσ), k = 0, 1, . . . , defined by

(2.1)
πk(x) = bkxk + ckxk−1 + lower degree terms, bk > 0,

(πk, πm) = δkm, k, m ≥ 0,

where
(f, g) =

∫

R
f(x)g(x) dσ(x) (f, g ∈ L2(R)).

For P ∈ Pn, we define

(2.2) ‖P‖ =
√

(P, P ) =
(∫

R
|P (x)|2 dσ(x)

)1/2

.

The polynomial P (x) =
∑n

ν=0 aνxν ∈ Pn can be represented in the form

P (x) =
n∑

ν=0

ανπν(x),

where
αν = (P, πν), ν = 0, 1, . . . , n.

We note that
an = αnbn, an−1 = αncn + αn−1bn−1.

Since

‖P‖ =

(
n∑

ν=0

|αν |2
)1/2

≥ |αn|,

we have a simple estimate |an| ≤ bn‖P‖. This inequality can be improved for some
restricted classes of polynomials. Because of that, we consider a linear functional
L : Pn → C, such that

(2.3) M =
n∑

ν=0

|Lπν |2 > 0,

and a subset of Pn defined by

Wn = {P ∈ Pn | LP = 0, dg P = n}.

Using a method given by Giroux and Rahman [1] (see also Tariq [6]), we can
prove the following auxiliary result:
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Lemma 2.1. If P ∈ Wn and γ0, γ1, . . . , γn are nonnegative numbers such that
γµ > γν for ν = 0, 1, . . . , µ− 1, µ + 1, . . . , n, then

(2.4)
n∑

ν=0

γν |αν |2 ≤ (γµ − γ)
n∑

ν=0

|αν |2,

where γ is the unigue root of the equation

(2.5)
n∑

ν=0

|Lπν |2
γµ − γν − γ

= 0

in the interval (0, Γ), where

Γ = min
0≤ν≤n

ν 6=µ

(γµ − γν).

Inequality (2.4) is sharp and becomes an equality if and only if P (x) is a constant
multiple of the polynomial

(2.6)
n∑

ν=0

Lπν

γµ − γν − γ
πν(x).

Proof. Let P ∈ Wn. Then

(2.7) LP = L
( n∑

ν=0

ανπν

)
=

n∑
ν=0

ανLπν = 0.

Starting from

n∑
ν=0

γν |αν |2 = γµ

n∑
ν=0

|αν |2 −
n∑

ν=0
ν 6=µ

(γµ − γν)|αν |2

= γµ

n∑
ν=0

|αν |2 −
n∑

ν=0
ν 6=µ

(γµ − γν − γ)|αν |2 − γ

n∑
ν=0
ν 6=µ

|αν |2,

and using (2.7), we have

|αµLπµ|2 =
∣∣∣

n∑
ν=0
ν 6=µ

ανLπν

∣∣∣
2

=
∣∣∣

n∑
ν=0
ν 6=µ

αν(Lπν)(γµ − γν − γ)1/2(γµ − γν − γ)−1/2
∣∣∣
2

≤
n∑

ν=0
ν 6=µ

|αν |2(γµ − γν − γ)
n∑

ν=0
ν 6=µ

|Lπν |2
γµ − γν − γ

.
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Since γ is the unique root of the equation (2.5), we find that

−
n∑

ν=0
ν 6=µ

|αν |2(γµ − γν − γ) ≤ −|αµ|2|Lπµ|2
n∑

ν=0
ν 6=µ

|Lπν |2
γµ − γν − γ

= −γ|αµ|2,

wherefrom
n∑

ν=0

γν |αν |2 ≤ γµ

n∑
ν=0

|αν |2 − γ|αµ|2 − γ

n∑
ν=0
ν 6=µ

|αν |2,

i.e., (2.4).
Equality case is attained when

αν(γµ − γν − γ)1/2 = A
Lπν

(γµ − γν − γ)1/2
(ν = 0, 1, . . . , µ− 1, µ + 1, . . . , n),

where A = const, i.e. when

P (x) =
n∑

ν=0

ανπν(x) = A

n∑
ν=0

Lπν

γµ − γν − γ
πν(x). ¤

Theorem 2.2. If P ∈ Wn then

(2.8) |an| ≤ bn

√
1− 1

M
|Lπn|2 ‖P‖,

where M is given by (2.3). Inequality (2.8) is sharp and becomes an equality if and
only if P (x) is a constant multiple of the polynomial

(2.9) πn(x)− Lπn

M − |Lπn|2
n−1∑
ν=0

(Lπν)πν(x).

Proof. Putting γn = 1 and γν = 0, ν = 0, 1, . . . , n − 1, from (2.5) follows that
γ = |Lπn|2/M . Then (2.4) reduces to

(2.10) |αn|2 ≤
(
1− 1

M
|Lπn|2

)
‖P‖2,

i.e. (2.8), because an = αnbn. Also, then (2.6) becomes (2.9). ¤
Similarly, if we put γk = 1 and γν = 0, ν 6= k, from (2.4) follows

(2.11) |αk|2 ≤
(
1− 1

M
|Lπk|2

)
‖P‖2.
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Since an−1 = αncn + αn−1bn−1, we have

|an−1| ≤ |αn||cn|+ |αn−1||bn−1|.
Using (2.10) and (2.11), for k = n− 1, we can obtain an inequality for |an−1|, but
it is not sharp in general case. However, if cn = 0, we have

(2.12) |an−1| ≤ bn−1

(
1− 1

M
|Lπn−1|2

)1/2

‖P‖.
Precisely, the following result is valid:

Theorem 2.3. Let µ2k−1 =
∫
R x2k−1dσ(x) = 0, k = 1, 2, . . . , and M is given by

(2.3). If P ∈ Wn, then inequality (2.12) holds, with equality case for the constant
multiples of the polynomial

πn−1(x)− Lπn−1

M − |Lπn−1|2
n∑

ν=0
ν 6=n−1

(Lπν)πν(x).

Under conditions of this theorem, for the orthogonal polynomials πk the following
property

πk(−x) = (−1)kπk(x)

holds.
Further, we will consider the simple functional L, defined by LP = P ′(α), where

α is a given number. Similarly, it could be considered the functional L, defined by
LP = P ′(α), etc.

For the functional LP = P (α), we have

M =
n∑

ν=0

|πν(α)|2.

Taking a real α and using the Christoffel-Darboux identity, we find

M =
n∑

ν=0

πν(α)2 = λn+1

(
π′n+1(α)πn(α)− π′n(α)πn+1(α)

)
,

where λn+1 is the coefficient in the recurrence relation for orthonormal polynomials

(2.13) λn+1πn+1(x) = (x− τn)πn(x)− λnπn−1(x), n = 0, 1, . . . , n,

π0(x) = 1/
√

µ0, π−1(x) = 0.

If we put

(2.14) πn(x) = bnxn + cnxn−1 + · · · , bn > 0,

then bn = λn+1bn+1, i.e. bn = b0/(λ1λ2 · · ·λn).
In next sections we will consider the measures of the classical orthogonal poly-

nomials (Gegenbauer, generalized Laguerre and Hermite polynomials).
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3. Gegenbauer Case

Here, we have dσ(x) = (1− x2)λ−1/2dx, λ > −1/2.
Let {Cλ

ν } be the sequence of Gegenbauer polynomials orthogonal with respect to
the measure dσ(x) on (−1, 1). Their generating functions is

(1− 2tx + t2)−λ =
+∞∑
ν=0

Cλ
ν (x)tν , λ 6= 0,

and three-term recurrence relation

(ν + 1)Cλ
ν+1(x) = 2(ν + λ)xCλ

ν (x)− (ν + 2λ− 1)Cλ
ν−1(x),

with Cλ
0 (x) = 1 and Cλ

1 (x) = 2λx.
In the sequel we will also need the formulae

Cλ
ν (1) =

(
ν + 2λ− 1

ν

)
=

(2λ)ν

ν!
and Cλ

ν (−x) = (−1)νCλ
ν (x).

Of interest is the limit behavior of Cλ
ν (x) when λ → 0, given by

(3.1) lim
λ→0

Cλ
ν (x)
λ

=
2
ν

Tν(x), ν = 1, 2, . . . ,

where Tν(x) denotes the Chebyshev polynomial of the first kind.
Using the norm of Cλ

ν ,

hν = ‖Cλ
ν ‖

2
=

λ

(ν + λ)Λ(λ)
Cλ

ν (1), Λ(λ) =
Γ(λ + 1)√

πΓ(λ + 1/2)
,

where Γ is the gamma function, we can obtain the coefficients λn in the correspond-
ing recurrence relation for the orthonormal Gegenbauer polynomials as well as the
coefficients bn in (2.14). Thus,

λn =
1
2

√
n(n + 2λ− 1)

(n + λ)(n + λ− 1)
, bn = 2n

√
Λ(λ)

(λ)n(λ + 1)n

n!(2λ)n
,

where

(λ)n = λ(λ + 1) · · · (λ + n− 1) =
Γ(λ + n)

Γ(λ)
.

It is interesting to consider two cases: α = 1 and α = 0 (The case α = −1 is the
same as the case α = 1).

From Theorem 2.2 follows:
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Corollary 3.1. If P (x) =
∑n

ν=0 aνxν is a polynomial of degree n such that
P (1) = 0, then

(3.2) |an| ≤ 2n+λΓ(n + λ)

√
(n + λ)(2n + 2λ− 1)

2π(n− 1)!(2n + 2λ + 1)Γ(n + 2λ + 1)
‖P‖ ,

where

‖P‖ =
(∫ 1

−1

|P (x)|2 dσ(x)
)1/2

.

The inequality (3.2) reduces to an equality if and only if

P (x) = A
(
Cλ

n(x)− 2(2λ + 1)
n(2n + 2λ− 1)

n−1∑
ν=0

(ν + λ)Cλ
ν (x)

)
,

where Cλ
ν is the Gegenbauer polynomial of degree ν and A = const.

Similarly, from Theorem 2.3 follows:

Corollary 3.2. Under conditions of the above corollary, we have

(3.3) |an−1| ≤ 2n+λ−1Γ(n + λ− 1)

√
qn(λ)(n + λ− 1)(2n + 2λ− 1)

2π(n− 1)!(2n + 2λ + 1)Γ(n + 2λ + 1)
‖P‖ ,

where qn(λ) = (2λ + 1)(n + 2λ) + n(n− 2). Inequality (3.3) becomes an equality if
and only if

P (x) = A
(
Cλ

n−1(x)− 2n(2λ + 1)
(2n + 2λ− 1)qn(λ)

n∑
ν=0

ν 6=n−1

(ν + λ)Cλ
ν (x)

)
,

where A = const.

In particular, for λ = 1/2, these corollaries reduce to the Legendre case, which
was investigated by Tariq [6].

In the Chebyshev case of the first kind (λ = 0), (3.2) and (3.3) reduce to the
inequalities

(3.4) |an| ≤ 2n

√
2π

√
2n− 1
2n + 1

‖P‖

and

(3.5) |an−1| ≤ 2n−1

√
2π

√
2n− 1
2n + 1

‖P‖ ,
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respectively, where

‖P‖ =
(∫ 1

−1

|P (x)|2 dx√
1− x2

)1/2

.

In the absence of the hypothesis P (1) = 0 the factor
√

(2n− 1)/(2n + 1) ap-
pearing on the right-hand side of (3.4) and (3.5) is to be dropped.

Using the limit process (3.1), we obtain the equality case in (3.4) when

P (x) = A

(
Tn(x)− 2

2n− 1

(1
2

+
n−1∑
ν=1

Tν(x)
))

, A = const.

Similarly, the equality in (3.5) is attained for

P (x) = A

(
2n + 1
2n− 1

Tn−1(x)− 2
2n− 1

(1
2

+
n∑

ν=1

Tν(x)
))

,

where A = const.
The case α = 0, i.e. the case with restriction P (0) = 0, can be reduced to

the case of non-restricted class of polynomials of degree n − 1, with the measure
dσ(x) = x2(1− x2)λ−1/2dx.

4. Generalized Laguerre Case

In this case we have dσ(x) = xse−x, s > −1 on (0,+∞).
Using the generalized Laguerre polynomials Ls

n(x), given by

Ls
n(x) =

n∑
ν=0

(−1)ν

(
n

ν

)
(s + ν + 1)n−νxν ,

we can obtain the corresponding orthonormal polynomials πn(x), which satisfy the
three-term recurrence relation (2.13), with

λn =
√

n(n + s) and τn = 2n + s + 1.

The corresponding coefficient bn in (2.14) is given by bn = 1
/ √

n!Γ(n + s + 1).
Taking α = 0, from Theorem 2.2 follows:

Corollary 4.1. If P (x) =
∑n

ν=0 aνxν is a polynomial of degree n such that
P (0) = 0, then

(4.1) |an| ≤ ‖P‖√
(n− 1)!Γ(n + s + 2)

,

where

‖P‖ =
(∫ +∞

0

|P (x)|2 dσ(x)
)1/2

.
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The inequality (4.1) reduces to an equality if and only if

P (x) = A
(
Ls

n(x)− (s + 1)(n− 1)!
n−1∑
ν=0

1
ν!

Ls
ν(x)

)
,

where Ls
ν is the generalized Laguerre polynomial of degree ν and A = const.

It is interesting to mention that we can obtain the inequality (4.1) considering
the non-restricted class of polynomials of degree n − 1, with the measure dσ(x) =
xs+2e−xdx on (0, +∞).

5. Hermite Case

Now, we have dσ(x) = e−x2
dx on (−∞,+∞).

Using the Hermite polynomials Hn, which satisfy the three-term recurrence re-
lation

Hn+1(x) = 2xHn(x)− 2nHn−1(x), n = 1, 2, . . . ,

with H0(x) = 1 and H1(x) = 2x, and ‖Hn‖2 = 2nn!
√

π, we obtain the coefficients
in relations (2.13) and (2.14):

λn =
√

n

2
, τn = 0, bn =

√
2n

n!
√

π
.

It is interesting to consider the case when α = 0. Since H ′
n(x) = 2nHn−1(x) and

H2m(0) = (−1)m (2m)!
m!

, H2m+1(0) = 0,

we obtain the following result:

Corollary 5.1. Let P (x) =
∑n

ν=0 aνxν and

‖P‖ =
(∫ +∞

−∞
|P (x)|2e−x2

dx

)1/2

.

1◦ If n is an even number, then

|an| ≤
√

2n

n!
√

π
· n

n + 1
‖P‖

and

(5.1) |an−1| ≤
√

2n−1

(n− 1)!
√

π
‖P‖ .
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2◦ If n is an odd number, then

(5.2) |an| ≤
√

2n

n!
√

π
‖P‖

and

|an−1| ≤
√

2n−1

(n− 1)!
√

π
· n− 1

n
‖P‖ .

Notice that we have not got any improvements in the inequalities (5.1) and (5.2)
in comparison with the corresponding inequalities in the class of all polynomials of
degree at most n, although the restriction P (0) = 0 has been used.
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EKSTREMALNI PROBLEMI ZA KOEFICIJENTE

ALGEBARSKIH POLINOMA

Gradimir V. Milovanović i Lidija Z. Marinković

U radu se razmatraju ekstremalni problemi za koeficijente polinoma P (x) =
∑n

ν=0
aνxν .

Drugim rečima, pod izvesnim restrikcijama klase svih polinoma stepena od n, dobijaju se gornje
granice za |P (k)(0)|, koje uključuju L2-normu polinoma P u odnosu na neku nenegativnu meru
na realnoj pravoj.


