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ON PROPERTIES OF SOME NONCLASSICAL
ORTHOGONAL POLYNOMIALS

G. V. Milovanovié¢, P. M. Rajkovi¢ and Z. M. Marjanovié

ABSTRACT. [In this paper we consider some sequences of nonclassical orthogonal poly-
nomials whick were studied in the papers [3], [4] and [6]. We find some new relations
which they satisfy and discuss their zeros.

1. Polynomials of the Laguerre type
We consider the generalized Laguerre functional

+ 00
IMUﬂ=f P(z)z®e™* dr, s€Np, I'” =1,
0

and the monic generalized Laguerre polynomials {ﬂf }[z}}, which satisfy

the following three-term recurrence relation

(1) I8L(2) = (z - 2n— s = NIP(2) = n(n + )LL), (),
@) =0, I¥(=)=1

These polynomials can be expressed in the form

(1.2) LiNz) = i[—t]“"‘(:){k + 54 1)p-kz¥,

k=0

where
(m)s=m(m+1)---(m+s-1), (m) = 1.

We introduce the functional A, by

Adf) = f(a),
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and define the functional I, by
I[=I+ﬂaﬂt CER-

By {Ln(z;c)} we denote the corresponding sequence of orthogonal polyno-
mials of the Laguerre type. Such polynomials were expressed as a linear
combination of LLu]{m) and ILE}{:&] (see [6]). In the same paper, it was
proved that the n-th polynomial of this sequence can be expressed in the
form

(13)  La(ze) = (—ll“ﬂ-!kzﬂ(_”ki * k{(lkici;: = (Dmk

In this section we prove some properties of these polynomials.

Denoting the monic polynomials of the Laguerre type by En[::;c}, we
yield |
(1.3") Lo(z;e)=(1+ nc}z,.{a:; e), c# —%, n e N.
From (1.3) we see that

deg Ln(z;-1/n)=n—1 and Lu(z;—=1/n) = —nlp_1(x;—1/n).

Hence, for each n € N, the sequences { L, (z; -1 [n)}"", are quasi-orthogonal
of the order one with respect to Iy, with ¢ = —1/n, and the next reccurence
relations are not valid for Ly(z;—1/n) and its neighbours.

Theorem 1.1. The polynomial L,(z;¢) can be ezpressed in the form

(1.4) Lu(zie) = () + AL, (2),
where . {
-}lﬂ = 1 M‘
- 1+ nc

i.€., { E“(z; c}} is quasi-orthogonal of the order one with respect to the fune-
tional 11},

Proof. Suppose that A, exists such that (1.4)is true. Using (1.2) and (1.3)—
(1.3'), for the coefficient of the term z* we yield

1+k(1+e(n+1)) = nnt+l)

1+ ne n—-k n-k
After some computation we find A, which does not depend on k. O

A

Using the previous relations we can prove the three-term recurrence rela-
tion for polynomials L,(z;c):
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Theorem 1.2. The sequence { Lu(z;c)} satisfies the three-term recurrence
relation

En-{-—l(z; C} = [:ﬂ - ﬂ'n]fm[z; c] - ﬁuzu-l {I; ':}1

where

_2n+1+4n(n+1)c+ n(n+ 1)(2n + 1)c?

o (T+ne)(1+ (n + De)) ’
B, = n? (14 (n—1)e}l+(n+ 1))
" (1+ ne)? )

The norm of Ly(z;c) is given by

IIE“[-"K; c}ni = ﬂoﬁl . ‘.ﬂﬂ = (?1!}2 % .

Theorem 1.3. The zeros of E“[m; ¢) are real, simple and positive, excepl
for ¢ < =1/n when one of them is negative. Denoting these zeros by

{nl < Cﬂ.! Lo L (".".1
we have, for ¢ < —2[(n + 1), that the lowest zero (,,; satisfies

- C!'I-ﬂ.

|

(15)

< Cﬂfl <0 A |Cnl| < |{ﬂ2t‘

Proof. Let (.;, j = k,...,n, be positive zeros of odd multiplicity. Defining
T -
g{z) = [I(z — (unj), we see that the polynomial zq(z)L,(z;¢c) does not

i=k
change sign for z > 0. Hence

- +m -~
Iizg(z)L,(z;¢)) = fﬂ zq(z)Ly(z;c)e™ dx # 0.

Since {En[a:;c]} is quasi-orthogonal of the order one, with respect to the
functional IV, it follows deg g(z) > n — 1.

From (1.3) we have that L,(0;¢) = (—=1)*n!/(1 + nc). Hence

(=1)", fore > —1/n,

Sigl'l Ln{ni C} = { {_1]11+]‘ fore< —-1/n.
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Since Ly(z;c) = H{z = Cni) and L.(0;¢) = (-1)" H {ni, we conclude that

i=1
all zeros are positive for ¢ > —1/n, and only one ﬂf them is negative for
¢ < —=1/n. Also, differentiating (1.3) with respect to z, we find

P (0:0) = (i m 2t e(nt 1)
Lu{ﬂ!_c}_[ 1] 9 1 + ne *

Thus, for ¢ < =2/(n = 1), it is L/, (0;¢)/L,(0;c) > 0. Because of

L Ly (z;¢) 1
Lﬂ{z‘ c) ; = (ni’

we have E{ 1/Cai) > 0. Then, from =1/(, > E{l,f(m] we yield

i=2

- 1 1
1 n-1 and

_Cﬂ.! > Cﬂ.n _"cnl > C:!

from which follows (1.5). O

EXAMPLE 1.1. The polynomial E:;[.r; =23~ ”3:2+ E 5‘-, has positive zeros:
xyp = 0. 11974? ;-:2 ~ 2.06541, z3 =~ 6.06483, but the polynomial Lay(z;-2) =
23— 222 4 842 4 & has one negative zero: 21 & —0.103301, 23 ~ 1.95187, z3 =~

595]43

Theorem 1.4. The zeros of L{”[.’s} and Ln_l{x] interlace the zeros of the

polynomial Ln{:z.c}.
Proof. Let :r.f:t],, i=1,...,m, be the zeros of Eﬂ}[m) Then from (1.4), we

have L(z\1};¢) = A0, ¢ zit)) and Lo(all)y150) = AL, (a0),,). Since

1
(1 1 '[1} -

between z,, ; and z,, ;,, there exists an unique zero of L{ ), (), we conclude

that L“]I{z“}) and L [;1:“ ,+1] must hawe the opposite signs. Hence, a

n=1

zero of L,(z;c) exists in the interval {z“ <y m“ =+l) fori=1,...,n—1.
In the same way, we can conclude that L, (z;c) has a zero in the interval

(:::-]—111' E}‘lﬂ-l]{:-l ”!“'_2]' O

Remark. In [8] it was proved that Ln(z) and Ln_i(z) interlace the zeros of
Lu(z;c).
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2. Polynomials of the Jacobi type

In this section we consider the functional
1
1“’~“}(P)=f 2?(1 — 2)*P(z)dz, f,a> -1,
o .

and the monic Jacobi polynomials {§%"“)(z)} orthogonal with respect to

the functional IA}, Such polynomials can be expressed by the sumn

(=1)"n! = (-1) (B+V)n &

Ay 1)%
Q=) = [n+ﬂ+ﬁ+”“;k!{ —i(n + et B D

(B4 1)k

and they satisfy the three-term recurrence relation

QL) = (2 -a,)QP N (2) - 5,QY 7 (x), QY (z) =0, QY (=) =1,

where
n(n 4+ 3)
Gy = Y4l — Tny Tn = m y
N (n=1)(f+n-1) n(f + n)
b = {‘2(2n+n+ﬁ— ) - an - 22ntatp+1) M

Let I, = I%2) £ e Ay, ¢ € R, be a new functional and let {Piu'a}{z; c| U]}
be the corresponding monic orthogonal polynomials of the Jacob: type. In
[6] it was proved that the n-th polynomial can be expressed by

- 1+k(1+e(n+1)(n+a))(n
(0,)f ... = (_1}pl _11k k-
Pﬂ. [.‘B,CI“‘) [ l] ﬂ'gﬂ( 1] (k+1)!{ﬂ+ﬂ'+k+ l]n—k k &
Denoting the monic polynomials of the Jacobi type by {ﬁ,ﬁu'“](m; c|0)},
we have

PLO(z;¢|0) = (14 n(n + a)e) P2 (z;¢]0), ¢ # n € N.

|
B n{n + a)’

Hence it is deg P,',{ln‘“}(m; —~m |0) = n — 1 and the next reccurence
relations are not valid for that polynomial and its neighbours.

Like in Section 1 we can prove the following results:
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Theorem 2.1. The pﬂiyrmmim' ﬁ,{;ﬁ'“](z;clﬂ} can be expressed in the form
P (2;e]0) = QLY (z) + MQL (=),

where

ni{n + a) 14+(nt+l)(nt+a+l)e

M eI tadD) I+ uniae

Theorem 2.2. The sequence {ﬁn'“](m;c[ﬂ)} satisfies the three-term re-
currence relation

PO (1¢]0) = (2 — an) PO (2;¢]0) = B, POV (25¢| 0),

n-1

where

An

Oy = Gy + 'Aﬂ-l-] —Any, Bn=by_ by 1
—_

Theorem 2.3. All zeros of ﬁ,{f ’a}[m; c| 0} are real, simple and positive, with
ezxception one of them for e < —1/(n(n+a)). Furthermore, forec < —2f((n+
1)(n + a)) the inequalities (1.5) hold.

EXAMPLE 2.1. The pnl_‘mumlal P “’( ;110) = 2% — Fa? + Bz - g, has
all zeros in (0,1): 21 =~ 0.0123940, 7 ~ 0450337, =3 ~ 0.878268, but the

polynomial P ﬂm(m -2]0) = £° i% ? g-g:: + 3{-{;, has one negative zero:
£y 2= —0.103301, 2 == 1.95187, z3 == 5.95143.

Theorem 2.4. The zeros af@!f‘a}(z] and Q“ ﬂ][:l:} interlace the zeros ofthe
polynomial P ]'[:t: e|0).

Remark. lt was proved the interlacing property for Q\C*™)(z) and @E?f;} (z) with
respect to P, *ﬂj{z c|0) (see [8]).

3. Polynomials of the Legendre type
The sequence of Legendre polynomials { P,(z)} is orthogonal with respect

to the functional . :
L(P) =/ P(z) ds
-1

This sequence satisfies the three-term recurrence relation

(n4+ 1)Pupr(z) = (2n+ )z Py(z) — n P (z),
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with initial values P_;(z) = 0 and Fy(z) = 1. The polynomial P,(z) can be
expressed in the form

o= S0 (1) ()

=0
Let
Iﬂ=L+C{A—‘!‘+‘ﬁ]}1 CER}

be a new functional, and {P,(z;c| — 1,1)} the corresponding orthogonal
polynomials of the Legendre type. Then the moments i, = [3(z") are given

by
0 for odd n,
.F:'fn = 2

m + 2¢c for even mn.

The polynomial P.(z;e|—1,1) can be expressed in a determinant form,

flo b ... gy
i jig Fin
Pyzie|-1,1)=det| :
.&n—'l .ﬁn }-5211—1
1 T "

Using a method as in Gautschi and Milovanovié [5], we determine
ﬂ-u = d‘et[}]i+j]i,j=ﬂ,.,.,u—] .

It is known that for determinants

1 "
H“ =det[2i+2j_ﬂ ]'l-.j‘--_—l L] Hﬂ = l'l
holds
(2n — 2)112 .
— H“_ =..].‘4,... .
= e (=@ =g " "
Introducing
1 (]
Hu[':] = [2_:'+_1‘J'-_3 + E]i,j:l '
we obtain
! 1 1 17
—c 1 ]T E%'—T
1 i 1
Hue)=|7¢ 3 5 et
1 1 .
L—=C 3557 Tatl In—3 -
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Lemma 3.1. We have
2
Hn{ﬂ) = (1 + {-'{ .;}) Hn.

Proof. For H,(c) we have
Hn{c] = H'II- + EDn\

where
[ 0 1 1 1 7
1 1
"1 } lﬁ ‘.‘.u‘—l
D,=|"1 3 5 Tt
) 1 1 1
o -1 In—1 Inti in—-3 -

We can prove that D, = [32“ ] H,, n € N. Subtracting the last row in D,
from all others, except the first one, we obtain

0 2n-=1 Zn41 -+ 4n—37
0 1 3 T
-
(2n = 2)! 0 1 1
D, = 3 5 Int1
"T(@2n-1)---(4n—3) *
| —1 1 1 1 ]

Also, subtracting the last column from all others, except the first one, we
obtain
(2n — 2)!12
(2n—1)2---(4n — 5)%(4n —

D, = 3}{{471“’3]!{:;—1 +Dﬂ-]}1

from which, by induction, we finish the proof. O

Lemma 3.2. If
Hi(c) = det [ggz=g +¢]i,_,»  Hn=H(0),
then
Hi(e)=[1+ C{h;l]] H, n=12....
Thus, B
A =8u[14 () [14+ (")l
where

l&n = dEt[L(zi-l-j]]i,j:D,...fu—l .
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Theorem 3.3. The polynomials P,(z;e| — 1, 1) satisfly the following three-
term recurrence relation

(n+1) (1 + (3)e) Pasr(zie]=1,1) = (2n+1) (1 + ("}")c) 2 Pu(z;c] - 1,1)
—n (14 ("1?)e) Puca(ase] = 1,1).

Proof. By {ﬁ’n{z; ¢|—1,1)} we denote the sequence of monic polynomials of
the Legendre type. According to the property (zf,¢) = (f,zg) of the inner
product defined by the functional Is: (f,¢) = I4(fg), we conclude (cf. [2]
and [9]) that this sequence satisfies a three-term reccurence relation of the
form

Pupi(zie| = 1,1) = 2Pu(zie = 1,1) = BuPua(zie| - 1,1),
where (see [3])
- in—l II":Ilbh-.u.+'l
A
Knowing a relation for the monic Legendre polynomials and the determinant
Ay, we yield

B

ﬁn.'.j(a:;cl -1L,1)= zP,(z;c |- 1,1)

_ n? [1+{“;]}c](l+[“f]c},‘ o
4n? — 1 {1 + (’El)c}{l + (ﬂ-{l)c] Pu—l[ ¥ I 1-,. 1].

Putting

¥ 'l -
@)l 5 (zicl—1,1),

Pn[x;cl" 1!1}= W n

we finish the proof. O

By induction and using the three-term recurrence relation, we obtain:

Theorem 3.4. The polynomial P,(z;¢|—1,1) can be ezpressed in the form

[n/2] :
1 n\ (2n - 2k n e
Pulziel=11) =5 E(_”k(ss)( n ) {1 ¥ ((z) ! zk) c}m *
k=0

where n = 2,3,....
Remark. This formula was derived in [6] with a mistake.

The last formula shows that the sequence {Fﬂ[z; c|-1, l}} has a degen-
erated property in the sence that is

ﬁ“{m;—{;]"l | = 1,1} = Po_a(z; —(';)‘] = 1,1).



110 G. V. Milovanovié, P. M. Rajkovié and Z. M. Marjanovic

Theorem 3.5. The polynomials P,,(z;c|— 1,1) are quasi-orthogonal of the
second order with respect to the functional

JAN(p) = /1 P(z)(1 — 2%) dz.
-1

The polynomial P,(x;c| — 1,1) has at least n — 2 different zeros with odd
multiplicity in (—1,1).

Proof. Because of the orthogonality, we have for any polynomial p(z) of
degree k (k < n — 3) that
Is(Pu(z;c| = 1, )p(z)(1 — 2*)) = 0,

ie.,
1
f Pu(zic| = 1,1)p(z)(1 - 2*) dz = 0.
-1

So, we yield quasi-orthogonality of the order 2. Finally, let 2,1, 2,2,... ,Zux
be all distinct zeros of P, (z;c|—1,1) with odd multiplicity and which are in
(—1,1). If weintroduce the node polynomial p(z) = (z—z1 J(z—2n2) - - (z—
Zak), then the polynomial P, (x;c|— 1,1)p(z)(1 = z?) does not change sign
in (—1,1). Therefore, '

1
f Pu(z;e| = 1,)p(z)(1 — z?) dz £ 0.
1

Because of that, we conclude that degp(z)>n—-2. O
EXAMPLE 3.2. The polynomial

Py(zic] = 1,1) = 5(1 +3e)=° - 3(1 + 5e)z,

- = 4, /30 +5e)
B=00 2 =2 e

All zeros of Py(z;¢|—1,1) are in (=1,1) if e > =1/3. For ¢ < —1/3, two of them
are out of (=1,1).

has the zeros

Remark. According to Favard’s theorem (sec [2]) there are exist the weight distri-
butions w;(z), 1 = 1,2, 3, corresponding to the previous functionals J;:

+ 00
J(P) -:.f P(z) dw;(z), i=1,2,3
These distributions are (see [3])

un(z) = ™" +eb(z), wa(z) = (1-2)% +eb(z), wa(z) =1+ec(b(z - 1)+6(x+1)),

where &(z) is the Dirac’s delta function.
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