ON PROPERTIES OF SOME NONCLASSICAL ORTHOGONAL POLYNOMIALS

G. V. Milovanović, P. M. Rajković and Z. M. Marjanović

ABSTRACT. In this paper we consider some sequences of nonclassical orthogonal polynomials which were studied in the papers [3], [4] and [6]. We find some new relations which they satisfy and discuss their zeros.

1. Polynomials of the Laguerre type

We consider the generalized Laguerre functional

$$I^{(s)}(P) = \int_0^{+\infty} P(x)x^s e^{-x} dx, \quad s \in \mathbb{N}_0, \quad I^{(0)} = I,$$

and the monic generalized Laguerre polynomials $\{\widehat{L}_n^{(s)}(x)\}$, which satisfy the following three-term recurrence relation

(1.1)
$$\widehat{L}_{n+1}^{(s)}(x) = (x - 2n - s - 1)\widehat{L}_{n}^{(s)}(x) - n(n+s)\widehat{L}_{n-1}^{(s)}(x),$$
$$\widehat{L}_{-1}^{(s)}(x) = 0, \quad \widehat{L}_{0}^{(s)}(x) = 1.$$

These polynomials can be expressed in the form

(1.2)
$$\widehat{L}_{n}^{(s)}(x) = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} (k+s+1)_{n-k} x^{k},$$

where

$$(m)_s = m(m+1)\cdots(m+s-1), \qquad (m)_0 = 1.$$

We introduce the functional Δ_a by

$$\Delta_a(f) = f(a),$$

Received 22.07.1995

1991 Mathematics Subject Classification: 33C45

Supported by Grant 0401A of RFNS through Math. Inst. SANU

and define the functional I_1 by

$$I_1 = I + c\Delta_0, \quad c \in \mathbb{R}.$$

By $\{L_n(x;c)\}$ we denote the corresponding sequence of orthogonal polynomials of the *Laguerre type*. Such polynomials were expressed as a linear combination of $L_n^{(0)}(x)$ and $xL_n^{(2)}(x)$ (see [6]). In the same paper, it was proved that the *n*-th polynomial of this sequence can be expressed in the form

(1.3)
$$L_n(x;c) = (-1)^n n! \sum_{k=0}^n (-1)^k \frac{1 + k(1 + c(n+1))}{(k+1)!} \binom{n}{k} x^k.$$

In this section we prove some properties of these polynomials.

Denoting the monic polynomials of the Laguerre type by $\widehat{L}_n(x;c)$, we yield

(1.3')
$$L_n(x;c) = (1+nc)\hat{L}_n(x;c), \quad c \neq -\frac{1}{n}, \quad n \in \mathbb{N}.$$

From (1.3) we see that

$$\deg L_n(x;-1/n) = n-1$$
 and $L_n(x;-1/n) = -nL_{n-1}(x;-1/n)$.

Hence, for each $n \in \mathbb{N}$, the sequences $\{\widehat{L}_{\nu}(x;-1/n)\}_{\nu=0}^{\infty}$ are quasi-orthogonal of the order one with respect to I_1 , with c=-1/n, and the next recourence relations are not valid for $L_n(x;-1/n)$ and its neighbours.

Theorem 1.1. The polynomial $\hat{L}_n(x;c)$ can be expressed in the form

(1.4)
$$\widehat{L}_n(x;c) = \widehat{L}_n^{(1)}(x) + \lambda_n \widehat{L}_{n-1}^{(1)}(x),$$

where

$$\lambda_n = n \, \frac{1 + (n+1)c}{1 + nc},$$

i.e., $\{\widehat{L}_n(x;c)\}$ is quasi-orthogonal of the order one with respect to the functional $I^{(1)}$.

Proof. Suppose that λ_n exists such that (1.4) is true. Using (1.2) and (1.3) – (1.3'), for the coefficient of the term x^k we yield

$$\frac{1+k(1+c(n+1))}{1+nc}\cdot\frac{n}{n-k}=\frac{n(n+1)}{n-k}-\lambda_n.$$

After some computation we find λ_n which does not depend on k. \square

Using the previous relations we can prove the three-term recurrence relation for polynomials $\hat{L}_n(x;c)$:

Theorem 1.2. The sequence $\{\hat{L}_n(x;c)\}$ satisfies the three-term recurrence relation

$$\widehat{L}_{n+1}(x;c) = (x - \alpha_n)\widehat{L}_n(x;c) - \beta_n\widehat{L}_{n-1}(x;c),$$

where

$$\alpha_n = \frac{2n+1+4n(n+1)c+n(n+1)(2n+1)c^2}{(1+nc)(1+(n+1)c))},$$

$$\beta_n = n^2 \frac{(1+(n-1)c)(1+(n+1)c)}{(1+nc)^2}.$$

The norm of $\widehat{L}_n(x;c)$ is given by

$$\|\widehat{L}_n(x;c)\|^2 = \beta_0 \beta_1 \cdots \beta_n = (n!)^2 \frac{1 + (n+1)c}{1 + nc}.$$

Theorem 1.3. The zeros of $\widehat{L}_n(x;c)$ are real, simple and positive, except for c < -1/n when one of them is negative. Denoting these zeros by

$$\zeta_{n1} < \zeta_{n2} < \cdots < \zeta_{nn}$$

we have, for c < -2/(n+1), that the lowest zero ζ_{n1} satisfies

Proof. Let ζ_{nj} , $j=k,\ldots,n$, be positive zeros of odd multiplicity. Defining $q(x)=\prod_{j=k}^n(x-\zeta_{nj})$, we see that the polynomial $xq(x)\widehat{L}_n(x;c)$ does not change sign for x>0. Hence

$$I_1(xq(x)\widehat{L}_n(x;c)) = \int_0^{+\infty} xq(x)\widehat{L}_n(x;c)e^{-x} dx \neq 0.$$

Since $\{\widehat{L}_n(x;c)\}$ is quasi-orthogonal of the order one, with respect to the functional $I^{(1)}$, it follows deg $q(x) \ge n - 1$.

From (1.3) we have that $\widehat{L}_n(0;c) = (-1)^n n!/(1+nc)$. Hence

$$\operatorname{sign} \widehat{L}_n(0;c) = \begin{cases} (-1)^n, & \text{for } c > -1/n, \\ (-1)^{n+1}, & \text{for } c < -1/n. \end{cases}$$

Since $\widehat{L}_n(x;c) = \prod_{i=1}^n (x - \zeta_{ni})$ and $\widehat{L}_n(0;c) = (-1)^n \prod_{i=1}^n \zeta_{ni}$, we conclude that all zeros are positive for c > -1/n, and only one of them is negative for c < -1/n. Also, differentiating (1.3) with respect to x, we find

$$\widehat{L}'_n(0;c) = (-1)^{n+1} \frac{n!n}{2} \cdot \frac{2 + c(n+1)}{1 + nc}.$$

Thus, for c < -2/(n=1), it is $\widehat{L}'_n(0;c)/\widehat{L}_n(0;c) > 0$. Because of

$$\frac{\widehat{L}'_n(x;c)}{\widehat{L}_n(x;c)} = \sum_{i=1}^n \frac{1}{x - \zeta_{ni}},$$

we have $\sum_{i=1}^{n} (-1/\zeta_{ni}) > 0$. Then, from $-1/\zeta_{n1} > \sum_{i=2}^{n} (1/\zeta_{ni})$, we yield

$$\frac{1}{-\zeta_{n1}} > \frac{n-1}{\zeta_{nn}} \quad \text{and} \quad \frac{1}{-\zeta_{n1}} > \frac{1}{\zeta_{n2}},$$

from which follows (1.5).

EXAMPLE 1.1. The polynomial $\widehat{L}_3(x;1) = x^3 - \frac{11}{4}x^2 + \frac{27}{2}x - \frac{3}{2}$, has positive zeros: $x_1 \approx 0.119747$, $x_2 \approx 2.06541$, $x_3 \approx 6.06483$, but the polynomial $\widehat{L}_3(x;-2) = x^3 - \frac{59}{5}x^2 + \frac{54}{5}x + \frac{6}{5}$, has one negative zero: $x_1 \approx -0.103301$, $x_2 \approx 1.95187$, $x_3 \approx 5.95143$.

Theorem 1.4. The zeros of $\widehat{L}_n^{(1)}(x)$ and $\widehat{L}_{n-1}^{(1)}(x)$ interlace the zeros of the polynomial $\widehat{L}_n(x;c)$.

Proof. Let $x_{m,i}^{(1)}$, $i=1,\ldots,m$, be the zeros of $\widehat{L}_{m}^{(1)}(x)$. Then from (1.4), we have $\widehat{L}_{n}(x_{n,i}^{(1)};c) = \lambda_{n}\widehat{L}_{n-1}^{(1)}(x_{n,i}^{(1)})$ and $\widehat{L}_{n}(x_{n,i+1}^{(1)};c) = \lambda_{n}\widehat{L}_{n-1}^{(1)}(x_{n,i+1}^{(1)})$. Since between $x_{n,i}^{(1)}$ and $x_{n,i+1}^{(1)}$ there exists an unique zero of $\widehat{L}_{n-1}^{(1)}(x)$, we conclude that $\widehat{L}_{n-1}^{(1)}(x_{n,i}^{(1)})$ and $\widehat{L}_{n-1}^{(1)}(x_{n,i+1}^{(1)})$ must have the opposite signs. Hence, a zero of $\widehat{L}_{n}(x;c)$ exists in the interval $(x_{n,i}^{(1)},x_{n,i+1}^{(1)})$ for $i=1,\ldots,n-1$.

In the same way, we can conclude that $\widehat{L}_n(x;c)$ has a zero in the interval $(x_{n-1,i}^{(1)}, x_{n-1,i+1}^{(1)})$ $(i = 1, \ldots, n-2)$. \square

Remark. In [8] it was proved that $\widehat{L}_n(x)$ and $\widehat{L}_{n-1}(x)$ interlace the zeros of $\widehat{L}_n(x;c)$.

2. Polynomials of the Jacobi type

In this section we consider the functional

$$I^{(\beta,\alpha)}(P) = \int_0^1 x^{\beta} (1-x)^{\alpha} P(x) dx, \qquad \beta, \alpha > -1,$$

and the monic Jacobi polynomials $\{\widehat{Q}_n^{(\beta,\alpha)}(x)\}$ orthogonal with respect to the functional $I^{(\beta,\alpha)}$. Such polynomials can be expressed by the sum

$$\widehat{Q}_n^{(\beta,\alpha)}(x) = \frac{(-1)^n n!}{(n+\alpha+\beta+1)_n} \sum_{k=0}^n \frac{(-1)^k}{k!(n-k)!} (n+\alpha+\beta+1)_k \frac{(\beta+1)_n}{(\beta+1)_k} x^k,$$

and they satisfy the three-term recurrence relation

$$\widehat{Q}_{n+1}^{(\beta,\alpha)}(x) = (x-a_n) \widehat{Q}_{n}^{(\beta,\alpha)}(x) - b_n \widehat{Q}_{n-1}^{(\beta,\alpha)}(x), \quad \widehat{Q}_{-1}^{(\beta,\alpha)}(x) = 0, \quad \widehat{Q}_{0}^{(\beta,\alpha)}(x) = 1,$$

where

$$\begin{split} a_n &= \gamma_{n+1} - \gamma_n, \qquad \gamma_n = \frac{n(n+\beta)}{2n+\alpha+\beta}, \\ b_n &= \Big\{ \frac{(n-1)(\beta+n-1)}{2(2n+\alpha+\beta-1)} - a_n \Big\} \gamma_n - \frac{n(\beta+n)}{2(2n+\alpha+\beta+1)} \gamma_{n+1}. \end{split}$$

Let $I_2 = I^{(0,\alpha)} + c\Delta_0$, $c \in \mathbb{R}$, be a new functional and let $\{P_n^{(0,\alpha)}(x;c \mid 0)\}$ be the corresponding monic orthogonal polynomials of the *Jacobi type*. In [6] it was proved that the *n*-th polynomial can be expressed by

$$P_n^{(0,\alpha)}(x;c\,|\,0) = (-1)^n n! \sum_{k=0}^n (-1)^k \frac{1+k(1+c(n+1)(n+\alpha))}{(k+1)!(n+\alpha+k+1)_{n-k}} \binom{n}{k} x^k.$$

Denoting the monic polynomials of the Jacobi type by $\{\widehat{P}_n^{(0,\alpha)}(x;c\,|\,0)\}$, we have

$$P_n^{(0,\alpha)}(x;c\,|\,0) = (1+n(n+\alpha)c)\widehat{P}_n^{(0,\alpha)}(x;c\,|\,0), \quad c \neq -\frac{1}{n(n+\alpha)}, \quad n \in \mathbb{N}.$$

Hence it is $\deg P_n^{(0,\alpha)}(x;-\frac{1}{n(n+\alpha)}|0)=n-1$ and the next reccurence relations are not valid for that polynomial and its neighbours.

Like in Section 1 we can prove the following results:

Theorem 2.1. The polynomial $\widehat{P}_n^{(0,\alpha)}(x;c|0)$ can be expressed in the form

$$\widehat{P}_{n}^{(0,\alpha)}(x;c\,|\,0) = \widehat{Q}_{n}^{(1,\alpha)}(x) + \lambda_{n} \widehat{Q}_{n-1}^{(1,\alpha)}(x),$$

where

$$\lambda_n = \frac{n(n+\alpha)}{(2n+\alpha)(2n+\alpha+1)} \cdot \frac{1+(n+1)(n+\alpha+1)c}{1+n(n+\alpha)c}.$$

Theorem 2.2. The sequence $\{\widehat{P}_n^{(0,\alpha)}(x;c\,|\,0)\}$ satisfies the three-term recurrence relation

$$\widehat{P}_{n+1}^{(0,\alpha)}(x;c\,|\,0) = (x-\alpha_n)\widehat{P}_n^{(0,\alpha)}(x;c\,|\,0) - \beta_n\widehat{P}_{n-1}^{(0,\alpha)}(x;c\,|\,0),$$

where

$$\alpha_n = a_n + \lambda_{n+1} - \lambda_n, \quad \beta_n = b_{n-1} \frac{\lambda_n}{\lambda_{n-1}}.$$

Theorem 2.3. All zeros of $\widehat{P}_n^{(0,\alpha)}(x;c|0)$ are real, simple and positive, with exception one of them for $c < -1/(n(n+\alpha))$. Furthermore, for $c < -2/((n+1)(n+\alpha))$ the inequalities (1.5) hold.

EXAMPLE 2.1. The polynomial $\widehat{P}_{3}^{(0,0)}(x;1\,|\,0) = x^3 - \frac{27}{20}x^2 + \frac{21}{50}x - \frac{1}{200}$, has all zeros in (0,1): $x_1 \approx 0.0123940$, $x_2 \approx 0.459337$, $x_3 \approx 0.878268$, but the polynomial $\widehat{P}_{3}^{(0,0)}(x;-2\,|\,0) = x^3 - \frac{45}{34}x^2 + \frac{33}{85}x + \frac{1}{340}$, has one negative zero: $x_1 \approx -0.103301$, $x_2 \approx 1.95187$, $x_3 \approx 5.95143$.

Theorem 2.4. The zeros of $\widehat{Q}_n^{(1,\alpha)}(x)$ and $\widehat{Q}_{n-1}^{(1,\alpha)}(x)$ interlace the zeros of the polynomial $\widehat{P}_n^{(0,\alpha)}(x;c|0)$.

Remark. It was proved the interlacing property for $\widehat{Q}_n^{(0,\alpha)}(x)$ and $\widehat{Q}_{n-1}^{(0,\alpha)}(x)$ with respect to $\widehat{P}_n^{(0,\alpha)}(x;c\,|\,0)$ (see [8]).

3. Polynomials of the Legendre type

The sequence of Legendre polynomials $\{P_n(x)\}$ is orthogonal with respect to the functional

$$L(P) = \int_{-1}^{1} P(x) dx.$$

This sequence satisfies the three-term recurrence relation

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x),$$

with initial values $P_{-1}(x) = 0$ and $P_0(x) = 1$. The polynomial $P_n(x)$ can be expressed in the form

$$P_n(x) = \frac{1}{2^n} \sum_{i=0}^{\lfloor n/2 \rfloor} (-1)^i \binom{n}{i} \binom{2n-2i}{n} x^{n-2i}.$$

Let

$$I_3 = L + c(\Delta_{-1} + \Delta_1), \qquad c \in \mathbb{R},$$

be a new functional, and $\{P_n(x; c \mid -1, 1)\}$ the corresponding orthogonal polynomials of the *Legendre type*. Then the moments $\tilde{\mu}_n = I_3(x^n)$ are given by

$$\tilde{\mu}_n = \begin{cases} 0 & \text{for odd } n, \\ \frac{2}{n+1} + 2c & \text{for even } n. \end{cases}$$

The polynomial $P_n(x; c \mid -1, 1)$ can be expressed in a determinant form,

$$P_n(x; c \mid -1, 1) = \det \begin{vmatrix} \tilde{\mu}_0 & \tilde{\mu}_1 & \dots & \tilde{\mu}_{n-1} \\ \tilde{\mu}_1 & \tilde{\mu}_2 & & \tilde{\mu}_n \\ \vdots & & & \\ \tilde{\mu}_{n-1} & \tilde{\mu}_n & & \tilde{\mu}_{2n-1} \\ 1 & x & & x^n \end{vmatrix}.$$

Using a method as in Gautschi and Milovanović [5], we determine

$$\tilde{\Delta}_n = \det[\tilde{\mu}_{i+j}]_{i,j=0,\dots,n-1}.$$

It is known that for determinants

$$H_n = \det \left[\frac{1}{2i+2j-3} \right]_{i,j=1}^n, \quad H_0 = 1,$$

holds

$$H_n = \frac{(2n-2)!!^2}{(2n-1)^2 \cdots (4n-5)^2 (4n-3)} H_{n-1}, \quad n = 3, 4, \dots$$

Introducing

$$H_n(c) = \left[\frac{1}{2i+2j-3} + c\right]_{i,j=1}^n$$

we obtain

$$H_n(c) = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ -c & 1 & \frac{1}{3} & & \frac{1}{2n-1} \\ -c & \frac{1}{3} & \frac{1}{5} & & \frac{1}{2n+1} \\ \vdots & & & & \\ -c & \frac{1}{2n-1} & \frac{1}{2n+1} & & \frac{1}{4n-3} \end{bmatrix}.$$

Lemma 3.1. We have

$$H_n(c) = \left(1 + c\binom{2n}{2}\right) H_n.$$

Proof. For $H_n(c)$ we have

$$H_n(c) = H_n + cD_n,$$

where

$$D_n = \begin{bmatrix} 0 & 1 & 1 & \cdots & 1 \\ -1 & 1 & \frac{1}{3} & & \frac{1}{2n-1} \\ -1 & \frac{1}{3} & \frac{1}{5} & & \frac{1}{2n+1} \\ \vdots & & & & \\ -1 & \frac{1}{2n-1} & \frac{1}{2n+1} & & \frac{1}{4n-3} \end{bmatrix}.$$

We can prove that $D_n = \binom{2n}{2} H_n$, $n \in \mathbb{N}$. Subtracting the last row in D_n from all others, except the first one, we obtain

$$D_n = \frac{(2n-2)!!}{(2n-1)\cdots(4n-3)} \begin{bmatrix} 0 & 2n-1 & 2n+1 & \cdots & 4n-3 \\ 0 & 1 & \frac{1}{3} & & \frac{1}{2n-1} \\ 0 & \frac{1}{3} & \frac{1}{5} & & \frac{1}{2n+1} \\ \vdots & & & & \\ -1 & 1 & 1 & 1 \end{bmatrix}.$$

Also, subtracting the last column from all others, except the first one, we obtain

$$D_n = \frac{(2n-2)!!^2}{(2n-1)^2 \cdots (4n-5)^2 (4n-3)} \{ (4n-3)H_{n-1} + D_{n-1} \},$$

from which, by induction, we finish the proof.

Lemma 3.2. If

$$H'_n(c) = \det \left[\frac{1}{2i+2j-1} + c \right]_{i,j=1}^n, \qquad H'_n = H'_n(0),$$

then

$$H'_n(c) = [1 + c\binom{2n+1}{2}] H'_n, \quad n = 1, 2, \dots$$

Thus,

$$\tilde{\Delta}_n = \Delta_n \left[1 + \binom{n}{2} c \right] \left[1 + \binom{n+1}{2} c \right],$$

where

$$\Delta_n = \det[L(x^{i+j})]_{i,j=0,\dots,n-1}.$$

Theorem 3.3. The polynomials $P_n(x; c | -1, 1)$ satisfy the following three-term recurrence relation

$$(n+1)\left(1+\binom{n}{2}c\right)P_{n+1}(x;c|-1,1) = (2n+1)\left(1+\binom{n+1}{2}c\right)xP_n(x;c|-1,1) - n\left(1+\binom{n+2}{2}c\right)P_{n-1}(x;c|-1,1).$$

Proof. By $\{\widehat{P}_n(x;c|-1,1)\}$ we denote the sequence of monic polynomials of the Legendre type. According to the property (xf,g)=(f,xg) of the inner product defined by the functional I_3 : $(f,g)=I_3(fg)$, we conclude (cf. [2] and [9]) that this sequence satisfies a three-term recourence relation of the form

$$\widehat{P}_{n+1}(x;c|-1,1) = x\widehat{P}_n(x;c|-1,1) - \beta_n\widehat{P}_{n-1}(x;c|-1,1),$$

where (see [3])

$$\beta_n = \frac{\tilde{\Delta}_{n-1}\tilde{\Delta}_{n+1}}{\tilde{\Delta}_n^2}.$$

Knowing a relation for the monic Legendre polynomials and the determinant Δ_n , we yield

$$\widehat{P}_{n+1}(x;c|-1,1) = x\widehat{P}_n(x;c|-1,1) - \frac{n^2}{4n^2 - 1} \frac{(1 + \binom{n-1}{2}c)(1 + \binom{n+2}{2}c)}{(1 + \binom{n}{2}c)(1 + \binom{n+1}{2}c)} \widehat{P}_{n-1}(x;c|-1,1).$$

Putting

$$P_n(x;c|-1,1) = \frac{(2n)!}{2^n n!^2} \widehat{P}_n(x;c|-1,1),$$

we finish the proof.

By induction and using the three-term recurrence relation, we obtain:

Theorem 3.4. The polynomial $P_n(x; c \mid -1, 1)$ can be expressed in the form

$$P_n(x;c|-1,1) = \frac{1}{2^n} \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n}{k} \binom{2n-2k}{n} \left\{ 1 + \binom{n}{2} + 2k \right\} c x^{n-2k},$$

where $n=2,3,\ldots$

Remark. This formula was derived in [6] with a mistake.

The last formula shows that the sequence $\{P_n(x; c \mid -1, 1)\}$ has a degenerated property in the sence that is

$$\widehat{P}_n(x;-\binom{n}{2}^{-1}|-1,1) = \widehat{P}_{n-2}(x;-\binom{n}{2}^{-1}|-1,1).$$

Theorem 3.5. The polynomials $P_n(x; c | -1, 1)$ are quasi-orthogonal of the second order with respect to the functional

$$J^{(1,1)}(P) = \int_{-1}^{1} P(x)(1-x^2) \ dx.$$

The polynomial $P_n(x; c | -1, 1)$ has at least n-2 different zeros with odd multiplicity in (-1, 1).

Proof. Because of the orthogonality, we have for any polynomial p(x) of degree k ($k \le n-3$) that

$$I_3(P_n(x;c|-1,1)p(x)(1-x^2))=0,$$

i.e.,

$$\int_{-1}^{1} P_n(x;c|-1,1)p(x)(1-x^2) dx = 0.$$

So, we yield quasi-orthogonality of the order 2. Finally, let $x_{n1}, x_{n2}, \ldots, x_{nk}$ be all distinct zeros of $P_n(x; c \mid -1, 1)$ with odd multiplicity and which are in (-1, 1). If we introduce the node polynomial $p(x) = (x - x_{n1})(x - x_{n2}) \cdots (x - x_{nk})$, then the polynomial $P_n(x; c \mid -1, 1)p(x)(1 - x^2)$ does not change sign in (-1, 1). Therefore,

$$\int_{-1}^{1} P_n(x;c|-1,1)p(x)(1-x^2) dx \neq 0.$$

Because of that, we conclude that $\deg p(x) \geq n-2$. \square

EXAMPLE 3.2. The polynomial

$$P_3(x;c|-1,1) = 5(1+3c)x^3 - 3(1+5c)x$$

has the zeros

$$x_1 = 0$$
, $x_{2,3} = \pm \sqrt{\frac{3(1+5c)}{5(1+3c)}}$.

All zeros of $P_3(x; c | -1, 1)$ are in (-1, 1) if c > -1/3. For c < -1/3, two of them are out of (-1, 1).

Remark. According to Favard's theorem (see [2]) there are exist the weight distributions $w_i(x)$, i = 1, 2, 3, corresponding to the previous functionals J_i :

$$J_i(P) = \int_{-\infty}^{+\infty} P(x) dw_i(x), \qquad i = 1, 2, 3.$$

These distributions are (see [3])

$$w_1(x) = e^{-x} + c\delta(x)$$
, $w_2(x) = (1-x)^{\alpha} + c\delta(x)$, $w_3(x) = 1 + c(\delta(x-1) + \delta(x+1))$, where $\delta(x)$ is the Dirac's delta function.

REFERENCES

- G. SZEGO, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ. Vol. 23, Providence, R.I., 1975.
- [2] T. S. CHIHARA, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
- [3] L. L. LITTLEJOHN AND S. D. SHORE, Nonclassical orthogonal polynomials as solutions to second order differential equations, Canad. Math. Bull. 25 (1982), 291-295.
- [4] A. B. MINGARELLI AND A. M. KRALL, Legendre type polynomials under an indefinite inner product, SIAM J. Math. Anal. 14 (1983), 399-402.
- W. GAUTSCHI AND G. V. MILOVANOVIĆ, Polynomials orthogonal on the semicircle, J. Approx. Theory 46 (1986), 230-250.
- [6] A. L. KUZMINA, On some nonclassical orthogonal polynomials, Izv. Vyssh. Uchebn. Zaved. Mat. 1987, 47-52. (Russian)
- [7] M. ALFARO, F. MARCELLAN, M. L. REZOLA AND A. RONVEAUX, On orthogonal polynomials of Sobolev type: Algebraic properties and zeros, SIAM J. Math. Anal. 23 (1992), 737-757.
- [8] T. E. PEREZ AND M. A. PINAR, Global properties of zeros for Sobolev-type orthogonal polynomials, J. Comput. Appl. Math. 49 (1993), 225-232.
- [9] W. D. Evans, L. L. LITTLEJOHN, F. MARCELLAN, C. MARKETT AND A. RON-VEAUX, On recurrence relations for Sobolev orthogonal polynomials, SIAM J. Math. Anal. 26 (1995), 446-467.

GRDIMIR V. MILOVANOVIĆ AND ZVEZDAN M. MARJANOVIĆ: FACULTY OF ELECTRONIC ENGINEERING, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NIŠ, 18000 NIŠ, YUGOSLAVIA

PREDRAG M. RAJKOVIĆ: FACULTY OF MECHANICAL ENGINEERING, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NIŠ, 18000 NIŠ, YUGOSLAVIA