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Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. In this paper we investigate the positive definiteness of linear

functionals L defined on the space of all algebraic polynomials P by

L(p) =
∑
k∈N

wkp(zk), p ∈ P.

1. Introduction

Let P be the space of all algebraic polynomials. In this paper we investigate

linear functionals L defined by

L(p) =
∑
k∈N

wkp(zk), p ∈ P. (1)

In general, we investigate functionals for which wk, zk ∈ C\{0}, but with the following

restrictions. First, we assume that wk 6= 0, k ∈ N. This condition is rather natural,

since, assuming wk = 0, for some k ∈ N, simply produces a linear functional where

summation is performed over N\{k}. Additionally, we will not loose any generality if

we assume that zi 6= zj , i, j ∈ N, since, for example, we may skip summation over j

and use w′i = wi + wj at point zi.

For the set of nodes zi, i ∈ N, we introduce the notation Z = {zk | k ∈ N}.

Second we are going to assume that

lim
k→+∞

zk = 0 (2)
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and, in order to have absolute integrability of all polynomials p ∈ P, we assume that

∑
k∈N

|wk| ≤ M < +∞. (3)

We assume in the sequel that the sequence zk, k ∈ N, is ordered in such a way that

|zk+1| ≤ |zk|, k ∈ N.

Note that the linear functional L can be interpreted as the linear functional

acting on the space of all bounded complex sequences `∞. Namely, according to the

condition (3) we have that the sequence wk, k ∈ N, belongs to the space `1, the space

of all absolutely summable complex sequences (see [3, p. 30], [2, p. 39]). As is known

`1 ⊂ `′∞, where `′∞ denotes dual of `∞.

Create now a linear mapping I : P 7→ `∞ in the following way

I(p) = (p(z1), p(z2), . . . , p(zn), . . .).

The linear space P can be normed as

||p|| = sup
k∈N

|p(zk)|, p ∈ P.

Lemma 1.1. The linear mapping I : P 7→ `∞ is an bounded embedding of P into

`∞.

Proof. Given L, any polynomial p ∈ P achieves its maximum on the compact

set Z, hence any sequence p(zk), k ∈ N, p ∈ P, is uniformly bounded in k and belongs

to `∞.

Norm preserving property is easily established. We note that if two poly-

nomials satisfy I(p1 − p2) = 0, we have that p1 = p2, since those are two analytic

functions equal on the set Z which has one accumulation point. Hence, I(P) ⊂ `∞

is an embedding.

It is easily seen that ||I|| = 1. �

Now, define the linear functional L′ : `∞ 7→ C in the following way

L′(u) =
∑
k∈N

wkuk, u = (u1, u2, . . .) ∈ `∞.
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Obviously L′ is bounded, since

|L′(u)| ≤
∑
k∈N

|wk||uk| ≤ ||u||
∑
k∈N

|wk|, u ∈ `∞,

and L′ ◦ I = L on P. Hence, for the certain extent we can identify L′ and L and we

may consider L′ as a bounded linear extension of L to the whole of `∞.

Define P+ to be the set of all polynomials p ∈ P\{0} which are nonnegative

on the real line and denote by PR the set of all real algebraic polynomials.

We recall that linear functional L : P 7→ C is called positive definite provided

for every polynomial p ∈ P+ we have L(p) > 0 (see [1, p. 13]). As a direct consequence

of positive definiteness we have:

Lemma 1.2. If the linear functional L : P 7→ C is positive definite, then

L(x2n) > 0, L(x2n+1) ∈ R, L(p) ∈ R, p ∈ PR, n ∈ N0. (4)

Proof. Since x2n ∈ P+, we have directly L(x2n) > 0. For the odd powers

we have

L(x− 1)2n =
2n∑

k=0

(
2n

k

)
(−1)2n−kL(xk) > 0,

and using induction over n ∈ 2N, we have

L(x2n−1) <
1
2n

2n∑
k=0,k 6=2n−1

(
2n

k

)
(−1)kL(xk).

Finally, we have according to linearity of L the last statement. �

The question we answer is summarized in the following theorem.

Theorem 1.1. A linear functional L given by (1) is positive definite if and only if

wk > 0 and zk ∈ R, k ∈ N.

Finally, we introduce the following notation

en = (0, . . . , 0, 1, 0, . . .) ∈ `∞, n ∈ N,

where number 1 occupies n-th position with zeros on all other positions.
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2. Auxiliary results

We give first, the following auxiliary lemmas.

Lemma 2.1. Choose zn ∈ Z and assume that zn /∈ Z. Then there exists pn ∈ C,

|pn| = 1, such that for every rn ∈ PR we have pnrn(zn)en ∈ I(PR). If zn ∈ R\{0}

then pn = 1.

Proof. We are going to construct the sequence pn
k ∈ P+, k ∈ N, n ∈ N, such

that lim
k→+∞

I(pn
k ) = αnen for some complex number αn ∈ C\{0}.

Choose some fixed zn ∈ Z and assume that zn /∈ Z. Then choose some

polynomial rn ∈ PR. We define

pn
k (z) = rn(z)

k∏
i=1,i 6=n

(z − zi)(z − zi)
λn

i

, k ∈ N,

where we denote

λn
i = |zn − zi||zn − zi|, i 6= n.

Obviously we have pn
k ∈ P+, k, n ∈ N.

Since rn is an algebraic polynomial it is uniformly bounded on the compact

set Z. Hence, for some M > 0 we have |rn(zν)| < M , ν ∈ N.

According to the property (2), we can choose some i01 ∈ N such that

|zn|/2 < |zν − zi|, |zn|/2 < |zν − zi|, i > i01, ν = 1, . . . , n.

Fix some q ∈ (0, 1). We can choose some i02 ∈ N such that

|zi| < |zn|q/4, i > i02.

Now, define i0 = max{i01, i02}. For k > i0 and ν > k, we have

|pn
k (zν)| = |rn(zν)|

i0∏
i=1,i 6=n

|zν − zi||zν − zi|
λn

i

k∏
i=i0+1

|zν − zi||zν − zi|
|zn − zi||zn − zi|

≤ M

i0∏
i=1,i 6=n

|zν − zi||zν − zi|
λn

i

k∏
i=i0+1

|zn|q/2|zn|q/2
|zn|/2|zn|/2

≤ M

(
2|z1|
m

)2i0−2

q2(k−i0),
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where m = min
i=1,...,i0, i 6=n

{|zn − zi|, |zn − zi|} > 0. We note that pn
k (zν) = 0 for ν < k,

ν 6= n. From here it can be easily seen that we have uniform convergence in ν 6= n of

pn
k (zν) to zero for k → +∞, i.e., given ε > 0, for

k > k01 = i0 +
1

2 log q
log

ε

M

(
m

2|z1|

)2i0−2

,

we have |pn
k (zν)− 0| < ε, ν ∈ N\{n}.

Now, we consider pn
k (zn), we have

|pn
k (zn)| = |rn(zn)|,

according to the definition of λn
i . This means that pn

k (zn) has constant norm as

k → +∞.

The product

k∏
i=1,i 6=n

(zn − zi)(zn − zi)
λn

i

, k ∈ N,

is just product of the complex numbers having modulus 1, hence, represent the se-

quence on the unit circle in the complex plane. According to the compactness of the

unit circle in C, we easily conclude that there exists some subsequence of the products

which converge to some pn which norm is one.

Denote set of indices for convergent subsequence as N1. Then according to

the convergence, given ε > 0, we can choose some k02 ∈ N1, such that for k > k02,

k ∈ N1, we have

|pn
k (zn)− rn(zn)pn| < ε.

Now consider the vector rn(zn)pnen, we have

||I(pn
k )− rn(zn)pnen|| = sup

ν∈N
|pn

k (zν)− rn(zn)pnen| < ε,

for k > max{k01, k02}, k ∈ N1.

Hence, if we enumerate, again the sequence pn
k using only indexes k ∈ N1, we

have the sequence pn
k ∈ PR, such that

lim
k→+∞

I(pn
k ) = pnen.
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Finally, if zn ∈ R\{0} we see that since rn ∈ PR, we have rn(zn) ∈ R and

pn
k (zn) = rn(zn)

k∏
i=1,i 6=n

|(zn − zi)(zn − zi)|
λn

i

∈ R

and also the terms of the product are simply equal to 1, hence, pn = 1.

We can repeat construction for every n ∈ N, i.e., every point zn ∈ Z for

which zn /∈ Z. �

In the case rn ∈ P+, we easily see that the sequence pn
k also belongs to P+,

so that we have the following result.

Lemma 2.2. Assume that zn /∈ Z. Then there exists pn ∈ C, |pn| = 1, such that for

every rn ∈ P+ we have pnrn(zn)en ∈ I(P+). If zn ∈ R\{0} we have pn = 1.

Next we consider the case when zn ∈ Z. Without loss of generality we may

assume that zn+1 = zn, since this can be achieved by the simple renumeration of the

sequence zn, n ∈ N.

Lemma 2.3. Let zn+1 = zn for some n ∈ N. Then there exist some pn ∈ C, |pn| = 1,

such that for every rn ∈ PR we have

pnrn(zn)en + pnrn(zn)en+1 ∈ I(PR).

Proof. We consider the sequence of the polynomials

pn
k (z) = rn(z)

k∏
i=1,i 6=n,n+1

(z − zi)(z − zi)
λn

i

,

where all notation is from the proof of Lemma 2.1. The only problem is definition of

the sequence λn
i , but luckily we have

|zn − zi||zn − zi| = |zn+1 − zi||zn+1 − zi|,

since zn+1 = zn. Hence, we can apply safely the same definition.

It can proved using the same arguments that

|pn
k (zν)− 0| < ε,
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provided

k > k01 = i0 +
1

2 log q
log

ε

M

(
m

2|z1|

)2i0−4

.

Also we have pn
k (zn) = pn

k (zn+1), which gives the convergence for some sequence of

k ∈ N1 to mutually conjugated values. �

It is clear that we may choose rn ∈ P+ to get the following immediate con-

sequence.

Lemma 2.4. Let zn+1 = zn for some n ∈ N. Then there exist some pn ∈ C, |pn| = 1,

such that for every rn ∈ P+ we have

pnrn(zn)en + pnrn(zn)en+1 ∈ I(P+).

3. Proof of the main result

Now we are ready to prove the main result.

Proof of Theorem 1.1. It can be easily seen that if wn > 0 and zn ∈ R,

n ∈ N, for some p ∈ P+, we have

L(p) =
∑
k∈N

wkp(zk) > 0,

according to the simple fact that p(zk) ≥ 0, k ∈ N.

Now, assume that L is positive definite. Choose some n ∈ N and suppose

that zn /∈ Z. Then, according to Lemma (2.1), we have

lim
k→+∞

L(pn
k ) = lim

k→+∞
(L′ ◦ I)(pn

k ) = L′(pnrn(zn)en),

where we have used the fact that L′ is continuous on `∞. But then

L′(pnrn(zn)en) = wnrn(zn)pn.

Choose rn(z) = 1, rn ∈ P+, and rn(z) = z, rn ∈ PR, to get

L′(pnen) = wnpn ≥ 0 and L′(pnznen) = wnznpn ∈ R.

Since zn 6= 0 and according to the construction pn 6= 0, we have that L′(pnen) =

wnpn > 0. Then we have

zn =
L′(pnznen)
L′(pnen)

∈ R
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and also wn > 0, according to the fact that pn = 1 for zn ∈ R\{0}.

Now let zn = zn+1. Note that in this case we cannot have zn ∈ R, since in

that case we would have zn = zn+1, which is impossible according to the conditions

imposed on the set Z. Then, according to Lemma (2.3) and positive definiteness of

L for rn(z) = 1 and rn(z) = z, we have

L′(pnen + pnen+1) = wnpn + wn+1pn = α ≥ 0

and

L′(pnznen + pnznen+1) = wnznpn + wn+1zn = β ∈ R.

We can rewrite these equations as the linear system in pn and pn, which has the

unique solution

pn =
αzn − β

wn(zn − zn)
, pn =

αzn − β

wn+1(zn − zn)
.

Using these expressions we readily get wn+1 = wn and also we see that we cannot

have α2 + β2 = 0, since it would imply pn = 0, which is impossible.

Now, choose rn(z) = z2ν , ν ∈ N. We have

L′(pnz2ν
n en + pnz2ν

n en+1) = wnz2ν
n pn + wnz2ν

n pn = Re(wnz2ν
n pn) ≥ 0, ν ∈ N0.

If we denote αn = arg(wn), βn = arg(pn) and ϕn = arg(zn), where ϕn 6= 0 and

ϕn 6= π, we get

|wnz2ν
n pn| cos(αn + βn + 2νϕn) ≥ 0, ν ∈ N0.

We want to show that there exist some ν ∈ N0 such that cos function is negative

which will produce a contradiction.

The cos-function is negative provided 2ν is an element of some interval

Jk =
(

(4k + 1)π − 2(αn + βn)
2ϕn

,
(4k + 3)π − 2(αn + βn)

2ϕn

)
, k ∈ Z.

The interval Jk has length π/|ϕn| > 1, hence, there is at least one integer inside every

interval Jk. If π/|ϕn| > 2 then there are at least two consecutive integers inside every

Jk and at least one of them is even. Choosing 2ν to be equal to such an integer

produces a contradiction. So, we assume π/|ϕn| ≤ 2.
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The intervals

Gk =
[
(4k + 3)π − 2(αn + βn)

2ϕn
,
(4k + 5)π − 2(αn + βn)

2ϕn

]
, k ∈ Z,

we are going to call gaps, obviously R = ∪k∈Z(Jk ∪Gk).

If π/|ϕn| = 2, we have ϕn = ±π/2, which means that if

cos(αn + βn ± 2 · 0 · π/2) > 0,

we have

cos(αn + βn ± 2 · 1 · π/2) = − cos(α + βn) < 0,

which produces a contradiction. If cos(αn + βn ± 2 · 0 · π/2) = 0, then we have

Re(wnz2ν
n pn) = |wnz2ν

n pn| cos(αn + βn ± νπ) = 0, ν ∈ N,

and, choosing rn(z) = z2ν+1, ν ∈ N0, we have

Re(wnz2ν+1pn) = |wnz2ν+1
n pn| cos(αn + βn ± (2ν + 1)π/2)

= ±(−1)ν |wnz2ν+1
n pn| sin(αn + βn) 6= 0, ν ∈ N0.

According to the fact cos(αn + βn) = 0, we have sin(αn + βn) = ±1, therefore, the

expression cannot be equal zero. Consider now polynomials rn(z) = z2ν(z − 1)2,

ν ∈ N0. Obviously rn ∈ P+, so that it must be

lim
k→+∞

L(pn
k ) = lim

k→+∞
(L′ ◦ I)(pn

k ) = wnz2ν
n (zn − 1)2pn + wnz2ν

n (zn − 1)2pn

= Re(wnz2ν
n (zn − 1)2pn) ≥ 0.

According to linearity we must have

Re(wnz2ν
n (zn − 1)2pn) = Re(−2wnz2ν+1

n pn)

= ∓2(−1)ν |wnz2ν+1
n pn| sin(αn + βn) > 0, ν ∈ N0.

This is, of course, a contradiction.

Finally, it must be 1 < π/|ϕn| < 2. Assume that in some interval Jk we have

an integer 2m + 1. Then we can always choose some ν ∈ N, such that

π

|ϕn|
>

2ν − 2m− 1
2ν − 2m− 2

> 1.
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Then counting from 2m + 1 and finishing with 2ν there are exactly 2ν − 2m integers

and those are covered with

2ν − 2m− 2 + 1 >
2ν − 2m− 1

π/|ϕn|
+ 1,

intervals and gaps. Since we are starting and ending with an interval there are ν−m−1

gaps and ν−m intervals. According to pigeon-hole principle there is at least one either

interval or gap which contains at least two consecutive integers. If some interval

contains two consecutive integers we are done. So assume that it is some gap. If gap

contains even and odd integer, then next interval holds an even integer and we are

done. If gap holds odd and even integer, then interval in front of it holds an even

integer, and we are done.

We conclude that it cannot be zn, zn ∈ Z. We have seen also that if zn ∈ Z,

then zn ∈ R and wn > 0, which finishes the proof. �
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