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In this paper, we consider a rational algorithm for modification of a positive measure by quadratic factor,
d6 (1) = (t — z)? do (1), where itis allowed z to be in supp(do ). Also, we present an application of modified
algorithm to the measures do (1) = Tzz(t) do(t) and do’ (1) = 12T22(t) do (1), where Th (1) = 12 — % is the

second degree monic Chebyshev polynomial of the first kind and do (1) = +/1 — ¢2dt, t € [—1, 1], is the

Chebyshev measure of the second kind. Also, we present an application to the constrained L?-polynomial
approximation.
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1. Introduction

Let do be a positive measure on R with an infinite support such that polynomials are integrable
and let {p,}, n € Ny, be a sequence of the corresponding monic orthogonal polynomials,

pa(®) = pa(do; 1), neNy.
It is known that they satisfy a three-term recurrence relation of the form

Pny1(t) = (t — ) pu(®) — Bupn—1(t), n €Ny,
pot) =1, p_1(1) =0,

where o, = o, (do) € R, 8, = B,(do) > 0, and by convention, 8y = Bo(do) = o (R).
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We define
dé (1) = (t — 2)’do(r), zeC.

The set of orthogonal polynomials we wish to study is
ﬁn(t)zﬁn(da';t)’ n € No.

The modification by a quadratic factor can be achieved by two successively modifications by
linear factors (see [4] and [5, pp. 121-124]). A problem with this approach appears when z is
inside of the supp(do). Actually, when z is a zero of the polynomial p,, orthogonal with respect
to the measure do, an application of the modification by linear factor crashes, due to the fact that
we have a division by zero. An alternative approach is to apply one step of the QR algorithm to
the Jacobi matrix J = J(do) for the measure do, i.e. the infinite symmetric tridiagonal matrix

J = J(do) = tri(a, a1, a2, ...,/ Br. vV Bas - ),

with the recursion coefficients o, = a;(do) on the main diagonal, and the \/B; = /B (do) on
two-side diagonals (see [5, pp. 127—128]). This algorithm needs the computation of the square
roots, hence it is not rational. Here, we present an algorithm which can be applied regardless of the
fact where the point z lies. In particular, the presented algorithm is rational, as the one presented
in [2] which is dealing with a linear modification. For some other modifications see [6].

Our modification by the quadratic factor can be successfully applied in the constrained L’-
polynomial approximation, for constructing the so-called s- (or o-) orthogonal polynomials and
the corresponding quadratures of Turdn type (see [7,11]), etc. For example, a typical application in
the constrained L2-approximation requires orthogonal polynomials with respect to the measure

Gm ()2 do (1), where ¢m 1s @ monic polynomial of degree m with the zeros ty, ..., T,, which
belong to the support of the measure do (¢) (see [9, p. 388] and [10]). It can be done easily by
repeating our modification m times by the quadratic factors (t — ;)% k=1, ..., m.

The paper is organized as follows. In Section 2 we present the modification of the measure by a
quadratic factor and in Section 3 we give the corresponding algorithm and some of its interesting
applications with analytic solutions. Finally, an application to the constrained L?-approximation
is given in Section 4.

2. The modification by a quadratic factor

DEERINITION 2.1  Let do be a positive measure and p,(-) = p,(do; -) be the sequence of monic
orthogonal polynomials with respect to do . Let z € C and assume that p,(z) # 0 forn € N. Then

pn+l(z)
Pn (z)

Pn(t;2) = [pn+1(t) - pn(t)} ; ey

r—z

is called the kernel polynomial for the measure do.
Evidently, p,(t, z) € P, as a function of ¢.

DEFINITION 2.2 We call the measure do quasi-definite if and only if there exists a sequence of
polynomials orthogonal with respect to do (cf. [3]).

THEOREM 2.3 Let do be a positive measure and z € C be such that p,(z) #0, n € N. Let
do(t) = (t — z)do(t). Then do is quasi-definite and the kernel polynomials py, k € Ny, are
(monic) formal orthogonal polynomials with respect to do.
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Proof For the proof see, for example, [5, p. 38]. |

LEMMA 2.4 The three-term recurrence coefficients & and By, k € Ny, for the sequence of
polynomials orthogonal with respect to the measure Ao, are continuous functions of 7 € R.

Proof Consider a sequence of moments f1, = [ x"dé (x), n € Ny. We obtain easily that every
[, is a polynomial of the second degree in z. Since p, can be expressed as

/:\L() /ll /ln
N 1 (K1 M2 - Hatd
Pn(x) = —| . . . . s
n .
1 X x"

(see [3, p. 17]), where I:In is the main minor of rank n, which is also known as the Hankel
determinant and which is not zero according to positivity of the measure dé . Hence, the coefficients
of p, are continuous functions in z € R and the three-term recurrence coefficients are too. W

LEMMA 2.5 If A, = Ay(2) = puy1(@) P, (2) — pu(2) Py (2), n € Ny, we have
At = Bur1Bn — ppi1(2), n €N )

Proof According to Christoffel-Darboux formulae (cf. [3, pp. 23-24] and [5, pp. 15-16]) we
have

+1
VIR O {6 N - VT B o W {6
Ipall> 2 lpell® pantl* 25 il

wherefrom, by subtracting, we get

p,%+1(1) _ An+l An
a1l Ipnstll®  lIpall?

Using the identity B,41 = || pns1l?/ 1l pall?, We get what is stated. [ |

THEOREM 2.6 Let z € C be such that the measure d6 is quasi-definite. The coefficients of the
three-term recurrence relation for the polynomial sequence orthogonal with respect to the measure

d6 (1) = (t — 2)>do (1), zeC,

are given by

~ _p2+1(pnpn+l +2A,) + But1 Cpuput1y +Oln+]A5)
n = y (3)
AnAn+1
5 2 5 AnflAnJrl
Bo=Polbr+ (z—a)], Bu=B— 75— 4)

2 ’
Al’l

where we denote p, := p,(do; z), n € Ny, and {p,} is a set of polynomials orthogonal with
respect to the measure do.
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Proof First, we prove that A, (z) < 0 for all n € Ny and z € R. Using the Christoffel-Darboux
formulae (cf. [3, pp. 23-24] and [5, pp. 15-16]), it follows

_ A, _ P,’ZHPn _p;;anrl _ - P/%
Il pall? AR = llpell?

3

wherefrom we get the previous statement.

Denote by Z, the set of all zeros of the polynomial p,,. Obviously Z,,, n € N, consists of n real
numbers, hence, Z = Un <N Zn 18 a set of zeros of polynomials p,, n € N, and it is a countable
set. Therefore, R \ Z is not an empty set and has a continuum many elements.

Choose z € R\ Z. For such z we have p,(z) #0, n € N, and also A, (z) < 0, n € N. The
condition p,(z) # 0, n € N, according to Theorem 2.3, assures that the measure do (1) = (t —
z)do (¢) is quasi-definite and that the orthogonal polynomials with respect to it are given by
Equation (1). Thus, we can express the polynomials p,, n € N, orthogonal with respect to the
measure do, as

~ 1 Pn+1
pn(ts Z):_|:pn+l(t)_ a
r—z DPn

pn(t)i| , neNp.

Our target measure isdo (1) = (t —z) d6 (t) = (t — z)>do (1), hence, we want to apply once more
Theorem 2.3, and we get

R 1 [, Pn+1(z,2) -
Dn(t,2) = —— [Pnﬂ(t,z) - bt 7)) |, neN,.
t—z Pn(2,2)
As we can inspect we have
- A, (z
Pn(z,2) = — n(2)
Dn(2)

According to the condition A, # 0, n € Ny, an application of Theorem 2.3 is justified.
Now, we have

. . Pnt1(2) -
Pult, ) = —— [pn+1<t> - =2 pnm}
t—z Pn(2)
_ 1 Pnt2(t) — (pn+2/pn+1)pn+1(t)
t—z r—z
_ —(Apg1/Pns1) <pn+l @) — (pn+l/pn)pn(t)) }
—(An/py) r—2z
— 1 {pn+1pn+2(t) - pn+2pn+1(t) B AnJrlpn pn+1(t)pn — Pn+1DPn (t) }
(t —2)? Pt AnPuti Pn
1 Pn+2 An-‘,—] ( DPn >}
S N ) W i S w1 (1) = pu(t
‘-2 {P +2(0) pn+1p+l() A, nHP +1(1) — pp(2)
1 Pn Pn
= T A {pn+2(t)An - anrl(t) (An 2 + An+1 ) + pn(t)AnJrl} .
(t - Z) An Pn+1 Pn+1
This gives

pn+2(t)An - pn+1(t)(pn+2p;, - pnp,/H.z) + Pn (t)AnJrl

(t - Z)zAn (5)

ﬁn(t’ 7) =
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Putting Equation (5) in the three-term recurrence relation for polynomials {p,},
Pt (6) = (t = &) pa(6) = BuPu—r (1), n € No,
it follows

Pn+3 (I)AnJrl - Pn+2(t)(Pn+3P;+1 - Pn+1P;+3) + pn+1(t)An+2

(t — Z)2An+1
_ (t s )pn+2(t)An - anrl(t)(aner;, - pnp;,+2) + pn(t)Athl
! (t - Z)ZAI’I
_ B pn+1(t)An—l - Pn(f)(Pn-s-lP;,q - pn—lp:hq) + pn—l(t)An
! (t =2 A ‘

Adjusting the previous term and using the three-term recurrence relation for polynomials {p,}
it follows

Pn 2(t) An 2
Prsa(®) — (2 = @ai2) Dt — Pt Pasa] + Pt ()
An+l An-',—l

~ Pn l(t) An 1

= (t — @) (pn+z<r) — =l — @) A = papua] + P = >
h pn(t) An
- ﬂn Pn+1(f) - [(Z - O5}1)An—l - pn—lpn] + pn—l(t) .
Anfl Anfl

Putting p,13(t) = (t — &y+2) Put2(t) — But2Pu+1(2) in the previous equality, we get

Apy2Pag1 (1) 5
- ﬂn+2pn+l (t) + +—+1 + ,Bn
AnJrl
Ay pn—1(t t — Ap—1 — Pn—
« nPn-1() _ Pn(®)((z — o) 1 = Pn—1Dn) F st ()
Anfl Anfl
+ (t - an+2)pn+2(t) - (t - é\ln)
ANpy1pn(0) P12 — 1) Ay — PuPrs1)
X - + pn+2(t)
Aﬂ An
_ P2 (2 — 0pg2) App1 — PusiPns2) -0
An-',—l '

Since Ayi2 = But2lnt1 — P,21+2, Put2(t) = (t — Ay 1) Puy1(t) — But1pa(t), and py 41 (1) =
(t — o) pu(t) — Bupn—1(t), solving the system of two equations, we obtain

_ U1 Dn Antt + Aps1 PuPrvt — BnPut1 Put2
n — £

An An+l

B _ (@1 — D Bu D1 Ap Dy 1 PuPrs1 + lgnAn—lAn-&-lP,%P,%Jrl
! A%AnJrl (An - ,BnAnfl)

(6)

_ (g1 — Z),BnAnflAiananrZ + B An_18nPug2(Bppry2 + PnPﬁ.H)
A%An+1 (An - ﬂnAn—l) )

Now, putting A, = Bur1 Ay — pﬁH and p,42 = (2 — ®y+1) Pnt1 — But1 P in Equation (6)
we get the expressions (3) and (4).
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The obtained expressions for the three-term recurrence coefficients &, and ,3,1, n € Ny, are
valid for z € R\ Z. Since the measure dé is positive for z € R, the orthogonal polynomials with
respect to d6 exist. Now, we prove that the same relations are valid for any z € R.

First, note that we have proved that A, (z) < 0, z € R, such that the right-hand side expressions
in Equations (3) and (4) are defined for any z € R. Consider now a sequence of open sets O, =
R\ Z,,n € N. Every O,, n € N, is dense in R. Since R is a complete metric space, it is a Baire
space (see [1, p. 31]). According to the Baire category theorem every residual set, i.e. a countable
intersection of open sets which are dense in R, is dense in R. Thus, ﬂneN 0, =R\ Z is dense
in R. This means that Equations (3) and (4) are valid on the set dense in R. Now, &, and ,3,“
n € Ny, are continuous functions of z € R, according to Lemma 2.4, and also the right-hand sides
in Equations (3) and (4) are continuous in z € R, since A, (z) < 0,n € N,z € R.Forany z € Z,
we can construct a sequence of points z, € R\ Z, n € N, such that lim z,, = z, due to the fact
that R \ Z is dense in R. According to the continuity, the equalities (3) and (4) are valid in z as
well. Since z € Z was arbitrary, the equalities are valid for every z € R.

Now, let us consider z € C \ R. Denote

={/ €eC|H,) =0, £=1,....,Nn)},

where N (n) is the number of zeros of the polynomial H,. So, U,en Z, is a countable set of
all complex points where the measure dé is not quasi-definite. Let zo € C \ R be such that the
measure do is quasi-definite. Suppose that we have for some n € N, A, (z9) = 0. Define

ng = min{n € N| A,(z9) = 0}.

As I:In is a continuous function in z and since ,3,1 =H,_ an / _1» it follows that ﬁn, n € Ny, is
also a continuous function in z on (C\E:’,,. Therefore, there is an open neighbourhood of zg, O (zp),
such that for each z € O;(zy) we have I:I,l #0, ,3,1 #0,forn=0,1,...,4n,.

As A, (z0) = 0, there is an open neighbourhood of zg, O (z¢), such that for each z € O,(zp) \
{z0} we have A, (z) # 0.If not, there exist a point z in every open neighbourhood of z, different
from z, such that A, (z) = 0. Since, A, is a entire function of z it would imply that A, (z) = 0,
z € C (see [8, p. 168]), which is impossible according to the fact that A, (z) <0,z € R.

Define O(z0) = Oi(z0) N Oa(zp), then O(zp) is an open neighbourhood of zy on which
Ay, (z) # 0, z # 20, and on which 3,10 is continuous. Now, we have

~ A, 1A
{0, +00} # lim B,, = lim g, —m——ntl
7—20 7—20 A%O
from which A, 41(z0) = 0.
Since
+1 2
pi(zo) " pi(z0)
—ll g1 1I? Z 2 =0, At = —llpnl’ ) =

il = I pil

we get pfn +1(z0) = 0, which is a contradiction, since p,,.1 cannot have a complex zero, as a
member of the sequence of polynomials orthogonal with respect to positive measure do supported
on the real line.

Accordingly, Equations (3) and (4) are valid for all z € C, such that dé is quasi-definite at z.
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Finally, for some z € C, for which do is quasi-definite, we compute ﬁo,
fo= [@=27d0 = [0 -antan-22do

=i/a—myda+2/a—a@mo—@da+/ﬂm—zfda
= BoB1 + (ctg — 2)°Bo = BolB1 + (z — a0)*].

3. Algorithm and its application

In this section, we present a rational algorithm for a modification by quadratic factor, do (¢) =
(t — 2)>do (1), where z € C is such that dé is quasi-definite, as well as its application to some
modified Chebyshev measure of the second kind.

THEOREM 3.1 The coefficients &, and Bn in the three-term recurrence relation for the polynomial
sequence orthogonal with respect to the quasi-definite measure

dé(t) = (t — 2)*do (1),
can be computed in the following way:
Initialization:
f() = O, ey = 1.
Continuation: fori =0,1,2,...,n
a=ao; —z— f,
2

a .
A if e #0,
ei_1Bi, if e =0,
Bi=(1—e)(b+ Bir).
_ b
€ir1 = m,

firn=U—-eq)a+aip —2),
@ =a+ fiy1 +z

Proof First, we suppose that p;(z) # 0 for all i € Ny. The proof goes using an inductive
argument. We prove that for, all n € Ny,

P PnPn+1
en—_A_r;v ﬁl—an_ _%
For i = 0 we have:
PoP1
a=ay—z— fo=0ap—2z= ,
Ag

2

a
b=— = (g —2)°,

€0
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~

Bo =0,
ol — b (-2 _ pf
"Th+ B @—-22+5B Ay
Bl + a1 — 22) Pip2
=l-e)a+a1—2)=—— " —@y—7— i
Ji=( D( 1—2) @ — 22+ B, 1 A
2 2
A - +zA¢) + B1(2 Ao + a1 A
do=a+ fitz= Pi(pop O)A/Z( pop1Ao + o 0)_
0

Let the statement be true for n. According to Algorithm for i = n + 1 it follows:

a=an+]_z_fn+l =Oln+1—Z—(&n—a—Z)

PnPn+1 A Pn+1Pn42

=y —2—Qnta+z=ann+ -0y = —,
n+1 n n+1 An n An+1
a’ Pavz 3 AnAngs
b= == o Brrr = —eny )0+ Bui2) = o1 — 75—
€n+1 An+1 AnJrl
iy = Pisa _ Pisa
n+2 — - - )
p3+2 — Bup2Ans1 AVEY)
2
p Pn+1Pn+2
Jorr=0 —ep2)@+ a2 —2) = (1 + Hz) < P g — Z>
Apy2 Ayt
_ Bur2(Pug1 P2 + Q2 Apyt — 20,41)
An+2 ’
&n+1 —a+ fn+2 +z= Pn+1Pn+2 + B2 (Pns1 Pn2 + tpga Dygn — 28,41) e
AYL+] An+2

_ Pnr1Pns2Bng2 + A1 Bus2 Puti P2 + A2, Bura@nys — ZAL Buss + 20041 Ao
AthlAnJrZ

Pr1Pns2(Buy2 Dyt — P,3+z) + A1 But2Pnt1 Pry2 + A,2,+1ﬂn+2an+2 - ZAnHP,%.._z
Ans1Bny2
_P3+2(Pn+117n+2 +28041) + But2CPut1 Pur2Bntr + O5n+2Ai+1)
JAVHIE WA VAT ’

Now, let p;(z) = 0 for some i. Then from the three-term recurrence relation we have p;;; =
(z — a;)pi — Bipi—1 = —PBipi—1- The previous part of the proof implies

_ppia o, P
Al 9 1 Al b
which gives
2.2 2
61_2 _ _PiPiy _ Pit1
e; PIA; Pi+1P; — PiPiy1

Since piy1p; — piPiy = —Bivi-1P; = Bi(pip;_, — pPi—1p}), We get

a Bi P,’271

——————— = Biei1.
€; PiDi_1 — Di—1D;

This completes the proof. |
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In the sequel we apply Theorem 3.1 twice to compute the coefficients of three-term recurrence
relation for polynomials orthogonal with respect to the modified Chebyshev measure of the second
kind,

do(t) = (t — —) V1—1t2de, te[-1,1],
and

1 2
da/(t):t2<t2—§> 1 —12dr, te[-1,1].

In the first step, we compute the coefficients &y, i, k € Ny, for polynomials orthogonal with
respect to the measure do (1) = (r — 1/ V2)? 2)2/1 — t2dt, wheret € [—1, 1]. Flnally, using already
computed coefficients ¢y and ﬂk (Theorem 3.1) we get desired coefficients &, and ﬂk, k € Ny, by

using d6 (1) = (t — (—1/4/2))*dé (1).

THEOREM 3.2 The coefficients of the three-term recurrence relation for the sequence of
polynomials orthogonal with respect to the measure

d&(t):( ——) V1 —1t2dt, te[-1,1],

are
- v ’k(k+3) , k=0mod 4,
(k+1)(k+3) 4k + 1)2
k(k+3)>
k =1mod 4,
@, B = ( f(k+2) 4(k 1 2)2 mo
(0 - ) k=2mod 4
T4k +2) = ,
k+2
= 4
<«/§(k+2) 4(k+1)) k =3 mod 4,
where k € Ny.

Proof As this is a modification of the Chebyshev measure of the second kind, the coefficients
oy and By from Theorem 3.1 are oy = 0,k € Ny, Bo =n/2and B = 1/4,k e N,and z = l/ﬁ.
In order to prove the statement of this theorem we show that for all k € Ny, f; and ¢; from
Theorem 3.1 are given by

k = 0 mod 4,

k2 1
2+ 1) k+1

k+1) 2 B
<_f2(k+2)’k+2>’ k= Tmods,

(fr.ex) =
1 1
(——,—), k =2 mod 4,
V2 k+2
1
-—,,0]), k =3 mod 4.
( V2 )

For the proof we apply the principle of mathematical induction. To start, we prove that the statement
is valid for k =0, 1, 2, 3.



International Journal of Computer Mathematics 3021

By direct computation, we have

~ 2 V2 V2
kZO :0 = —, = —_——, — — ’
. Bo =3 fi 3 Qo 3
fe1 B 1 1 f 1 - 1
=1, = 7> € = -, = =, o = __;
S AV A W
3 1
k=2, = —, =0, =—— a=0;
B2 TR f3 NG a;
. 5 1 272 1
k:3’ = ’ = > = — 5 03 = 1
B3 6 “=3 fa 5 a3 573

Let the statement be true for k € N. Applying Theorem 3.1 it follows:

1 N k2 1 b 1 s k(k+3)
a = ——— = — , = , = ——,
V2 2+ T Vak+1) 2k+ 17 7T 4k 1)
2 ; k+2 . V2
e = ), = - o =
1= 03 k+1 20 13) k+1 *k+ Dk +3)
_ 1 s DK+
2k +3)  4k+3) TN Tage32
1 y | 1
e = ) = -, o = - 5
k+2 k+4 k+2 \/5 k+2 ﬁ(k—l—?})
. k+3
=(), b=0, = ,
a Y
1
era3 =0, = &3 =0,
k+3 fk+3 \/E k+3
| . k+5
:0’ b: y = —’
a s PP T s
1 k+4 . 1

Cpg = ——, = Q= —.
ket = 7S Jrta N k4 N

This completes the proof. n

THEOREM 3.3  The coefficients of the three-term recurrence relation for polynomials orthogonal

with respect to for the measure

2
d&(t):(tz—%> 1 —1r2de, te[-1,1], (7)

are

ar =0, keNy, BOZI%,
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k , k=0mod4,
4(k +2)
1+k
L, k =1mod4,
,é 4k + 3)
k:
k+4 , k=2mod4,
4(k +2)
i, k =3 mod 4,
4(k + 3)

for all k € Ny.

Proof To prove this theorem we show that for all k € Ny, f; and e; from Theorem 3.1 are given
by

1
( ¢ , ), k =0 mod 4,
2k +1) k+2

( k+1) 2(k+1)
V2(k 4+2) k(k +3)

>, k= 1mod 4,

(fi- &) =
( ! ! ) k =2mod 4
V=7 1 | = 2mod 4,
V2 k41
( ! O> k =3 mod 4
= ) = mo .
V2
The rest of the proof is the same as in Theorem 3.2. |

Example 3.4 A few first polynomials py, orthogonal with respect to the measure (7), are:

1
pox) =1, pix)=x, pa(x)=x*— 3

p3(x) =x7 — %x, pax) = x* — gxz + i,

ps(x) = x° —x° + éx, po(x) = x° — %x“ + 39—2x2 —~ EIS’
pr(x) =x" — §x5 + gﬁ - 63—4x,

ps(x) =x* — gx6 + %)ﬁ — %xz + 15@

5 1 3
po(x) = X =2x7 + sz — ZX3 + Ex,
o 93 g 13 6_4_3x4 5 5 1

+ = ...
24 8 96 128 2048

Similarly, we get the following theorem.
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THEOREM 3.5 The coefficients of the three-term recurrence relation for polynomials orthogonal
with respect to for the measure

2
do'(t) = 1* (rz— %) V1—=12dt, te[-1,1], (8)

are
A b4
o =0, ke Ny, = —,
a € Np, Bo 28
k
——, k=0mod4,
4k +4)
k+7
. %, k51m0d4,
B = 1( +3)
-, k =2 mod 4,
4
1
-, k =3 mod 4,
4

forall k € Ny.

Example 3.6 A few first polynomials 7y, orthogonal with respect to the measure (8), are:

PO =1 @ =x nE ="

r3(x) = x3 — Zx, ra(x) = x* —x2 4 %

rs(x) = x° — §x3 + 312)6, re(x) = x% — %x“ + ;—2x2 - 63_4
r(x) =x" — %xs + %x3 — 11738)6’

rg(x) = x% —2x% + §x4 — %xz + %,

ro(x) =x° — %)ﬂ + ;—sz - gf + %x,

Fo(x) = x'0 — §x8+§x6_ £x4+£x2— 1

2 24 16 384 256

4. Application to the constrained L2-approximation

The previous results can be applied to a problem of least square approximation. The problem
of a constrained L2-approximation can be stated in the following form. Given set of points t; €
supp(du), i =1, ..., m, and the function f defined on supp(du), we want to find a polynomial
p € PS,, , where

n+m>
Prim =P € Pagmlp@) = f(t), i = 1,... m},
which is the solution of the following constrained extremal problem
1/2
min
Peprxc+r71

/R (f(x) — p(x))*dp
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A solution of this problem of a constrained L>?-approximation (see [9, p. 388]) can be given in
a rather elegant form. The solution is a polynomial

PX) = LX) + 0n(0)S, (), p € P, ©)
where L,, is an interpolation polynomial for the set of data (¢;, f(#;)),i =1, ..., m,and w,,(x) =
[T,(x — 1), and S, € P, is the solution of the following unconstrained L*-approximation
problem

(x) = Ln(x) : .
min | [ (F2 2 = sw) w0 du
sePy | JR Wy (X)

We recognize that the polynomial S, is actually L2-approximation of the function (f — L,,)/w,,
with respect to the transformed measure w2, d.

Example 4.1 We consider the problem of the constrained L?-approximation with respect to the
Chebyshev measure of the second kind with constraints given at the points =1 /+/2 for the function
f(x) = cos(rx/2). Here, m = 2 and the polynomial L, is an interpolation polynomial for the
set of points (—1/+/2, a), (1/+/2, a), where a = cos(1/(2+/2)) = 0.4440158403262133, i.e.

Lz(x)za(x+l/ﬁ+x_]/ﬁ>

’

2/V2 —2//2

and w,(x) = x> — 1/2. In order to solve the constrained L?-approximation problem we need to
solve the following unconstrained L?-approximation problem

1 2 2
— 1
/ M—s(x) e 1 — x2dx
g \x2—1/2 2
We recognize the measure d from Theorem 3.3. In turn we can use standard techniques for the
construction of the polynomial S,. The best approach is to get S, as a linear combination of the

polynomials p,, n € Ny, orthogonal with respect to do (see Example 3.4). Then, the solution can
be given in the following form

1/2

min
SEP,

1 ' fx)—a
I pell? Jo1 x> —1/2

$u() =Y qp(x), g = Pi(x) d& (x).
k=0

Evidently, in this case gox+1 = 0, k > 0. The coefficients g,; for 0 < k < 8 are given in Table 1.
All calculations are performed in double precision arithmetic (with machine precision m.p. ~
2.22 x 107'%). Numbers in parentheses indicate decimal exponents.

The corresponding absolute error of the constrained L>-approximation p (see (9)), given by

€prm = max
—1<x<l1

X
COS? —px)|, pePC

n+m>

is presented in the same table. For example, the absolute error of the corresponding approximation
forn =6andm =2,

1
px)=a+ <x2 - 5) (gopo(x) + g2 p2(x) + gapa(x) + g ps(x)),

is 3.68 x 1075,
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Table 1. Numerical results for Examples 4.1 and 4.2.

k 92 %42 Goir Sy

0 —1.082769347042405 4.44(~1) 2.287103863997141(—1) 2.39(~3)
1 2.270832557191690(—1) 9.74(~2) —1.941680177208599(—2) 4.02(—5)
2 —1.936241857485842(—2) 1.98(-3) 8.641187093109698(—4) 2.79(~7)
3 8.629162200449605(—4) 3.68(—5) —2.397440322975305(—5) 1.75(=9)
4 —2.395555770714487(—5) 251(=7) 4.507523722168420(~7) 5.99(—12)
5 4.505323478769008(~7) 1.64(—8) —6.148761353874306(—9) 1.95(—14)
6 —6.146774659794560(—10) 5.56(—12) 6.344566432377592(—11) m.p.

7 6.343138140954393(—11) 1.84(—14) —5.135154904236841(—13) m.p.

8 —5.134318126826883(—13) m.p. 3.342631175921556(—15) m.p.

Example 4.2 Let again f(x) = cos(wrx/2), —1 < x < 1. Similarly as in the previous example
for a set of interpolation constraints at the points 0, +1/+/2 and the constrained L2-approximation
with respect to the Chebyshev measure of the second kind, we can use the exposed technique and
Theorem 3.5. In this case we have L3(x) = 1 — 4x2sin?(77/(4v/2) and w3(x) = x(x2 — 1/2).
If we denote the sequence of polynomials orthogonal with respect to do’ with 7y, k € Ny (see
Example 3.6), we get

1 ') = L)
el Jor x(x* = 1/2)

Ry(x) =) qir(x),  gj =

k=0

re(x)do’ (x).

Here, g5, = 0, k > 0. The coefficients g5, ,; = 0,0 < k < 8, and the corresponding errors e/, , ,
are presented also in Table 1.
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