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In this paper, we consider a rational algorithm for modification of a positive measure by quadratic factor,
dσ̂ (t) = (t − z)2 dσ(t), where it is allowed z to be in supp(dσ).Also, we present an application of modified
algorithm to the measures dσ̂ (t) = T 2

2 (t) dσ(t) and dσ ′(t) = t2T 2
2 (t) dσ(t), where T2(t) = t2 − 1

2 is the

second degree monic Chebyshev polynomial of the first kind and dσ(t) = √
1 − t2 dt , t ∈ [−1, 1], is the

Chebyshev measure of the second kind. Also, we present an application to the constrained L2-polynomial
approximation.
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1. Introduction

Let dσ be a positive measure on R with an infinite support such that polynomials are integrable
and let {pn}, n ∈ N0, be a sequence of the corresponding monic orthogonal polynomials,

pn(t) = pn(dσ ; t), n ∈ N0.

It is known that they satisfy a three-term recurrence relation of the form

pn+1(t) = (t − αn)pn(t) − βnpn−1(t), n ∈ N0,

p0(t) = 1, p−1(t) = 0,

where αn = αn(dσ) ∈ R, βn = βn(dσ) > 0, and by convention, β0 = β0(dσ) = σ(R).
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We define

dσ̂ (t) := (t − z)2 dσ(t), z ∈ C.

The set of orthogonal polynomials we wish to study is

p̂n(t) = p̂n(dσ̂ ; t), n ∈ N0.

The modification by a quadratic factor can be achieved by two successively modifications by
linear factors (see [4] and [5, pp. 121–124]). A problem with this approach appears when z is
inside of the supp(dσ). Actually, when z is a zero of the polynomial pn, orthogonal with respect
to the measure dσ , an application of the modification by linear factor crashes, due to the fact that
we have a division by zero. An alternative approach is to apply one step of the QR algorithm to
the Jacobi matrix J = J (dσ) for the measure dσ , i.e. the infinite symmetric tridiagonal matrix

J = J (dσ) = tri(α0, α1, α2, . . . ,
√

β1,
√

β2, . . .),

with the recursion coefficients αk = αk(dσ) on the main diagonal, and the
√

βk = √
βk(dσ) on

two-side diagonals (see [5, pp. 127–128]). This algorithm needs the computation of the square
roots, hence it is not rational. Here, we present an algorithm which can be applied regardless of the
fact where the point z lies. In particular, the presented algorithm is rational, as the one presented
in [2] which is dealing with a linear modification. For some other modifications see [6].

Our modification by the quadratic factor can be successfully applied in the constrained L2-
polynomial approximation, for constructing the so-called s- (or σ -) orthogonal polynomials and
the corresponding quadratures of Turán type (see [7,11]), etc. For example, a typical application in
the constrained L2-approximation requires orthogonal polynomials with respect to the measure
qm(t)2 dσ(t), where qm is a monic polynomial of degree m with the zeros τ1, . . . , τm, which
belong to the support of the measure dσ(t) (see [9, p. 388] and [10]). It can be done easily by
repeating our modification m times by the quadratic factors (t − τk)

2, k = 1, . . . , m.
The paper is organized as follows. In Section 2 we present the modification of the measure by a

quadratic factor and in Section 3 we give the corresponding algorithm and some of its interesting
applications with analytic solutions. Finally, an application to the constrained L2-approximation
is given in Section 4.

2. The modification by a quadratic factor

Definition 2.1 Let dσ be a positive measure and pn(·) = pn(dσ ; ·) be the sequence of monic
orthogonal polynomials with respect to dσ . Let z ∈ C and assume that pn(z) �= 0 for n ∈ N. Then

p̃n(t; z) = 1

t − z

[
pn+1(t) − pn+1(z)

pn(z)
pn(t)

]
, (1)

is called the kernel polynomial for the measure dσ .

Evidently, p̃n(t, z) ∈ Pn as a function of t .

Definition 2.2 We call the measure dσ quasi-definite if and only if there exists a sequence of
polynomials orthogonal with respect to dσ (cf. [3]).

Theorem 2.3 Let dσ be a positive measure and z ∈ C be such that pn(z) �= 0, n ∈ N. Let
dσ̃ (t) = (t − z) dσ(t). Then dσ̃ is quasi-definite and the kernel polynomials p̃k, k ∈ N0, are
(monic) formal orthogonal polynomials with respect to dσ̃ .
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Proof For the proof see, for example, [5, p. 38]. �

Lemma 2.4 The three-term recurrence coefficients α̂k and β̂k, k ∈ N0, for the sequence of
polynomials orthogonal with respect to the measure dσ̂ , are continuous functions of z ∈ R.

Proof Consider a sequence of moments μ̂n = ∫
xn dσ̂ (x), n ∈ N0. We obtain easily that every

μ̂n is a polynomial of the second degree in z. Since p̂n can be expressed as

p̂n(x) = 1

Ĥn

∣∣∣∣∣∣∣∣∣

μ̂0 μ̂1 · · · μ̂n

μ̂1 μ̂2 · · · μ̂n+1
...

...
. . .

...

1 x · · · xn

∣∣∣∣∣∣∣∣∣
,

(see [3, p. 17]), where Ĥn is the main minor of rank n, which is also known as the Hankel
determinant and which is not zero according to positivity of the measure dσ̂ . Hence, the coefficients
of p̂n are continuous functions in z ∈ R and the three-term recurrence coefficients are too. �

Lemma 2.5 If �n ≡ �n(z) = pn+1(z)p
′
n(z) − pn(z)p

′
n+1(z), n ∈ N0, we have

�n+1 = βn+1�n − p2
n+1(z), n ∈ N0. (2)

Proof According to Christoffel–Darboux formulae (cf. [3, pp. 23–24] and [5, pp. 15–16]) we
have

− �n

‖pn‖2
=

n∑
k=0

p2
k (z)

‖pk‖2 , − �n+1

‖pn+1‖2
=

n+1∑
k=0

p2
k (z)

‖pk‖2 ,

wherefrom, by subtracting, we get

p2
n+1(z)

‖pn+1‖2
= − �n+1

‖pn+1‖2
+ �n

‖pn‖2
.

Using the identity βn+1 = ‖pn+1‖2/‖pn‖2, we get what is stated. �

Theorem 2.6 Let z ∈ C be such that the measure dσ̂ is quasi-definite. The coefficients of the
three-term recurrence relation for the polynomial sequence orthogonal with respect to the measure

dσ̂ (t) = (t − z)2 dσ(t), z ∈ C,

are given by

α̂n = −p2
n+1(pnpn+1 + z�n) + βn+1(2pnpn+1�n + αn+1�

2
n)

�n�n+1
, (3)

β̂0 = β0[β1 + (z − α0)
2], β̂n = βn

�n−1�n+1

�2
n

, (4)

where we denote pn := pn(dσ ; z), n ∈ N0, and {pn} is a set of polynomials orthogonal with
respect to the measure dσ .
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Proof First, we prove that �n(z) < 0 for all n ∈ N0 and z ∈ R. Using the Christoffel–Darboux
formulae (cf. [3, pp. 23–24] and [5, pp. 15–16]), it follows

− �n

‖pn‖2
= p′

n+1pn − p′
npn+1

‖pn‖2 =
n∑

k=0

p2
k

‖pk‖2 > 0,

wherefrom we get the previous statement.
Denote by Zn the set of all zeros of the polynomial pn. Obviously Zn, n ∈ N, consists of n real

numbers, hence, Z = ⋃
n∈N

Zn is a set of zeros of polynomials pn, n ∈ N, and it is a countable
set. Therefore, R \ Z is not an empty set and has a continuum many elements.

Choose z ∈ R \ Z . For such z we have pn(z) �= 0, n ∈ N, and also �n(z) < 0, n ∈ N. The
condition pn(z) �= 0, n ∈ N, according to Theorem 2.3, assures that the measure dσ̃ (t) = (t −
z) dσ(t) is quasi-definite and that the orthogonal polynomials with respect to it are given by
Equation (1). Thus, we can express the polynomials p̃n, n ∈ N, orthogonal with respect to the
measure dσ̃ , as

p̃n(t, z) = 1

t − z

[
pn+1(t) − pn+1

pn

pn(t)

]
, n ∈ N0.

Our target measure is dσ̂ (t) = (t − z) dσ̃ (t) = (t − z)2 dσ(t), hence, we want to apply once more
Theorem 2.3, and we get

p̂n(t, z) = 1

t − z

[
p̃n+1(t, z) − p̃n+1(z, z)

p̃n(z, z)
p̃n(t, z)

]
, n ∈ N0.

As we can inspect we have

p̃n(z, z) = −�n(z)

pn(z)
.

According to the condition �n �= 0, n ∈ N0, an application of Theorem 2.3 is justified.
Now, we have

p̂n(t, z) = 1

t − z

[
p̃n+1(t) − p̃n+1(z)

p̃n(z)
p̃n(t)

]

= 1

t − z

{
pn+2(t) − (pn+2/pn+1)pn+1(t)

t − z

−−(�n+1/pn+1)

−(�n/pn)

(
pn+1(t) − (pn+1/pn)pn(t)

t − z

)}

= 1

(t − z)2

{
pn+1pn+2(t) − pn+2pn+1(t)

pn+1
− �n+1pn

�npn+1

pn+1(t)pn − pn+1pn(t)

pn

}

= 1

(t − z)2

{
pn+2(t) − pn+2

pn+1
pn+1(t) − �n+1

�n

(
pn

pn+1
pn+1(t) − pn(t)

)}

= 1

(t − z)2�n

{
pn+2(t)�n − pn+1(t)

(
�n

pn+2

pn+1
+ �n+1

pn

pn+1

)
+ pn(t)�n+1

}
.

This gives

p̂n(t, z) = pn+2(t)�n − pn+1(t)(pn+2p
′
n − pnp

′
n+2) + pn(t)�n+1

(t − z)2�n

. (5)
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Putting Equation (5) in the three-term recurrence relation for polynomials {p̂n},
p̂n+1(t) = (t − α̂n)p̂n(t) − β̂np̂n−1(t), n ∈ N0,

it follows

pn+3(t)�n+1 − pn+2(t)(pn+3p
′
n+1 − pn+1p

′
n+3) + pn+1(t)�n+2

(t − z)2�n+1

= (t − α̂n)
pn+2(t)�n − pn+1(t)(pn+2p

′
n − pnp

′
n+2) + pn(t)�n+1

(t − z)2�n

− β̂n

pn+1(t)�n−1 − pn(t)(pn+1p
′
n−1 − pn−1p

′
n+1) + pn−1(t)�n

(t − z)2�n−1
.

Adjusting the previous term and using the three-term recurrence relation for polynomials {pn}
it follows

pn+3(t) − pn+2(t)

�n+1
[(z − αn+2)�n+1 − pn+1pn+2] + pn+1(t)

�n+2

�n+1

= (t − α̂n)

(
pn+2(t) − pn+1(t)

�n

[(z − αn+1)�n − pnpn+1] + pn(t)
�n+1

�n

)

− β̂n

(
pn+1(t) − pn(t)

�n−1
[(z − αn)�n−1 − pn−1pn] + pn−1(t)

�n

�n−1

)
.

Putting pn+3(t) = (t − αn+2)pn+2(t) − βn+2pn+1(t) in the previous equality, we get

− βn+2pn+1(t) + �n+2pn+1(t)

�n+1
+ β̂n

×
(

�npn−1(t)

�n−1
− pn(t)((z − αn)�n−1 − pn−1pn)

�n−1
+ pn+1(t)

)

+ (t − αn+2)pn+2(t) − (t − α̂n)

×
(

�n+1pn(t)

�n

− pn+1(t)((z − αn+1)�n − pnpn+1)

�n

+ pn+2(t)

)

− pn+2(t)((z − αn+2)�n+1 − pn+1pn+2)

�n+1
= 0.

Since �n+2 = βn+2�n+1 − p2
n+2, pn+2(t) = (t − αn+1)pn+1(t) − βn+1pn(t), and pn+1(t) =

(t − αn)pn(t) − βnpn−1(t), solving the system of two equations, we obtain

α̂n = αn+1�n�n+1 + �n+1pnpn+1 − �npn+1pn+2

�n�n+1
,

β̂n = (αn+1 − z)βn�n−1�n�n+1pnpn+1 + βn�n−1�n+1p
2
np

2
n+1

�2
n�n+1(�n − βn�n−1)

(6)

− (αn+1 − z)βn�n−1�
2
npn+1pn+2 + βn�n−1�npn+2(�npn+2 + pnp

2
n+1)

�2
n�n+1(�n − βn�n−1)

.

Now, putting �n+1 = βn+1�n − p2
n+1 and pn+2 = (z − αn+1)pn+1 − βn+1pn in Equation (6)

we get the expressions (3) and (4).
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The obtained expressions for the three-term recurrence coefficients α̂n and β̂n, n ∈ N0, are
valid for z ∈ R \ Z . Since the measure dσ̂ is positive for z ∈ R, the orthogonal polynomials with
respect to dσ̂ exist. Now, we prove that the same relations are valid for any z ∈ R.

First, note that we have proved that �n(z) < 0, z ∈ R, such that the right-hand side expressions
in Equations (3) and (4) are defined for any z ∈ R. Consider now a sequence of open sets On =
R \ Zn, n ∈ N. Every On, n ∈ N, is dense in R. Since R is a complete metric space, it is a Baire
space (see [1, p. 31]). According to the Baire category theorem every residual set, i.e. a countable
intersection of open sets which are dense in R, is dense in R. Thus,

⋂
n∈N

On = R \ Z is dense
in R. This means that Equations (3) and (4) are valid on the set dense in R. Now, α̂n and β̂n,
n ∈ N0, are continuous functions of z ∈ R, according to Lemma 2.4, and also the right-hand sides
in Equations (3) and (4) are continuous in z ∈ R, since �n(z) < 0, n ∈ N, z ∈ R. For any z ∈ Z ,
we can construct a sequence of points zn ∈ R \ Z , n ∈ N, such that lim zn = z, due to the fact
that R \ Z is dense in R. According to the continuity, the equalities (3) and (4) are valid in z as
well. Since z ∈ Z was arbitrary, the equalities are valid for every z ∈ R.

Now, let us consider z ∈ C \ R. Denote

Z̃n = {zn
� ∈ C | Ĥn(z

n
� ) = 0, � = 1, . . . , N(n)},

where N(n) is the number of zeros of the polynomial Ĥn. So,
⋃

n∈N
Z̃n is a countable set of

all complex points where the measure dσ̂ is not quasi-definite. Let z0 ∈ C \ R be such that the
measure dσ̂ is quasi-definite. Suppose that we have for some n ∈ N, �n(z0) = 0. Define

n0 = min{n ∈ N | �n(z0) = 0}.

As Ĥn is a continuous function in z and since β̂n = Ĥn−2Ĥn/Ĥ
2
n−1, it follows that β̂n, n ∈ N0, is

also a continuous function in z on C\Z̃n. Therefore, there is an open neighbourhood of z0, O1(z0),
such that for each z ∈ O1(z0) we have Ĥn �= 0, β̂n �= 0, for n = 0, 1, . . . , 4n0.

As �n0(z0) = 0, there is an open neighbourhood of z0, O2(z0), such that for each z ∈ O2(z0) \
{z0} we have �n0(z) �= 0. If not, there exist a point z in every open neighbourhood of z0, different
from z0, such that �n0(z) = 0. Since, �n0 is a entire function of z it would imply that �n0(z) = 0,
z ∈ C (see [8, p. 168]), which is impossible according to the fact that �n0(z) < 0, z ∈ R.

Define O(z0) = O1(z0) ∩ O2(z0), then O(z0) is an open neighbourhood of z0 on which
�n0(z) �= 0, z �= z0, and on which β̂n0 is continuous. Now, we have

{0, +∞} �
 lim
z→z0

β̂n0 = lim
z→z0

βn0

�n0−1�n0+1

�2
n0

,

from which �n0+1(z0) = 0.
Since

�n0 = −‖pn0+1‖2
n0∑

k=0

p2
k (z0)

‖pk‖2
= 0, �n0+1 = −‖pn0+2‖2

n0+1∑
k=0

p2
k (z0)

‖pk‖2
= 0,

we get p2
n0+1(z0) = 0, which is a contradiction, since pn0+1 cannot have a complex zero, as a

member of the sequence of polynomials orthogonal with respect to positive measure dσ supported
on the real line.

Accordingly, Equations (3) and (4) are valid for all z ∈ C, such that dσ̂ is quasi-definite at z.
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Finally, for some z ∈ C, for which dσ̂ is quasi-definite, we compute β̂0,

β̂0 =
∫

(t − z)2 dσ =
∫

(t − α0 + α0 − z)2 dσ

=
∫

(t − α0)
2 dσ + 2

∫
(t − α0)(α0 − z) dσ +

∫
(α0 − z)2 dσ

= β0β1 + (α0 − z)2β0 = β0[β1 + (z − α0)
2].

�

3. Algorithm and its application

In this section, we present a rational algorithm for a modification by quadratic factor, dσ̂ (t) =
(t − z)2 dσ(t), where z ∈ C is such that dσ̂ is quasi-definite, as well as its application to some
modified Chebyshev measure of the second kind.

Theorem 3.1 The coefficients α̂n and β̂n in the three-term recurrence relation for the polynomial
sequence orthogonal with respect to the quasi-definite measure

dσ̂ (t) = (t − z)2 dσ(t),

can be computed in the following way:
Initialization:

f0 = 0, e0 = 1.

Continuation: for i = 0, 1, 2, . . . , n

a = αi − z − fi,

b =
⎧⎨
⎩

a2

ei

, if ei �= 0,

ei−1βi, if ei = 0,

β̂i = (1 − ei)(b + βi+1),

ei+1 = b

b + βi+1
,

fi+1 = (1 − ei+1)(a + αi+1 − z),

α̂i = a + fi+1 + z.

Proof First, we suppose that pi(z) �= 0 for all i ∈ N0. The proof goes using an inductive
argument. We prove that for, all n ∈ N0,

en = − p2
n

�n

, fn = αn − z − pnpn+1

�n

.

For i = 0 we have:

a = α0 − z − f0 = α0 − z = p0p1

�0
,

b = a2

e0
= (α0 − z)2,
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β̂0 = 0,

e1 = b

b + β1
= (α0 − z)2

(α0 − z)2 + β1
= − p2

1

�1
,

f1 = (1 − e1)(a + α1 − z) = β1(α0 + α1 − 2z)

(α0 − z)2 + β1
= α1 − z − p1p2

�1
,

α̂0 = a + f1 + z = −p2
1(p0p1 + z�0) + β1(2p0p1�0 + α1�

2
0)

�0�1
.

Let the statement be true for n. According to Algorithm for i = n + 1 it follows:

a = αn+1 − z − fn+1 = αn+1 − z − (α̂n − a − z)

= αn+1 − z − α̂n + a + z = αn+1 + pnpn+1

�n

− α̂n = pn+1pn+2

�n+1
,

b = a2

en+1
= − p2

n+2

�n+1
, β̂n+1 = (1 − en+1)(b + βn+2) = βn+1

�n�n+2

�2
n+1

,

en+2 = p2
n+2

p2
n+2 − βn+2�n+1

= − p2
n+2

�n+2
,

fn+2 = (1 − en+2)(a + αn+2 − z) =
(

1 + p2
n+2

�n+2

) (
pn+1pn+2

�n+1
+ αn+2 − z

)

= βn+2(pn+1pn+2 + αn+2�n+1 − z�n+1)

�n+2
,

α̂n+1 = a + fn+2 + z = pn+1pn+2

�n+1
+ βn+2(pn+1pn+2 + αn+2�n+1 − z�n+1)

�n+2
+ z

= pn+1pn+2�n+2 + �n+1βn+2pn+1pn+2 + �2
n+1βn+2αn+2 − z�2

n+1βn+2 + z�n+1�n+2

�n+1�n+2

= pn+1pn+2(βn+2�n+1 − p2
n+2) + �n+1βn+2pn+1pn+2 + �2

n+1βn+2αn+2 − z�n+1p
2
n+2

�n+1�n+2

= −p2
n+2(pn+1pn+2 + z�n+1) + βn+2(2pn+1pn+2�n+1 + αn+2�

2
n+1)

�n+1�n+2
.

Now, let pi(z) = 0 for some i. Then from the three-term recurrence relation we have pi+1 =
(z − αi)pi − βipi−1 = −βipi−1. The previous part of the proof implies

a = pipi+1

�i

, ei = −p2
i

�i

,

which gives

a2

ei

= −p2
i p

2
i+1

p2
i �i

= − p2
i+1

pi+1p
′
i − pip

′
i+1

.

Since pi+1p
′
i − pip

′
i+1 = −βipi−1p

′
i = βi(pip

′
i−1 − pi−1p

′
i ), we get

a2

ei

= − βip
2
i−1

pip
′
i−1 − pi−1p

′
i

= βiei−1.

This completes the proof. �
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In the sequel we apply Theorem 3.1 twice to compute the coefficients of three-term recurrence
relation for polynomials orthogonal with respect to the modified Chebyshev measure of the second
kind,

dσ̂ (t) =
(

t2 − 1

2

)2 √
1 − t2 dt, t ∈ [−1, 1],

and

dσ ′(t) = t2

(
t2 − 1

2

)2 √
1 − t2 dt, t ∈ [−1, 1].

In the first step, we compute the coefficients α̃k , β̃k , k ∈ N0, for polynomials orthogonal with
respect to the measure dσ̃ (t) = (t − 1/

√
2)2

√
1 − t2 dt , where t ∈ [−1, 1]. Finally, using already

computed coefficients α̃k and β̃k (Theorem 3.1) we get desired coefficients α̂k and β̂k , k ∈ N0, by
using dσ̂ (t) = (t − (−1/

√
2))2 dσ̃ (t).

Theorem 3.2 The coefficients of the three-term recurrence relation for the sequence of
polynomials orthogonal with respect to the measure

dσ̃ (t) =
(

t − 1√
2

)2 √
1 − t2 dt, t ∈ [−1, 1],

are

(α̃k, β̃k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
−

√
2

(k + 1)(k + 3)
,

k(k + 3)

4(k + 1)2

)
, k ≡ 0 mod 4,

(
− 1√

2(k + 2)
,

k(k + 3)

4(k + 2)2

)
, k ≡ 1 mod 4,(

0,
k + 1

4(k + 2)

)
, k ≡ 2 mod 4,(

1√
2(k + 2)

,
k + 2

4(k + 1)

)
, k ≡ 3 mod 4,

where k ∈ N0.

Proof As this is a modification of the Chebyshev measure of the second kind, the coefficients
αk and βk from Theorem 3.1 are αk = 0, k ∈ N0, β0 = π/2 and βk = 1/4, k ∈ N, and z = 1/

√
2.

In order to prove the statement of this theorem we show that for all k ∈ N0, fk and ek from
Theorem 3.1 are given by

(fk, ek) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
− k

√
2

2(k + 1)
,

1

k + 1

)
, k ≡ 0 mod 4,

(
− (k + 1)√

2(k + 2)
,

2

k + 2

)
, k ≡ 1 mod 4,(

− 1√
2
,

1

k + 2

)
, k ≡ 2 mod 4,(

− 1√
2
, 0

)
, k ≡ 3 mod 4.

For the proof we apply the principle of mathematical induction.To start, we prove that the statement
is valid for k = 0, 1, 2, 3.
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By direct computation, we have

k = 0, β̃0 = 0, e1 = 2

3
, f1 = −

√
2

3
, α̃0 = −

√
2

3
;

k = 1, β̃1 = 1

9
, e2 = 1

4
, f2 = − 1√

2
, α̃1 = − 1

3
√

2
;

k = 2, β̃2 = 3

16
, e3 = 0, f3 = − 1√

2
, α̃2 = 0;

k = 3, β̃3 = 5

16
, e4 = 1

5
, f4 = −2

√
2

5
, α̃3 = 1

5
√

2
.

Let the statement be true for k ∈ N. Applying Theorem 3.1 it follows:

a = − 1√
2

+ k
√

2

2(k + 1)
= − 1√

2(k + 1)
, b = 1

2(k + 1)
, β̂k = k(k + 3)

4(k + 1)2
,

ek+1 = 2

k + 3
, fk+1 = − k + 2√

2(k + 3)
, α̂k+1 = −

√
2

(k + 1)(k + 3)
,

a = − 1√
2(k + 3)

, b = 1

4(k + 3)
, β̂k+1 = (k + 1)(k + 4)

4(k + 3)2
,

ek+2 = 1

k + 4
, fk+2 = − 1√

2
, α̂k+2 = − 1√

2(k + 3)
,

a = 0, b = 0, β̂k+2 = k + 3

4(k + 4)
,

ek+3 = 0, fk+3 = − 1√
2
, α̂k+3 = 0,

a = 0, b = 1

4(k + 4)
, β̂k+3 = k + 5

4(k + 4)
,

ek+4 = 1

k + 5
, fk+4 = − k + 4√

2(k + 5)
, α̂k+4 = 1√

2(k + 5)
.

This completes the proof. �

Theorem 3.3 The coefficients of the three-term recurrence relation for polynomials orthogonal
with respect to for the measure

dσ̂ (t) =
(

t2 − 1

2

)2 √
1 − t2 dt, t ∈ [−1, 1], (7)

are

α̂k = 0, k ∈ N0, β̂0 = π

16
,
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β̂k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k

4(k + 2)
, k ≡ 0 mod 4,

1 + k

4(k + 3)
, k ≡ 1 mod 4,

k + 4

4(k + 2)
, k ≡ 2 mod 4,

5 + k

4(k + 3)
, k ≡ 3 mod 4,

for all k ∈ N0.

Proof To prove this theorem we show that for all k ∈ N0, fk and ek from Theorem 3.1 are given
by

(f̂k, êk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
k√

2(k + 1)
,

1

k + 2

)
, k ≡ 0 mod 4,

(
(k + 1)√
2(k + 2)

,
2(k + 1)

k(k + 3)

)
, k ≡ 1 mod 4,

(
1√
2
,

1

k + 1

)
, k ≡ 2 mod 4,

(
1√
2
, 0

)
, k ≡ 3 mod 4.

The rest of the proof is the same as in Theorem 3.2. �

Example 3.4 A few first polynomials pk , orthogonal with respect to the measure (7), are:

p0(x) = 1, p1(x) = x, p2(x) = x2 − 1

8
,

p3(x) = x3 − 1

2
x, p4(x) = x4 − 5

6
x2 + 1

24
,

p5(x) = x5 − x3 + 1

8
x, p6(x) = x6 − 19

16
x4 + 9

32
x2 − 1

128
,

p7(x) = x7 − 3

2
x5 + 19

32
x3 − 3

64
x,

p8(x) = x8 − 9

5
x6 + 19

20
x4 − 21

160
x2 + 3

1280
,

p9(x) = x9 − 2x7 + 5

4
x5 − 1

4
x3 + 3

256
x,

p10(x) = x10 − 53

24
x8 + 13

8
x6 − 43

96
x4 + 5

128
x2 − 1

2048
, . . . .

Similarly, we get the following theorem.
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Theorem 3.5 The coefficients of the three-term recurrence relation for polynomials orthogonal
with respect to for the measure

dσ ′(t) = t2

(
t2 − 1

2

)2 √
1 − t2 dt, t ∈ [−1, 1], (8)

are

α̂k = 0, k ∈ N0, β̂0 = π

128
,

β̂k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k

4(k + 4)
, k ≡ 0 mod 4,

k + 7

4(k + 3)
, k ≡ 1 mod 4,

1

4
, k ≡ 2 mod 4,

1

4
, k ≡ 3 mod 4,

for all k ∈ N0.

Example 3.6 A few first polynomials rk , orthogonal with respect to the measure (8), are:

r0(x) = 1, r1(x) = x, r2(x) = x2 − 1

2
,

r3(x) = x3 − 3

4
x, r4(x) = x4 − x2 + 1

8
,

r5(x) = x5 − 9

8
x3 + 7

32
x, r6(x) = x6 − 3

2
x4 + 19

32
x2 − 3

64
,

r7(x) = x7 − 7

4
x5 + 7

8
x3 − 13

128
x,

r8(x) = x8 − 2x6 + 5

4
x4 − 1

4
x2 + 3

256
,

r9(x) = x9 − 13

6
x7 + 37

24
x5 − 19

48
x3 + 11

384
x,

r10(x) = x10 − 5

2
x8 + 53

24
x6 − 13

16
x4 + 43

384
x2 − 1

256
, . . . .

4. Application to the constrained L2-approximation

The previous results can be applied to a problem of least square approximation. The problem
of a constrained L2-approximation can be stated in the following form. Given set of points ti ∈
supp(dμ), i = 1, . . . , m, and the function f defined on supp(dμ), we want to find a polynomial
p ∈ PC

n+m, where

PC
n+m = {p ∈ Pn+m|p(ti) = f (ti), i = 1, . . . , m},

which is the solution of the following constrained extremal problem

min
p∈PC

n+m

∣∣∣∣
∫

R

(f (x) − p(x))2 dμ

∣∣∣∣
1/2

.
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A solution of this problem of a constrained L2-approximation (see [9, p. 388]) can be given in
a rather elegant form. The solution is a polynomial

p(x) = Lm(x) + ωm(x)Sn(x), p ∈ PC
n+m, (9)

where Lm is an interpolation polynomial for the set of data (ti , f (ti)), i = 1, . . . , m, and ωm(x) =∏m
i=1(x − ti), and Sn ∈ Pn is the solution of the following unconstrained L2-approximation

problem

min
s∈Pn

∣∣∣∣∣
∫

R

(
f (x) − Lm(x)

ωm(x)
− s(x)

)2

ωm(x)2 dμ

∣∣∣∣∣
1/2

.

We recognize that the polynomial Sn is actually L2-approximation of the function (f − Lm)/ωm

with respect to the transformed measure ω2
m dμ.

Example 4.1 We consider the problem of the constrained L2-approximation with respect to the
Chebyshev measure of the second kind with constraints given at the points ±1/

√
2 for the function

f (x) = cos(πx/2). Here, m = 2 and the polynomial L2 is an interpolation polynomial for the
set of points (−1/

√
2, a), (1/

√
2, a), where a = cos(π/(2

√
2)) = 0.4440158403262133, i.e.

L2(x) = a

(
x + 1/

√
2

2/
√

2
+ x − 1/

√
2

−2/
√

2

)
= a,

and w2(x) = x2 − 1/2. In order to solve the constrained L2-approximation problem we need to
solve the following unconstrained L2-approximation problem

min
s∈Pn

∣∣∣∣∣
∫ 1

−1

(
f (x) − a

x2 − 1/2
− s(x)

)2 (
x2 − 1

2

)2 √
1 − x2 dx

∣∣∣∣∣
1/2

.

We recognize the measure dσ̃ from Theorem 3.3. In turn we can use standard techniques for the
construction of the polynomial Sn. The best approach is to get Sn as a linear combination of the
polynomials pn, n ∈ N0, orthogonal with respect to dσ̃ (see Example 3.4). Then, the solution can
be given in the following form

Sn(x) =
n∑

k=0

qkpk(x), qk = 1

‖pk‖2

∫ 1

−1

f (x) − a

x2 − 1/2
pk(x) dσ̃ (x).

Evidently, in this case q2k+1 = 0, k ≥ 0. The coefficients q2k for 0 ≤ k ≤ 8 are given in Table 1.
All calculations are performed in double precision arithmetic (with machine precision m.p. ≈
2.22 × 10−16). Numbers in parentheses indicate decimal exponents.

The corresponding absolute error of the constrained L2-approximation p (see (9)), given by

en+m = max−1≤x≤1

∣∣∣cos
πx

2
− p(x)

∣∣∣ , p ∈ PC
n+m,

is presented in the same table. For example, the absolute error of the corresponding approximation
for n = 6 and m = 2,

p(x) = a +
(

x2 − 1

2

)
(q0p0(x) + q2p2(x) + q4p4(x) + q6p6(x)),

is 3.68 × 10−5.
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Table 1. Numerical results for Examples 4.1 and 4.2.

k q2k e2k+2 q ′
2k+1 e′

2k+4

0 −1.082769347042405 4.44(−1) 2.287103863997141(−1) 2.39(−3)

1 2.270832557191690(−1) 9.74(−2) −1.941680177208599(−2) 4.02(−5)

2 −1.936241857485842(−2) 1.98(−3) 8.641187093109698(−4) 2.79(−7)

3 8.629162200449605(−4) 3.68(−5) −2.397440322975305(−5) 1.75(−9)

4 −2.395555770714487(−5) 2.51(−7) 4.507523722168420(−7) 5.99(−12)

5 4.505323478769008(−7) 1.64(−8) −6.148761353874306(−9) 1.95(−14)

6 −6.146774659794560(−10) 5.56(−12) 6.344566432377592(−11) m.p.
7 6.343138140954393(−11) 1.84(−14) −5.135154904236841(−13) m.p.
8 −5.134318126826883(−13) m.p. 3.342631175921556(−15) m.p.

Example 4.2 Let again f (x) = cos(πx/2), −1 ≤ x ≤ 1. Similarly as in the previous example
for a set of interpolation constraints at the points 0, ±1/

√
2 and the constrained L2-approximation

with respect to the Chebyshev measure of the second kind, we can use the exposed technique and
Theorem 3.5. In this case we have L3(x) = 1 − 4x2 sin2(π/(4

√
2) and ω3(x) = x(x2 − 1/2).

If we denote the sequence of polynomials orthogonal with respect to dσ ′ with rk , k ∈ N0 (see
Example 3.6), we get

Rn(x) =
n∑

k=0

q ′
krk(x), q ′

k = 1

‖rk‖2

∫ 1

−1

f (x) − L3(x)

x(x2 − 1/2)
rk(x) dσ ′(x).

Here, q ′
2k = 0, k ≥ 0. The coefficients q ′

2k+1 = 0, 0 ≤ k ≤ 8, and the corresponding errors e′
2k+4

are presented also in Table 1.
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