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Abstract

Orthogonal polynomials related to Abel and Lindelöf weight functions on R, as well as ones related to some products of these
weight functions, are considered. Using the moments of the weight functions, the coefficients in the three-term recurrence rela-
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1. Introduction

In this paper we denote the space of all algebraic polynomials defined on R by P, and by PN ⊂ P the space of
polynomials of degree at most N (N ∈ N). Also, a nonnegative function x 7→ w(x) on R for which all moments
µk =

∫
R xkw(x) dx, k ≥ 0, exist, are finite and µ0 > 0, we called the weight function. Then, for each N ∈ N, there exists

the N-point Gauss-Christoffel quadrature rule (cf. [22]-[24])∫
R

f (x)w(x) dx =
N∑
ν=1

A(N)
ν f (x(N)

ν ) + RN( f ), (1.1)

which is exact for all polynomials of degree ≤ 2N − 1 ( f ∈ P2N−1).
We start this paper with two weight functions on R:

• The Abel weight
wA(x) =

x
eπx − e−πx =

x
2 sinh πx

; (1.2)

• The Lindelöf weight

wL(x) =
1

eπx + e−πx =
1

2 cosh πx
. (1.3)
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In 1823 Niels Henrik Abel [1] proved an interesting summation formula for the finite “alternating sum”

n∑
k=m

(−1)k f (k) =
1
2
[
(−1)m f (m) + (−1)n f (n + 1)

]
−

∫
R

[
(−1)mψm(y) + (−1)nψn+1(y)

]
wA(y) dy, (1.4)

where the function ψm(y) in (1.4) is given by

ψm(y) =
f (m + iy) − f (m − iy)

2iy
.

When n→ +∞ (1.4) reduces to the Abel summation formula for the alternating series

+∞∑
k=m

(−1)k−m f (k) =
1
2

f (m) −
∫
R

f (m + iy) − f (m − iy)
2iy

wA(y) dy. (1.5)

As an alternative formula to (1.5) there is the Lindelöf summation formula [17]

+∞∑
k=m

(−1)k−m f (k) =
∫
R

f (m − 1/2 + iy)wL(y) dy, (1.6)

where the Lindelöf weight function wL(x) is given by (1.3).
In order to construct quadrature formulas of Gaussian type with respect to the weight functions wA(x) and wL(x),

for integrals which appear in (1.4) and (1.6), respectively, we need the corresponding (monic) orthogonal polynomials
πk, i.e., their three-term recurrence relations

πk+1(x) = (x − αk)πk(x) − βkπk−1(x), k = 0, 1, . . . , (1.7)

with π0(x) = 1 and π−1(x) = 0, where recursion coefficients {αk} and {βk} depend only on the weight function w(x)
(in our case, w(x) = wA(x) or w(x) = wL(x)). The coefficient β0 may be arbitrary, but is conveniently defined by
β0 = µ0 =

∫
R w(x) dx.

For even weights on R, such as our weight functions (1.2) and (1.3), the coefficients αk are zero, so that (1.7)
becomes

πk+1(x) = xπk(x) − βkπk−1(x), k = 0, 1, . . . . (1.8)

Remark 1.1. The quadrature nodes x(N)
ν , ν = 1, . . . ,N, in (1.1) are eigenvalues of the Jacobi matrix

Jn(w) =



α0
√
β1 O

√
β1 α1

√
β2

√
β2 α2

. . .

. . .
. . .

√
βN−1

O
√
βN−1 αN−1


,

and the first components of the corresponding normalized eigenvectors vν = [vν,1 . . . vν,N]T (with vT
ν vν = 1) give the

weight coefficients (Christoffel numbers) A(N)
ν = β0v2

ν,1, ν = 1, . . . ,N. Such a construction of the Gauss-Christoffel
quadrature rule (1.1) is done by the Golub-Welsch algorithm [13].

Unfortunately, the recursion coefficients are known explicitly only for some narrow classes of orthogonal polyno-
mials, as e.g. for the classical orthogonal polynomials (Jacobi, the generalized Laguerre, and Hermite polynomials).
However, for a large class of the so-called strongly non-classical polynomials these coefficients can be constructed
numerically. Basic procedures for generating these coefficients are the method of (modified) moments, the discretized
Stieltjes–Gautschi procedure, and the Lanczos algorithm and they play a central role in the so-called constructive
theory of orthogonal polynomials, which was developed by Walter Gautschi in the eighties on the last century. In [10]
he starts with an arbitrary positive measure dµ(t), which is given explicitly, or implicitly via moment information,
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and considers the basic computational problem: For a given measure dµ and for given n ∈ N, generate the first n
coefficients αk( dµ) and βk( dµ) for k = 0, 1, . . . , n−1. The problem is very sensitive with respect to small perturbations
in the data. The basic references are [10, 11, 19] and [25].

By the progress in symbolic computation and variable-precision arithmetic it is possible to generate the recurrence
coefficients αk and βk directly by using the original Chebyshev method of moments in sufficiently high precision. The
corresponding software for such a purpose, as well as many other calculations with orthogonal polynomials and
different quadrature rules, is now available: Gautschi’s package SOPQ in Matlab, and our Mathematica package
OrthogonalPolynomials (see [5] and [28]). These packages are downloadable from Web Sites:

http://www.cs.purdue.edu/archives/2002/wxg/codes/

and
http://www.mi.sanu.ac.rs/~gvm/,

respectively. Thus, all that is required is a procedure for the symbolic calculation of moments or their calculation in
variable-precision arithmetic.

For a given sequence of moments (mom), our Mathematica Package OrthogonalPolynomials enables us to get
recurrence coefficients {al,be} in a symbolic form

{al,be}=aChebyshevAlgorithm[mom, Algorithm -> Symbolic];

The moments for the Abel weight function (1.2) can be expressed in terms of Bernoulli numbers as (cf. [24])

µA
k =

∫
R

xk+1

2 sinh(πx)
dx =


0, k odd,(
2k+2 − 1

) (−1)k/2Bk+2

k + 2
, k even.

(1.9)

Using the package OrthogonalPolynomials we get the coefficients in the three-term recurrence relation (1.8) for
the Abel polynomials πA

k (x) in explicit form (see [19, p. 159])

β0 = µ0 =
1
4
, βk =

k(k + 1)
4

, k = 1, 2, . . . . (1.10)

For the Lindelöf weight (1.3) the moments can be expressed in terms of the generalized Riemann zeta function
z 7→ ζ(z, a), defined by

ζ(z, a) =
+∞∑
ν=0

(ν + a)−z,

as (cf. [24])

µL
k =

∫
R

xk dx
2 cosh(πx)

=



1
2
, k = 0,

0, k odd,

2k!
(4π)k+1

[
ζ
(
k + 1, 1

4
)
− ζ

(
k + 1, 3

4

)]
, k even (≥ 2).

Then we can obtain the recurrence coefficients for the Lindelöf polynomials πL
k (x) (see also [19, p. 159])

β0 = µ0 =
1
2
, βk =

k2

4
, k = 1, 2, . . . .

Some additional information on the Abel and Lindelöf orthogonal polynomials πA
k (x) and πL

k (x) can be found in
[7]-[9], [27, 29].
Remark 1.2. The term Abel polynomial (not orthogonal!) also met as a polynomial Ak(x; a) = x(x − ak)k−1 of degree
k, given by by the generating function

+∞∑
k=0

Ak(x; a)
k!

tk = exW(at)/a,

where x 7→ W(x) is the Lambert W-function (i.e., the the inverse function of f (W) = WeW ). For details on this subject,
as well as on the associated Sheffer sequence, see [34, p. 29 & p. 73].
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In the next section we consider orthogonal polynomials with respect to weights obtained as a product of the
previous weight functions (1.2) and (1.3). Some symmetric Meixner-Pollaczek polynomials with a real parameter
will be analyzed in Section 3.

2. Product weight functions (1.2) and (1.3)

In this section we consider three products of the weight functions (1.2) and (1.3):

• The Abel2 weight

wA2 (x) = wA(x)2 =

( x
2 sinh πx

)2
; (2.1)

• The Abel-Lindelöf weight

wAL(x) = wA(x)wL(x) =
x

4 sinh πx cosh πx
=

x
2 sinh(2πx)

,

wAL(x) =
1
2

wA(2x); (2.2)

• The Lindelöf2 weight

wL2 (x) = wL(x)2 =
1

4 cosh2 πx
. (2.3)

As we can see, the weight function in (2.2) is again the Abel weight, but the moments given in (1.9) should be
divided by 2k+2. According to (1.10), the corresponding coefficients in the three-term recurrence relation (1.8), in this
case are given by

β0 = µ0 =
1
16
, βk =

k(k + 1)
16

, k = 1, 2, . . . .

2.1. The Abel2 weight
Here we consider the moments of the weight function wA2 (x) defined by (2.1),

µk ≡ µ
A2

k =

∫
R

xk+2

4 sinh2 πx
dx.

It is easy to find µ0 = 1/(12π), as well as that µk = 0 for odd k.
In order to determine µk for even k ≥ 2, we use the equality (cf. [33, Eq. 2.4.9.2, p. 361])∫ ∞

0
xα−1(coth ax − 1) dx =

21−α

aα
Γ(α)ζ(α), a > 0, Reα > 1,

where the Riemann zeta function s 7→ ζ(s) is defined by

ζ(s) =
∞∑

k=1

1
ks , Re s > 1.

An integration by parts of the previous integral gives∫ ∞

0
xα−1(coth ax − 1) dx =

a
α

∫ ∞

0

xα

sinh2 ax
dx, a > 0, α > 2.

Putting a = π and α = k + 2, we conclude that for each even k ≥ 2

µk =
k + 2
π
·
Γ(k + 2)ζ(k + 2)

(2π)k+2 .
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Since for even k, the value of zeta function can be expressed in terms of Bernoulli numbers,

ζ(k + 2) = (−1)k/2 Bk+2(2π)k+2

2(k + 2)!
,

we get finally

µk =

∫
R

xk+2

4 sinh2(πx)
dx =


0, k odd,

(−1)k/2 Bk+2

2π
, k even.

(2.4)

Theorem 2.1. The polynomials πk(x) ≡ πA2

k (x), k = 0, 1, . . ., orthogonal with respect to the weight function wA2 (x)
given by (2.1) satisfy the following three-term recurrence relation

πA2

k+1(x) = xπA2

k (x) −
k(k + 1)2(k + 2)

4(2k + 1)(2k + 3)
πA2

k−1(x), k = 0, 1, 2, . . . , (2.5)

where πA2

0 (x) = 1 and πA2

−1(x) = 0.

Proof. Using the moments given by (2.4), we consider the corresponding Hankel determinats

∆0 = 1, ∆k =

∣∣∣∣∣∣∣∣∣∣∣∣
µ0 µ1 . . . µk−1
µ1 µ2 µk
...

µk−1 µk µ2k−2

∣∣∣∣∣∣∣∣∣∣∣∣ , k = 1, 2, . . . , (2.6)

as well as two determinants (with non-zero elements) as in [6]

Em =

∣∣∣∣∣∣∣∣∣∣∣∣
µ0 µ2 . . . µ2m−2
µ2 µ4 µ2m
...

µ2m−2 µ2m µ4m−4

∣∣∣∣∣∣∣∣∣∣∣∣ , Fm =

∣∣∣∣∣∣∣∣∣∣∣∣
µ2 µ4 . . . µ2m

µ4 µ6 µ2m+2
...
µ2m µ2m+2 µ4m−2

∣∣∣∣∣∣∣∣∣∣∣∣ .
Our purpose is to evaluate the moment determinants ∆k, which can be expressed in terms of the determinants Em and
Fm.

Similarly as in [12, 21] and [6], using Laplace expansion for determinants (2.6), we can get (see [6, Lemma 2.2])

∆2m = EmFm and ∆2m+1 = Em+1Fm. (2.7)

Depending of parity of m, we can calculate the determinants Em and Fm, as well as their quotients, but these pro-
cesses are technical and can be given by an expansion of determinants in the last row, using a very long computation,
which is partly done using the symbolic capabilities of Mathematica. We omit the procedure due to space limitations
and we mention only quotients of the determinants Em and Fm:

Em

Fm
=

5 × 4m−1
(

7
4

)
m−1

(
9
4

)
m−1(

3
2

)
m−1

((2)m−1) 2
(

5
2

)
m−1

=
1

(2m)!

(
4m + 1

2m

)
,

Em

Fm−1
=

(1)m−1
(( 3

2

)
m−1

)2(2)m−1

3 × 4mπ
(

5
4

)
m−1

(
7
4

)
m−1

=
(2m − 1)!

4π

(
4m − 1

2m

)−1

.

(2.8)

The recurrence coefficients βk in (2.5) for the weight function (2.1) can be expressed in terms of the Hankel
determinants (2.6) (cf. [19, p. 97]) as

βk =
∆k−1∆k+1

∆2
k

, k ≥ 1. (2.9)
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According to (2.7) and (2.9) for k = 2m and k = 2m + 1, we have

β2m =
EmFm−1

EmFm
·

Em+1Fm

EmFm
=

Em+1

Fm

(
Em

Fm−1

)−1

and

β2m+1 =
EmFm

Em+1Fm
·

Em+1Fm+1

Em+1Fm
=

Em

Fm

(
Em+1

Fm+1

)−1

,

respectively. Finally, using (2.8), from these equalities we get

β0 = µ0 =
1

12π
, βk =

1
4
·

k(k + 1)2(k + 2)
(2k + 1)(2k + 3)

, k = 1, 2, . . . ,

which proves the recurrence relation (2.5).

Remark 2.2. Explicit expressions for orthogonal polynomials πA2

k (x) are

πA2

0 (x) = 1, πA2

1 (x) = x, πA2

2 (x) = x2 −
1
5
, πA2

3 (x) = x3 −
5x
7
,

πA2

4 (x) = x4 −
5x2

3
+

4
21
, πA2

5 (x) = x5 −
35x3

11
+

14x
11

,

πA2

6 (x) = x6 −
70x4

13
+

707x2

143
−

60
143

,

πA2

7 (x) = x7 −
42x5

5
+

189x3

13
−

3044x
715

,

πA2

8 (x) = x8 −
210x6

17
+

609x4

17
−

5260x2

221
+

4032
2431

,

πA2

9 (x) = x9 −
330x7

19
+

25179x5

323
−

31240x3

323
+

96624x
4199

,

πA2

10(x) = x10 −
165x8

7
+

2937x6

19
−

103015x4

323
+

385836x2

2261
−

43200
4199

,

etc.

2.2. The Lindelöf2 weight
Here we consider the weight function wL2 (x) defined by (2.3), i.e.,

wL2 (x) =
1

4 cosh2 πx
=

1(
eπx + e−πx)2 =

e−2πx(
1 + e−2πx)2 .

As we can see, this function is the so-called logistic weight (cf. [24, p. 49]). Exactly,

wL2 (x) = wlog(2x),

for which the moments are

µk =

∫
R

xkwlog(2x) dx =


0, k odd,

(−1)k/2−1 (2k−1 − 1)Bk

2kπ
, k even.

The corresponding coefficients in the three-term recurrence relation (1.8), in this case are given by

β0 = µ0 =
1

2π
, βk =

k4

4
(
4k2 − 1

) , k = 1, 2, . . . .

Remark 2.3. One-side logistic weight function, i.e., the hyperbolic function x 7→ 1/ cosh2 x on R+ was used in a
method for summation of slowly convergent series [20].
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3. Some symmetric Meixner-Pollaczek polynomials with real parameter

In a recent joint paper with Gupta [14] we have provided a solution to the open problem on the exponential type
operators, connected with 1+ x2, using the Meixner-Pollaczek polynomials p(λ)

k (x) defined by the following three-term
recurrence relation (cf. [4, 16])

(k + 1)p(λ)
k+1(x) = xp(λ)

k (x) − (k − 1 + 2λ)p(λ)
k−1(x), k = 0, 1, . . . , (3.1)

with p(λ)
0 (x) = 1, p(λ)

−1(x) = 0, and the parameter λ > 0. Polynomials p(λ)
k (x) are orthogonal on R with respect to the

weight function

Wλ(x) =
1

2π

∣∣∣∣∣Γ (λ + i
x
2

)∣∣∣∣∣2 . (3.2)

Also, it is known the generating function for these polynomials is given by

Gλ(x, t) =
ex arctan t

(1 + t2)λ
=

∞∑
k=0

p(λ)
k (x)tk.

The Meixner-Pollaczek polynomials were first invented by Meixner [18] and independently later by Pollaczek
[32]. Many details can be found in [2]-[4], [15, 16, 30].

Taking λ/2 instead of λ and 2x instead of x in (3.2), we consider the following modified weight function

wλ(x) = Wλ/2(2x) =
1

2π

∣∣∣∣∣Γ (λ2 + i x
)∣∣∣∣∣2 .

Then, the corresponding three-term recurrence relation (3.1) for the monic polynomials P(λ/2)
k (x) = ak p(λ/2)

k (2x), where
ak = 2−kk! (k ≥ 0), becomes

P(λ/2)
k+1 (x) = xP(λ/2)

k (x) − βkP(λ/2)
k−1 (x), k = 0, 1, . . . ,

where P(λ/2)
0 (x) = 1 and P(λ/2)

−1 (x) = 0, and

β0 =

∫
R

wλ(x) dx, βk =
1
4

k(k − 1 + λ), k ≥ 1.

Explicit expressions for the monic orthogonal polynomials P(λ/2)
k (x) can be done in terms of the Gauss hypergeo-

metric function,

P(λ/2)
k (x) =

(λ)kik

2k 2F1

(
−k, λ/2 + ix

λ

∣∣∣∣∣∣ 2
)
, k = 0, 1, 2, . . . ,

with the generating function

Gλ/2(2x, t) =
e2x arctan t

(1 + t2)λ/2
=

∞∑
k=0

P(λ/2)
k (x)

(2t)k

k!
.

For example, these Meixner-Pollaczek polynomials P(λ/2)
k (x) for k ≤ 6 are:

P(λ/2)
0 (x) = 1, P(λ/2)

1 (x) = x, P(λ/2)
2 (x) = x2 −

1
4
λ,

P(λ/2)
3 (x) = x3 −

1
4

(3λ + 2)x, P(λ/2)
4 (x) = x4 −

1
2

(3λ + 4)x2 +
3

16
λ(λ + 2),

P(λ/2)
5 (x) = x5 −

5
2

(λ + 2)x3 +
1

16

(
15λ2 + 50λ + 24

)
x,

P(λ/2)
6 (x) = x6 −

5
4

(3λ + 8)x4 +
1

16

(
45λ2 + 210λ + 184

)
x2 −

15
64
λ(λ + 2)(λ + 4).
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Because of (cf. [31, Eq. 5.4.4] and [26, p. 113])∣∣∣∣∣∣Γ
(

1
2
+ i y

)∣∣∣∣∣∣2 = π

cosh πy
and |Γ (1 + i y)|2 =

πy
sinh πy

the modified weight function wλ(x) for λ = 1 and λ = 2 reduces to the Lindelöf and the Abel weight function,

w1(x) =
1

2 cosh πx
= wL(x) and w2(x) =

x
2 sinh πx

= wA(x),

respectively, so that
P1

k(x) = πA
k (x) and P1/2

k (x) = πL
k (x).

Remark 3.1. The cases with λ ≤ 0 were also investigated with respect to certain non-standard inner product (cf. [4]).
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