Orthogonal Polynomials Concerning to the Abel and Lindelöf Weights and Their Modifications on the Real Line

Gradimir V. Milovanović © a
${ }^{a}$ Serbian Academy of Sciences and Arts 11000 Belgrade, Serbia \mathcal{E} University of Niš, Faculty of Sciences and Mathematics, Niš, Serbia

Abstract

Orthogonal polynomials related to Abel and Lindelöf weight functions on \mathbb{R}, as well as ones related to some products of these weight functions, are considered. Using the moments of the weight functions, the coefficients in the three-term recurrence relations are determined in the explicit form. Also, some connections with Meixner-Pollaczek polynomials with real parameters are presented.

Keywords: Orthogonal polynomials, Three-term recurrence relation, Weight functions of Abel and Lindelöf, Logistic weights, Moments, Hankel determinants, Meixner-Pollaczek polynomials, Gaussian quadrature

2010 MSC: 33C45, 33C47, 33D45, 33F10

1. Introduction

In this paper we denote the space of all algebraic polynomials defined on \mathbb{R} by \mathcal{P}, and by $\mathcal{P}_{N} \subset \mathcal{P}$ the space of polynomials of degree at most $N(N \in \mathbb{N})$. Also, a nonnegative function $x \mapsto w(x)$ on \mathbb{R} for which all moments $\mu_{k}=\int_{\mathbb{R}} x^{k} w(x) \mathrm{d} x, k \geq 0$, exist, are finite and $\mu_{0}>0$, we called the weight function. Then, for each $N \in \mathbb{N}$, there exists the N-point Gauss-Christoffel quadrature rule (cf. [22]-[24])

$$
\begin{equation*}
\int_{\mathbb{R}} f(x) w(x) \mathrm{d} x=\sum_{v=1}^{N} A_{v}^{(N)} f\left(x_{v}^{(N)}\right)+R_{N}(f), \tag{1.1}
\end{equation*}
$$

which is exact for all polynomials of degree $\leq 2 N-1\left(f \in \mathcal{P}_{2 N-1}\right)$.
We start this paper with two weight functions on \mathbb{R} :

- The Abel weight

$$
\begin{equation*}
w_{A}(x)=\frac{x}{\mathrm{e}^{\pi x}-\mathrm{e}^{-\pi x}}=\frac{x}{2 \sinh \pi x} ; \tag{1.2}
\end{equation*}
$$

- The Lindelöf weight

$$
\begin{equation*}
w_{L}(x)=\frac{1}{\mathrm{e}^{\pi x}+\mathrm{e}^{-\pi x}}=\frac{1}{2 \cosh \pi x} . \tag{1.3}
\end{equation*}
$$

[^0]In 1823 Niels Henrik Abel [1] proved an interesting summation formula for the finite "alternating sum"

$$
\begin{equation*}
\sum_{k=m}^{n}(-1)^{k} f(k)=\frac{1}{2}\left[(-1)^{m} f(m)+(-1)^{n} f(n+1)\right]-\int_{\mathbb{R}}\left[(-1)^{m} \psi_{m}(y)+(-1)^{n} \psi_{n+1}(y)\right] w_{A}(y) \mathrm{d} y \tag{1.4}
\end{equation*}
$$

where the function $\psi_{m}(y)$ in (1.4) is given by

$$
\psi_{m}(y)=\frac{f(m+\mathrm{i} y)-f(m-\mathrm{i} y)}{2 \mathrm{i} y}
$$

When $n \rightarrow+\infty$ (1.4) reduces to the Abel summation formula for the alternating series

$$
\begin{equation*}
\sum_{k=m}^{+\infty}(-1)^{k-m} f(k)=\frac{1}{2} f(m)-\int_{\mathbb{R}} \frac{f(m+\mathrm{i} y)-f(m-\mathrm{i} y)}{2 \mathrm{i} y} w_{A}(y) \mathrm{d} y . \tag{1.5}
\end{equation*}
$$

As an alternative formula to (1.5) there is the Lindelöf summation formula [17]

$$
\begin{equation*}
\sum_{k=m}^{+\infty}(-1)^{k-m} f(k)=\int_{\mathbb{R}} f(m-1 / 2+\mathrm{i} y) w_{L}(y) \mathrm{d} y \tag{1.6}
\end{equation*}
$$

where the Lindelöf weight function $w_{L}(x)$ is given by (1.3).
In order to construct quadrature formulas of Gaussian type with respect to the weight functions $w_{A}(x)$ and $w_{L}(x)$, for integrals which appear in (1.4) and (1.6), respectively, we need the corresponding (monic) orthogonal polynomials π_{k}, i.e., their three-term recurrence relations

$$
\begin{equation*}
\pi_{k+1}(x)=\left(x-\alpha_{k}\right) \pi_{k}(x)-\beta_{k} \pi_{k-1}(x), \quad k=0,1, \ldots, \tag{1.7}
\end{equation*}
$$

with $\pi_{0}(x)=1$ and $\pi_{-1}(x)=0$, where recursion coefficients $\left\{\alpha_{k}\right\}$ and $\left\{\beta_{k}\right\}$ depend only on the weight function $w(x)$ (in our case, $w(x)=w_{A}(x)$ or $\left.w(x)=w_{L}(x)\right)$. The coefficient β_{0} may be arbitrary, but is conveniently defined by $\beta_{0}=\mu_{0}=\int_{\mathbb{R}} w(x) \mathrm{d} x$.

For even weights on \mathbb{R}, such as our weight functions (1.2) and (1.3), the coefficients α_{k} are zero, so that (1.7) becomes

$$
\begin{equation*}
\pi_{k+1}(x)=x \pi_{k}(x)-\beta_{k} \pi_{k-1}(x), \quad k=0,1, \ldots . \tag{1.8}
\end{equation*}
$$

Remark 1.1. The quadrature nodes $x_{v}^{(N)}, v=1, \ldots, N$, in (1.1) are eigenvalues of the Jacobi matrix

$$
J_{n}(w)=\left[\begin{array}{ccccc}
\alpha_{0} & \sqrt{\beta_{1}} & & & \mathbf{O} \\
\sqrt{\beta_{1}} & \alpha_{1} & \sqrt{\beta_{2}} & & \\
& \sqrt{\beta_{2}} & \alpha_{2} & \ddots & \\
& & \ddots & \ddots & \sqrt{\beta_{N-1}} \\
\mathbf{O} & & & \sqrt{\beta_{N-1}} & \alpha_{N-1}
\end{array}\right]
$$

and the first components of the corresponding normalized eigenvectors $\mathbf{v}_{v}=\left[\begin{array}{lll}v_{v, 1} & \ldots & v_{v, N}\end{array}\right]^{\mathrm{T}}$ (with $\mathbf{v}_{v}^{\mathrm{T}} \mathbf{v}_{v}=1$) give the weight coefficients (Christoffel numbers) $A_{v}^{(N)}=\beta_{0} v_{v, 1}^{2}, v=1, \ldots, N$. Such a construction of the Gauss-Christoffel quadrature rule (1.1) is done by the Golub-Welsch algorithm [13].

Unfortunately, the recursion coefficients are known explicitly only for some narrow classes of orthogonal polynomials, as e.g. for the classical orthogonal polynomials (Jacobi, the generalized Laguerre, and Hermite polynomials). However, for a large class of the so-called strongly non-classical polynomials these coefficients can be constructed numerically. Basic procedures for generating these coefficients are the method of (modified) moments, the discretized Stieltjes-Gautschi procedure, and the Lanczos algorithm and they play a central role in the so-called constructive theory of orthogonal polynomials, which was developed by Walter Gautschi in the eighties on the last century. In [10] he starts with an arbitrary positive measure $\mathrm{d} \mu(t)$, which is given explicitly, or implicitly via moment information,
and considers the basic computational problem: For a given measure $\mathrm{d} \mu$ and for given $n \in \mathbb{N}$, generate the first n coefficients $\alpha_{k}(\mathrm{~d} \mu)$ and $\beta_{k}(\mathrm{~d} \mu)$ for $k=0,1, \ldots, n-1$. The problem is very sensitive with respect to small perturbations in the data. The basic references are [10, 11, 19] and [25].

By the progress in symbolic computation and variable-precision arithmetic it is possible to generate the recurrence coefficients α_{k} and β_{k} directly by using the original Chebyshev method of moments in sufficiently high precision. The corresponding software for such a purpose, as well as many other calculations with orthogonal polynomials and different quadrature rules, is now available: Gautschi's package SOPQ in Matlab, and our Mathematica package OrthogonalPolynomials (see [5] and [28]). These packages are downloadable from Web Sites:
http://www.cs.purdue.edu/archives/2002/wxg/codes/
and
http://www.mi.sanu.ac.rs/~gvm/,
respectively. Thus, all that is required is a procedure for the symbolic calculation of moments or their calculation in variable-precision arithmetic.

For a given sequence of moments (mom), our Mathematica Package OrthogonalPolynomials enables us to get recurrence coefficients $\{\mathrm{al}, \mathrm{be}\}$ in a symbolic form

```
{al,be}=aChebyshevAlgorithm[mom, Algorithm -> Symbolic];
```

The moments for the Abel weight function (1.2) can be expressed in terms of Bernoulli numbers as (cf. [24])

$$
\mu_{k}^{A}=\int_{\mathbb{R}} \frac{x^{k+1}}{2 \sinh (\pi x)} \mathrm{d} x= \begin{cases}0, & k \text { odd } \tag{1.9}\\ \left(2^{k+2}-1\right) \frac{(-1)^{k / 2} B_{k+2}}{k+2}, & k \text { even }\end{cases}
$$

Using the package OrthogonalPolynomials we get the coefficients in the three-term recurrence relation (1.8) for the Abel polynomials $\pi_{k}^{A}(x)$ in explicit form (see [19, p. 159])

$$
\begin{equation*}
\beta_{0}=\mu_{0}=\frac{1}{4}, \quad \beta_{k}=\frac{k(k+1)}{4}, \quad k=1,2, \ldots \tag{1.10}
\end{equation*}
$$

For the Lindelöf weight (1.3) the moments can be expressed in terms of the generalized Riemann zeta function $z \mapsto \zeta(z, a)$, defined by

$$
\zeta(z, a)=\sum_{v=0}^{+\infty}(v+a)^{-z}
$$

as (cf. [24])

$$
\mu_{k}^{L}=\int_{\mathbb{R}} \frac{x^{k} \mathrm{~d} x}{2 \cosh (\pi x)}= \begin{cases}\frac{1}{2}, & k=0 \\ 0, & k \text { odd } \\ \frac{2 k!}{(4 \pi)^{k+1}}\left[\zeta\left(k+1, \frac{1}{4}\right)-\zeta\left(k+1, \frac{3}{4}\right)\right], & k \text { even }(\geq 2)\end{cases}
$$

Then we can obtain the recurrence coefficients for the Lindelöf polynomials $\pi_{k}^{L}(x)$ (see also [19, p. 159])

$$
\beta_{0}=\mu_{0}=\frac{1}{2}, \quad \beta_{k}=\frac{k^{2}}{4}, \quad k=1,2, \ldots
$$

Some additional information on the Abel and Lindelöf orthogonal polynomials $\pi_{k}^{A}(x)$ and $\pi_{k}^{L}(x)$ can be found in [7]-[9], [27, 29].
Remark 1.2. The term Abel polynomial (not orthogonal!) also met as a polynomial $A_{k}(x ; a)=x(x-a k)^{k-1}$ of degree k, given by by the generating function

$$
\sum_{k=0}^{+\infty} \frac{A_{k}(x ; a)}{k!} t^{k}=\mathrm{e}^{x W(a t) / a}
$$

where $x \mapsto W(x)$ is the Lambert W-function (i.e., the the inverse function of $\left.f(W)=W \mathrm{e}^{W}\right)$. For details on this subject, as well as on the associated Sheffer sequence, see [34, p. 29 \& p. 73].

In the next section we consider orthogonal polynomials with respect to weights obtained as a product of the previous weight functions (1.2) and (1.3). Some symmetric Meixner-Pollaczek polynomials with a real parameter will be analyzed in Section 3.

2. Product weight functions (1.2) and (1.3)

In this section we consider three products of the weight functions (1.2) and (1.3):

- The Abel ${ }^{2}$ weight

$$
\begin{equation*}
w_{A^{2}}(x)=w_{A}(x)^{2}=\left(\frac{x}{2 \sinh \pi x}\right)^{2} \tag{2.1}
\end{equation*}
$$

- The Abel-Lindelöf weight

$$
\begin{gather*}
w_{A L}(x)=w_{A}(x) w_{L}(x)=\frac{x}{4 \sinh \pi x \cosh \pi x}=\frac{x}{2 \sinh (2 \pi x)}, \\
w_{A L}(x)=\frac{1}{2} w_{A}(2 x) \tag{2.2}
\end{gather*}
$$

- The Lindelöf ${ }^{2}$ weight

$$
\begin{equation*}
w_{L^{2}}(x)=w_{L}(x)^{2}=\frac{1}{4 \cosh ^{2} \pi x} \tag{2.3}
\end{equation*}
$$

As we can see, the weight function in (2.2) is again the Abel weight, but the moments given in (1.9) should be divided by 2^{k+2}. According to (1.10), the corresponding coefficients in the three-term recurrence relation (1.8), in this case are given by

$$
\beta_{0}=\mu_{0}=\frac{1}{16}, \quad \beta_{k}=\frac{k(k+1)}{16}, \quad k=1,2, \ldots
$$

2.1. The Abel ${ }^{2}$ weight

Here we consider the moments of the weight function $w_{A^{2}}(x)$ defined by (2.1),

$$
\mu_{k} \equiv \mu_{k}^{A^{2}}=\int_{\mathbb{R}} \frac{x^{k+2}}{4 \sinh ^{2} \pi x} \mathrm{~d} x .
$$

It is easy to find $\mu_{0}=1 /(12 \pi)$, as well as that $\mu_{k}=0$ for odd k.
In order to determine μ_{k} for even $k \geq 2$, we use the equality (cf. [33, Eq. 2.4.9.2, p. 361])

$$
\int_{0}^{\infty} x^{\alpha-1}(\operatorname{coth} a x-1) \mathrm{d} x=\frac{2^{1-\alpha}}{a^{\alpha}} \Gamma(\alpha) \zeta(\alpha), \quad a>0, \operatorname{Re} \alpha>1,
$$

where the Riemann zeta function $s \mapsto \zeta(s)$ is defined by

$$
\zeta(s)=\sum_{k=1}^{\infty} \frac{1}{k^{s}}, \quad \operatorname{Re} s>1
$$

An integration by parts of the previous integral gives

$$
\int_{0}^{\infty} x^{\alpha-1}(\operatorname{coth} a x-1) \mathrm{d} x=\frac{a}{\alpha} \int_{0}^{\infty} \frac{x^{\alpha}}{\sinh ^{2} a x} \mathrm{~d} x, \quad a>0, \alpha>2 .
$$

Putting $a=\pi$ and $\alpha=k+2$, we conclude that for each even $k \geq 2$

$$
\mu_{k}=\frac{k+2}{\pi} \cdot \frac{\Gamma(k+2) \zeta(k+2)}{(2 \pi)^{k+2}}
$$

Since for even k, the value of zeta function can be expressed in terms of Bernoulli numbers,

$$
\zeta(k+2)=(-1)^{k / 2} \frac{B_{k+2}(2 \pi)^{k+2}}{2(k+2)!},
$$

we get finally

$$
\mu_{k}=\int_{\mathbb{R}} \frac{x^{k+2}}{4 \sinh ^{2}(\pi x)} \mathrm{d} x= \begin{cases}0, & k \text { odd } \tag{2.4}\\ (-1)^{k / 2} \frac{B_{k+2}}{2 \pi}, & k \text { even }\end{cases}
$$

Theorem 2.1. The polynomials $\pi_{k}(x) \equiv \pi_{k}^{A^{2}}(x), k=0,1, \ldots$, orthogonal with respect to the weight function $w_{A^{2}}(x)$ given by (2.1) satisfy the following three-term recurrence relation

$$
\begin{equation*}
\pi_{k+1}^{A^{2}}(x)=x \pi_{k}^{A^{2}}(x)-\frac{k(k+1)^{2}(k+2)}{4(2 k+1)(2 k+3)} \pi_{k-1}^{A^{2}}(x), \quad k=0,1,2, \ldots, \tag{2.5}
\end{equation*}
$$

where $\pi_{0}^{A^{2}}(x)=1$ and $\pi_{-1}^{A^{2}}(x)=0$.
Proof. Using the moments given by (2.4), we consider the corresponding Hankel determinats

$$
\Delta_{0}=1, \quad \Delta_{k}=\left|\begin{array}{cccc}
\mu_{0} & \mu_{1} & \ldots & \mu_{k-1} \tag{2.6}\\
\mu_{1} & \mu_{2} & & \mu_{k} \\
\vdots & & & \\
\mu_{k-1} & \mu_{k} & & \mu_{2 k-2}
\end{array}\right|, \quad k=1,2, \ldots,
$$

as well as two determinants (with non-zero elements) as in [6]

$$
E_{m}=\left|\begin{array}{cccc}
\mu_{0} & \mu_{2} & \ldots & \mu_{2 m-2} \\
\mu_{2} & \mu_{4} & & \mu_{2 m} \\
\vdots & & & \\
\mu_{2 m-2} & \mu_{2 m} & & \mu_{4 m-4}
\end{array}\right|, \quad F_{m}=\left|\begin{array}{cccc}
\mu_{2} & \mu_{4} & \ldots & \mu_{2 m} \\
\mu_{4} & \mu_{6} & & \mu_{2 m+2} \\
\vdots & & & \\
\mu_{2 m} & \mu_{2 m+2} & & \mu_{4 m-2}
\end{array}\right| .
$$

Our purpose is to evaluate the moment determinants Δ_{k}, which can be expressed in terms of the determinants E_{m} and F_{m}.

Similarly as in [12, 21] and [6], using Laplace expansion for determinants (2.6), we can get (see [6, Lemma 2.2])

$$
\begin{equation*}
\Delta_{2 m}=E_{m} F_{m} \quad \text { and } \quad \Delta_{2 m+1}=E_{m+1} F_{m} \tag{2.7}
\end{equation*}
$$

Depending of parity of m, we can calculate the determinants E_{m} and F_{m}, as well as their quotients, but these processes are technical and can be given by an expansion of determinants in the last row, using a very long computation, which is partly done using the symbolic capabilities of Mathematica. We omit the procedure due to space limitations and we mention only quotients of the determinants E_{m} and F_{m} :

$$
\left\{\begin{array}{l}
\frac{E_{m}}{F_{m}}=\frac{5 \times 4^{m-1}\left(\frac{7}{4}\right)_{m-1}\left(\frac{9}{4}\right)_{m-1}}{\left(\frac{3}{2}\right)_{m-1}\left((2)_{m-1}\right)^{2}\left(\frac{5}{2}\right)_{m-1}}=\frac{1}{(2 m)!}\binom{4 m+1}{2 m} \tag{2.8}\\
\frac{E_{m}}{F_{m-1}}=\frac{(1)_{m-1}\left(\left(\frac{3}{2}\right)_{m-1}\right)^{2}(2)_{m-1}}{3 \times 4^{m} \pi\left(\frac{5}{4}\right)_{m-1}\left(\frac{7}{4}\right)_{m-1}}=\frac{(2 m-1)!}{4 \pi}\binom{4 m-1}{2 m}^{-1}
\end{array}\right.
$$

The recurrence coefficients β_{k} in (2.5) for the weight function (2.1) can be expressed in terms of the Hankel determinants (2.6) (cf. [19, p. 97]) as

$$
\begin{equation*}
\beta_{k}=\frac{\Delta_{k-1} \Delta_{k+1}}{\Delta_{k}^{2}}, \quad k \geq 1 \tag{2.9}
\end{equation*}
$$

According to (2.7) and (2.9) for $k=2 m$ and $k=2 m+1$, we have

$$
\beta_{2 m}=\frac{E_{m} F_{m-1}}{E_{m} F_{m}} \cdot \frac{E_{m+1} F_{m}}{E_{m} F_{m}}=\frac{E_{m+1}}{F_{m}}\left(\frac{E_{m}}{F_{m-1}}\right)^{-1}
$$

and

$$
\beta_{2 m+1}=\frac{E_{m} F_{m}}{E_{m+1} F_{m}} \cdot \frac{E_{m+1} F_{m+1}}{E_{m+1} F_{m}}=\frac{E_{m}}{F_{m}}\left(\frac{E_{m+1}}{F_{m+1}}\right)^{-1},
$$

respectively. Finally, using (2.8), from these equalities we get

$$
\beta_{0}=\mu_{0}=\frac{1}{12 \pi}, \quad \beta_{k}=\frac{1}{4} \cdot \frac{k(k+1)^{2}(k+2)}{(2 k+1)(2 k+3)}, \quad k=1,2, \ldots,
$$

which proves the recurrence relation (2.5).
Remark 2.2. Explicit expressions for orthogonal polynomials $\pi_{k}^{A^{2}}(x)$ are

$$
\begin{aligned}
& \pi_{0}^{A^{2}}(x)=1, \quad \pi_{1}^{A^{2}}(x)=x, \quad \pi_{2}^{A^{2}}(x)=x^{2}-\frac{1}{5}, \quad \pi_{3}^{A^{2}}(x)=x^{3}-\frac{5 x}{7} \\
& \pi_{4}^{A^{2}}(x)=x^{4}-\frac{5 x^{2}}{3}+\frac{4}{21}, \quad \pi_{5}^{A^{2}}(x)=x^{5}-\frac{35 x^{3}}{11}+\frac{14 x}{11} \\
& \pi_{6}^{A^{2}}(x)=x^{6}-\frac{70 x^{4}}{13}+\frac{707 x^{2}}{143}-\frac{60}{143}, \\
& \pi_{7}^{A^{2}}(x)=x^{7}-\frac{42 x^{5}}{5}+\frac{189 x^{3}}{13}-\frac{3044 x}{715}, \\
& \pi_{8}^{A^{2}}(x)=x^{8}-\frac{210 x^{6}}{17}+\frac{609 x^{4}}{17}-\frac{5260 x^{2}}{221}+\frac{4032}{2431}, \\
& \pi_{9}^{A^{2}}(x)=x^{9}-\frac{330 x^{7}}{19}+\frac{25179 x^{5}}{323}-\frac{31240 x^{3}}{323}+\frac{96624 x}{4199}, \\
& \pi_{10}^{A^{2}}(x)=x^{10}-\frac{165 x^{8}}{7}+\frac{2937 x^{6}}{19}-\frac{103015 x^{4}}{323}+\frac{385836 x^{2}}{2261}-\frac{43200}{4199}
\end{aligned}
$$

etc.

2.2. The Lindelöf ${ }^{2}$ weight

Here we consider the weight function $w_{L^{2}}(x)$ defined by (2.3), i.e.,

$$
w_{L^{2}}(x)=\frac{1}{4 \cosh ^{2} \pi x}=\frac{1}{\left(\mathrm{e}^{\pi x}+\mathrm{e}^{-\pi x}\right)^{2}}=\frac{\mathrm{e}^{-2 \pi x}}{\left(1+\mathrm{e}^{-2 \pi x}\right)^{2}} .
$$

As we can see, this function is the so-called logistic weight (cf. [24, p. 49]). Exactly,

$$
w_{L^{2}}(x)=w^{\log }(2 x)
$$

for which the moments are

$$
\mu_{k}=\int_{\mathbb{R}} x^{k} w^{\log }(2 x) \mathrm{d} x= \begin{cases}0, & k \text { odd } \\ (-1)^{k / 2-1} \frac{\left(2^{k-1}-1\right) B_{k}}{2^{k} \pi}, & k \text { even }\end{cases}
$$

The corresponding coefficients in the three-term recurrence relation (1.8), in this case are given by

$$
\beta_{0}=\mu_{0}=\frac{1}{2 \pi}, \quad \beta_{k}=\frac{k^{4}}{4\left(4 k^{2}-1\right)}, \quad k=1,2, \ldots
$$

Remark 2.3. One-side logistic weight function, i.e., the hyperbolic function $x \mapsto 1 / \cosh ^{2} x$ on \mathbb{R}_{+}was used in a method for summation of slowly convergent series [20].

3. Some symmetric Meixner-Pollaczek polynomials with real parameter

In a recent joint paper with Gupta [14] we have provided a solution to the open problem on the exponential type operators, connected with $1+x^{2}$, using the Meixner-Pollaczek polynomials $p_{k}^{(\lambda)}(x)$ defined by the following three-term recurrence relation ($c f .[4,16]$)

$$
\begin{equation*}
(k+1) p_{k+1}^{(\lambda)}(x)=x p_{k}^{(\lambda)}(x)-(k-1+2 \lambda) p_{k-1}^{(\lambda)}(x), \quad k=0,1, \ldots, \tag{3.1}
\end{equation*}
$$

with $p_{0}^{(\lambda)}(x)=1, p_{-1}^{(\lambda)}(x)=0$, and the parameter $\lambda>0$. Polynomials $p_{k}^{(\lambda)}(x)$ are orthogonal on \mathbb{R} with respect to the weight function

$$
\begin{equation*}
W_{\lambda}(x)=\frac{1}{2 \pi}\left|\Gamma\left(\lambda+\mathrm{i} \frac{x}{2}\right)\right|^{2} . \tag{3.2}
\end{equation*}
$$

Also, it is known the generating function for these polynomials is given by

$$
G_{\lambda}(x, t)=\frac{\mathrm{e}^{x \arctan t}}{\left(1+t^{2}\right)^{\lambda}}=\sum_{k=0}^{\infty} p_{k}^{(\lambda)}(x) t^{k}
$$

The Meixner-Pollaczek polynomials were first invented by Meixner [18] and independently later by Pollaczek [32]. Many details can be found in [2]-[4], [15, 16, 30].

Taking $\lambda / 2$ instead of λ and $2 x$ instead of x in (3.2), we consider the following modified weight function

$$
w_{\lambda}(x)=W_{\lambda / 2}(2 x)=\frac{1}{2 \pi}\left|\Gamma\left(\frac{\lambda}{2}+\mathrm{i} x\right)\right|^{2} .
$$

Then, the corresponding three-term recurrence relation (3.1) for the monic polynomials $P_{k}^{(\lambda / 2)}(x)=a_{k} p_{k}^{(\lambda / 2)}(2 x)$, where $a_{k}=2^{-k} k!(k \geq 0)$, becomes

$$
P_{k+1}^{(\lambda / 2)}(x)=x P_{k}^{(\lambda / 2)}(x)-\beta_{k} P_{k-1}^{(\lambda / 2)}(x), \quad k=0,1, \ldots,
$$

where $P_{0}^{(\lambda / 2)}(x)=1$ and $P_{-1}^{(\lambda / 2)}(x)=0$, and

$$
\beta_{0}=\int_{\mathbb{R}} w_{\lambda}(x) \mathrm{d} x, \quad \beta_{k}=\frac{1}{4} k(k-1+\lambda), \quad k \geq 1
$$

Explicit expressions for the monic orthogonal polynomials $P_{k}^{(\lambda / 2)}(x)$ can be done in terms of the Gauss hypergeometric function,

$$
P_{k}^{(\lambda / 2)}(x)=\frac{(\lambda)_{k} \dot{\mathrm{i}}^{k}}{2^{k}}{ }_{2} F_{1}\left(\left.\begin{array}{c}
-k, \lambda / 2+\mathrm{i} x \\
\lambda
\end{array} \right\rvert\, 2\right), \quad k=0,1,2, \ldots,
$$

with the generating function

$$
G_{\lambda / 2}(2 x, t)=\frac{\mathrm{e}^{2 x \arctan t}}{\left(1+t^{2}\right)^{\lambda / 2}}=\sum_{k=0}^{\infty} P_{k}^{(\lambda / 2)}(x) \frac{(2 t)^{k}}{k!}
$$

For example, these Meixner-Pollaczek polynomials $P_{k}^{(\lambda / 2)}(x)$ for $k \leq 6$ are:

$$
\begin{aligned}
& P_{0}^{(\lambda / 2)}(x)=1, \quad P_{1}^{(\lambda / 2)}(x)=x, \quad P_{2}^{(\lambda / 2)}(x)=x^{2}-\frac{1}{4} \lambda, \\
& P_{3}^{(\lambda / 2)}(x)=x^{3}-\frac{1}{4}(3 \lambda+2) x, \quad P_{4}^{(\lambda / 2)}(x)=x^{4}-\frac{1}{2}(3 \lambda+4) x^{2}+\frac{3}{16} \lambda(\lambda+2), \\
& P_{5}^{(\lambda / 2)}(x)=x^{5}-\frac{5}{2}(\lambda+2) x^{3}+\frac{1}{16}\left(15 \lambda^{2}+50 \lambda+24\right) x, \\
& P_{6}^{(\lambda / 2)}(x)=x^{6}-\frac{5}{4}(3 \lambda+8) x^{4}+\frac{1}{16}\left(45 \lambda^{2}+210 \lambda+184\right) x^{2}-\frac{15}{64} \lambda(\lambda+2)(\lambda+4) .
\end{aligned}
$$

Because of (cf. [31, Eq. 5.4.4] and [26, p. 113])

$$
\left|\Gamma\left(\frac{1}{2}+\mathrm{i} y\right)\right|^{2}=\frac{\pi}{\cosh \pi y} \quad \text { and } \quad|\Gamma(1+\mathrm{i} y)|^{2}=\frac{\pi y}{\sinh \pi y}
$$

the modified weight function $w_{\lambda}(x)$ for $\lambda=1$ and $\lambda=2$ reduces to the Lindelöf and the Abel weight function,

$$
w_{1}(x)=\frac{1}{2 \cosh \pi x}=w_{L}(x) \quad \text { and } \quad w_{2}(x)=\frac{x}{2 \sinh \pi x}=w_{A}(x)
$$

respectively, so that

$$
P_{k}^{1}(x)=\pi_{k}^{A}(x) \quad \text { and } \quad P_{k}^{1 / 2}(x)=\pi_{k}^{L}(x)
$$

Remark 3.1. The cases with $\lambda \leq 0$ were also investigated with respect to certain non-standard inner product (cf. [4]).

Acknowledgment

This paper is dedicated to Themistocles M. Rassias on the occasion of his 70th Birthday.

Author Contributions: This paper has only one author.
Conflict of Interest: The author declare no conflict of interest.
Funding (Financial Disclosure): The work of the author was supported in part by the Serbian Academy of Sciences and Arts (Ф-96).

References

[1] N. H. Abel, Solution de quelques problèmes à l'aide d'intégrales définies, In: Euvres complètes d'Abel (Ed. by L. Sylow and S. Lie), Johnson, New York (Reprint of the Nouvelle éd., Christiania, 1881), vol. I, 11-27, 1965.
[2] T. K. Araaya, Umbral calculus and the Meixner-Pollaczek polynomials, Uppsala Dissertations in Mathematics, Department of Mathematics, Uppsala University, 2003.
[3] T. K. Araaya, The Meixner-Pollaczek polynomials and a system of orthogonal polynomials in a strip, J. Comput. Appl. Math. 170, 241-254, 2004.
[4] T. K. Araaya, The symmetric Meixner-Pollaczek polynomials with real parameter, J. Math. Anal. Appl. 305, 411-423, 2005.
[5] A. S. Cvetković and G. V. Milovanović, The Mathematica package "OrthogonalPolynomials", Facta Univ. Ser. Math. Inform. 19, 17-36, 2004.
[6] A. S. Cvetković, G. V. Milovanović and N. Vasović, Recurrence relation and differential equation for a class of orthogonal polynomials, Results Math. 73 (1), 2018; Article ID: 16.
[7] G. Dahlquist, On summation formulas due to Plana, Lindelöf and Abel, and related Gauss-Christoffel rules, I, BIT 37, 256-295, 1997.
[8] G. Dahlquist, On summation formulas due to Plana, Lindelöf and Abel, and related Gauss-Christoffel rules, II, BIT 37, 804-832, 1997.
[9] G. Dahlquist, On summation formulas due to Plana, Lindelöf and Abel, and related Gauss-Christoffel rules, III, BIT 39, 51-78, 1999.
[10] W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3, 289-317, 1982.
[11] W. Gautschi, Orthogonal polynomials: Computation and approximation, Clarendon Press, Oxford, 2004.
[12] W. Gautschi and G.V. Milovanović, Polynomials orthogonal on the semicircle, J. Approx. Theory 46, 230-250, 1986.
[13] G. Golub and J. H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23, 221-230, 1969.
[14] V. Gupta and G. V. Milovanović, A solution to exponential operators, Results Math. 77, 2022; Article ID: 207.
[15] S. Kaijser and J. Musonda, L^{p}-boundedness of two singular integral operators of convolution type, Engineering mathematics. II (S. Silvestrov, M. Rančić, eds.), pp. 327-335, Springer Proc. Math. Stat., 179, Springer, Cham, 2016.
[16] R. Koekoek and R. F. Swarttouw, The Askey-Scheme of hypergeometric orthogonal polynomials and its q-analogue, Delft University of Technology and Systems, Department of Technical Mathematics and Informatics, Report No. 98-17, 1998.
[17] E. Lindelöf, Le Calcul des Résidus, Gauthier-Villars, Paris, 1905.
[18] J. Meixner, Orthogonale polynomsysteme mit einer besonderen gestalt der erzeugenden funktion, J. Lond. Math. Soc. 9, 6-13, 1934.
[19] G. Mastroianni and G.V. Milovanović, Interpolation processes - Basic theory and applications, Springer Monographs in Mathematics, Springer Verlag, Berlin - Heidelberg - New York, 2008.
[20] G. V. Milovanović, Summation of series and Gaussian quadratures, In: Approcimation and Computation (Ed. by R. V. M. Zahar), ISNM Vol. 119, Birkhäuser, Basel-Boston-Berlin, 459-475, 1994.
[21] G. V. Milovanović, A class of orthogonal polynomials on the radial rays in the complex plane, J. Math. Anal. Appl. 206, 121-139, 1997.
[22] G. V. Milovanović, Quadrature processes - development and new directions, Bull. Cl. Sci. Math. Nat. Sci. Math. 33, 11-41, 2008.
[23] G. V. Milovanović, Quadrature processes and new applications, Bull. Cl. Sci. Math. Nat. Sci. Math. 38, 83-120, 2013.
[24] G. V. Milovanović, Methods for computation of slowly convergent series and finite sums based on Gauss-Christoffel quadratures, Jaen J. Approx. 6 (1), 37-68, 2014.
[25] G. V. Milovanović, Chapter 11: Orthogonal polynomials on the real line, In: Walter Gautschi: Selected Works and Commentaries (Ed. by C. Brezinski and A. Sameh), Birkhäuser, Basel, Vol. 2, 2014.
[26] G. V. Milovanović, Numerical analysis and approximation theory - introduction to numerical processes and solving equations, Zavod za udžbenike, Beograd, Serbian, 2014.
[27] G. V. Milovanović: Summation formulas of Euler-Maclaurin and Abel-Plana: old and new results and applications, Progress in Approximation Theory and Applicable Complex Analysis - In the Memory of Q. I. Rahman (Ed. by N. K. Govil, R. N. Mohapatra, M. A. Qazi and G. Schmeisser), Springer, 429-461, 2017.
[28] G. V. Milovanović and A. S. Cvetković, Special classes of orthogonal polynomials and corresponding quadratures of Gaussian type, Math. Balkanica 26, 169-184, 2012.
[29] G. V. Milovanović, M. M. Spalević and A. S. Cvetković, Calculation of Gaussian type quadratures with multiple nodes, Math. Comput. Modelling 39, 325-347, 2004.
[30] J. Musonda and S. Kaijser, Three systems of orthogonal polynomials and L^{2}-boundedness of two associated operators, J. Math. Anal. Appl. 459 (1), 464-475, 2018.
[31] F. W. J. Olver et al., Eds., NIST handbook of mathematical functions, National Institute of Standards and Technology and Cambridge University Press, 2010.
[32] F. Pollaczek, Sur une famille de polynômes orthogonaux qui contient les polynômes d'Hermite et de Laguerre comme cas limites, C. R. Acad. Sci. Paris 230, 1563-1565, 1950.
[33] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and series, Vol. 1: Elementary functions, Gordon \& Breach Science Publishers, New York, 1986 [Translated from the Russian].
[34] S. Roman, The umbral calculus, Pure and Applied Mathematics, 111. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984.

[^0]: \dagger Article ID: MTJPAM-D-22-00032
 Email address: gvm@mi.sanu.ac.rs (Gradimir V. Milovanović (D)
 Received:4 October 2022, Accepted:15 October 2022, Published: 28 November 2022
 ${ }^{\star}$ Corresponding Author: Gradimir V. Milovanović

