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Abstract In this paper we consider properties and power expressions of the functions
f : (−1,1)→ R and fL : (−1,1)→ R, defined by

f (x;γ) =
1
π

∫ 1

−1

(1+ xt)γ

√
1− t2

dt and fL(x;γ) =
1
π

∫ 1

−1

(1+ xt)γ log(1+ xt)√
1− t2

dt,

respectively, where γ is a real parameter, as well as some properties of a two para-
metric real-valued function D( · ;α,β ) : (−1,1)→ R, defined by

D(x;α,β ) = f (x;β ) f (x;−α−1)− f (x;−α) f (x;β −1), α,β ∈ R.

The inequality of Turán type

D(x;α,β )> 0, −1 < x < 1,

for α +β > 0 is proved, as well as an opposite inequality if α +β < 0. Finally, for
the partial derivatives of D(x;α,β ) with respect to α or β , respectively A(x;α,β )
and B(x;α,β ), for which A(x;α,β ) = B(x;−β ,−α), some results are obtained.

We mention also that some results of this paper have been successfully applied in
various problems in the theory of polynomial approximation and some “truncated”
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quadrature formulas of Gaussian type with an exponential weight on the real semi-
axis, especially in a computation of Mhaskar–Rahmanov–Saff numbers.

Keywords Approximation · Expansion · Minimum · Maximum · Turán type
inequality · Hypergeometric function · Gamma function · Digamma function
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1 Introduction

In a computation of Mhaskar–Rahmanov–Saff numbers in some problems of poly-
nomial approximation on (0,+∞) and the corresponding “truncated” quadrature for-
mulas of Gaussian type with respect to the weight function w(x) = exp(−x−α − xβ ),
α > 0, β ≥ 1, on the real semiaxis, a one-parametric function f : (−1,1)→R defined
by

f (x;γ) =
1
π

∫ 1

−1

(1+ xt)γ

√
1− t2

dt, γ ∈ R, (1)

is introduced.
In this article we study some properties and power expansions of the function (1),

as well as of the function fL : (−1,1)→ R, defined by

fL(x;γ) =
1
π

∫ 1

−1

(1+ xt)γ log(1+ xt)√
1− t2

dt, γ ∈ R. (2)

We prove certain inequalities of Turán type including the function (1) and two real
parameters. In 1941 the well-known Hungarian mathematician Paul Turán discovered
the following inequality

∆n(x) = Pn(x)2−Pn−1(x)Pn+1(x)> 0, −1 < x < 1; n ∈ N,

where Pn are the classical Legendre polynomials. However, it was published nine
years later [19] (see also Szegő [18]). There are several extensions and generaliza-
tions of this nice and simple inequality in different ways for several classes of or-
thogonal polynomials, special functions, etc. L. Alpár [1], who was a Ph.D student
of Turán, mentioned that this inequality of Turán had a wide-ranging influence in
a number of disciplines (see also a recent paper by Baricz, Jankov, and Pogány [9]
that has just been published). Some of these results have been successfully applied
in various problems which arise in information theory (cf. [15]), numerical analysis
and approximation theory, economic theory, biophysics, etc. For some further recent
results one can see the papers [3], [6], [11], [7], [8], [2], [5], [10], among others.

The function (1) can be expressed in terms of the hypergeometric function

2F1(a,b;c;z) =
+∞

∑
k=0

(a)k(b)k

(c)k

zk

k!

as follows

f (x;γ) = 2F1

(
1− γ

2
,−γ

2
;1;x2

)
. (3)
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Here (a)k denotes Pochhammer’s symbol that is defined by

(a)k = a(a+1) · · ·(a+ k−1) =
Γ (a+ k)

Γ (a)
, (a)0 = 1,

where Γ is the Euler gamma function.
The function f (x;γ) is even, with f (0;γ) = 1, so that we can consider it only on

[0,1).
Thus, for 0 < x < 1 we consider the following determinant of Turán type

D(x;α,β ) =

∣∣∣∣∣ f (x;β ) f (x;−α)

f (x;β −1) f (x;−α−1)

∣∣∣∣∣ , (4)

as well as its partial derivatives with respect to the parameters α and β , i.e.,

A(x;α,β ) =
∂

∂α
D(x;α,β ) and B(x;α,β ) =

∂

∂β
D(x;α,β ), (5)

respectively. Therefore, we need the corresponding even function fL : (−1,1)→ R
defined by (2).

Remark 1 In the computation of Mhaskar–Rahmanov–Saff numbers (cf. [14]) for an
exponential weight function on (0,+∞), the following nonlinear equation in x,

β

(
α

β
· f (x;−α−1)

f (x;β −1)

) β

α+β

f (x;β )−α

(
β

α
· f (x;β −1)

f (x;−α−1)

) α

α+β

f (x;−α) = t,

must be solved for α > 0, β ≥ 1, and a given positive t, where f is defined by (1),
i.e., (3). The equation has a unique solution in (0,1).

This paper is organized as follows. Some important properties of functions f (x;γ)
and fL(x;γ) and their power expansions are given in Section 2. Section 3 is devoted
to properties of the determinant D(x;α,β ), including an inequality of Turán type,
as well as a power expansion of D(x;α,β ). Finally, in Section 4 some properties of
A(x;α,β ) and B(x;α,β ) are presented.

2 Some Properties of the Functions f (x;γ) and fL(x;γ)

According to the representation (3), by trivially rewriting the Pochhammer symbols
as binomial coefficients,(
−γ

2

)
k

(
−γ

2
+

1
2

)
k
= 2−2k

γ(γ−1) · · ·(γ− (2k−1)) = 2−2k
(

γ

2k

)(
2k
k

)
(k!)2,

we get the following power expansion of the function (1).

Theorem 1 For |x|< 1 we have

f (x;γ) =
+∞

∑
n=0

(
γ

2n

)(
2n
n

)( x
2

)2n
. (6)
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Remark 2 Since

f (x;γ) = 1+
γ(γ−1)

4
x2 +

γ(γ−1)(γ−2)(γ−3)
64

x4 + · · · ,

we have

f (x;0) = f (x;1) = 1, f (x;2) = f (x;3) = 1+
γ(γ−1)

4
x2, etc.

Also, it is easy to see that

f (0;γ) = 1, f ′(0;γ) = 0, f ′′(0;γ) =
γ(γ−1)

2
, etc.

The corresponding expansion of the function x 7→ fL(x;γ) can be done in a similar
way.

Theorem 2 For |x|< 1 we have

fL(x;γ) =
+∞

∑
n=1

(
2n
n

){ 2n

∑
k=1

(−1)k−1

k

(
γ

2n− k

)}( x
2

)2n
. (7)

Alternatively, it can be expressed in the form

fL(x;γ) =
+∞

∑
n=1

ω ′n(γ)

(n!)2

( x
2

)2n
, (8)

where ωn(γ) = γ(γ−1) · · ·(γ−2n+1).

Proof Using the binomial expansion and the expansion of log(1+ t) in t, we have the
following potential series

(1+ t)γ log(1+ t) =
+∞

∑
n=1

{
n

∑
k=1

(−1)k−1

k

(
γ

n− k

)}
tn, |t|< 1,

for each γ ∈ R. Then, substituting t by xt and integrating it over (−1,1) with respect
to the Chebyshev weight of the first kind, we obtain

fL(x;γ) =
+∞

∑
n=1

{
n

∑
k=1

(−1)k−1

k

(
γ

n− k

)}
1
π

∫ 1

−1

xntn
√

1− t2
dt,

i.e., (7).
Using the Saalschütz formula [17, p. 11]

n−1

∑
k=0

(
z
k

)
xn−k

n− k
=

n

∑
k=1

(
z

n− k

)
xk

k
=

n

∑
k=1

(
z− k
n− k

)
(x+1)k−1

k
,

for x :=−1, z := γ , and by substituting n by 2n, we get

2n

∑
k=1

(−1)k−1

k

(
γ

2n− k

)
=

2n

∑
k=1

(
γ− k

2n− k

)
1
k
=

γ

2n

(
γ−1

2n−1

)
[ψ(−γ)−ψ(2n− γ)],
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where ψ is the digamma function, i.e.,(
2n
n

) 2n

∑
k=1

(−1)k−1

k

(
γ

2n− k

)
=

(
2n
n

)(
γ

2n

)2n−1

∑
k=0

1
γ− k

=
ω ′n(γ)

(n!)2 ,

because of
d
dγ

(logωn(γ)) =
ω ′n(γ)

ωn(γ)
=

2n−1

∑
k=0

1
γ− k

.

The expansion (8) can be also obtained by a formal differentiation of (6) with
respect to γ . ut

The expansion (7), i.e., (8), gives

fL(x;γ) = (2γ−1)
( x

2

)2
+

1
2
(
2γ

3−9γ
2 +11γ−3

)( x
2

)4

+
1

36
(
6γ

5−75γ
4 +340γ

3−675γ
2 +548γ−120

)( x
2

)6

+
1

144
(
2γ

7−49γ
6 +483γ

5−2450γ
4 +6769γ

3−9849γ
2 +6534γ−1260

)( x
2

)8

+
1

14400
(
10γ

9−405γ
8 +6960γ

7−66150γ
6 +379638γ

5−1346625γ
4

+2894720γ
3−3518100γ

2 +2053152γ−362880
)( x

2

)10
+O

(
x12) .

Remark 3 For γ = 0 the expansion (7), i.e., (8), reduces to

fL(x;0) =−
+∞

∑
n=1

1
2n

(
2n
n

)( x
2

)2n
, −1≤ x≤ 1. (9)

Using an equality from [16, §5.2.13.4, p. 711] we get the sum of the series (9) in the
form

fL(x;0) = log
1+
√

1− x2

2
.

The expansion (9) is a typical slowly convergent series for x close to 1. For example,
for x = 1, we have

fL(1;0) =− log2 =−0.6931471805599453094172321214581765680755 . . . ,

but a direct summation of the first 40000 terms in (9) (for x = 1) gives only 2-digits
accuracy.

For γ = 1, the corresponding expansion is

fL(x;1) =
+∞

∑
n=1

1
2n(2n−1)

(
2n
n

)( x
2

)2n
= log

1+
√

1− x2

2
+1−

√
1− x2.
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The monic polynomials γ 7→ωn(γ) of degree 2n from Theorem 2 has simple zeros
at γ = k, k = 0,1, . . . ,2n−1, and the zeros of ω ′n(γ), denoted by γk, are located in the
intervals γ

(n)
k ∈ (k−1,k), k = 1, . . . ,2n−1. The sequence of the first zeros {γ(n)1 }

+∞

n=1
is a decreasing sequence. Numerical values of this sequence are

{0.5000,0.3820,0.3366,0.3103,0.2925,0.2793,0.2690,0.2606, 0.2536,0.2477, . . .} .

It is easy to conclude that ω ′n(γ) < 0 for γ < γ
(n)
1 and ω ′n(γ) > 0 for γ

(n)
1 < γ <

γ
(n)
2 , n = 2,3, . . . . Since γ = 1/2 belongs to the last interval, we conclude that all

coefficients for n > 1 in (8) are positive, so that fL(x;1/2) > 0. Indeed, for γ = 1/2
this expansion for fL(x;1/2) becomes

fL(x;1/2) =
x4

64
+

31x6

3072
+

2689x8

393216
+

51719x10

10485760
+O(x12).

The first two derivatives of the function x 7→ f (x;γ) are

f ′(x;γ) =
γ

π

∫ 1

−1

(1+ xt)γ−1
√

1− t2
t dt =

γ(γ−1)x
2 2F1

(
3− γ

2
,

2− γ

2
;2;x2

)
and

f ′′(x;γ)=
γ(γ−1)

π

∫ 1

−1

(1+ xt)γ−2
√

1− t2
t2 dt =

γ(γ−1)x
2 3F2

(
3
2
,

2− γ

2
,

3− γ

2
;

1
2
,2;x2

)
.

It is also easy to see that

x f ′(x;γ) = γ
(

f (x;γ)− f (x;γ−1)
)
. (10)

Differentiating fL(x;γ), defined by (2), we get

f ′L(x;γ) =
1
π

∫ 1

−1

γ(1+ xt)γ−1 log(1+ xt)+(1+ xt)γ−1
√

1− t2
t dt,

i.e.,
x f ′L(x;γ) = γ

(
fL(x;γ)− fL(x;γ−1)

)
+ f (x;γ)− f (x;γ−1), (11)

from which, combining with (10), we obtain

γx f ′L(x;γ) = γ
2( fL(x;γ)− fL(x;γ−1)

)
+ x f ′(x;γ),

i.e.,
x
(
γ f ′L(x;γ)− f ′(x;γ)

)
= γ

2( fL(x;γ)− fL(x;γ−1)
)
. (12)

Theorem 3 1◦ For x > 0,

f ′(x;γ)> 0 if γ < 0 ∨ γ > 1, (13)

and
f ′(x;γ)< 0 if 0 < γ < 1. (14)

2◦ For each γ ∈ R, we have

fL(x;γ)< f (x;γ), −1 < x < 1, (15)

and
γ f ′L(x;γ)> f ′(x;γ), 0 < x < 1. (16)
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Proof 1◦ It is easy to see that

f ′(x;γ) =
γ

π

∫ 1

−1

(1+ xt)γ−1t√
1− t2

dt =
γ

π

∫ 1

0

t(1+ xt)γ−1
√

1− t2

(
1−
(1− xt

1+ xt

)γ−1
)

dt.

Since (1− xt)/(1+ xt)< 1 for 0 < x, t < 1, we conclude that the previous integral is
positive for each γ > 1 or γ < 0, and negative for 0 < γ < 1.

2◦ Consider the difference

f (x;γ)− fL(x;γ) =
1
π

∫ 1

−1

(1+ xt)γ

√
1− t2

[
1− log(1+ xt)

]
dt.

Since 0< 1+xt < 2< e, we have that log[e/(1+xt)]> 0, so that the previous integral
is positive and the inequality (15) holds.

The inequality (16) follows directly from (12) if we can prove that fL(x;γ) >
fL(x;γ−1). Therefore, we consider

fL(x;γ)− fL(x;γ−1) =
1
π

∫ 1

−1

log(1+ xt)√
1− t2

[
(1+ xt)γ − (1+ xt)γ−1]dt

=
x
π

∫ 1

−1

t(1+ xt)γ−1 log(1+ xt)√
1− t2

dt

=
x
π

∫ 1

0

t√
1− t2

h(xt)dt,

where h(t) = (1+t)γ−1 log(1+t)−(1−t)γ−1 log(1−t). Evidently, h(t)> 0 for t > 0,
and the last integral is positive for 0 < x < 1. ut

Theorem 4 For each γ >−1/2, there exists

f (1;γ) =
2γ

√
π
·

Γ
(
γ + 1

2

)
Γ (γ +1)

. (17)

If γ <−1/2, then

lim
x→1

(1− x2)−γ−1/2 f (x;γ) =
2−γ−1
√

π
·

Γ
(
−γ− 1

2

)
Γ (−γ)

. (18)

Proof According to (1), it is easy to see that for γ >−1/2 the following integral

f (1;γ) =
1
π

∫ 1

−1

(1+ t)γ

√
1− t2

dt =
1
π

∫ 1

−1
(1+ t)γ−1/2(1− t)−1/2 dt

exists and its value is given by (17).
In order to prove (18) we use the equality [12, §6.8]

lim
z→1

(1− z)a+b−c
2F1(a,b;c;z) =

Γ (c)Γ (a+b− c)
Γ (a)Γ (b)

, (19)
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which is true for each c different from nonpositive integers and ℜ(a+ b− c) > 0.
Then, setting a = (1− γ))/2, b = −γ/2, c = 1, and z = x2 in the previous equality
and using the well-known Legendre duplication formula (cf. [4, p. 22])

Γ (2t) =
22t−1
√

π
Γ (t)Γ

(
t +

1
2

)
,

the equality (19) reduces to (18) and it is valid for a+b−c =−γ−1/2 < 0, i.e., for
γ <−1/2. ut

Remark 4 If γ is a negative integer, we have, for example, f (x;−1) = (1− x2)−1/2,

f (x;−2) =
1

(1− x2)3/2 , f (x;−3) =
2+ x2

2(1− x2)5/2 , f (x;−4) =
2+3x2

2(1− x2)7/2 , etc.

According to the previous considerations, we can see that the following statement
holds:

Theorem 5 The function x 7→ f (x;γ) is convex and increasing in [0,1) for γ < 0 or
γ > 1, and concave and decreasing for 0 < γ < 1. In these cases, f (0;γ) = 1 is a
minimum and a maximum of this function, respectively. Moreover,

max
0≤x≤1

f (x;γ) = f (1;γ), if γ > 1 or −1/2 < γ < 0,

and
min

0≤x≤1
f (x;γ) = f (1;γ), if 0 < γ < 1,

where f (1;γ) is given in Theorem 4.

Fig. 1 The graphs of the functions: γ 7→ f (1;γ), γ 7→ fL(1;γ), and γ 7→ fLL(1;γ) for −1/2 < γ ≤ 5

For the function fL(x;γ), defined by (2), we can also prove the existence of its
value at x =±1 for γ >−1/2.
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Theorem 6 For each γ >−1/2, there exists

fL(1;γ) =
2γ

√
π
·

Γ
(
γ + 1

2

)
Γ (γ +1)

[
ψ
(
γ + 1

2

)
−ψ(γ +1)+ log2

]
, (20)

where ψ(z) is the digamma function, defined by ψ(z) =
d
dz

(logΓ (z)) = Γ ′(z)/Γ (z).

The equation fL(1;γ) = 0 has a unique root γ = γ̂ , whose numerical value is

γ̂ = 0.40044075673535960714733840032575462375799999584117 . . . .

Proof Using [16, §2.6.10.25, p. 502] (for a = 1)∫ 1

0
xα−1(1− x)β−1 log(1− x)dx = B(α,β ) [ψ(β )−ψ(α +β )] (α >−1, β > 0),

where B(α,β ) = Γ (α)Γ (β )/Γ (α +β ), after the transformation x = (1− t)/2, we
obtain an integral over the interval (−1,1),

1
2α+β−1

∫ 1

−1
(1− t)α−1(1+ t)β−1 log

1+ t
2

dt = B(α,β ) [ψ(β )−ψ(α +β )] ,

from which, for α = 1/2 and β = γ +1/2 > 0 (i.e., γ >−1/2), we get∫ 1

−1
(1+ t)γ−1/2(1− t)−1/2 log

1+ t
2

dt = 2γ B
(1

2
,γ +

1
2

)[
ψ
(
γ +

1
2

)
−ψ(γ +1)

]
.

Since (cf. [13, p. 132])∫ 1

−1
(1+ t)γ−1/2(1− t)−1/2 dt = 2γ B

(1
2
,γ +

1
2

)
, γ >−1

2
,

we have

fL(1;γ) =
2γ

π
B
(1

2
,γ +

1
2

)[
ψ
(
γ +

1
2

)
−ψ(γ +1)+ log2

]
,

i.e., (20).
The function γ 7→ fL(1;γ) is increasing in (− 1

2 ,+∞) and has a unique zero γ̂ near
0.4. Its numerical value with 50 decimal digits was obtained by Newton’s method.

ut

Notice that fL(1;γ) = f (1;γ)
[
ψ
(
γ + 1

2

)
−ψ(γ +1)+ log2

]
for γ >−1/2. Oth-

erwise, for γ ≤−1/2, lim
x→1−

fL(x;γ) =−∞.

The graphs of γ 7→ f (1;γ) and γ 7→ fL(1;γ) are displayed in Figure 1. Evidently,
they illustrate the inequality (15) at x = 1.

Now, we consider some basic properties of the function x 7→ fL(x;γ). Since

fL(0;γ)= f ′L(0;γ)= 0, f ′′L (0;γ)= γ− 1
2
, f ′′′L (0;γ)= 0, f (4)L (0;γ)=

3
4
(2γ−3)(γ2−3γ+1),
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it is clear that the function x 7→ fL(x;γ) has a local extremum at x = 0. For γ ≥ 1/2 it
is a local minimum, and for γ < 1/2 this function has a local maximum. Notice also
that a positive function x 7→ fLL(x;γ), defined by

fLL(x;γ) =
∂

∂γ
fL(x;γ) =

1
π

∫ 1

−1

(1+ xt)γ log2(1+ xt)√
1− t2

dt, γ ∈ R, (21)

has the value at x =±1 if γ >−1/2. The proof of such a result is similar to the proof
of Theorem 6, where in addition we need the equality [16, §2.6.10.24, p. 502] (for
a = 1) ∫ 1

0
xα−1(1− x)β−1 log2(1− x)dx =

∂ 2

∂β 2 B(α,β ) (α >−2, β > 0).

Theorem 7 For each γ >−1/2, there exists

fLL(1;γ) = f (1;γ)
[
ψ
′ (

γ + 1
2

)
−ψ

′(γ +1)+
(
ψ
(
γ + 1

2

)
−ψ(γ +1)+ log2

)2
]
,

where f (1;γ) is given by (17).

The graph of γ 7→ fLL(1;γ) is also displayed in Figure 1.

According to Theorems 4 and 6, as well as the recurrence relations (10) and (11),
we obtain the following result:

Corollary 1 For each γ > 1/2, there exist the values

f ′(1;γ) = (γ−1) f (1;γ−1) and f ′L(1;γ) = (γ−1) fL(1;γ−1)+ f (1;γ−1).

Theorem 8 Let 0≤ x≤ 1.

1◦ For γ ≥ 1
2 , x 7→ fL(x;γ) is a positive increasing function on (0,1), with

min
x∈[0,1]

fL(x;γ) = fL(0;γ) = 0 and max
x∈[0,1]

fL(x;γ) = fL(1;γ),

where fL(1;γ) is given by (20).

2◦ For γ < 0, x 7→ fL(x;γ) is a negative decreasing function on (0,1), with

max
x∈[0,1]

fL(x;γ) = fL(0;γ) = 0

and
min

x∈[0,1]
fL(x;γ) = fL(1;γ), − 1

2 < γ < 0.

For γ ≤− 1
2 , we have lim

x→1
fL(x;γ) =−∞.

3◦ For 0 < γ < 1
2 , there exists x0 ∈ (0,1) such that f ′L(x0;γ) = 0 and

min
x∈[0,1]

fL(x;γ) = fL(x0;γ)< 0. (22)
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If 0 < γ < γ̂ , where γ̂ is given in Theorem 6, the inequality fL(x;γ) < 0 holds,
with

max
x∈[0,1]

fL(x;γ) = fL(0;γ) = 0,

and for γ̂ < γ < 1
2 there exists x̂∈ (0,1) such that fL(x̂;γ) = 0, as well as fL(x;γ)< 0

for 0 < x < x̂ and fL(x;γ)> 0 for x̂ < x≤ 1, with

max
x∈[0,1]

fL(x;γ) = fL(1;γ).

Proof 1◦ According to (13) and (16), for γ > 1 we have f ′L(x;γ)> f ′(x;γ)> 0, so that
x 7→ fL(x;γ) is a positive increasing function on (0,1], with minx∈[0,1] fL(x;γ) = 0 and
maxx∈[0,1] fL(x;γ) = fL(1;γ), where this value is given in Theorem 6. This holds also
for each γ ≥ 1

2 , because of positivity of fLL(x;γ), defined by (21), and the positivity
of fL(x; 1

2 ) (see comments after Theorem 2). Namely, for an arbitrary fixed x, the
function γ 7→ fL(x;γ) increases for each γ > 1

2 , so that fL(x;γ)> fL(x; 1
2 )> 0.

2◦ If γ < 0, then, again by (13) and (16), we conclude that f ′L(x;γ)< γ−1 f ′(x;γ)<
0, i.e., x 7→ fL(x;γ) is a negative decreasing function on [0,1), with the maximum at
x = 0, i.e.,

max
0≤x<1

fL(x;γ) = fL(0;γ) = 0.

3◦ Let 0 < γ < 1
2 . Since fL(x;γ) and f ′L(x;γ) are negative for a sufficiently small

positive x and limx→1− f ′L(x;γ) = +∞, we conclude that the continuous function
x 7→ f ′L(x;γ) in (0,1) changes its sign and therefore there exists x0 ∈ (0,1) such that
f ′L(x0;γ) = 0, as well as (22).

Suppose now that γ̂ (≈ 0.4) is defined as a zero of the function γ 7→ fL(1;γ).
Thus, we have fL(0; γ̂) = fL(1; γ̂) = 0 and fL(x; γ̂) < 0 for each x ∈ (0,1). Due to
the positivity of the function fLL(x;γ), defined by (21), we conclude that fL(x;γ) <
fL(x; γ̂)< 0 for γ < γ̂ and maxx∈[0,1] fL(x;γ) = fL(0;γ) = 0.

Fig. 2 The root x̂ of the equation fL(x̂;γ) = 0 as a function of γ ∈ (γ̂,1/2)
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If γ̂ < γ < 1
2 , by the same argument, we claim that fL(x;γ)> fL(x; γ̂). Since, for

such a γ we have fL(1;γ)> 0, it follows that the continuous function x 7→ fL(x;γ) in
[0,1] must be equal to zero at some point x̂ ∈ (0,1), i.e., fL(x̂;γ) = 0. The rest of the
proof is obvious. The points x̂ for different values of γ ∈ (γ̂,1/2) are displayed in
Figure 2. ut

Remark 5 The graphs of x 7→ fL(x;γ), 0 < x < 1, for some typical values of γ ∈
(0,1/2) are displayed in Figure 3.

Fig. 3 The graphs of x 7→ fL(x;γ), 0 < x < 1, for (a) γ = 0.3; (b) γ = 0.375; (c) γ = γ̂ ≈ 0.40; (d) γ = 0.45;
and (e) γ = 0.5

3 Properties of the function D(x;α,β )

In this section we consider some properties of the determinant (4), i.e.,

D(x;α,β ) = f (x;β ) f (x;−α−1)− f (x;β −1) f (x;α),

where f (x;γ) is defined by (1), i.e., (3).
By applying (1) and (4), we can express D(x;α,β ) as a double integral over the

square S = {(u,v) :−1 < u < 1,−1 < v < 1} in the representation

D(x;α,β ) =
1

π2

∫ 1

−1

∫ 1

−1

(1+ xu)β (1+ xv)−α−1− (1+ xu)β−1(1+ xv)−α

√
1−u2

√
1− v2

dudv,

i.e.,

D(x;α,β ) =
x

π2

∫∫
S

(1+ xu)β−1(1+ xv)−α−1
√

1−u2
√

1− v2
(u− v)dudv. (23)
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The following properties of the function D(x;α,β ) and its partial derivatives with
respect to α and β are satisfied:

Lemma 1 For each α,β ∈ R, one has D(x;−β ,−α) =−D(x;α,β ).

The proof follows immediately from the definition of D(x;α,β ) given in (4).
Evidently, D(x;α,β ) = 0 when α =−β . An interesting property of D(x;α,β ) is

the following:

Theorem 9 For each α,β ∈ R, we have

D(x;α,β ) = (1− x2)β−α D(x;β ,α).

Proof By Euler’s hypergeometric transformation formula (cf. [4, p. 68])

2F1(a,b;c;z) = (1− z)c−a−b
2F1(c−a,c−b;c;z),

one has

2F1

(
1− γ

2
,−γ

2
;1;x2

)
= (1− x2)1/2+γ

2F1

(
1+ γ

2
,

2+ γ

2
;1;x2

)
.

By substituting γ by β , −α − 1, −α , and β − 1, successively in the previous
formula, one obtains

D(x;α,β ) = f (x;β ) f (x;−α−1)− f (x;−α) f (x;β −1)

= 2F1

(
1−β

2
,−β

2
;1;x2

)
2F1

(
2+α

2
,

1+α

2
;1;x2

)
− 2F1

(
1+α

2
,

α

2
;1;x2

)
2F1

(
2−β

2
,

1−β

2
;1;x2

)
= (1− x2)β−α

{
2F1

(
1+β

2
,

2+β

2
;1;x2

)
2F1

(
−α

2
,

1−α

2
;1;x2

)
− 2F1

(
1−α

2
,

2−α

2
;1;x2

)
2F1

(
β

2
,

1+β

2
;1;x2

)}
,

i.e.,

D(x;α,β ) = (1− x2)β−α D(x;β ,α),

which completes the proof of the result. ut

According to Theorem 4 we can prove the corresponding result for the function
x 7→D(x;α,β ) when (α,β ) ∈R2. In this regard we first have to identify six domains
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Fig. 4 Different domains for (α,β ) ∈ R2, defined by (24)

in R2 as presented in Figure 4, i.e.,

A =

{
(α,β )

∣∣∣ α >
1
2
∧ β >

1
2

}
,

B =

{
(α,β )

∣∣∣ α >
1
2
∧ β <−1

2

}
,

C =

{
(α,β )

∣∣∣ α <−1
2
∧ β <−1

2

}
,

D =

{
(α,β )

∣∣∣ α <−1
2
∧ β >

1
2

}
,

E =

{
(α,β )

∣∣∣ ( |α|< 1
2
∨ |β |< 1

2

)
∧ α +β > 0

}
,

F =

{
(α,β )

∣∣∣ ( |α|< 1
2
∨ |β |< 1

2

)
∧ α +β < 0

}
.



(24)

Theorem 10 Let A,B,C,D,E,F be domains in R2 defined by (24).

1◦ For each (α,β ) ∈D, there exists the finite value of the function x 7→D(x;α,β ) at
x =±1, given by

D(1;α,β ) =
2β−α−2(α +β )√

π
·

Γ
(
−α− 1

2

)
Γ
(
β − 1

2

)
Γ (−α +1)Γ (β +1)

. (25)
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2◦ For (α,β ) ∈ A∪E,

lim
x→1

(1− x2)α+1/2D(x;α,β ) =
3α+β

π
·

Γ
(
α + 1

2

)
Γ
(
β + 1

2

)
Γ (α +1)Γ (β +1)

; (26)

3◦ For (α,β ) ∈ B,

lim
x→1

(1− x2)α−β D(x;α,β ) =
2α−β−2(α +β )

π
·

Γ
(
α− 1

2

)
Γ
(
−β − 1

2

)
Γ (α +1)Γ (−β +1)

; (27)

4◦ For (α,β ) ∈C∪F,

lim
x→1

(1− x2)−β+1/2D(x;α,β ) =−2−(α+β )

π
·

Γ
(
−α + 1

2

)
Γ
(
−β + 1

2

)
Γ (−α +1)Γ (−β +1)

. (28)

Proof 1◦ For (α,β ) ∈D, i.e., when α <−1/2 and β > 1/2, all four functions which
appear on the right hand side of (4) are defined at ±1 so that

D(1;α,β ) = f (1;β ) f (1;−α−1)− f (1;β −1) f (1;−α).

Using Theorem 4, we get

D(1;α,β )=
2β

√
π

Γ
(
β + 1

2

)
Γ (β +1)

· 2
−α−1
√

π

Γ
(
−α− 1

2

)
Γ (−α)

− 2β−1
√

π

Γ
(
β − 1

2

)
Γ (β )

· 2
−α

√
π

Γ
(
−α + 1

2

)
Γ (−α +1)

,

i.e.,

D(1;α,β ) =
2β−α−1

π

Γ
(
−α− 1

2

)
Γ (−α +1)

Γ
(
β − 1

2

)
Γ (β +1)

[(
β − 1

2

)
(−α)−β

(
−α− 1

2

)]
,

which is equivalent to (25).
2◦ In order to prove (26) for (α,β ) ∈ A∪E, we first prove it for (α,β ) ∈ A, i.e.,

when α,β > 1/2. Since

(1− x2)α+1/2D(x;α,β ) = f (x;β )
[
(1− x2)α+1/2 f (x;−α−1)

]
− f (x;β −1)

[
(1− x2)α−1/2 f (x;−α)

]
(1− x2),

by Theorem 4, we get (26), where the contribution to this value is given only by the
first term on the right hand side in the previous equality, because the second term
tends to zero when x→ 1.

Consider now a subset of E, when β > 1
2 ∧ |α|<

1
2 . Then the values of f (1;β ),

f (1;β −1), and f (1;−α) exist, and

L(−α−1) = lim
x→1

(1− x2)α+1/2 f (x;−α−1) =
2α

√
π
·

Γ
(
α + 1

2

)
Γ (α +1)

.

Therefore,

lim
x→1

(1−x2)α+1/2D(x;α,β )= f (1;β )L(−α−1)− f (1;β−1) f (1;−α) lim
x→1

(1−x2)α+1/2
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reduces to (26).
In the part of E, where α > 1

2 ∧ |β |<
1
2 , the value of f (1;β ) exists, and

L(β −1) = lim
x→1

(1− x2)−β+1/2 f (x;β −1) =
2−β

√
π
·

Γ
(
−β + 1

2

)
Γ (−β +1)

,

L(−α) = lim
x→1

(1− x2)α−1/2 f (x;−α) =
2α−1
√

π
·

Γ
(
α− 1

2

)
Γ (α)

,

as well as the limit L(−α−1). Then, we have

lim
x→1

(1−x2)α+1/2D(x;α,β ) = f (1;β )L(−α−1)−L(β−1)L(−α) lim
x→1

(1−x2)β+1/2,

i.e., (26).
Finally, in the part of E, where |α| < 1

2 ∧ |β | <
1
2 ∧ α +β > 0, the values of

f (1;β ) and f (1;−α) exist, as well as the limits L(−α−1) and L(β −1). Therefore,

lim
x→1

(1−x2)α+1/2D(x;α,β )= f (1;β )L(−α−1)− f (1;−α)L(β−1) lim
x→1

(1−x2)α+β ,

i.e., (26) holds.
3◦ Let (α,β )∈ B, i.e., α > 1

2 ∧ β <− 1
2 . Then, the values of f (1;β ), f (1;β−1),

f (1;−α), and f (1;−α−1) do not exist, but the corresponding limits L(β ), L(β−1),
L(−α), and L(−α−1) exist, so that we have

lim
x→1

(1− x2)α−β D(x;α,β ) = L(β )L(−α−1)−L(β −1)L(−α)

=
2α−β−1

π
·

Γ
(
α− 1

2

)
Γ
(
−β − 1

2

)
Γ (α +1)Γ (−β +1)

((
α− 1

2

)
(−β )−

(
−β − 1

2 )α
)
,

i.e., (27).
4◦ If (α,β )∈C∪F then (−β ,−α)∈ A∪E. The result (28) follows directly from

2◦, because of the property D(x;α,β ) =−D(x;−β ,−α) (see Lemma 1). ut

Now, we prove an inequality of Turán type for the function x 7→ D(x;α,β ).

Theorem 11 For each α,β ∈ R such that α +β > 0, the following inequality

D(x;α,β )> 0 (29)

holds. If α +β < 0, then the opposite inequality holds.

Proof Interchanging variables u↔ v in (23) one can express D(x;α,β ) in the form
of the following arithmetic mean

D(x;α,β ) =
x

2π2


∫∫
S

(1+ xu)β−1(1+ xv)−α−1
√

1−u2
√

1− v2
(u− v)dudv

+
∫∫
S

(1+ xv)β−1(1+ xu)−α−1
√

1− v2
√

1−u2
(v−u)dvdu

 ,
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i.e.,

D(x;α,β ) =
x

2π2

∫∫
S

(u− v)
[
(1+ xu)α+β − (1+ xv)α+β

]
√

1−u2
√

1− v2(1+ xu)α+1(1+ xv)α+1
dvdu. (30)

Now we define a function φ : (−1,1)→R by φ(t) = x(1+xt)α+β . Since φ ′(t) =
x2(α +β )(1+xt)α+β−1 > 0 for α +β > 0, 1+xu > 0, and 1+xv > 0, it follows that

(u− v)
[
x(1+ xu)α+β − x(1+ xv)α+β

]
> 0,

which implies that the integrand of (30) is positive, and therefore inequality (29)
holds.

If α +β < 0, according to Lemma 1, we conclude that the opposite inequality of
(29) holds.

Remark 6 In some special cases, when α and β take integer values, one can express
D(x;α,β ) in an explicit form. In fact, for specific integer values of α and β , one has

D(x;0,1) =
1− (1− x2)1/2

(1− x2)1/2 , D(x;0,2) =
x2 +2−2(1− x2)1/2

2(1− x2)1/2 ,

D(x;1,1) =
x2

(1− x2)3/2 , D(x;1,2) =
3x2

2(1− x2)3/2 , D(x;1,3) =
x2
(
x2 +4

)
2(1− x2)3/2 ,

D(x;2,2) =
x2
(
x2 +8

)
4(1− x2)5/2 , D(x;2,3) =

5x2
(
x2 +2

)
4(1− x2)5/2 ,

D(x;2,4) =
3x2
(
x4 +18x2 +16

)
16(1− x2)5/2 , D(x;3,3) =

x2
(
x4 +12x2 +12

)
4(1− x2)7/2 ,

D(x;3,4) =
7x2
(
x2 +4

)(
3x2 +2

)
16(1− x2)7/2 , D(x;4,4) =

x2
(
9x6 +288x4 +672x2 +256

)
64(1− x2)9/2 ,

D(x;5,5) =
x2
(
9x8 +360x6 +1680x4 +1600x2 +320

)
64(1− x2)11/2 .

Using the series (6) we can directly obtain the following power expansion for the
function D(x;α,β ):

Theorem 12 The function D : (0,1)→ R can be expressed in the power series

D(x;α,β ) =
+∞

∑
n=1

dn

( x
2

)2n
, −1 < x < 1, (31)

where the coefficients dn = dn(α,β ) are given by

dn =
n

∑
k=1

(
2k
k

)(
2n−2k

n− k

)(
β

2k

)(
−α

2n−2k

)(
2n−2k

α
+

2k
β

)
.
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Remark 7 Taking α =−β in the expression of dn it is easy to see that dn(−β ,β ) = 0,
from which we conclude that (α +β ) |dn(α,β ).

The first four coefficients in (31) are

d1 = 2(α +β ),

d2 = (α +β )
(
α

2 +αβ +4α +β
2−4β +9

)
,

d3 =
1
6
(α +β )

[
α

4 +2α
3(β +6)+α

2 (4β
2 +67

)
+2α

(
β

3−2β +78
)

+β
4−12β

3 +67β
2−156β +220

]
,

d4 =
1
72

(α +β )
[
α

6 +3α
5(β +8)+α

4 (9β
2 +24β +262

)
+3α

3 (3β
3 +16β

2 +32β +504
)

+α
2 (9β

4−48β
3 +474β

2−552β +5221
)

+3α
(
β

5−8β
4 +32β

3 +184β
2−669β +3136

)
+β

6−24β
5 +262β

4−1512β
3 +5221β

2−9408β +10500
]
.

4 Some properties of the functions A(x;α,β ) and B(x;α,β )

In this section we consider some properties of the function A(x;α,β ) (as well as
B(x;α,β )), defined in (5). First we give a power expansion of the function

A(x;α,β ) =
∂

∂α
D(x;α,β ) = f (x;β −1) fL(x;−α)− f (x;β ) fL(x;−α−1), (32)

using results of Theorems 1 and 2.

Theorem 13 The function A : (0,1)→ R can be expressed in the power series

A(x;α,β ) =
+∞

∑
n=1

an

( x
2

)2n
, −1 < x < 1, (33)

where the coefficients an = an(α,β ) are given by

an =
n

∑
j=1

(
2 j
j

)(
2n−2 j

n− j

)(
β

2n−2 j

) 2 j

∑
ν=1

(α)2 j−ν

ν(2 j−ν)!

(
2n−2 j

β
+

2 j−ν

α

)
.

The first five coefficients in (33) are

a1 = 2,

a2 = 3α
2 +4α(β +2)+2β

2 +9,

a3 =
1
6
[
5α

4 +12α
3(β +4)+3α

2(6β
2 +12β +67)+6α

(
2β

3 +21β +52
)

+3β
2(β 2−4β +21)+220

]
,
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a4 =
1
72
[
7α

6 +24α
5(β +6)+10α

4(6β
2 +24β +131)+8α

3(9β
3 +36β

2 +179β +756)

+3α
2(18β

4 +570β
2 +960β +5221)+4α(6β

5−36β
4 +285β

3 +1607β +4704)

+2(2β
6−24β

5 +179β
4−480β

3 +1607β
2 +5250)

]
,

a5 =
1

1440
[
9α

8 +40α
7(β +8)+70α

6(2β
2 +12β +73)+60α

5(4β
3 +32β

2 +149β +760)

+5α
4(60β

4 +240β
3 +3500β

2 +9600β +49873)

+20α
3(12β

5 +620β
3 +3040β

2 +8617β +41576)

+60α
2(2β

6−12β
5 +155β

4 +3372β
2 +4626β +28041)

+40α(β 7−16β
6 +175β

5−760β
4 +3372β

3 +12783β +43080)

+5β
8−120β

7 +1490β
6−9600β

5 +43085β
4−92520β

3 +255660β
2 +828576

]
.

Evidently, for each (α,β ) ∈ R2 we have A(0;α,β ) = 0. Moreover, from Theo-
rem 13 we conclude the following result:

Corollary 2 For each (α,β ) ∈ R2 there is a neighbourhood of the point x = 0, in
notation (−r,r), 0 < r < 1, such that A(x;α,β )> 0 for each x ∈ (−r,r), except at the
point x = 0, and

min
−r<x<r

A(x;α,β ) = A(0;α,β ) = 0.

Thus, the function x 7→ A(x;α,β ), defined by (32), has a local minimum at x = 0
for each (α,β ) ∈ R2.

Using the same approach as in Section 3, we have the following integral repre-
sentations:

A(x;α,β ) =− x
π2

∫∫
S

(1+ xu)β−1(1+ xv)−α−1 log(1+ xv)√
1−u2

√
1− v2

(u− v)dudv (34)

and

B(x;α,β ) =
x

π2

∫∫
S

(1+ xu)β−1(1+ xv)−α−1 log(1+ xu)√
1−u2

√
1− v2

(u− v)dudv,

where S = {(u,v) : −1 < u < 1,−1 < v < 1}, from which we conclude that the fol-
lowing result holds:

Lemma 2 For each α,β ∈ R, one has B(x;α,β ) = A(x;−β ,−α).

Using the same procedure as in the proof of Theorem 11 one can express A(x;α,β ),
defined in (34), in the form of the following arithmetic mean

A(x;α,β )=
x

2π2

∫∫
S

(u− v)
[
(1+ xu)−α−β log(1+ xu)− (1+ xv)−α−β log(1+ xv)

]
√

1−u2
√

1− v2(1+ xu)−β+1(1+ xv)−β+1
dvdu.
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In a similar way, as before, one can see that the function

ψ(t) = x(1+ xt)−α−β log(1+ xt)

is increasing on (−1,1) when

0≤ α +β ≤ 1
log2

≈ 1.4427. (35)

Indeed, in this case, ψ ′(t)= x2(1+xt)−α−β−1[−(α+β ) log(1+xt)+1]> 0, because
of the fact that log(1+ xt)< log2.

Thus, we obtain the following result:

Proposition 1 Under conditions (35), the inequality A(x;α,β )> 0 holds.

Example 1 Let α = −1 and β = 1. Since f (x;0) = f (x;1) = 1, according to Re-
mark 3, we have

A(x;−1,1) = fL(x;1)− fL(x;0) =
+∞

∑
n=1

1
2n−1

(
2n
n

)( x
2

)2n
, −1≤ x≤ 1,

i.e.,
A(x;−1,1) = 1−

√
1− x2 > 0, 0 < x≤ 1.

Fig. 5 Graphs of x 7→ A(x;α,β ) for (a) α =−17/4, β =−7/3 (black line); (b) α =−19/10, β =−1/10
(blue line); (c) α = 12/10, β =−21/10 (red line)

Numerical experiments show that the inequality of Turán type,

A(x;α,β )> 0, 0 < x < 1, (36)

is also true in a wider domain than the strip (35), but not in whole R2. The graphs
of x 7→ A(x;α,β ) on (0,1) for some specific parameters α and β are presented in
Figure 5. All computations are performed in MATHEMATICA Package. As we can
see A(x;12/10,−21/10) changes its sign near x = 0.91. It could be interesting to
find the exact domains in R2 where the inequality (36) is true.
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7. Baricz, À.: Functional inequalities involving Bessel and modified Bessel functions of the first kind.

Expo. Math. 26, 279–293 (2008)
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14. Mastroianni, G., Milovanović, G.V., Notarangelo, I.: Gaussian quadrature rules with an exponential

weight on the real semiaxis, (in preparation).
15. McEliece, R.J., Reznick, B., Shearer, J.B.: A Turán inequality arising in information theory. SIAM J.

Math. Anal. 12, 931–934 (1981)
16. Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series. Vol. 1. Elementary functions

(Translated from the Russian and with a preface by N. M. Queen). Gordon & Breach Science Pub-
lishers, New York (1986).

17. Sprugnoli, R.: Riordan Array Proofs of Identities in Gould’s Book, Preprint, Firenze (2006);
http://www.dsi.unifi.it/ resp/GouldBK.pdf.
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