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application to calculating some special functions and mathematical constants
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2010 Mathematics Subject Classifications: 65B10, 65D30, 65D32, 40A25

Keywords: Slowly convergent series, Special functions, Orthogonal polynomials,
Gaussian quadrature formula, Weight function, Mathieu series, Riemann zeta func-
tion

Introduction

Slowly convergent series appear very often in calculation of some special functions
and important constants (e.g., the Euler-Mascheroni constant γ, Apéry’s constant
ζ(3), Theodorus constant [3], Erdős-Borwein constant, etc.), but also in many prob-
lems in applied and computational sciences.

There are several numerical methods based on linear and nonlinear transforma-
tions. In general, starting from the sequence of partial sums {Sn}∞n=1 of the slowly
convergent series S (= limn→∞ Sn), these transformations give other sequences with
faster convergence to the same limit S. In other words, these so-called accelerating
transformations {Sn}∞n=1 → {Tn}∞n=1 must be limit-preserving, i.e.,

lim
n→∞

Tn − S
Sn − S

= 0.

We mention here some well-known transformations as Euler’s transformation, Aitken’s
∆2-process, Shanks’s transformation, etc. (For more details see [2], [8], [14]).

Some alternative methods of summation of slowly convergent series are based on
integral representations of series and an application of the Gaussian quadratures.
Such summation/integration procedures for slowly convergent series have been devel-
oped in [6] (Laplace transform method), [9, 10] (Contour integration method), and
[12] (Modified contour integration method). In [11] we derived a method for fast
summation of trigonometric series.

Under certain conditions (see [12]) we can prove that

Tm =

+∞∑
k=m

f(k) =
π

4

n∑
ν=1

A(n)
ν Φ

m− 1

2
,

√
ξ

(n)
ν

2

+Rn(Φ), (1)

where F is an integral of f , Φ(x, y) = − 1
2 [F (x+ iy) + F (x− iy)],

(
A

(n)
ν , ξ

(n)
ν

)
, ν =

1, . . . , n, are the parameters (weights and nodes) of the n-point Gaussian quadrature
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rule ∫ +∞

0

g(x)

√
x cosh2 π

√
x

2

dx =

n∑
ν=1

A(n)
ν g

(
ξ(n)
ν

)
+Rn(g), (2)

and Rn(g) is the corresponding error term.

Some Special Functions and Constants

In this section we only give short account on calculation some special functions
and mathematical constants defined by slowly convergent series. A rich treasury of
significant numbers, mathematical constants, can be found in a two-volume book
written by Finch [4, 5]. We use only a few of them.

Mathieu series

We consider the famous infinite functional series so-called Mathieu series of the
form [7]

S(r) =
∑
k=1

2k

(k2 + r2)2
, S̃(r) =

∑
k=1

(−1)k−1 2k

(k2 + r2)2
, r > 0.

The last alternating version of Mathieu series was introduced and investigated by
Pogány et al. [16, p. 72]. Using the approach from [9], Milovanović and Pogány [13]

obtained the integral representations for these series S(r) and S̃(r),

S(r) = π

∫ ∞
0

r2 − x2 + 1
4(

x2 − r2 + 1
4

)2
+ r2

dx

cosh2(πx)
,

S̃(r) = π

∫ ∞
0

x(
x2 − r2 + 1

4

)2
+ r2

sinh(πx) dx

cosh2(πx)
,

In a recent joint paper with Parmar and T. K. Pogány [15] we have proved the
following series expansions for all r > 0,

S(r) =
1

r

∞∑
n=0

s
{

e−rs<
[
E1

(
(−r + i

2 )s
)]
− ers<

[
E1

(
(r + i

2 )s
)]}∣∣∣

s=2π(n+1)
,

S̃(r) =
1

r

∞∑
n=0

s
{

ers<
[
E1

(
(r + i

2 )s
)]
− e−rs<

[
E1

(
(−r + i

2 )s
)]}∣∣∣

s=π(2n+1)
,

where E1(z) = −
∫∞
z
x−1e−x dx (| arg(z)| < π) is the exponential integral of the first

order [1, p. 228, Eq. 5.1.1] and <[z] denotes the real part of z ∈ C.

For calculating these last slowly convergent series S(r) and S̃(r), we used the
well-known Euler-Abel transformation very successfully (see [15] for details).

Riemann zeta function

The Riemann zeta function s 7→ ζ(s) is defined by ζ(s) =
∑+∞
k=1 k

−s for <s > 1.
The series converges for any s with <s > 1, uniformly, for any fixed σ > 1, in any
subset of <s ≥ σ, which establishes that ζ(s) is an analytic function in <s > 1. The
function ζ(s) admits analytic continuation to C, where it satisfies the functional equa-
tion ζ(s) = 2sπs−1 sin πs

2 Γ(1 − s)ζ(1 − s). Thus, by means of analytic continuation,

8 Antalya-TURKEY



PROCEEDINGS BOOK OF MICOPAM 2022

ζ(s) is analytic function for any complex s, except for s = 1, which is a simple pole
of ζ(s) with residue 1.

Using our approach we get an integral representation of ζ(s + 1). Since f(z) =
1/zs+1 and F (z) = −1/(szs), using (1) and (2) we obtain

ζ(s+ 1) =

m−1∑
k=1

1

ks+1
+

π

4s
(
m− 1

2

)s n∑
ν=1

A(n)
ν g

(
ξ(n)
ν

)
+ En,m(s),

where

g(t; s) = exp
(
−s

2
log(1 + t2)

)
cos
(
s arctan t

)
, cm =

1

2m− 1
,

and En,m(s) is the corresponding error term.

Euler-Mascheroni constant

The Euler-Mascheroni constant γ is defined as

γ = lim
n→∞

(
n∑
k=1

1

k
− log n

)
= 0.577215664901532860606512090082 . . . .

This constant can be expressed as the following slowly convergent series (cf. [4, p. 30])

γ =

∞∑
k=1

(
1

k
− log

(
1 +

1

k

))
.

Applying our method to summation of this series we use (1), with

f(z) =
1

z
− log

(
1 +

1

z

)
and F (z) = 1− (z + 1) log

(
z + 1

z

)
,

where limz→∞ F (z) = 0.
The corresponding relative errors errn,m =

∣∣ (Qn,m(f) − γ)/γ
∣∣ for number of

nodes n in the quadrature formula (2) and m = 1, 2, 3, 6, 11 and 16 are presented in
Table 1.

n m = 1 m = 2 m = 3 m = 6 m = 11 m = 16
10 2.73(−4) 2.03(−9) 2.12(−13) 4.50(−22) 2.39(−31) 1.34(−37)
20 5.92(−5) 2.79(−11) 1.90(−16) 1.49(−28) 5.53(−43) 1.32(−53)
30 2.43(−5) 2.26(−12) 3.06(−18) 2.00(−32) 3.53(−50) 6.92(−64)

100 1.77(−6) 1.30(−15) 1.43(−23) 5.23(−44) 4.60(−72) 7.33(−96)

Table 1: Relative errors errn,m in of Gaussian approximations Qn,m(f) of T1(10) for
n = 10, 20, 30 and 100 and for some selected values of m
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