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Abstract—In this paper we consider polynomials orthogonal with respect to the linear functional

L : P → C, defined by L[p] =
∫

1

−1
p(x)(1 − x2)λ−1/2 exp(iζx) dx, where P is a linear space of all

algebraic polynomials, λ > −1/2 and ζ ∈ R. We prove the existence of such polynomials for some
pairs of λ and ζ, give some their properties, and finally give an application to numerical integration
of highly oscillatory functions.
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1. INTRODUCTION

Let P be a linear space of all algebraic polynomials, Pn its subspace of polynomials of degree at

most n, and L : P → C a linear functional defined by

L[p] = L[w; p] =

∫ 1

−1

p(x)w(x) exp(iζx) dx, ζ ∈ R\{0}, (1.1)

where w is a suitable “weight function.”

Taking L[xk] = µk, k ∈ N0, and using a concept of orthogonality with respect to the linear

functional L (cf. Chihara [1, pp. 5–17]), the necessary and sufficient conditions for the existence

of the corresponding orthogonal polynomials πn (n ∈ N0) can be expressed in terms of Hankel

determinants,

(∀n ∈ N) ∆n =
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∣

6= 0. (1.2)

Recently, we have considered orthogonal polynomials with respect to the functional L[x; p] with

ζ = mπ (m ∈ N), as well as a case with a modified Chebyshev weight w(x) = x(1 − x2)−1/2 and

ζ > 0 (cf. [2] and [3]). With a matrix Riemann-Hilbert problem formulation of the orthogonality

relations, Aptekarev and Van Assche [4] have investigated the case L[p] =
∫ 1

−1 p(x)ρ(x)(1 −
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x2)−1/2 dx, where ρ is a complex valued non-vanishing function on [−1, 1], which is holomorphic

in some domain containing the interval [−1, 1]. In a special case ρ can be ρ(x) = eiζx.

Much earlier, orthogonal polynomials on the semicircle with respect to

L[w; p] :=

∫

Γ

p(z)w(z)(iz)−1 dz =

∫ π

0

p(eiθ)w(eiθ) dθ,

where Γ = {z ∈ C | z = eiθ, 0 ≤ θ ≤ π} and w is a suitable “weight” function, as well as several

applications in numerical integration and numerical differentiation, were investigated (see e.g. [5]

and [6]). In all previous cases, the (quasi) inner-product (p, q) := L[w; p · q] has the property

(zp, q) = (p, zq), and because of that the corresponding (monic) polynomials {πn}n∈N0

satisfy

the fundamental three-term recurrence relation.

In this paper we study the existence of orthogonal polynomials πn with respect to L, given

by (1.1), where w(x) = (1 − x2)λ−1/2, λ > −1/2, and ζ ∈ R\{0}. In Section 2, for certain

combinations of λ and ζ, we prove that these polynomials exist, and in Section 3 we consider

some possibilities (numerical and symbolic) for computing three-term recurrence coefficients.

Finally, in Section 4 we give the corresponding Gaussian quadratures.

2. MOMENTS AND EXISTENCE OF ORTHOGONAL

POLYNOMIALS

We consider the linear functional

L[p] =

∫ 1

−1

p(x)(1 − x2)λ−1/2 exp(iζx) dx, (2.1)

with the restriction ζ > 0. The case ζ < 0 can obtain under substitution x := −x.

In our case the moments µk can be expressed in terms of Bessel functions Jν of the order ν

defined by (cf. [7, p. 40])

Jν(z) =
+∞
∑

m=0

(−1)m(z/2)ν+2m

m!Γ(ν + m + 1)
.

Theorem 2.1. The moments µk can be expressed in the form

µk =
A

(iζ)k

(

Pλ
k (ζ)Jλ(ζ) + Qλ

k(ζ)Jλ−1(ζ)
)

, k ∈ N0, (2.2)

where A = (2/ζ)λ √
π Γ(λ+1/2), and Pλ

k and Qλ
k are polynomials in ζ, which satisfy the following

four-term recurrence relation

yk+2 = S[yk] := −(k + 2λ + 1)yk+1 − ζ2yk − kζ2yk−1, (2.3)

with the initial conditions

Pλ
0 (ζ) = 1, Pλ

1 (ζ) = −2λ, Pλ
2 (ζ) = 2λ(2λ+1)−ζ2 and Qλ

0 (ζ) = 0, Qλ
1 (ζ) = ζ, Qλ

2 (ζ) = −(2λ+1)ζ,

respectively.

Proof. According to (2.1) and using the recurrence relation for Bessel functions, Jλ+1(ζ) =

(2λ/ζ)Jλ(ζ) − Jλ−1(ζ), for µk = L[xk], k ∈ N0, we get

µ0 = AJλ(ζ), µ1 = iA
[2λ

ζ
Jλ(ζ)−Jλ−1(ζ)

]

, µ2 = A
[(

1−2λ(2λ + 1)

ζ2

)

Jλ(ζ)+
2λ + 1

ζ
Jλ−1(ζ)

]

,

(2.4)

where A = (2/ζ)
λ √

π Γ(λ + 1/2), from which we can identify the initial values for Pλ
k and Qλ

k ,

k = 0, 1, 2. Applying an integration by parts to the integral

µk − µk+2 =

∫ 1

−1

xk(1 − x2)λ+1/2 eiζx dx
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we obtain the following four-term recurrence relation

µk+2 = −k + 2λ + 1

iζ
µk+1 + µk +

k

iζ
µk−1. (2.5)

In order to prove (2.2) we apply the induction. According to (2.4), it is clear that (2.2) is true

for k = 0, 1, 2. Let suppose that it is true for some three consecutive nonnegative integers k − 1,

k and k + 1, k ∈ N. Then, using (2.5), the induction assumptions and (2.3), we get

µk+2 = −k + 2λ + 1

iζ

A

(iζ)k+1

(

Pλ
k+1(ζ)Jλ(ζ) + Qλ

k+1(ζ)Jλ−1(ζ)
)

+
A

(iζ)k

(

Pλ
k (ζ)Jλ(ζ) + Qλ

k(ζ)Jλ−1(ζ)
)

+
k

iζ

A

(iζ)k−1

(

Pλ
k−1(ζ)Jλ(ζ) + Qλ

k−1(ζ)Jλ−1(ζ)
)

=
A

(iζ)k+2

(

Jλ(ζ)S[Pλ
k ] + Jλ−1(ζ)S[Qλ

k ]
)

=
A

(iζ)k+2

(

Pλ
k+2(ζ)Jλ(ζ) + Qλ

k+2(ζ)Jλ−1(ζ)
)

.

Some obvious properties of the polynomials Pλ
n and Qλ

n, n ∈ N0, are stated in the following

lemma.

Lemma 2.1. For each k ∈ N0, we have deg(Pλ
2k) = deg(Pλ

2k+1) = 2k. Also, for each k ∈ N,

deg(Qλ
2k) = deg(Qλ

2k−1) = 2k.

The free terms in the polynomials Pλ
n and Qλ

n are given by Pλ
n (0) = (−1)n(2λ)n and Qλ

n(0) = 0

respectively. Their leading coefficients are

{

(−1)k, n = 2k,

(−1)k(2kλ + k − 1), n = 2k − 1,
and

{

(−1)kk(2λ + 1), n = 2k,

(−1)k, n = 2k + 1,

respectively.

As we can see immediately, for each λ > −1/2, if ζ > 0 is an arbitrary zero of the Bessel

function Jλ, the polynomials πn orthogonal with respect to (2.1) do not exist, because ∆0 =

µ0 = AJλ(ζ) = 0 (see (2.4)).

In the next theorem we prove that for some pairs of λ and ζ these polynomials though exist.

Theorem 2.2. Let λ be a positive rational number and ζ be a positive zero of the Bessel function

Jλ−1. Then, the polynomials πn orthogonal with respect to (2.1) exist.

Proof. In order to prove the existence of polynomials πn orthogonal with respect to the functional

(2.1) we need to prove that the corresponding Hankel determinants are different from zero.

Supposing that ζ be a nontrivial zero of the Bessel function Jλ−1, the moments (2.2) reduce to

µk =
A

(iζ)k
Pλ

k (ζ)Jλ(ζ), k ∈ N0.

Obviously, from the Hankel determinant (1.2) we can extract the factor (AJλ(ζ))
n+1

/(iζ)n(n+1),

so that

∆n =
(AJλ(ζ))

n

(iζ)n(n−1)
Hn, Hn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pλ
0 (ζ) Pλ

1 (ζ) . . . Pλ
n−1(ζ)

Pλ
1 (ζ) Pλ

2 (ζ) . . . Pλ
n (ζ)

...
...

...

Pλ
n−1(ζ) Pλ

n (ζ) . . . Pλ
2n−2(ζ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.6)

Note that all determinants Hn, n ∈ N, are polynomials in ζ, i.e., Hn = Hn(ζ) =
∑n(n−1)

ν=0 Bν(λ)ζν ,

with rational coefficients Bν(λ) since λ ∈ Q.

On the other side, non-trivial zeros (ζ > 0) of the Bessel functions Jλ, with a rational index

λ, are transcendental numbers (cf. [8, p. 220]) and they cannot be zeros of polynomials with

rational coefficients unless polynomials are identically equal to zero.
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Thus, we have to prove only that determinants Hn are not identically equal to zero. To prove

this we emphasize that, according to Lemma 2.1, the free coefficient in the polynomial Pλ
k equals

Pλ
k (0) = (−1)k(2λ)k, k ∈ N0, and that therefore the free coefficient in the polynomial Hn(ζ)

equals to Hn(0) = B0(λ). Using equality (2λ)k = Γ(2λ + k)/Γ(2λ), we get

Hn(0) =
1

Γ(2λ)n

∣

∣

∣

∣

∣

∣

∣

∣

∣

Γ(2λ) Γ(2λ + 1) . . . Γ(2λ + n − 1)

Γ(2λ + 1) Γ(2λ + 2) . . . Γ(2λ + n)
...

...
...

Γ(2λ + n − 1) Γ(2λ + n) . . . Γ(2λ + 2n− 2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

According to Γ(2λ + k) =
∫ +∞

0
xk+2λ−1 e−x dx we recognize the last determinant as a Hankel

determinant for the generalized Laguerre measure x2λ−1 e−x χ[0,+∞)(x) dx (λ > 0). Because of

that, Hn(0) is evidently different from zero.

Accordingly, when λ is a positive rational number and ζ is a positive zero of the Beseel function

Jλ−1, the sequence of orthogonal polynomials with respect to (2.1) exists.

This result enables an application of computational methods for the construction of these

polynomials, as well as some applications in numerical quadratures for the mentioned specific

values of the parameters λ and ζ.

3. THREE-TERM RECURRENCE RELATION

In this section we suppose such parameters λ and ζ, which provide the existence of orthogonal

polynomials πn with respect to (2.1). As we mentioned in Section 1, the (quasi) inner-product

(p, q) := L[w; p · q], in our case (2.1), has the property (zp, q) = (p, zq), and because of that

the corresponding (monic) polynomials {πn}n∈N0
satisfy the fundamental three-term recurrence

relation

πn+1(x) = (x − iαn)πn(x) − βnπn−1(x), n ∈ N, (3.1)

with π0(x) = 1, π−1(x) = 0. The recursion coefficients αn and βn can be expressed in terms of

Hankel determinants as (cf. [5])

iαn =
∆′

n+1

∆n+1
− ∆′

n

∆n
=

1

iζ

(

H ′

n+1

Hn+1
− H ′

n

Hn

)

, βn =
∆n+1∆n−1

∆2
n

=
1

(iζ)2
Hn+1Hn−1

H2
n

, (3.2)

where Hn is defined in (2.6), and ∆′

n is the Hankel determinant ∆n+1 with the penultimate

column and the last row removed. The corresponding determinant H ′

n is given by

H ′

n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pλ
0 (ζ) Pλ

1 (ζ) . . . Pλ
n−2(ζ) Pλ

n (ζ)

Pλ
1 (ζ) Pλ

2 (ζ) . . . Pλ
n−1(ζ) Pλ

n+1(ζ)
...

...
...

...

Pλ
n−1(ζ) Pλ

n (ζ) . . . Pλ
2n−3(ζ) Pλ

2n−1(ζ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3.3)

Although β0 can be arbitrary, as usual it is convenient to take β0 = µ0 = AJλ(ζ).

In this case, however, the values of Hankel determinants cannot be found easily, but, it is clear

that the recursion coefficients are rational functions in ζ. Using our software package [9] we can

generate coefficients even in symbolic form for some reasonable small values of n (for n ≤ 2 see

Table 3.1).

Increasing n, the complexity of expressions for αn and βn increases quite rapidly. On the other

side, using the Chebyshev algorithm, similarly as in [2], a numerical construction of recursion

coefficients can be done. In Table 3.2 we give numerical values of αn and βn, n ≤ 14, when

λ = 1 and ζ ≈ 8.653727912911012 (a zero of J0(z)). Numbers in parentheses indicate decimal

exponents.

According to a very extensive numerical calculations we can state the following conjecture.
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Table 3.1. Recursion coefficients αn and βn for n ≤ 2

n αn βn

0 2λ
ζ

(

2
ζ

)λ √
π Γ

(

λ + 1
2

)

Jλ(ζ)

1 4λ(1+λ)−ζ2

ζ(2λ−ζ2)
ζ2

−2λ
ζ2

2 (7+6λ)ζ6
−4λ(4+λ)(3+2λ)ζ4+32λ2(3+2λ)ζ2

−32λ3(2+λ)
2ζ(ζ2−2λ)[ζ4−λ(5+2λ)ζ2+4λ2] − 2(1+2λ)[ζ4

−λ(5+2λ)ζ2+4λ2]
ζ2(−2λ+ζ2)2

Table 3.2. Recursion coefficients αn and βn for 0 ≤ n ≤ 14, λ = 1, ζ ≈ 8.653727912911012

n αn βn

0 2.311142689171081(−1) 9.854626351063405(−2)
1 1.060445637373780(−1) 9.732930973514553(−1)
2 7.651132178528472(−1) −7.673248270228832(−2)
3 −6.295009390649605(−2) 9.653084647774708(−1)
4 1.932207097354234 −1.506275573638140(−1)
5 −8.605888996725327(−1) 2.187766221402496
6 5.664110881321379(−2) 1.588977014752849(−1)
7 −4.402172898193667(−3) 2.582628598423771(−1)
8 2.654519062269625(−4) 2.494455025986602(−1)
9 −1.308066174957451(−5) 2.500301915274877(−1)
10 5.346570353604267(−7) 2.499986477921526(−1)
11 −1.839775190533208(−8) 2.500000506256831(−1)
12 5.397928683729530(−10) 2.499999983937877(−1)
13 −1.365470127894177(−11) 2.500000000437017(−1)
14 3.007166162157992(−13) 2.499999999989697(−1)

Conjecture 3.1. For the recursion coefficients the following asymptotic relations are true

αn → 0, βn → 1

4
, as n → +∞.

Notice that for λ = 0, from the result given in [4], we have αn → 0 and βn → 1/4, as n → +∞.

According to µk = (−1)kµk, k ∈ N0 (see (2.2)) we can prove:

Lemma 3.1. If the sequence of monic orthogonal polynomials {πn}n∈N0
exists, then πn(z) =

(−1)nπn(−z) and the coefficients αn and βn are real.

Using the Pearson equation for the “weight” (1 − x2)λ−1/2 eiζx, several interesting properties

of πn can be done. Because of the limited space, it will be given elsewhere. In the next section

we mention only certain remarks on the corresponding Gaussian quadrature rule.

4. GAUSSIAN QUADRATURE RULE

Suppose that the polynomials πn, orthogonal with respect to the functional (2.1), exist. Their

zeros x
(n)
k , k = 1, . . . , n, according to Lemma 3.1, are distributed symmetrically with respect to

the imaginary axis. The corresponding quadrature of Gaussian type,

∫ 1

−1

f(x)(1 − x2)λ−1/2 eiζx dx =
n

∑

k=1

w
(n)
k f(x

(n)
k ) + Rn(f), (4.1)

where Rn(f) = 0 for each polynomial of degree at most 2n−1, can be considered as a quadrature

for highly oscillating integrals.

For the construction of the Gaussian quadrature rules once we computed three-term recur-

rence coefficients we used software package OrthogonalPolynomials (see [9]). Using functions

implemented there in extended arithmetics we are able to construct Gaussian rules. Table 4.1

holds constructed Gaussian rule for λ = 1/4 and ζ ≈ 57.72405855079898 (a zero of J−3/4(z)).
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Table 4.1. Nodes and weights of the Gaussian quadrature rule with n = 10 nodes for λ = 1/4 and ζ ≈ 57.72405855079898

nodes weights
∓0.9997482190437303+ i3.207821698581004(−3) 2.908955255104732(−2)∓ i1.197225833309330(−3)
∓0.9983271285763714+ i2.127094150299141(−2) 1.713966152501626(−2)± i7.355386171553665(−4)
∓0.9954829078277354+ i5.721633058272207(−2) 2.857288658737018(−3)± i6.121828050618464(−4)
∓0.9908103300221749+ i1.157235270974207(−1) 1.167827067290065(−4)± i6.189820871051405(−5)
∓0.9831915502178804+ i2.099164913530890(−1) 4.952507800753575(−7)± i6.753546610410324(−7)

We apply our Gaussian quadrature formula (4.1) to the integral

I(ζ) = Im

{
∫ 1

−1

1

x − i
(1 − x2)−1/4 eiζx dx

}

≈ Gn(ζ) = Im

{

n
∑

k=1

w
(n)
k

x
(n)
k − i

}

,

for ζ ∈ {ζ1, ζ2, ζ3}, where ζ1 ≈ 4.284053812724698, ζ2 ≈ 57.72405855079898 and ζ3 ≈ 10000.86749799776

(zeros of J−3/4(z)). Note here that λ = 1/4. Then, the exact values of I(ζ) are

I(ζ1) = −0.227045567348676223160759854108844159106362541608 . . . ,

I(ζ2) = 0.048976309809332883499236926607158015142775366576 . . . ,

I(ζ3) = −0.001030355706214539678141569677416629012626586968 . . . .

Their integrands are displayed in Fig. 4.1.

Figure 4.1. Integrand of I(ζ) for ζ = ζ1 (dashed line) and ζ = ζ2 (solid line) (left figure) and ζ = ζ3 (right figure)

In Table 4.2 the relative errors in Gaussian approximations, rn = |(Gn(ζν) − I(ζν))/I(ζν)|,
ν = 1, 2, 3, for some selected number of nodes n are given. In numerical construction we use our

software package [9].

Table 4.2. Relative errors rn and rG
n , for n = 5, 7, 10(5)30, when ζ = ζ1, ζ2, ζ3

ζ ζ1 ζ2 ζ3

n rn rG
n rn rG

n rn rG
n

5 1.35(−2) 2.15(−3) 3.55(−7) 1.93(1) 2.63(−16) 3.09(2)
7 3.82(−4) 2.50(−6) 1.32(−9) 1.86(1) 2.17(−23) 1.76(3)
10 1.93(−6) 4.51(−9) 6.47(−14) 9.11 7.77(−37) 3.87(2)
15 2.88(−10) 6.73(−13) 5.45(−17) 1.68 1.28(−49) 1.26(2)
20 4.29(−14) 1.00(−16) 1.71(−21) 3.02 6.16(−68) 8.81(2)
25 6.39(−18) 1.49(−20) 3.86(−23) 7.06 1.05(−79) 2.86(1)
30 9.50(−22) 2.22(−24) 9.40(−24) 4.60 7.52(−97) 2.40(2)

In order to compare these results we also apply the corresponding Gauss-Gegenbauer quadra-

ture formula with respect to the weight function x 7→ (1 − x2)−1/4 and give its relative errors

rG
n . As we can see the Gauss-Gegenbauer quadrature is faster for small ζ, but when ζ increases

our formula is much faster. Because of a highly oscillatory integrand the Gauss-Gegenbauer

quadrature becomes unusable.
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