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Abstract. Beside the general theory to operator equations and itera-
tive processes, including existence and uniqueness of solutions, fixed
point theory, local properties of iterative processes, main theorems of
Newton-Kantorovich method, as well as methods for acceleration of
iterative processes, a special attention is dedicated to applications to
integral equations of the second kind, including a discretization pro-
cess by using quadrature formulas. Several kinds of integral equations
are considered: nonlinear Volterra-Fredholm integral equations, mixed
Volterra-Fredholm integral equations, Volterra integral equations with
delayed argument, functional Volterra integral equations and fractional
integral equations.
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1. Introduction to Operator Equations and Iterative Processes

Let X and Y be two Banach spaces, D be a convex subset of X and F : D →
Y be an operator, in general case, nonlinear. We can consider the operator
equation

Fu = 0, (1.1)

where 0 is zero-vector of the space Y . A large number of problems in science
and techniques come down to solving equations of the form (1.1).

A special and important case is when Y = X and Fu = u − Tu = 0.
We mention a few typical examples.

(a) If X = Y = R, u = x, F = f , the nonlinear equation f(x) =
x− cosx = 0, as well as the algebraic equation

f(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an = 0,

are of the form (1.1).
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(b) If X = Y = R
n, u = x = [x1 · · · xn]T and

Fu = F (x) =



f1(x1, . . . , xn)

...
fn(x1, . . . , xn)


 ,

where fi : R
n → R are given functions, the equation (1.1) represents a system

of nonlinear equations

fi(x1, . . . , xn) = 0, i = 1, . . . , n.

If F is a linear operator, for example, F (x) = Ax − b, where the matrix A
and the vector b are given by

A =




a11 a12 · · · a1n
a21 a22 a2n
...
an1 an2 ann


 and b =



b1
...
bn


 ,

respectively, then the equation (1.1) reduces to a system of linear algebraic
equations

ai1x1 + ai2x2 + · · ·+ ainxn = bi, i = 1, . . . , n.

(c) In the case X = C2[a, b], Y = C[a, b]× R, u ≡ u(t),

Fu =

[
f1(u)

f2(u)

]

and

f1(u)(t) = u′′(t)− f(t, u(t), u′(t)) (t ∈ [a, b]), f2(u) = g(u(a), u(b)),

where F : R3 → R and g : R2 → R are given functions. Then the operator
equation (1.1) represents the boundary value problem

u′′(t) = f(t, u(t), u′(t)) (t ∈ [a, b]),

g(u(a), u(b)) = 0.

(d) Let X = C([a, b]), K1,K2 ∈ C([a, b]2 × R), g ∈ C([a, b]), and the
operator T : X → X be defined by

(Tu)(t) = g(t) +

∫ t

a

K1(t, x, u(x)) dx +

∫ b

a

K2(t, x, u(x)) dx, (1.2)

where t ∈ [a, b]. In this case we have the operator equation

u(t) = (Tu)(t), t ∈ [a, b],

which is, in fact, a nonlinear Volterra-Fredholm integral equations of the
second kind.

All mentioned equations, as well as a number of others, can be treated
in a unique way. That is why the subject of our consideration in this chapter
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is solving the operator equation (1.1), i.e. finding such a point u ∈ D which
satisfies (1.1). Therefore, this unique approach is applied to the equation

u = Tu (1.3)

where the operator T maps D to D and Tu = H(u, Fu), with an operator
H : D × Y → D. It is clear that for a given equation (1.1), the form (1.3) is
not unique, as the following example shows.

A simple equation f(x) = 0 can be represented in an equivalent form

x = x+ λf(x) (1.4)

for each λ different from zero, but there are many other equivalent forms
different from (1.4).

1.1. Iterative Processes

One of the ways to solve the equation (1.3) as one form of (1.1) is to construct
the sequence {uk}k∈N0

as

uk+1 = Tuk, k = 0, 1, . . . , (1.5)

starting from some point u0 ∈ D. Under certain conditions for the operator
T , the sequence {uk}k∈N0

can converge to the desired solution. The formula

(1.5) is known as an iterative process.

Remark 1.1. Beside iterative processes of the form (1.5) one can consider
more general processes, the so-called iterative processes with memory

uk+1 = S(uk, uk−1, . . . , uk−m+1), k = m− 1,m, . . . ,

where S : Xm → X . Such a process, with a memory of the length m, needs
m starting points u0, u1, . . . , um−1 ∈ D.

1.2. Existence and Uniqueness of Solutions. Fixed Point Theory

Let (X, ‖ · ‖) be a Banach space and (1.5) be an iterative process converging
to to u∗ ∈ X , so that u∗ = Tu∗. It means that there exists a point u∗ ∈ X
such that

lim
k→+∞

‖uk − u∗‖ = 0.

Such u∗ ∈ X is a fixed point of the operator T .

The fixed point u∗ ∈ X is a solution of the previous equation (1.3).

To discuss solvability and other properties of the operator equations, let
us recall the main results for the Fixed Point Theory [5] on a Banach space.

Definition 1.2. Let (X, ‖ · ‖) be a Banach space. A nonlinear operator T :
X 7→ X is a q-contraction if 0 ≤ q < 1 and

(∀u, v ∈ X) ‖Tu− Tv‖ ≤ q‖u− v‖.

A classical result is the contraction principle on a Banach space.
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Theorem 1.3. Let (X, ‖ · ‖) be a Banach space and T : X 7→ X be a q-
contraction. Then

(a) the equation u = Tu has exactly one solution u∗ ∈ X;

(b) the iterative process uk+1 = Tuk, k = 0, 1, . . ., converges to the

solution u∗ for any arbitrary choice of the initial point u0 ∈ X;

(c) the error estimate

‖uk − u∗‖ ≤ qk

1− q
‖Tu0 − u0‖

holds for each k ∈ N.

A stronger fixed point result can be formulated in the following form
(see Altman [2]).

Theorem 1.4. Let (X, ‖ · ‖) be a Banach space and T : X 7→ X be a q-
contraction. Let {εk}+∞

k=0 be a sequence of positive numbers such that εk ≤ 1

and
∑+∞

k=0 εk = +∞. Then

(a) the equation u = Tu has exactly one solution u∗ ∈ X;

(b) the iterative process

uk+1 = (1 − εk)uk + εkTuk, k = 0, 1, . . . ,

converges to u∗ for any arbitrary choice of the initial point u0 ∈ X;

(c) the error estimate

‖uk − u∗‖ ≤ e1−q

1− q
‖Tu0 − u0‖e−(1−q)vk

holds for each k ∈ N, where v0 = 0 and vk =
k−1∑
ν=0

εν , k ≥ 1.

Remark 1.5. The above results remain valid if instead of the entire space X ,
we consider any closed subset Y ⊂ X, satisfying T (Y ) ⊆ Y.Many times, such
results are useful if applied on a closed ball B̺ = {u ∈ X : ‖u− u0‖ ≤ ̺},
for a suitable point u0 ∈ X . This issue is addressed in more detail in the next
section.

1.3. Local Properties of Iterative Processes

Now we consider some local properties of the iterative process (1.5).
Let u∗ ∈ X be a fixed point of the operator T : X → X and let U be a

convex neighbourhood of the limit point u∗. The iterative process (1.5) is of
order r (≥ 1) if

‖Tu− u∗‖ = O
(
‖u− u∗‖r

)
(u ∈ U).

Theorem 1.6. If the operator T is r-times differentiable in Fréchet’s sense on

U , then the iterative process (1.5) is of the order r if and only if the following

conditions are satisfied:

1) Tu∗ = u∗;

2) T ′
(u∗), T

′′
(u∗), . . ., T

(r−1)
(u∗) are zero operators;

3) T
(r)
(u) is non-zero operator, with a norm bounded on U .
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For the proof of this theorem see, for example, the book by Collatz [9,
p. 291].

The most known iterative process of the second order is the Newton-

Kantorovich method

uk+1 = uk − [F ′
(uk)

]−1Fuk, k = 0, 1, . . . , (1.6)

for solving the equation Fu = 0. This fundamental extension of the well-
known Newton method to functional spaces was given by L.V. Kantorovich1

in 1948 (see [15] and also the book [16]). Here F ′
(uk)

is the Fréchet derivative

of the nonlinear operator F at the point uk and [F ′
(uk)

]−1 is its inverse. This

is one of the fundamental techniques in functional analysis and numerical
analysis.

Theorem 1.7 ([15]). Assume that the operator F is defined and twice contin-

uously differentiable on a ball B =
{
u : ‖u − u0‖ ≤ ̺

}
, the linear operator

F ′
(u0)

is invertible,

‖[F ′
(u0)

]−1Fu0‖ ≤ η, ‖[F ′
(u0)

]−1F ′′
(u)‖ ≤ K (u ∈ B),

and

h = Kη <
1

2
, ̺ ≥ 1−

√
1− 2h

h
η.

Then the equation Fu = 0 has a solution u∗ ∈ B, the iterative process (1.6)
is well defined and converges to u∗ with quadratic rate

‖uk − u∗‖ ≤ η

h2k
(2h)2

k

.

There exist numerous versions of Kantorovich’s theorem, which differ
in assumptions and results (cf. [29] and reference therein, as well as the
books [16], [17], [28]). We mention just one of them, due to Ivan Petrovich
Mysovskikh.

Theorem 1.8 ([27]). Assume that the operator F is defined and twice contin-

uously differentiable on a ball B =
{
u : ‖u − u0‖ ≤ ̺

}
, the linear operator

F ′
(u0)

is invertible,

‖[F ′
(u)]

−1‖ ≤ β, ‖F ′′
(u)‖ ≤ K (u ∈ B), ‖Fu0‖ ≤ η,

and

h = Kβ2η < 2, ̺ ≥ βη

+∞∑

ν=0

(h/2)2
ν−1.

Then the equation Fu = 0 has a solution u∗ ∈ B, the iterative process (1.6)
is well defined and converges to u∗ with quadratic rate

‖uk − u∗‖ ≤ βη(h/2)2
k−1

1− (h/2)2k
.

1Leonid Vitalyevich Kantorovich (1912–1986) was a famous Soviet mathematician and eco-
nomics, the winner of the Nobel Prize for his theory and development of techniques for the
optimal allocation of resources in Economic Sciences in 1975.
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Taking F ′
(u0)

instead of F ′
(uk)

in (1.6), we get the iterative process

uk+1 = uk − [F ′
(u0)

]−1Fuk, k = 0, 1, . . . ,

of the first order. There are several approaches for modifying the Newton-
Kantorovich method in order to achieve global convergence. The simplest
way is the so-called damped Newton-Kantorovich method

uk+1 = uk − γk[F
′
(uk)

]−1Fuk, k = 0, 1, . . . ,

where γk (0 < γk ≤ 1) is chosen so that ‖Fuk‖ < ‖Fuk−1‖. This kind of min-
imization enables a balance between convergence and order of convergence.

Here we mention also the Levenberg-Marquardt method (cf. Polyak [29])

uk+1 = uk − [γkI + F ′
(uk)

]−1Fuk, k = 0, 1, . . . ,

which reduces to the Newton-Kantorovich method for γk = 0.

1.4. Acceleration of Iterative Processes

Having an iterative process of order k, we can obtain the process of higher
order (see [14], [24], [30], [31]).

Theorem 1.9 ([14]). Let (1.5) be an iterative method of the order r and the

operator T be (r+1)-times differentiable in the sense of Fréchet on U . If we

suppose that the inverse operator
[
I − 1

r
T ′
(u)

]−1

exists for u ∈ U , then the

iterative process

uk+1 = uk −
[
I − 1

r
T ′
(u)

]−1

(uk − Tuk)

is at least of the order r + 1.

Theorem 1.10 ([24]). Let (1.5) be an iterative method of the order r ≥ 2 and

the operator T be (r + 1)-times differentiable in the sense of Fréchet on U .

Then the iterative process

uk+1 = Tuk −
1

r
T ′
(u)(uk − Tuk)

is at least of the order r + 1.

Applying Theorem 1.9 to the iterative process (1.5) of the order r = 1
(with a linear convergence), uk+1 = Tuk, we get the iterative process

uk+1 = uk −
[
I − T ′

(u)

]−1
(uk − Tuk), k = 0, 1, . . . ,

of the order at least two (quadratic convergence).
It is exactly the Newton-Kantorovich method

uk+1 = uk − [F ′
(uk)

]−1Fuk, k = 0, 1, . . . ,

where Fu = u− Tu = 0.
Applying Theorem 1.10 to the Newton-Kantorovich method of the sec-

ond order (r = 2),

uk+1 = uk − [F ′
(uk)

]−1Fuk, k = 0, 1, . . . ,
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we obtain an iterative method of the third order uk+1 = Φuk, k = 0, 1, . . .,
where the operator Φ is given by

Φu = u− [F ′
(u)]

−1Fu− 1

2
[F ′

(u)]
−1F ′′

(u)

(
[F ′

(u)]
−1Fu, [F ′

(u)]
−1Fu

)
,

supposing the existence of certain higher derivatives of F . Similarly, an ap-
plication of Theorem 1.9 to the Newton-Kantorovich method gives also a
method of the third order (method of tangent hyperbolas), considered in 1961
by Altman [1].

2. Applications to Integral Equations of the second Kind –
Discretization

Integral equations play a significant role in Applied Mathematics, since they
arise in many applications in areas of physics, engineering, biology, hydrody-
namics, thermodynamics, elasticity, quantum mechanics, etc. They represent
an important tool for modelling the progress of an epidemic and various
other biological problems. Also, many reformulations of initial and boundary
value problems for partial differential equations can be written as integral
equations. As such, finding numerical solutions, approximations of the true
solution at a discrete set of points is an important task for researchers.

Iterative methods are particularly suitable, as they not only guarantee
the existence of a unique solution (under certain conditions), but they also
provide means for finding approximate solutions, via successive approxima-
tions. We present several types of integral equations of the second kind and
various numerical iterative methods that produce good approximations for
their solutions.

2.1. Nonlinear Volterra-Fredholm Integral Equations

We consider nonlinear Volterra-Fredholm integral equations of the second
kind

u(t) = g(t) +

∫ t

a

K1(t, x, u(x)) dx +

∫ b

a

K2(t, x, u(x)) dx, t ∈ [a, b], (2.1)

where K1,K2 ∈ C([a, b]2 × R) and g ∈ C([a, b]).
There are several methods for solving this equation, especially for linear

equations.
We employ Fixed Point Theory for this kind of equations, and therefore,

we take X = C([a, b]), equipped with the usual norm ‖u‖ = max
t∈[a,b]

|u(t)| and
define the integral operator T : X → X as in (1.2), i.e.,

(Tu)(t) = g(t) +

∫ t

a

K1(t, x, u(x)) dx +

∫ b

a

K2(t, x, u(x)) dx.

In this way we get the operator equation u(t) = (Tu)(t), t ∈ [a, b].
Several variants of the integral operator T have appeared in papers in

the last period. In [23] it was considered just mentioned equation.
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The method is based on Picard iteration and uses a suitable quadrature
formula (composite trapezoidal rule),

∫ b

a

f(t)dt = h
[1
2
f(a) +

n∑

ν=1

f(τν) +
1

2
f(b)

]
+Rn+2(f), (2.2)

where h = (b − a)/(n + 1), τν = a + hν, ν = 0, 1, . . . , n, n + 1, and the
remainder term (= 0 for all f ∈ P1)

Rn+2(f) = −h
2

12
(b− a)f ′′(ξ), ξ ∈ (a, b).

The existence and uniqueness of the solution, as well as the error es-
timates in the approximate solutions, were given under certain conditions,
which ensure the application of the fixed point theory.

Basic idea is an approximation of the equation

u(t) = (Tu)(t) by ũ(t) = (T̃ ũ)(t) (t ∈ [a.b]),

usually on a discrete set of points in [a, b], e.g.,

a = τ0 < τ1 < · · · < τn < τn+1 = b.

Such discretization leads to the determination of a sequence of the vec-
tors at the points τ = (τ0, τ1, . . . , τn, τn+1),

ũk =
(
ũk(τ0), ũk(τ1), . . . , ũk(τn), ũk(τn+1)

)
, k = 1, 2, . . . ,

starting from some ũ0. Here, ũk = ũk(τ ) ∈ R
n+2.

Then, the iterative process

ũk+1 = T̃ ũk, k = 0, 1, . . . ,

should converge to the solution of the equation ũ(τ ) = (T̃ ũ)(τ ), denoted
by ũ

∗ = ũ
∗(τ ), and to be close enough to the solution of the equation

u(t) = (Tu)(t) at (n+ 2) points τ = (τ0, τ1, . . . , τn, τn+1).
Denote this (discrete) solution by u

∗ = u
∗(τ ).

Using the uniform norm of vectors in R
n+2, we have that

‖ũk − u
∗‖ = ‖ũk − ũ

∗ + ũ
∗ − u

∗‖

≤ ‖ũk − ũ
∗‖+ ‖ũ∗ − u

∗‖
The first term depends on the iterative process and its speed, and the

second one depends on the approximation of integrals by the quadrature
formulas.

Under conditions that the kernels K1 and K2 satisfy Lipschitz’s condi-
tions with respect to the third argument, with constants L1 and L2 respec-
tively, such that q = (b − a)(L1 + L2) < 1, and the (weight) coefficients of
the quadrature formula Aν , ν = 0, 1, . . . , n+ 1, are such that

γ = (L1 + L2)

n+1∑

ν=1

|Aν | < 1,
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then

‖ũk − u
∗‖ ≤ M1q

k

1− q
+

M2

1− γ
, (2.3)

for some positive constants M1 and M2.

For the composite trapezoidal formula, in [23] it was proved that

γ = q = (b − a)(L1 + L2),
M2

1− γ
= O(h2), h =

b− a

n+ 1
, (2.4)

and presented a few examples to illustrate her method based on Picard iter-
ation, with this composite rule.

Here we propose the following approximation of the integral equation
(2.1): (i) at t = τ0 = a by

ũk+1(τ0) = g(τ0) +

n+1∑

ν=0

A(n+1)
ν K2(τ0, τν , ũk(τν)) (2.5)

and (ii) at t = τj , j = 1, . . . , n, n+ 1, by

ũk+1(τj) = g(τj) +

n+1∑

ν=0

A(n+1)
ν K2(τj , τν , ũk(τν))

+

n+1∑

ν=0

A(j)
ν K1(τj , τν , ũk(τν)), (2.6)

with starting function ũ0(t) = g(t).
These quadrature formulas should be of degree of precision at least n+1.

2.2. Construction of Interpolatory Quadrature Formulas for Volterra and
Fredholm Parts

Because of simplicity, we construct here interpolatory quadrature formulas of
closed type on the interval [0, 1], with arbitrary n internal nodes,

0 = τ0 < τ1 < · · · < τn < τn+1 = 1.

Such formulas are exact for all algebraic polynomials of degree at most
n+ 1.

We consider only non-weighted formulas (w(t) = 1).
For any other finite interval [a, b], such quadratures can be obtained by

a simple linear transformation t 7→ a+ (b− a)t.
Thus, we consider

∫ 1

0

f(t)dt =
n+1∑

ν=0

Aνf(τν) +Rn+2(f) (2.7)

and for each j = 1, . . . , n,

∫ τj

0

f(t)dt =

n+1∑

ν=0

A(j)
ν f(τν) +R

(j)
n+2(f), (2.8)
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where for j = n+ 1,

A(n+1)
ν ≡ Aν and R

(n+1)
n+2 (f) = Rn+2(f).

Here, for each f ∈ Pn+1 we have

R
(n+1)
n+2 (f) = 0, j = 1, 2, . . . , n, n+ 1.

Remark 2.1. It is easy to transform these formulas to a general interval [a, b]
by a linear transformation.

In order to construct these quadrature rules we start with the Lagrange
polynomial of degree ≤ n+ 1 at selected nodes

Ln+1(f ; t) =
n+1∑

ν=0

f(τν)
ω(t)

(t− τν)ω′(τν)
,

where ω is the node polynomial

ω(t) = (t− τ0)(t− τ1) · · · (t− τn)(t− τn+1)

= t(t− 1)(t− τ1) · · · (t− τn), (2.9)

so that f(t) = Ln+1(f ; t) + r(f ; t) and r(Pn+1; t) ≡ 0.

Integrating over [0, τj ], j = 1, . . . , n, n+ 1, we get
∫ τj

0

f(t)dt =

∫ τj

0

Ln+1(f ; t)dt+R
(j)
n+2(f),

where R
(j)
n+2(f) = 0 for each f ∈ Pn+1.

Taking the expression for the Lagrange polynomial we obtain

∫ τj

0

Ln+1(f ; t)dt =

n+1∑

ν=0

A(j)
ν f(τν),

where

A(j)
ν =

1

ω′(t)

∫ τj

0

ω(t)

t− τν
dt, ν = 0, 1, . . . , n, n+ 1,

for each j = 1, . . . , n, n+ 1, and ω(t) is defined in (2.9).

Thus,

A(j)
ν =

∫ τj

0

n+1∏

i=0

i6=ν

t− τi
τν − τi

dt, ν = 0, 1, . . . , n, n+ 1.

After changing the variables (for fixed j ∈ {1, 2, . . . , n, n+ 1})
t = τjξ and τν = τjξν , ν = 0, 1, . . . , n, n+ 1,

so that ξν = τν/τj, ν = 0, 1, . . . , n, n+ 1, i.e.,

ξ0 = 0, . . . , ξj = 1, ξν > 1 (ν > j),
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we get

A(j)
ν = τj

∫ 1

0

n+1∏

i=0

i6=ν

ξ − ξi
ξν − ξi

dξ,
ν = 0, 1, . . . , n, n+ 1;

j = 1, 2, . . . , n, n+ 1,
(2.10)

in the quadrature formulas for each j = 1, 2, . . . , n, n+ 1,
∫ τj

0

f(t) dt =

n+1∑

ν=0

A(j)
ν f(τν) +R

(j)
n+2(f), R

(j)
n+2(Pn+1)] = 0. (2.11)

Using the error in the Lagrange interpolation polynomial and supposing
that f ∈ Cn+2[0, 1], with |f (n+2)(t)| ≤Mn+2, we can get

|R(j)
n+2(f)| ≤

Mn+2

(n+ 2)!

∫ τj

0

|ω(t)| dt, j = 1, 2, . . . , n, n+ 1, (2.12)

where ω(t) is defined in (2.9).
Now, we give a few standard sequences for the internal nodes.

2.2.1. Uniform distribution of nodes. We take the internal nodes as in the
Newton-Cotes formulas,

τν =
ν

n+ 1
, ν = 0, 1, . . . , n, n+ 1;

Here, for each j ∈ {1, 2, . . . , n, n+ 1}, we have

ξ0 = 0, ξν =
ν

j
, ν = 1, . . . , n, n+ 1,

and

A(j)
ν =

j

n+ 1

∫ 1

0

n+1∏

i=0

i6=ν

jξ − i

ν − i
dξ, ν = 0, 1, . . . , n, n+ 1.

These coefficients can be calculated very easily in symbolic form.

For n = 5, i.e., for the nodes
{
τν
}6
ν=0

=

{
0,

1

6
,
1

3
,
1

2
,
2

3
,
5

6
, 1

}
, we

obtain the weight coefficients given by the following matrix:



19087

362880

2713

15120
− 15487

120960
293
2835

− 6737
120960

263
15120

− 863
362880

1139

22680

47

189

11

7560

166
2835

− 269
7560

11
945

− 37
22680

137

2688

27

112

387

4480

17

105
− 243

4480
9

560
− 29

13440

143

2835

232

945

64

945

752

2835

29
945

8
945

− 4
2835

3715

72576

725

3024

2125

24192

125

567

3875

24192

235

3024
− 275

72576

41

840

9

35

9

280

34

105

9

280

9

35

41

840




.

The coefficients A
(j)
ν , ν = 0, 1, . . . , n+1 (here n = 5), in the quadrature

formula (2.8) for j = 1, . . . , n are given in the j-th row of the previous matrix,
while in the last row (j = n+1) these elements are weight coefficients are in



12 S. Micula and G.V. Milovanović

the quadrature formula (2.7). The weight coefficients corresponding to nodes
in [0, τj] are marked in bold.

Remark 2.2. Quadrature formulas with nodes outside the interval of integra-
tion can be found in the literature, e.g., quadratures of Birkhoff-Young type

(see [6], [25]). The so-called extended Simpson rule [32, p. 124] has also two
nodes outside the interval of integration,

∫ c+h

c−h

f(t)dt =
h

90

{
114f(c) + 34[f(c+ h) + f(c− h)]

− [f(c+ 2h) + f(c− 2h]
}
+RES

5 (f),

where

|RES
5 (f)| ∼ |h|7

756
|f (6)(ξ)|, c− 2h < ξ < c+ 2h,

supposing that f ∈ C6[c− 2h, c+ 2h].

According to (2.12) the bounds for |R(j)
n+2(f)|, when n = 5 and j ∈

{1, 2, . . . , 6} are respectively

M7

7!

{
1375

40310784
,

863

20155392
,

71

1492992
,

527

10077696
,

2459

40310784
,

71

746496

}
,

where M7 = max
0≤t≤1

|f (7)(t)|.

2.2.2. Nodes of Lobatto formula. We take the internal nodes as zeros of the
polynomials πn(t), which are orthogonal on (0, 1) with respect to the weight
function t 7→ w(t) = t(1− t) (see Mastroianni and Milovanović [18, p. 330])

Using the moments

mk =

∫ 1

0

w(t)tk dt =
1

(k + 2)(k + 3)
, k = 0, 1, . . . ,

we can obtain the coefficients αk and βk in the three-term recurrence relation
for orthogonal polynomials πk(t),

πk+1(t) = (t− αk)πk(t)− βkπk−1(t), k = 1, 2, . . . ,

where π0(t) = 1 and π−1(t) = 0.

In this case, using Mathematica package OrthogonalPolynomials

(see [10], [26]) we obtain (by routine aChebyshevAlgorithma in symbolic
mode)

αk =
1

2
(k ≥ 0); β0 =

1

6
, βk =

k(k + 2)

4(2k + 1)(2k + 3)
(k ≥ 1).

The quadrature nodes are: τ0 = 0, τn+1 = 1, as well as the zeros of
πn(t): τ1, . . . , τn. These internal nodes τ1, . . . , τn are also eigenvalues of the
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Jacobi matrix (cf. [18, p. 326])

Jn =




α0

√
β1 O√

β1 α1

√
β2

√
β2 α2

. . .

. . .
. . .

√
βn−1

O
√
βn−1 αn−1




,

and they can be determined very easy (with arbitrary precision) using the
mentioned package.

For example, in the case n = 5 we have the nodes

{
τν
}6
ν=0

=

{
0,

1

66

(
33−

√
495 + 66

√
15

)
,
1

66

(
33−

√
495− 66

√
15

)
,
1

2
,

1

66

(
33 +

√
495− 66

√
15

)
,
1

66

(
33 +

√
495 + 66

√
15

)
, 1

}
,

i.e.,
{
τν
}6
ν=0

= {0, 0.084888052, 0.26557560, 0.5, 0.73442440, 0.91511195, 1}.
The weight coefficients (with only ≤ 4 decimal digits to save space) are

given by the following matrix:



0.03285 0.0593 −0.0108 0.0056 −0.0035 0.0022 −0.00084
0.01800 0.1577 0.1024 −0.0185 0.0096 −0.0057 0.00210
0.02753 0.1278 0.2375 0.1219 −0.0216 0.0106 −0.00372
0.02171 0.1441 0.2063 0.2623 0.1135 −0.0193 0.00581
0.02465 0.1362 0.2194 0.2382 0.2266 0.0791 −0.00904
0.02381 0.1384 0.2159 0.2438 0.2159 0.1384 0.02381



.

In this case the values of integrals
∫ τj
0

|ω(t)| dt, for j = 1, 2, . . . , n, n+1
(n = 5) are

6.102×10−6, 2.447×10−5, 5.154×10−5, 7.860×10−5, 9.697×10−5, 1.031×10−4,

respectively.

2.2.3. Use of Chebyshev polynomials of the first kind. Chebyshev polyno-
mials of the first kind defined by Tn(x) = cos(n arccosx), n = 0, 1, . . ., are
orthogonal on [−1, 1] with respect to the weight function w(x) = (1−x2)−1/2.

We use here their transformed version Tn(2t− 1) on [0, 1]. The graphics
for n = 5, 6, 7 are displayed in Figure 1.

As internal nodes we can use the zeros of Tn(2t− 1) (cf. [18, p. 12])

τν =
1

2

(
1− cos

(2ν − 1)π

2n

)
= sin2

(2ν − 1)π

4n
, ν = 1, . . . , n,

adding then two bounds τ0 = 0 and τn+1 = 1. The case n = 5 is shown in
Figure 2.
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Similarly, we can use extremal points of Tn(2t− 1) (cf. [18, p. 12])

τν =
1

2

(
1− cos

νπ

n+ 1

)
= sin2

νπ

2(n+ 1)
, ν = 0, 1, . . . , n, n+ 1.

The case n = 5 is presented in Figure 3.

Remark 2.3. Standard Newton-Cotes formulas with zeros of the Chebyshev
polynomials of the first and second kind are known as Fejér’s rules (cf.
Dahlquist and Björk [11, pp. 538–539]).

2.2.4. Nodes of the Clenshaw-Curtis formula. This is an interesting choice
of the nodes induced by the Clenshaw-Curtis formula [8] (cf. also Trefethen
[33]). The nodes are extremal points of Tn+1(2t−1), which are orthogonal on

(0, 1) with respect to the weight function t 7→ w(t) = 1/
√
t(1− t).

Since the extremal points of Tn+1(t) are given by − cos(νπ/(n + 1)),
ν = 0, 1, . . . , n, n+ 1, we have

τν = sin2
νπ

2(n+ 1)
, ν = 0, 1, . . . , n, n+ 1. (2.13)

Note that τ0 = 0 and τn+1 = 1.

In the case n = 5 the nodes are

{
τν

}6

ν=0
=

{
0,

1

4

(
2−

√
3
)
,
1

4
,
1

2
,
3

4
,
1

4

(
2 +

√
3
)
, 1

}
,

i.e.,
{
τν
}6
ν=0

=
{
0, 0.06698729810778, 0.25, 0.5, 0.75, 0.9330127018922, 1

}
.

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 1. Chebyshev polynomials Tn(2t − 1) transformed
to [0, 1] for n = 5 (blue), n = 6 (red), and n = 7 (green)
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0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 2. Zeros of Tn(2t − 1) for n = 5 as internal nodes
and additional zeros at 0 and 1

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3. Extremal points of Tn+1(2t− 1) for n = 5

The weight coefficients (with only ≤ 4 decimal digits to save space) are
given by the following matrix:




0.02722 0.0433 −0.0050 0.0023 −0.0015 0.0012 −0.00056
0.00357 0.1546 0.1040 −0.0183 0.0103 −0.0078 0.00357
0.02103 0.1116 0.2532 0.1302 −0.0246 0.0154 −0.00675
0.01071 0.1348 0.2183 0.2786 0.1246 −0.0276 0.01071
0.01485 0.1258 0.2301 0.2580 0.2336 0.0837 −0.01293
0.01429 0.1270 0.2286 0.2603 0.2286 0.1270 0.01429



.
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In this case the values of integrals
∫ τj
0

|ω(t)| dt, for j = 1, 2, . . . , n, n+1
(n = 5) are

5

1572864
,

37

1572864
,

1

16384
,

155

1572864
,

187

1572864
,

1

8192
,

respectively.
These quadrature will be considered in detail somewhere.
In this subsection we present numerical results for iterations with the

composite trapezoidal formula (2.2) like in [23], as well as for the method
based on approximation of integral equation (2.1) at the selected nodes a =
τ0 < τ1 < · · · < τn < τn+1 = b, using the quadrature formulas (2.7) and
(2.8), especially by the Clenshaw-Curtis nodes.

Example. In this example we consider the integral equation [23]

u(t) = g(t) +
1

12

∫ t

0

sinxu(x)2 dx+
1

36

∫ π/2

0

cos t(1 + cos2 t)u(x) dx (2.14)

on t ∈ [0, π/2], where

g(t) =
1

36
(35 cos t− 1) and u∗(t) = cos t

is the exact solution.
The equation (2.14) is of the form (2.1), with

K1(t, x, u) =
1

12
sinxu2, K2(t, x, u) =

1

36
cos t(1 + cos2 t)u, t, x ∈ [0, π/2],

where x 7→ u(x).

(1) First we use the composite trapezoidal rule (2.2), with the nodes

τν =
νπ

2(n+ 1)
, ν = 0, 1, . . . , n, n + 1, h =

π

2(n+ 1)
, so that we have at

t = τ0 = a

ũk+1(τ0) = g(τ0) + h

n+1∑

ν=0

′′K2(τ0, τν , ũk(τν)) (2.15)

and at t = τj , j = 1, . . . , n, n+ 1, by

ũk+1(τj) = g(τj) + h

n+1∑

ν=0

′′K2(τj , τν , ũk(τν)) + h

j∑

ν=0

′′K1(τj , τν , ũk(τν)),

(2.16)
where the double prime on the sum means that the first and last terms should
be halved.

We present absolute errors in iterations |ũk(τν)−u∗(τν)|, finding ũk(τν),
ν = 0, 1, . . . , n + 1 in iterations k = 1, 2, . . ., starting by u0(τν) = g(τν),
ν = 0, 1, . . . , n+ 1. We give graphics t 7→ En+2(t) joined the obtained n+ 2
points in each of iterations into a line (as a first order spline interpolation).
Also, we calculate

‖ũk(τν)− u∗(τν)‖∞ = max
0≤ν≤n+1

|ũk(τν)− u∗(τν)|, k = 1, 2, . . . .
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0
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-3
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Ε10 t)

k = 1

k = 2

k = 3

k ≥ 5

Figure 4. Errors at n + 2 = 10 equidistant nodes for the
trapezoidal rule and k = 1, 2, 3 and k ≥ 5 iterations
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k = 1

k = 2

k = 3

k ≥ 6

Figure 5. Errors at n + 2 = 15 equidistant nodes for the
trapezoidal rule and k = 1, 2, 3 and k ≥ 6 iterations
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0
π

8

π

4

3 π

8

π

2

t

10
-6

10
-5

10
-4

10
-3

10
-2

Ε100(t)

k = 1

k = 2

k = 3

k = 4

k ≥ 7

Figure 6. Errors at n+ 2 = 100 equidistant nodes for the
trapezoidal rule and k = 1, 2, 3, 4 and k ≥ 7 iterations

In this case, the uniform (maximum) norm of the function t 7→ En+2(t)
in k-th iteration is exactly

‖En+2‖∞ := ‖E[k]
n+2‖∞ = max

0≤t≤π/2
|E[k]

n+2(t)| = ‖ũk(τν)− u∗(τν)‖∞.

Graphics of the functions t 7→ En+2(t) on [0, π/2], when n+ 2 = 10, 15, and
100 are presented in Figures 4, 5, and 6, respectively, after k iterations.

We mention again that the integral equation (2.14) is approximated by
the discrete model, given by

ũ(τj) = g(τj) + h
n+1∑

ν=0

′′K2(τj , τν , ũ(τν)) + h

j∑

ν=0

′′K1(τj , τν , ũ(τν)),

for j = 0, 1, . . . , n+ 1, where for j = 0 the last sum vanishes.

Using the iterative process (2.15)–(2.16), the iteration ũk, for sufficiently
large k, approximates the exact solution of this discrete model ũ

∗ up to
machine precision (see the first term on the right hand side in the inequality
(2.3)). However, the second term in (2.3), M2/(1 − γ) = O(h2) (see (2.4))
depends on the quadrature rule and it determines the main part of the error
‖ũk − u

∗‖.
This shows that we have a limitation in obtaining a satisfactory ap-

proximation of the exact solution u∗ of the integral equation (2.14), depend-
ing of the quadrature rule. For example, with the rule with n + 2 = 10
nodes (see Figure 4) the minimal absolute error is achieved with k = 5
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iterations ‖E[k]
10 ‖∞ = 4.18 × 10−4, so that the further iterations do not re-

duce this error. For the rule with n + 2 = 15 nodes, this minimal error is
1.73 × 10−4 for k ≥ 6. Furthermore, the 100-point rule gives the minimal

error ‖E[k]
100‖∞ = 3.46× 10−6 for k ≥ 7.

(2) Now we consider interpolatory quadrature process (2.11), with the

Clenshaw-Curtis nodes τν and Cotes numbers A
(j)
ν , ν = 0, 1, . . . , n, n+1, j =

0, 1, . . . , n, n+1, which are given by (2.13) and (2.10) (transformed to [0, π/2]
or [a, b], in general), respectively. According to (2.11) these interpolatory
formulas are exact for all polynomials of degree at most n+ 1.

Then, the corresponding discrete approximation of the integral equation
(2.14) is given by

ũk(τj) = g(τj) +

n+1∑

ν=0

A(j)
ν K1(τj , τν , ũk(τν)) +

n+1∑

ν=0

A(n+1)
ν K2(τj , τν , ũk(τν)),

for j = 0, 1, . . . , n + 1, where for j = 0 the first sum on the right hand side

vanishes, because A
(0)
ν = 0 for each ν = 0, 1, . . . , n+1. However, for j = n+1

these Cotes numbers A
(n+1)
ν = Aν are just coefficients of the Clenshaw-Curtis

formula [8] (cf. also Trefethen [33]).
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-4

10
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10
-2

Ε6(t)

k = 1

k = 2

k = 3

k = 4

Figure 7. Errors at the Clenshaw-Curtis n + 2 = 6 nodes
for the rules and k = 1, 2, . . . , 4 iterations

Using iterative process (2.5) at t = τ0 = 0 and (2.6) at t = τj , j =
1, . . . , n, n+ 1, we obtain the iterations ũk(τj), j = 0, 1, . . . , n+ 1, as in the
previous case with the composite trapezoidal rule.
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Figure 8. Errors at the Clenshaw-Curtis n+ 2 = 10 nodes
for the rules and k = 1, 2, . . . , 8 iterations
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Figure 9. Errors at the Clenshaw-Curtis n+ 2 = 15 nodes
for the rules and k = 1, 3, 5, 8, 10, 12, 13 iterations

The corresponding graphics for the rules with n + 2 = 6, 10 and 15
Clenshaw-Curtis nodes are presented in Figures 7, 8 and 9, respectively.
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We note that in the case n+ 2 = 6, the maximal error after 2, 3, and 4
iterations are 3.88× 10−4, 5.20× 10−5, and 3.39× 10−5, respectively.

In the case, with n+ 2 = 10 Clenshaw-Curtis nodes, the maximal error
after 7 iterations is 7.85×10−9, and further increasing the number of iterations

does not contribute to further reducing the norm ‖E[k]
10 ‖∞ (k ≥ 7).

In the case (n+2 = 15) after 10 iterations, the maximal error is 1.33×
10−12, while for 12 iterations it is 3.71 × 10−14. This is also the maximum
number of iterations for this kind of quadrature rules with 15 nodes (see
Figure 9).

Remark 2.4. The Newton-Kantorovich method for solving a system of 2× 2
nonlinear Volterra integral equations, where the unknown function is in log-
arithmic form, was considered in [13]. We also mention a paper by Ezquerro
et al. [12], where the authors use high order iterative methods for solving
nonlinear integral equations of Fredholm type.

2.3. Mixed Volterra-Fredholm Integral Equations

Consider integral equations of the form ([19])

u(t, x) =

∫ t

0

∫ b

a

K
(
t, x, τ, y, u(τ, y)

)
dy dτ + g(t, x), (2.17)

(t, x) ∈ D = [0, T ] × [a, b], where K ∈ C
(
D2 × R

)
and g ∈ C(D). Such

integrals arise in integral reformulations of the heat equation with Dirichlet,
Neumann, or mixed boundary conditions.

Let X = C(D) be equipped with the (uniform) Chebyshev norm ‖u‖ =
max

(t,x)∈D
|u(t, x)|, consider a closed ball B̺ := {u ∈ C(D) : ‖u−g‖ ≤ ̺}, ̺ > 0,

and define the integral operator F : X → X by

Fu(t, x) :=

∫ t

0

∫ b

a

K
(
t, x, τ, y, u(τ, y)

)
dy dτ + g(t, x).

The method described in [19] uses Theorem 1.4 on B̺ with εk = 1/(k + 1).
For the first part of the approximation (the iterative process), the following
result holds.

Let K ∈ C
(
D2 × R

)
, g ∈ C(D) and

̺1 = min
(t,x)∈D

g(t, x), ̺2 = max
(t,x)∈D

g(t, x).

Assume that there exists a constant L > 0 such that
∣∣K(t, x, τ, y, u)−K(t, x, τ, y, v)

∣∣ ≤ L‖u− v‖, (2.18)

for all (t, x), (τ, y) ∈ D and all u, v ∈ [̺1−̺, ̺2+̺]. In addition, assume that

q := LT (b− a) < 1 (2.19)

and

MKT (b− a) ≤ ̺, (2.20)

where MK := max |K(t, x, τ, y, u)| over all (t, x), (τ, y) ∈ D and all u, v ∈
[̺1 − ̺, ̺2 + ̺]. Then the equation (2.17) has a unique solution u∗ ∈ B̺
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and that solution can be found as the limit of the sequence of successive
approximations

uk+1 =

(
1− 1

k + 1

)
uk +

1

k + 1
Fuk, k = 0, 1, . . . , (2.21)

starting with any initial point u0 ∈ B̺. In addition, the error estimate

‖uk − u∗‖ ≤ e1−q

1− q
e−(1−q)zk ‖u0 − u1‖

holds for every k ∈ N, where the sequence {zk} is given by

z0 = 0, zk =

k−1∑

i=0

1

i+ 1
, k ≥ 1. (2.22)

It is noteworthy to mention the fact that the Lipschitz and contraction
conditions (2.18)–(2.19) could restrict the area of applicability of this method
if they would have to be satisfied on the entire space. That is why only this
local existence and uniqueness result is used on B̺, for some ̺ > 0.

For the second part of the method (the approximation of the iterates in
(2.21), consider a numerical integration scheme

∫ b

a

∫ d

c

ϕ(x,w) dw dx =

n1∑

i=0

n2∑

j=0

aijϕ(xi, wj) +Rϕ, (2.23)

with nodes a = x0 < x1 < . . . < xn1
= b, c = w0 < w1 < · · · < wn2

= d,
coefficients aij ∈ R, i = 0, 1, . . . , n1, j = 0, 1, . . . , n2, such that there exists
M > 0 with |Rϕ| ≤M , where M → 0 as n1, n2 → ∞.

For our approximations, let 0 = t0 < t1 < · · · < tn1
= T and a = x0 <

x1 < · · · < xn2
= b be partitions of [0, T ] and [a, b], respectively, and let

u0 = ũ0 ≡ g be the initial approximation. We use the successive iterations
(2.21) and the numerical integration formula (2.23) to approximate the values
uk(tl, xν) by ũk(tl, xν), for l = 0, n1, ν = 0, n2 and k = 0, 1, . . ., where

ũk(tl, xν) =

(
1− 1

k

)
ũk−1(tl, xν) (2.24)

+
1

k

(
l∑

i=0

n2∑

j=0

aijν
(
tl, xν , ti, xj , ũk−1(ti, xj)

)
+ g(tl, xν)

)
,

By an inductive argument, we get

err(uk, ũk) = max
(tl,xν)∈D

|uk(tl, xν)− ũk(tl, xν)|

≤M
(
1 + γ + · · ·+ γn−1

)
,

where γ := L

n1∑

i=0

n2∑

j=0

∣∣aij
∣∣.
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Thus, under the conditions (2.18)–(2.20) and the extra assumption

γ = L

m1∑

i=0

m2∑

j=0

∣∣aij
∣∣ < 1,

the error estimate

err(u∗, ũk) ≤
e1−q

1− q
e−(1−q)zk ‖u0 − Fu0‖+

M

1− γ
(2.25)

holds for every k ∈ N, where u∗ is the true solution of equation (2.17) and
the sequence {zk}k∈N is defined in (2.22).

Let us use the two-dimensional trapezoidal rule (as in [19]):

∫ b

a

∫ d

c

ϕ(τ, y) dy dτ =
(b− a)(d− c)

4n1n2

[
ϕ(a, c) + ϕ(b, c) + ϕ(a, d)

+ ϕ(b, d) + 2

n1−1∑

i=1

(
ϕ(τi, c) + ϕ(τi, d)

)

+ 2

n2−1∑

j=1

(
ϕ(a, yj) + ϕ(b, yj)

)

+ 4

n1−1∑

i=1

n2−1∑

j=1

ϕ
(
τi, yj)

)
]
+Rϕ

with nodes

xi = a+
b− a

n1
i, wj = c+

d− c

n2
j, i = 0, n1, j = 0, n2.

The remainder is given by

Rϕ = −
[
(b − a)3(d− c)

12n2
1n2

ϕ(2,0)(ξ, η1) +
(b − a)(d− c)3

12n1n2
2

ϕ(0,2)(ξ1, η)

+
(b− a)3(d− c)3

144n2
1n

2
2

ϕ(2,2)(ξ, η)

]
, ξ, ξ1 ∈ (a, b), η, η1 ∈ (c, d),

where we used the notation ϕ(α,β)(t, x) =
∂α+βϕ

∂tα∂xβ
(t, x).
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For our integrals, we get
∫ tl

0

∫ b

a

K
(
tl, xν , τ, y, uk(τ, y)

)
dy dτ =

tl(b− a)

4ln2

[
Kl,ν,0,0 +Kl,ν,l,0 +Kl,ν,0,n2

+Kl,ν,l,n2
+ 2

l−1∑

i=0

(
Kl,ν,i,0 +Kl,ν,i,n2

)

+ 2

n2−1∑

j=0

(
Kl,ν,0,j +Kl,ν,l,j

)

+ 4

l−1∑

i=0

n2−1∑

j=0

Kl,ν,i,j

]
+RK ,

with nodes

tl =
T

n1
l, xν = a+

b− a

n2
ν, l = 0, n1, ν = 0, n2

and the simplifying notationKl,ν,i,j = K
(
tl, xν , ti, xj , uk(ti, xj)

)
. Since tl/l =

T/n1, in this case, γ ≤ LT (b−a) = q, which is already assumed to be strictly
less than 1 by (2.19).

Now, we focus to the remainder. It is clear that if K(2,0)
(
τ, y, uk(τ, y)

)
,

K(0,2)
(
τ, y, uk(τ, y)

)
and K(2,2)

(
τ, y, uk(τ, y)

)
are bounded, then the remain-

der RK is of the form O
(
1/n2

1

)
+O

(
1/n2

2

)
. So, if K and g are C4 functions

with bounded fourth order partial derivatives, then there exists M > 0, in-
dependent of k, such that |RK | ≤M , with M → 0 as n1, n2 → ∞. Then, we
have the error estimate (2.25).

Example. We now illustrate the applicability of the above method on a nu-
merical example. Consider the nonlinear mixed Volterra-Fredholm integral
equation

u(t, x) = 2

∫ t

0

∫ 1

0

x2yτe−τeu(τ,y) dy dτ + x2(1− e−t), (2.26)

for t ∈ [0, 1/4], whose exact solution is u∗(t, x) = tx2. The theoretical as-
sumptions are satisfied for ̺ = 1.

We use the trapezoidal rule with n1 = n2 = 18 and nodes

ti =
i

4n1
, i = 0, n1, xj =

j

n2
, j = 0, n2.

The numerical implementation of (2.24) is done in Matlab, in double
precision arithmetic. The errors err(u∗, ũk) are given in the table below, with
initial approximation u0(t, x) = g(t, x) = x2(1− e−t).

2.4. Volterra Integral Equations with Delayed Argument

Next, let us consider Volterra integral equations of the form ([22])

u(t) =





ϕ(0) + g(t) +
∫ t

0
K
(
t, x, u(x), u(x− δ)

)
dx, t ∈ [0, b],

ϕ(t), t ∈ [−δ, 0],
(2.27)
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k err(u∗, ũk)

1 2.034743e− 01
5 9.354733e− 04

10 3.077314e− 05

Table 1. Errors for Eq. (2.26), n1 = n2 = 18

where δ > 0, K ∈ C
(
[0, b]× [0, b]× R

2
)
, ϕ ∈ C[−δ, 0], g ∈ C[0, b] and

g(0) = 0.
These delayed argument equations are used to model dynamical sys-

tems, such as population growth or decay, or the evolution of an epidemic.
Consider the space X = C[−δ, b] endowed with the Bielecki norm

‖u‖τ := max
t∈[−δ,b]

|u(t)| e−τt, u ∈ X,

for some suitable τ > 0. Then (X, ‖ · ‖τ ) is a Banach space on which the
theoretical results in Section 1 hold. Let us remark that, when employing
such fixed point results, the use of the Bielecki norm has sometimes a major
advantage over the usual max norm: the Lipschitz or contraction-type condi-
tions that the operator has to satisfy can be fulfilled by a convenient choice of
the parameter τ , without imposing extra restrictions on the kernel function.

We define the operator T : X → X by

Tu(t) =




ϕ(0) + g(t) +

∫ t

0
K
(
t, x, u(x), u(x− δ)

)
dx, t ∈ [0, b],

ϕ(t), t ∈ [−δ, 0].
(2.28)

Again, we use a local fixed point result. Let B̺ ⊂ X be the closed ball
B̺ = {u ∈ X : ‖u− ϕ̃‖ ≤ ̺}, where

ϕ̃(t) =

{
ϕ(t), t ∈ [−δ, 0],
ϕ(0) + g(t), t ∈ [0, b]

and ‖ · ‖ denotes the Chebyshev norm on X . Applying Theorem 1.4 with
εk = 1/(k + 1) to the operator T from (2.28), we have the following result.

Assume that there exist constants L1, L2 > 0 such that

|K(t, x, u1, v1)−K(t, x, u2, v2)| ≤ L1|u1 − u2|+ L2|v1 − v2|,
for all t, x ∈ [0, b] and all u1, u2, v1, v2 ∈ [̺1 − ̺, ̺2 + ̺], where

̺1 := min
t∈[−δ,b]

ϕ̃(t), ̺2 := max
t∈[−δ,b]

ϕ̃(t).

Further assume that

bM ≤ ̺,

whereM := max |K(t, x, u, v)| over all t, x ∈ [0, b] and all u, v ∈ [̺1−̺, ̺2+̺].
Then the integral equation (2.27) has a unique solution u∗ ∈ B̺ and the
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sequence defined by

uk+1 =

(
1− 1

k + 1

)
uk +

1

k + 1
Tuk, k = 0, 1, . . . , (2.29)

converges to the solution u∗ for any initial point u0 ∈ B̺. Moreover, for every
k ∈ N, the following error estimate

‖uk − u∗‖τ ≤ e1−q

1− q
‖u0 − Tu0‖τ e−(1−q)zk , (2.30)

holds, where

z0 = 0, zk =

k−1∑

i=0

1

i+ 1
(k ≥ 1) and q =

L1 + L2

τ
< 1

(meaning that the constant τ is chosen so that this condition is satisfied).

To approximate numerically the integrals in (2.29), we have to carefully
choose the quadrature nodes tν . Because of the delayed argument x − δ, we
have to make sure that at each iteration, the discrete values of the solution
are available both at tν and at tν − δ. We will use the composite trapezoidal

rule on [−δ, b] with the n + 1 nodes tν = −δ + b+ δ

n
ν, ν = 0, n, where n is

taken so that one of the nodes is 0, say tν0 = 0 for some ν0 ∈ {0, 1, . . . , n},
i.e., n =

b+ δ

δ
ν0. Then for ν = 0, ν0,

uk+1(tν) = ϕ(tν), k = 0, 1, . . . ,

and for l = 1, n− ν0 (i.e., ν = ν0 + l ∈ {ν0 + 1, . . . , n}), we approximate

uk+1(tν0+l) =
(
1− 1

k + 1

)
uk(tν0+l) +

1

k + 1

(
ϕ(0) + g(tν0+l)

+

∫ tν0+l

0

K (tν0+l, x, uk(x), uk(x− δ)) dx

)
,

using the trapezoidal rule with the initial approximation u0(t) = ϕ̃(t). Since
for each l = 1, n− ν0 and each j = 0, l, tν0+j − δ = tν0+j − t0 = tj , we have

uk+1(tν0+l) =
(
1− 1

k + 1

)
uk(tν0+l)

+
1

k + 1

[
ϕ(0) + g(tν0+l) +

b+ δ

2m

(
K (tν0+l, 0, uk(0), uk(−δ))

+ 2

l−1∑

j=1

K (tν0+l, tν0+j , uk(tν0+j), uk(tj))

+K (tν0+l, tν0+l, uk(tν0+l), uk(tl))
)
+Rk+1,ν0+l

]
, k ∈ N.
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Then we approximate uk+1(tν0+l) by ũk+1(tν0+l), where

ũ0(tν0+l) = u0(tν0+l),

ũk+1(tν0+l) =
(
1− 1

k + 1

)
ũk(tν0+l)

+
1

k + 1

[
ϕ(0) + g(tν0+l) +

b+ δ

2n

(
K (tν0+l, 0, ũk(0), ũk(−δ))

+ 2
l−1∑

j=1

K (tν0+l, tν0+j , ũk(tν0+j), ũk(tj))

+K (tν0+l, tν0+l, ũk(tν0+l), ũk(tl))
)]
, k ∈ N.

In order to bound the errors in the approximations above, we need to make
some considerations on the smoothness of the iterations uk. To this end, let

X0 =
{
u ∈ C[−δ, b]

∣∣∣ u
∣∣
[−δ,0]

= 0
}
. Then:

(1) T (X0) ⊆ X0;
(2) if K, g ∈ C1 and K(0, 0, 0, 0) = g′(0) = 0, then

T
(
X0 ∩ C1[−δ, b]

)
⊆ X0 ∩ C1[−δ, b];

(3) if K, g ∈ C2 and

K(0, 0, 0, 0) =
∂K

∂t
(0, 0, 0, 0) =

∂K

∂x
(0, 0, 0, 0) = g′(0) = g′′(0) = 0,

then T
(
X0 ∩ C2[−δ, b]

)
⊆ X0 ∩C2[−δ, b].

It follows that for all ν = 0, 1, . . . , n, we have

∣∣uk(tν)− ũk(tν)
∣∣ ≤ b3

12n2
M, (2.31)

where M > 0 depends on the bounds of the derivatives of the functions K, g
and ϕ, but not on k.

Under the assumptions above, we can choose u0 ∈ X0 ∩C2[−δ, b]∩B̺,
such that the sequence defined in (2.29) has the following properties:

(a) uk ∈ X0 ∩ C2[−δ, b] ∩B̺, ‖uk − g‖ ≤ ̺;

(b) {u′k} and {u′′k} are bounded sequences.

Combining the errors in (2.30) and (2.31), we get the composite error
∣∣u∗(tν)− ũk(tν)

∣∣ ≤
∣∣u∗(tν)− uk(tν)

∣∣+
∣∣uk(tν)− ũk(tν)

∣∣

=
∣∣u∗(tν)− uk(tν)

∣∣e−τteτt +
∣∣uk(tν)− ũn(tν)

∣∣

≤ ‖uk − u∗‖τeτb +
∣∣uk(tν)− ũk(tν)

∣∣

≤ eτb+1−q

1− q
‖u0 − Tu0‖τ e−(1−q)zk +

b3

12n2
M,

at each node tν , ν = 0, n.
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Example. Consider the integral equation with delayed argument ([22])

u(t) =




g(t) +

35

34

∫ t

0

t2
(
u(x)− 1

)(
u(x− 1) + 1

)
dx, t ∈ [0, 2] ,

0, t ∈ [−1, 0],

(2.32)

where

g(t) = −352

34

[
35
(1
7
t9 − 1

2
t8 − 3

5
t7 − 1

4
t6
)
+ t5 − 3

2
t4
]
.
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Figure 10. Errors at the non-negative nodes for k = 8 and
k = 10 iterations

The exact solution of equation (2.32) is

u∗(t) =

{
0, t ∈ [−1, 0],

35t3, t ∈ [0, 2].

We take n = 48 and the nodes tν = −1 + ν/16, ν = 0, 48. Notice
that t17 = 0. The initial approximations are u0(tν) = 0, for ν = 0, 17 and
u0(tν) = g(tν), for ν = 18, 48.

The graph of the errors at the non-negative nodes is given in Figure 10
for k = 8 and 10 iterations (since, for the negative nodes, the approximation
is exact).
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2.5. Functional Volterra Integral Equations

Functional integral equations have many application in radiative transfer,
control theory, mechanical engineering, etc.

We consider a Volterra functional integral equation of the type ([21])

u(t) = λ

∫ t

−t

K
(
t, x, u(x)

)
dx+ g(t), t ∈ [−T, T ], (2.33)

for T > 0 and λ ∈ R, with K ∈ C
(
[−T, T ]2 × R

)
and g ∈ C[−T, T ] . Let

X = C[−T, T ] be endowed with the uniform norm ‖u‖ = max
t∈[−T,T ]

|x(t)| and

consider the closed ball B̺ = {u ∈ X
∣∣ ‖u − g‖ ≤ ̺}, ̺ > 0. We define the

integral operator F : X → X associated with equation (2.33) by

Fu(t) : = λ

∫ t

−t

K
(
t, x, u(x)

)
dx+ g(t).

Using the contraction principle (Theorem 1.3) on the ball B̺, we have the
following result.

We assume that there exists a function L : [−T, T ] → R
∗
+ such that

∣∣K(t, x, u)−K(t, x, v)
∣∣ ≤ L(x)|u − v|,

for all t, x ∈ [−T, T ] and all u, v ∈ [̺1 − ̺, ̺2 + ̺], where ̺1 := min
t∈[−T,T ]

g(t),

̺2 := max
t∈[−T,T ]

g(t). Also, assume that

q := |λ|
∫ T

−T

L(x)dx < 1

and that

2|λ|MKT ≤ ̺,

where MK = max |K(t, x, u)| over t, x ∈ [−T, T ] and u, v ∈ [̺1 − ̺, ̺2 + ̺].
Then equation (2.33) has exactly one solution u∗ ∈ B̺, which is the limit of
the sequence given by

uk+1 = Fuk, k = 0, 1, . . . , (2.34)

with any arbitrary initial point u0 ∈ B̺ and we have the error estimate

‖uk − u∗‖ ≤ qk

1− q
‖u1 − u0‖,

for every k ∈ N.

To approximate numerically the integrals in (2.34), we consider a sym-
metric quadrature formula

∫ b

−b

ϕ(x) dx =

j∑

i=−j

aiϕ(xi) +Rϕ,j ,
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for any 0 < b ≤ T , with nodes 0 = x0 < x1 < · · · < xj = b, x−i = −xi,
i = 0, 1, . . . j, coefficients ai ∈ R, i = −j, . . . , j and for which the remainder
satisfies

Rϕ,j → 0 as j → ∞.

Let n ≥ 1 be fixed and let 0 = t0 < t1 < · · · < tn = T , t−i = −ti. Then, for
ν = −n, . . . , n, we have

u0(tν) = g(tν),

uk+1(tν) = λ

∫ tν

−tν

K
(
tν , x, uk(x)

)
dx+ g(tν), k = 0, 1, . . . . (2.35)

In addition, we assume that when the quadrature formula is applied on
the interval [−tν , tν ], ν = 0, 1, . . . , n, the remainders RK,ν satisfy

|RK,ν | ≤M,

where M depends on the fixed number n and M → 0 as n→ ∞.
Now we apply the quadrature scheme to our integrals above. To simplify

the writing in (2.35), we make the following notations:

Kν,i,k :=K
(
tν , ti, uk(ti)

)

K̃ν,i,k :=K
(
tν , ti, ũk,n(ti)

)
, for ν, i = −n, . . . , n; k = 1, 2, . . . ,

where

ũ1,n(tν) = λ

ν∑

i=−ν

aiK
(
tν , ti, g(ti)

)
+ g(tν)

= λ

ν∑

i=−ν

aiKν,i,0 + g(tν),

ũk,n(tν) = λ

ν∑

i=−ν

aiK̃ν,i,k−1 + g(tν).

For a fixed n, we approximate uk(tν) by ũk,n(tν), the following way:

u1(tν) = λ

∫ tν

−tν

K
(
tν , x, g(x)

)
dx+ f(tν)

= λ

(
ν∑

i=−ν

aiK
(
tν , ti, g(ti)

)
+RK,ν

)
+ g(tν)

= ũ1,n(tν) + R̃1,ν

Then, denoting by

‖uk − ũk,n‖ : = max
tν∈[−T,T ]

|uk(tν)− ũk,n(tν)|

and

R̃k : = max
−n≤ν≤n

|R̃k,ν |,
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we have

‖u1 − ũ1,n‖ ≤ R̃1 ≤ |λ|M.

Proceeding further, in a similar fashion, we get

u2(tν) = λ

∫ tν

−tν

K
(
tν , x, u1(x)

)
dx+ g(tν)

= λ

(
ν∑

i=−ν

aiK
(
tν , ti, u1(ti)

)
+RK,ν

)
+ g(tν)

+ λ

(
ν∑

i=−ν

aiK
(
tν , ti, ũ1,n(ti) + R̃1,i

)
+RK,ν

)
+ g(tν)

= ũ2,n(tν) + R̃2,ν .

To estimate the error R̃2, denote by γ = |λ|
n∑

i=−n

|ai|L(ti). Then,

‖u2 − ũ2,n‖ ≤ R̃2

≤ |λ|
ν∑

i=−ν

|ai|L(ti)R̃1 + |λ|
∣∣RK,ν

∣∣

≤ |λ|
n∑

i=−n

|ai|L(ti)|λ|M + |λ|M

= |λ|M(1 + γ)

and, by induction, we get

‖uk − ũk,n‖ ≤ R̃k

≤ R̃k−1 γ + |λ|M
= |λ|M

(
γ(1 + γ + · · ·+ γk−2) + 1

)

= |λ|M
(
1 + γ + · · ·+ γk−1

)
.

Thus, under all the conditions assumed so far, if γ < 1, then the error estimate

‖ũk,n − u∗‖ ≤ qk

1− q
‖u1 − u0‖+

|λ|M
1− γ

holds for every k ∈ N. Thus, as k, n→ ∞, ũk,n → u∗.
In particular, let us consider the trapezoidal rule for approximating

integrals over symmetric intervals:
∫ b

−b

ϕ(x)dx =
b

2n

[
ϕ(−b) + 2

n−1∑

j=−n+1

ϕ(xj) + ϕ(b)
]
+Rϕ,n,

where the 2n+ 1 nodes are xj = −b+ bj/n, j = 0, 2n, and the remainder is
given by

Rϕ,n = − b3

6n2
ϕ′′(η), η ∈ (−b, b).
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For ν = 0, n, let tν = Tν/n and t−ν = −tν . We have, for ν = 0, n (i.e.,
for tν ≥ 0),

∫ tν

−tν

K
(

tν , x, uk(x)
)

dx =
2tν
4ν

(

Kν,−ν,k + 2
ν−1
∑

j=−ν+1

Kν,j,k +Kν,ν,k

)

+RK,ν ,

∫

−tν

tν

K
(

−tν , x, uk(x)
)

dx = −

2tν
4ν

(

K
−ν,−ν,k+2

ν−1
∑

j=−ν+1

K
−ν,j,k+K

−ν,ν,k

)

−RK,ν .

Notice that
2tν
4ν

=
T

2n
, so, in this case, γ ≤ |λ|T

n

n∑

i=−n

L(ti), which

will be assumed to be less than 1. For the remainder, notice that for all
ν = 0, 1, . . . , n, we have

∣∣RK,ν

∣∣ = t3ν
6ν2

∣∣∣K
(
tν , ην , uk(ην)

)∣∣′′
x

∣∣∣

=
T 3ν3

6n3ν2

∣∣∣K
(
tν , ην , uk(ην)

)∣∣′′
x

∣∣∣

≤ T 3

6n2

∣∣∣K
(
tν , ην , uk(ην)

)∣∣′′
x

∣∣∣.

Thus, ifK and g are C2 functions with bounded second order (partial) deriva-

tives and
|λ|T
n

n∑

i=−n

L(ti) < 1, then

|RK,ν | ≤
T 3

6n2
M0 =:M,

for some M0 > 0 that does not depend on k or ν. Hence, from all the work
above, we get

‖ũk,n − u∗‖ ≤ qk

1− q
‖x1 − x0‖+

T 3

6n2

M0

1− γ
,

for all k = 1, 2, . . . .

Example. Let us consider the nonlinear functional integral equation ([21])

u(t) =
1

32

∫ t

−t

cos (x)u2(x) dx + sin (t)− 1

48
sin3 (t), (2.36)

for t ∈ [−π/2, π/2]. The exact solution of equation (2.36) is u∗(t) = sin (t).

In this case

λ =
1

32
, K(t, x, u) = cos (x)u2, g(t) = sin (t)− 1

48
sin3 (t).

Let ̺ = 1. Notice that g is an increasing function on [−π/2, π/2], so

̺1 = g
(
−π
2

)
= −47

48
, ̺2 = g

(π
2

)
=

47

48
.
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We have

MK = (̺2 + ̺)2 =

(
95

48

)2

and so that

2|λ|MKT =
π

32

(
95

48

)2

< 1 = ̺.
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Figure 11. Errors at the nodes for k = 8 and k = 10 iterations

Also, on
[
0,
π

2

]
×
[
0,
π

2

]
×
[
−95

48
,
95

48

]
, we have

∣∣K(t, x, u)−K(t, x, v)
∣∣ ≤ cos (x)|u+ v| · |u− v| ≤ 95

24
cos (x)|u − v|.

Let L(x) =
95

24
cos (x). Then

q = |λ|
∫ π/2

−π/2

L(x)dx =
95

384
< 1.

For the second part, note that

γ ≤ 1

32
· π
2n

· 95
24

n∑

i=−n

cos (ti) ≤
95π

768
· 2n+ 1

2n
≤ 95π

768
· 3
2
< 1,

for any n ≥ 1.
Thus, all our theoretical assumptions are satisfied.



34 S. Micula and G.V. Milovanović

We use the trapezoidal rule with n = 12 and the 25 nodes tν =
π

24
ν,

t−ν = −tν , ν = 0, 12.
In Figure 11 we present the graph of the errors at the nodes for k = 8

and 10 iterations.

2.6. Fractional Integral Equations

In recent years, Fractional Calculus has been studied extensively, as more
and more applications have developed in various fields from physics and en-
gineering where domains are fractal curves (continuous, but non-differentiable
functions), where ideas and methods from classical Calculus cannot be used.

Here, we consider the following fractional order integral equation ([20])

u(t) = a(t)Jα[b(t)u(t)] + g(t),

i.e.,

u(t) =
a(t)

Γ(α)

∫ t

0

b(x)(t− x)α−1u(x) dx + g(t), t ∈ [0, T ], (2.37)

where 0 < α < 1 and a, b, g : [0, T ] → R are continuous functions. The term

Jαf(t) =
1

Γ(α)

∫ t

0

(t− x)α−1f(x) dx

is called the fractional integral of f of order α and

Γ(α) =

∫ ∞

0

e−xxα−1 dx, α > 0

is Euler’s Gamma function.
On the space X = C[0, T ] we consider again the Bielecki norm ‖u‖τ =

max
t∈[0,T ]

|u(t)| e−τt for some τ > 0 and the ball B̺ :=
{
u ∈ X : ‖u− g‖τ ≤ ̺

}
,

for some ̺ > 0. We define the fractional integral operator

Fu(t) =
a(t)

Γ(α)

∫ t

0

b(x)(t − x)α−1u(x) dx+ g(t).

For continuous functions a, b, g and u on [0, T ], it can be shown that Fu is
also continuous on [0, T ] (see e.g. [3]), so F : X → X is well defined.

We choose the constant τ such that

τ ≥ (2‖a‖ · ‖b‖)1/α ,
where ‖ · ‖ denotes the Chebyshev norm and the radius ̺ so that

̺ ≥ max{−̺1, ̺2},
where ̺1 := min

t∈[0,T ]
g(t) and ̺2 := max

t∈[0,T ]
g(t).

These conditions will ensure the fact that F (B̺) ⊆ B̺ and that F :
B̺ → B̺ is a contraction with constant

q =
‖a‖ · ‖b‖
τα

< 1

(see [20] for details).
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Then by the contraction principle, equation (2.37) has a unique solution
u∗ ∈ B̺, which is the limit of the iterative process uk+1 = Fuk, k = 0, 1, . . .,
starting with any initial value u0 ∈ B̺ and the error of the approximation of

u∗ by uk is of order
qk

1− q
‖u1 − u0‖. Moreover, if a, b, g ∈ C2[0, T ], then it

can be shown that u∗ ∈ C2[0, T ], also (see e.g. [7]).
Since the integrals in the iterative process uk+1 = Fuk are singular, we

use product integration for their numerical approximation We mention here
just the basic ideas, for details, see [4].

For ϕ ∈ C2[0, d], the weight function w(x) = (d−x)α−1 and the equidis-
tant nodes xν = νh = νd/n, ν = 0, 1, . . . , n, the integral

I(ϕ) =

∫ d

0

ϕ(x)(d − x)α−1dx

is approximated by the sequence

In =

∫ d

0

ϕn(x)(d − x)α−1 dx,

where

ϕn(x) =
1

h

[
(xj − x)ϕ(xj−1) + (x − xj−1)ϕ(xj)

]
for x ∈ [xj−1, xj ]

is the linear interpolation polynomial of the function ϕ on [xj−1, xj ]. We have

I(ϕ) =

n∑

ν=1

∫ xν

xν−1

ϕ(x)w(x) dx ≈
n∑

ν=1

∫ xν

xν−1

ϕν(x)w(x) dx =

n∑

ν=0

wνϕ(xν).

Then

‖ϕ− ϕn‖ ≤ h2

8
‖ϕ′′‖ and ‖I(ϕ)− In(ϕ)‖ ≤ h2

8

dα

α
‖ϕ′′‖.

The coefficients wν above are given by

w0 =
1

h

∫ x1

x0

(x1 − x)w(x) dx, wn =
1

h

∫ xn

xn−1

(x − xn−1)w(x) dx,

wj =
1

h

[∫ xj

xj−1

(x− xj−1)w(x) dx +

∫ xj+1

xj

(xj+1 − x)w(x) dx

]
, j = 1, n− 1.

With the change of variables x−xj−1 = yh, 0 ≤ y ≤ 1 and the notations

ψ1(i) =

∫ 1

0

y
(
d− (i + y)h

)α−1

dy, ψ2(i) =

∫ 1

0

(1− y)
(
d− (i + y)h

)α−1

dy,

i = 0, 1, . . ., the coefficients wν can be written as

w0 = hψ2(0), wn = hψ1(n− 1),

wj = hψ1(j − 1) + hψ2(j), j = 1, n− 1.

We apply these formulas to the integrals in the iterates Fuk. For a fixed
n, let h = T/n and tν = νh, ν = 0, 1, . . . , n. For a fixed ν ∈ {0, 1, . . . , n}, let
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w(ν)(x) = (tν−x)α−1. On each interval [0, tν], we use the nodes {t0, t1, . . . , tν}.
Note that tν/ν = νh/ν = h. With adapted notations, we have

∫ tν

0

b(x)uk(x)(tν − x)α−1 dx =

∫ tν

0

b(x)uk(x)w
(ν)(x) dx

=

ν∑

j=0

wj,νb(tj)uk(tj) + R̂k,ν .

and

ψ1,ν(i) =

∫ 1

0

y
(
tν − (i+ y)h

)α−1

dy = hα−1

∫ 1

0

y(ν − i− y)α−1 dy,

ψ2,ν(i) =

∫ 1

0

(1− y)
(
tν − (i + y)h

)α−1

dy

= hα−1

∫ 1

0

(1− y)(ν − i− y)α−1dy, i = 0, 1, . . . .

By a simple computation, we get

ψ1,ν(i) + ψ2,ν(i) =
hα−1

α

[
(ν − i)α − (ν − i − 1)α

]

and, consequently,

ν∑

j=0

wj,ν ≤ h

ν∑

j=0

(
ψ1,ν(j) + ψ2,ν(j)

)
≤ Tα

α
.

For the remainder term R̂k,ν , we have that

∣∣R̂k,ν

∣∣ ≤ h2

8

Tα

α
‖(buk)′′‖,

and that it does not depend on ν, so we can write R̂k. If we choose u0 ∈
B̺ ∩C2[0, T ], so that uk ∈ B̺ ∩C2[0, T ], the sequences {uk}, {u′k} and {u′′k}
will be uniformly bounded. Since a, b and g also have bounded second order
derivatives, we can find M > 0 such that

|R̂| = |R̂k| ≤
T 2

8n2
· T

α

α
M,

where the constant M depends on a, b, g, ̺ and τ , but not on n, ν or k.

As before, we approximate the values uk(tν) by ũk(tν) given by

ũ0(tν) = g(tν),

ũk+1(tν) =
1

Γ(α)
a(tν)

ν∑

j=0

wj,νb(tj)ũk(tj) + g(tν).

Denoting by

γ =
Tα

Γ(α)
MaM,
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where Ma = max{‖a‖, ‖a′‖, ‖a′′‖}, by computations similar to the ones in
the previous section (details can be found in [20]), we get, inductively, that

‖uk − ũk‖ := max
tν∈[0,T ]

|uk(tν)− ũk(tν)|

≤ T 2

8n2
γ
(
1 + γ + · · ·+ γn−1

)
.

So, if we assume γ < 1, we have the error estimate

‖ũk − u∗‖ ≤ qk

1− q
‖u1 − u0‖+

T 2

8n2

γ

1− γ
,

for every k ∈ N.

Example. Now, consider the fractional integral equation

u(t) =
0.01

Γ(1/2)
t5/2

∫ t

0

(t− x)−1/2u(x) dx +
√
π(1 + t)−3/2 − 0.02

t3

1 + t
,

for t ∈ [0, 1], whose exact solution is u∗(t) =
√
π (1 + t)−3/2.

Here, we have α = 1/2, a(t) = 0.01t5/2 and b(t) ≡ 1. Then ‖a‖ = 0.01,
‖b‖ = 1, so we can take τ = 1, satisfying our theoretical requirements.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5
×10

-5

k = 8

k = 10

Figure 12. Errors at the nodes for k = 8 and k = 10 iterations

Since

g(t) =
√
π(1 + t)−3/2 − 0.02

t3

1 + t
,
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we have ̺1 =
√
π · 2−3/2, ̺2 =

√
π, so we can choose ̺ = 2. Then u∗ ∈ B̺

and since Ma = 0.06, M =
15

4

√
π, we have γ ≈ 0.281 < 1.

We use the iterative scheme described above with n = 24, so correspond-
ing nodes tν = ν/24, ν = 0, 24, and the initial approximation u0(t) = g(t).
The errors |ũk(tν)− u∗(tν)| at the nodes, for k = 8 and k = 10 iterations are
illustrated in Figure 12.
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[11] G. Dahlquist, Å. Björk, Numerical Methods in Scientific Computing, Volume

I, SIAM, Philadelphia, 2008.

[12] J.A. Ezquerro, M.A. Hernández, N. Romero, Solving nonlinear integral equa-

tions of Fredholm type with high order iterative methods, J. Comput. Appl.
Math. 236 (2011), 1449–1463.

[13] H.H. Hameed, Z.K. Eshkuvatov, A. Ahmedov, N.M.A. Nik Long, On Newton-

Kantorovich method for solving the nonlinear operator equation, Abstr. Appl.
Anal. 2015, Art. ID 219616, 12 pp.
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