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Abstract

In this paper we consider multiple orthogonal polynomials on the
real line, defined using orthogonality conditions spread out over r dif-
ferent measures. Such polynomials are generalization of the ordinary
orthogonal polynomials (case r = 1).
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Using the discretized Stieltjes-Gautschi procedure, we compute re-
cursive coefficients of corresponding recurrence relation for such poly-
nomials, and also, zeros of multiple orthogonal polynomials. We con-
struct and consider the corresponding quadrature formulas of Gaus-
sian type. Specially, we consider quadratures of Gauss–Lobatto and
Gauss–Radau type. Some numerical examples are also included.

1 Introduction

Multiple orthogonal polynomials are a generalization of orthogonal poly-
nomials in the sense that they satisfy r orthogonality conditions.

Starting with a problem that arise in the evaluation of computer graph-
ics illumination models, Borges [6] has examined the problem of numerically
evaluating a set of r definite integrals taken with respect to distinct weight
functions but related by a common integrand and interval of integration.
The nodes of an optimal set of such quadratures ( quadratures of Gaussian
type) are the zeros of type II multiple orthogonal polynomials. However,
Borges has not used multiple orthogonality. In [12] Milovanović and Stanić
have presented effective numerical method for constructing type II multi-
ple orthogonal polynomials, and the corresponding Gaussian quadratures,
using discretized Stieltjes-Gautschi procedure [7].

In [13] Milovanović and Stanić have investigated multiple orthogonal
polynomials on the semicircle, as a generalization of orthogonal polynomials
on the semicircle, introduced by Gautschi and Milovanović [10] – complex
polynomials orthogonal with respect to the complex-valued inner products
[f, g]k =

∫ π
0 f(eiθ)g(eiθ)wk(eiθ) dθ, for k = 1, 2, . . . , r. Also, a numerical

method for constructing these polynomials and corresponding Gaussian
quadratures has presented.

In this paper we repeat some basic results on multiple orthogonal poly-
nomials, their numerical construction, and consider quadratures of Gauss–
Lobatto and Gauss–Radau type, including some numerical examples. The
paper is organized as follows. First, some basic facts about the type II mul-
tiple orthogonal polynomials are given in Section 2. In Section 3 we give
some properties of type II multiple orthogonal polynomials with nearly di-
agonal multi-indices and numerical procedure for their construction, based
on the discretized Stieltjes-Gautschi procedure. In the same section an op-
timal set of quadrature formulas and the corresponding method for calcu-



PROCEEDINGS 3

lating the nodes and weight coefficients of such quadratures are considered.
In Section 4 we consider quadrature formulas of Gaussian type with pre-
assigned nodes. Specially, we consider quadratures of Gauss–Lobatto and
Gauss–Radau type. Also, some numerical examples are included.

2 Type II Multiple Orthogonal Polynomials

Let r ≥ 1 be an integer and let w1, w2, . . . , wr be r weight functions on the
real line so that the support of each wi is a subset of an interval Ei. Let
~n = (n1, n2, . . . , nr) be a vector of r nonnegative integers, which is called a
multi-index with the length |~n| = n1 + n2 + · · ·+ nr.

There are two types of multiple orthogonal polynomials:
1◦ Type I multiple orthogonal polynomials. Here we want to find a vector

of polynomials (A~n,1, A~n,2, . . . , A~n,r) such that each A~n,i is a polynomial of
degree ni − 1 and the following orthogonality conditions hold:

r∑

j=1

∫

Ej

A~n,j xkwj(x)dx = 0, k = 0, 1, . . . , |~n| − 2. (2.1)

Each A~n,i has ni coefficients and the type I vector is completely determined
if we can find all the |~n| unknown coefficients. The orthogonality relations
(2.1) give |~n| − 1 homogenous linear equations for these |~n| coefficients. If
the matrix of coefficients has full rank, then we can determine the type I
vector uniquely up to a multiplicative factor.

For r = 1 we have the case of ordinary orthogonal polynomials.
2◦ Type II multiple orthogonal polynomials. The type II multiple or-

thogonal polynomial is a monic polynomial π~n of degree |~n| such that the
following orthogonality conditions:

∫

E1

π~n (x) xkw1(x)dx = 0, k = 0, 1, . . . , n1 − 1, (2.2)
∫

E2

π~n (x) xkw2(x)dx = 0, k = 0, 1, . . . , n2 − 1, (2.3)

...∫

Er

π~n (x) xkwr(x)dx = 0, k = 0, 1, . . . , nr − 1, (2.4)
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are satisfied.
Again, for r = 1 we have the ordinary orthogonal polynomials.
The conditions (2.2)–(2.4) give |~n| linear equations for the |~n| unknown

coefficients ak,~n of the polynomial π~n (x) =
|~n|∑

k=0

ak,~n xk, where a|~n|,~n = 1.

But the matrix of coefficients of this system can be singular and we need
some additional conditions on the r weight functions to provide the unique-
ness of the multiple orthogonal polynomial. If the polynomial π~n (x) is
unique, then we say that ~n is a normal multi-index and if all multi-indices
are normal then we have a complete system.

In this paper we consider only the type II multiple orthogonal polyno-
mials. For each of the weight functions wk, k = 1, 2, . . . , r,

(f, g)k =
∫

Ek

f(x)g(x)wk(x)dx (2.5)

denotes the corresponding inner product of the functions f and g.
Our interest is in systems of r weight functions for which all multi-

indices are normal. There are two distinct cases for which the type II
multiple orthogonal polynomials are given.

1. Angelesco systems for which the intervals Ei, on which the weight
functions are supported, are disjoint, i.e., Ei∩Ej = ∅ for 1 ≤ i, j ≤ r, i 6= j.

2. AT system is such that all weight functions are supported on the
same interval E and we also require that the |~n| functions

w1(x), xw1(x), . . . , xn1−1w1(x), w2(x), xw2(x), . . . , xn2−1w2(x),

. . . , wr(x), xwr(x), . . . , xnr−1wr(x)

form a Chebyshev system on E for each multi-index ~n. This means that
every linear combination

r∑

j=1

Qnj−1(x)wj(x),

where Qnj−1 is a polynomial of degree at most nj − 1, has at most |~n| − 1
zeros on E.

The following two theorems hold (for proof see [16]):
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Theorem 2.1 In an Angelesco system the type II multiple orthogonal poly-

nomial π~n (x) factors into r polynomials
r∏

j=1
qnj (x), where each qnj has ex-

actly nj zeros on Ej.

Theorem 2.2 In an AT system the type II multiple orthogonal polynomial
π~n (x) has exactly |~n| zeros on E.

3 Type II Multiple Orthogonal Polynomials with
Nearly Diagonal Multi-index

Let n ∈ N and write it as n = `r + ν, with ` = [n/r] and 0 ≤ ν < r. The
nearly diagonal multi-index ~s(n) corresponding to n is given by

~s(n) = (` + 1, ` + 1, . . . , ` + 1︸ ︷︷ ︸
ν times

, `, `, . . . , `︸ ︷︷ ︸
r−ν times

).

Denote the corresponding type II multiple (monic) orthogonal polynomials
by

πn(x) = π~s(n)(x).

Type II multiple orthogonal polynomials with nearly diagonal multi-
index satisfy the following recurrence relation of order r + 11

xπm(x) = πm+1(x) +
r∑

i=0

αm,r−iπm−i(x) , m ≥ 0, (3.1)

with initial conditions π0(x) = 1 and πi(x) = 0 for i = −1,−2, . . . ,−r (see
[15]).

Setting m = 0, 1, . . . , n− 1 in (3.1), we get

x




π0(x)
π1(x)

...
πn−1(x)


 = Hn




π0(x)
π1(x)

...
πn−1(x)


 + πn(x)




0
0
...
1


 ,

1It is known that ordinary orthogonal polynomials on the real line always satisfy a
three-term recurrence relation.
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i.e.,

Hnpn(x) = xpn(x)− πn(x)en, (3.2)

where

pn(x) =
[
π0(x) π1(x) . . . πn−1(x)

]T
, en = [0 0 . . . 0 1]T ,

and Hn is the following lower (banded) Hessenberg matrix2 of order n

Hn =




α0,r 1

α1,r−1 α1,r 1

...
. . . . . . . . .

αr,0 · · · αr,r−1 αr,r 1

αr+1,0 · · · αr+1,r−1 αr+1,r 1

. . . . . . . . . . . .

αn−2,0 · · · αn−2,r−1 αn−2,r 1

αn−1,0 · · · αn−1,r−1 αn−1,r




.

Let ξν ≡ ξ
(n)
ν (ν = 1, . . . , n) be zeros of πn(x). Then (3.2) reduces to

the eigenvalue problem

ξνpn(ξν) = Hnpn(ξν).

Thus, ξν are eigenvalues of the matrix Hn and pn(ξν) are the corresponding
eigenvectors.

For computing zeros of πn(x) as the eigenvalues of the matrix Hn we
use the EISPACK routine COMQR [3, pp. 277–284]. Notice that this
routine needs an upper Hessenberg matrix, i.e., HT

n . Also, the Matlab or
Mathematica can be used.

Our aim here is to compute the recurrence coefficients in (3.1), i.e.,
the elements of the Hessenberg matrix Hn. Only for the simplest case of
multiple orthogonality, i.e., when r = 2, for some classical weight functions

2This kind of matrix was obtained also in construction of orthogonal polynomials on
the radial rays in the complex plane (see [11]).
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(Jacobi, Laguerre, Hermite) one can find explicit formulas for the recur-
rence coefficients (see [14], [16]). In [12] the elements of Hn for arbitrary
r have been calculated numerically, using the discretized Stieltjes-Gautschi
procedure [7].

At first, we express the elements of Hn in terms of the inner products
(2.5), and then we use the corresponding Gaussian formulas to discretize
these inner products. Of course, we suppose that the type II multiple
orthogonal polynomials exist with respect to the inner products ( · , · )k,
k = 1, 2, . . . , r, given by (2.5).

Taking that for inner products ( · , · )j+mr = ( · , · )j (m ∈ Z), the fol-
lowing result holds:

Theorem 3.1 The type II multiple monic orthogonal polynomials {πn},
with nearly diagonal multi-index, satisfy the recurrence relation

πn+1(x) = (x− αn,r)πn(x)−
r−1∑

k=0

αn,kπn−r+k(x), n ≥ 0, (3.3)

where

αn,0 =

(
xπn, π[(n−r)/r]

)
ν+1(

πn−r, π[(n−r)/r]

)
ν+1

and

αn,k =

(
xπn −

k−1∑
i=0

αn,iπn−r+i, π[(n−r+k)/r]

)

ν+k+1(
πn−r+k, π[(n−r+k)/r]

)
ν+k+1

, k = 1, 2, . . . , r

Here, we put n = `r + ν, where ` = [n/r] and ν ∈ {0, 1, . . . , r − 1} ([t] is
integer part of t).

Proof of the previous theorem one can find in [12].
We use an alternatively recurrence relation and give formulas for coef-

ficients. Knowing π0 we compute α0,r, then knowing α0,r we compute π1,
and then again α1,r and α1,r−1, etc. Continuing in this manner, we can
generate as many polynomials, and therefore as many of the recurrence
coefficients as are desired.

All of the necessary inner products can be computed exactly, except for
rounding errors, by using the Gauss-Christoffel quadrature formulas with
respect to the corresponding weight function wi, i = 1, 2, . . . r.
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3.1 Optimal Set of Quadratures

Denote with W = {w1, w2, . . . , wr} an AT system.
Following [6, Definition 3] we introduced the following definition (see

[12]):

Definition 3.2 Let W be an AT system (the weight functions wi, i =
1, 2, . . . , r are supported on the interval E), ~n = (n1, n2, . . . , nr) be a multi-
index, and n = |~n|. A set of quadrature formulas of the form:

∫

E
f(x) wm(x)dx ≈

n∑

i=1

Am,if(xi), m = 1, 2, . . . , r (3.4)

will be called an optimal set (quadratures of Gaussian type) with respect to
(W,~n) if and only if the weight coefficients, Am,i, and the nodes, xi, satisfy
the following equations:

n∑

i=1

Am,i =
∫

E
wm(x)dx

n∑

i=1

Am,i xi =
∫

E
xwm(x)dx

...
n∑

i=1

Am,i x
n+nm−1
i =

∫

E
xn+nm−1 wm(x)dx

(3.5)

for m = 1, 2, . . . , r.

For these optimal set of quadratures the next generalization of funda-
mental theorem of Gauss-Christoffel quadrature formulas holds (see [12]):

Theorem 3.3 Let W be an AT system, ~n = (n1, n2, . . . , nr), n = |~n|.
Consider the quadrature formulas:

∫

E
f(x) wm(x)dx ≈

n∑

i=1

Am,if(xi) (3.6)

where m = 1, 2, . . . , r.
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These formulas form an optimal set with respect to (W,~n) if and only
if:

1◦ They are exact for all polynomials of degree ≤ n− 1.

2◦ The polynomial q(x) =
n∏

i=1
(x− xi) is the type II multiple orthogonal

polynomial π~n with respect to W .

For the case of the nearly diagonal multi-indices ~s(n) the nodes xi,
i = 1, 2, . . . , n, of the Gaussian type quadrature formulas can be computed
as eigenvalues of the corresponding banded Hessenberg matrix Hn.

The weight coefficients Am,i can be computed by requiring that each
rule correctly generate the first n modified moments. Denote by Vn =[
pn(x1) pn(x2) . . . pn(xn)

]
the matrix of the eigenvectors of matrix Hn,

each normalized so that the first component is equal to 1. Then, the weight
coefficients Am,i can be found by solving

Vn ·




Am,1

Am,2
...

Am,n


 =




µ
∗(m)
0

µ
∗(m)
1
...

µ
∗(m)
n−1




, m = 1, 2, . . . , r , (3.7)

where

µ
∗(m)
i =

∫

E
πi(x) wm(x)dx , m = 1, 2, . . . , r, i = 0, 1, . . . , n− 1 ,

are modified moments and πi = π~s(i).
All of the modified moments can be computed exactly, except for round-

ing errors, by using the Gauss-Christoffel quadrature formulas with respect
to the corresponding weight function wm, m = 1, 2, . . . r.

4 Quadrature Formulae of Gaussian Type
with Preassigned Nodes

Let W = {w1, w2, . . . , wr} be an AT system.

Following Definition 3.2 and ordinary quadrature formulas of Gaussian
type with preassigned abscissas (see for example [1, Subsection 2.2.1]) we
introduce the following definition:
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Definition 4.1 Let W be an AT system (the weight functions wi, i =
1, 2, . . . , r are supported on the interval E), ~n = (n1, n2, . . . , nr) be a multi-
index, n = |~n|. A set of quadrature formulas of the form:

∫

E
f(x)wm(x) ≈

k∑

i=1

am,if(yi) +
n∑

i=1

Am,if(xi), m = 1, 2, . . . , r, (4.1)

where the nodes yi ∈ E, i = 1, 2, . . . , k are fixed and prescribed in advance,
will be called an optimal set with preassigned nodes {yi}k

i=1 with respect to
(W,~n) if and only if the weight coefficients, am,i, Am,i, and the nodes, xi,
satisfy the following equations:

k∑
i=1

am,i +
n∑

i=1
Am,i =

∫
E

wm(x)dx

k∑
i=1

am,i yi +
n∑

i=1
Am,i xi =

∫
E

x wm(x)dx

...
k∑

i=1
am,i y

n+nm+k−1
i +

n∑
i=1

Am,i x
n+nm+k−1
i =

∫
E

xn+nm+k−1 wm(x)dx

(4.2)
for m = 1, 2, . . . , r.

For a set of preassigned nodes {yi}k
i=1 we introduce s(x) as a polynomial

of degree k, with zeros at yi, i = 1, 2, . . . , k.
Denote

W̃ = {w̃1, w̃2, . . . , w̃r}, w̃m(x) = s(x)wm(x), m = 1, 2, . . . , r. (4.3)

Theorem 4.2 Let W be an AT system, ~n = (n1, n2, . . . , nr), n = |~n|.
Suppose that for preassigned nodes, {yi}k

i=1 , W̃ is also AT system. The
set of quadrature formulas (4.1) form the optimal set with preassigned nodes
{yi}k

i=1 with respect to (W,~n) if and only if:

1◦ They are exact for all polynomials of degree ≤ n + k − 1.

2◦ The polynomial q(x) =
n∏

i=1
(x − xi) is the type II multiple orthogonal

polynomial π~n with respect to W̃ .
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Proof . Suppose first that the quadrature formulas (4.1) form the opti-
mal set with preassigned nodes {yi}k

i=1 with respect to (W,~n).
In order to prove 1◦ we note that for each m = 1, 2, . . . , r, the corre-

sponding quadrature formula (4.1) is exact for all polynomials of degree
≤ n + nm + k − 1 and then it is exact for those of degree ≤ n + k − 1.

To prove 2◦, for m = 1, 2, . . . r, assume that pm(x) is a polynomial
of degree ≤ nm − 1. Then the polynomial q(x)pm(x)s(x) has degree ≤
n+nm +k− 1. Since the corresponding quadrature formula is exact for all
such polynomials, it follows that

∫

E
q(x)pm(x) s(x)wm(x)dx =

k∑

i=1

am,iq(yi)pm(yi)s(yi)

+
n∑

i=1

Am,iq(xi)pm(xi)s(xi).
(4.4)

Since s(yi) = 0 for i = 1, 2, . . . , k and q(xi) = 0 for i = 1, 2, . . . , n, the both
sums on the right hand side in (4.4) are identically zero. Thus, we have

∫

E
q(x)pm(x) s(x)wm(x)dx = 0, m = 0, 1, . . . , r

and 2◦ follows.

Suppose now that for quadrature formulas (4.1) 1◦ and 2◦ hold.
For m = 1, 2, . . . , r, let tm(x) be a polynomial of degree ≤ n+nm+k−1.

We can write tm(x) = um(x) · q(x)s(x)+v(x), where um(x) is a polynomial
of degree ≤ nm − 1 and v(x) is a polynomial of degree ≤ n + k − 1. It is
easy to see that

tm(yi) = v(yi), i = 1, 2, . . . , k,
tm(xi) = v(xi), i = 1, 2, . . . , n.

(4.5)

Then, we obtain
∫

E
tm(x) wm(x)dx =

∫

E
[um(x)q(x)s(x) + v(x)]wm(x)dx

=
∫

E
q(x)um(x) s(x)wm(x)dx +

∫

E
v(x) wm(x)dx .
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According to 2◦ we have
∫
E q(x)um(x) s(x)wm(x)dx = 0 and therefore we

obtain ∫

E
tm(x) wm(x)dx =

∫

E
v(x) wm(x)dx .

Since v(x) is a polynomial of degree ≤ n + k − 1, it follows from 1◦ that

∫

E
v(x) wm(x)dx =

k∑

i=1

am,iv(yi) +
n∑

i=1

Am,iv(xi)

and hence using (4.5) we obtain

∫

E
tm(x) wm(x)dx =

k∑

i=1

am,iv(yi) +
n∑

i=1

Am,iv(xi)

=
k∑

i=1

am,itm(yi) +
n∑

i=1

Am,itm(xi).

This proves that for each m = 1, 2, . . . , r, the corresponding quadrature
formula is exact for all polynomials of degree ≤ n + nm + k − 1. ¥

According to Theorem 4.2, the nodes xi, i = 1, 2, . . . , n, of the optimal
set of quadrature formulas (4.1) are the zeros of the type II multiple or-
thogonal polynomial π~n with respect to the AT system W̃ . For computing
these zeros in the case of nearly diagonal multi-index we use the discretized
Stieltjes–Gautschi procedure (see [12, 13]). When we find the nodes, then
for m = 1, 2, . . . , r we can choose the weight coefficients am,i, i = 1, 2, . . . , k
and Am,i, i = 1, 2, . . . , n, so that they satisfy the following Vandermonde
system of equations

V (y1, . . . , yk, x1, . . . , xn)




am,1
...

am,k

Am,1
...

Am,n




=




µ
(m)
0

µ
(m)
1
...

µ
(m)
n+k−1




, m = 1, 2, . . . , r,

(4.6)
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where

µ
(m)
i =

∫

E
xi wm(x)dx, m = 1, 2, . . . , r, i = 0, 1, . . . , n + k − 1,

are moments which can be computed exactly, except for rounding errors,
by using the Gauss-Christoffel quadrature formulas with respect to the
corresponding weight function wm, m = 1, 2, . . . r.

Each of Vandermonde systems (4.6) has unique solution if all of pre-
assigned nodes are distinct from the zeros of type II multiple orthogonal
polynomial π~n with respect to W̃ . This is always satisfied in cases when
the preassigned nodes are at the end points of the interval E.

4.1 Quadrature Formulae of Gauss–Radau
and Gauss–Lobatto Type

a) Jacobi weight functions

In the case of Gauss–Radau type quadratures we have only one pre-
assigned node, y1 = −1, so that s(x) = x + 1. For each AT system W
consisting of Jacobi weight functions [12]

wm(x) = (1− x)α(1 + x)βm , m = 1, 2, . . . , r,

α, βm > −1, m = 1, 2, . . . , r; βi − βj /∈ Z whenever i 6= j, we have

w̃m(x) = (1− x)α(1 + x)βm+1, m = 1, 2, . . . , r,

and corresponding set W̃ is also AT system. The Vandermonde system (4.6)
(for n +1 unknown weights) has a unique solution for each m = 1, 2, . . . , r.

In Table 1 the nodes and weights for quadrature formulas of Gauss–
Radau type with respect to an AT system of Jacobi weights and nearly
diagonal multi-index are given. Numbers in parentheses denote decimal
exponents.

In the case of Gauss–Lobatto type quadratures we have two preassigned
nodes, y1 = −1 and y2 = 1; s(x) = 1− x2, and for AT system W of Jacobi
weight functions set W̃ with elements

w̃m(x) = (1− x)α+1(1 + x)βm+1, m = 1, 2, . . . , r,
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is again AT system and Vandermonde system (4.6) (for n + 2 unknown
weights) also has unique solution for each m = 1, 2, . . . , r.

In Table 2 the nodes and weights for quadrature formulas of Gauss–
Lobatto type with respect to an AT system of Jacobi weights and nearly
diagonal multi-index are given.

Table 2: Quadrature formulas of Gauss–Lobato type, r = 2, α = −1/4,
β1 = 1, β2 = −1/2, n = 18

yi, xi a1,i, A1,i a2,i, A2,i

1 −1. −5.427654059531051(−7) 6.278044907035962(−2)
2 1. 5.253978709241791(−2) 1.857561986737788(−2)
1 −9.940683226494066(−1) 6.258461212382826(−5) 1.366066177674554(−1)
2 −9.973295322435293(−1) 6.724998794425119(−4) 1.541068169804305(−1)
3 −9.330999859656411(−1) 2.894341625676589(−3) 1.672669872578609(−1)
4 −8.706256860528897(−1) 8.198883072026320(−3) 1.761905550567668(−1)
5 −7.847743707278070(−1) 1.815730482233846(−2) 1.818487840801168(−1)
6 −6.759923125940263(−1) 3.409994333062372(−2) 1.848930926177310(−1)
7 −5.460968834029435(−1) 5.679958534303609(−2) 1.857378515147516(−1)
8 −3.981042546631459(−1) 8.622406731661059(−2) 1.846488449675086(−1)
9 −2.360418319851534(−1) 1.213912667316848(−1) 1.817954776087856(−1)

10 −6.474035626481439(−2) 1.603454558780371(−1) 1.772794371553346(−1)
11 1.103930065314497(−1) 2.002575860755584(−1) 1.711488163863528(−1)
12 2.836154392458143(−1) 2.376344935881942(−1) 1.634018925424208(−1)
13 4.490957313876524(−1) 2.686044097870690(−1) 1.539811371776487(−1)
14 6.011595130523827(−1) 2.892279000156788(−1) 1.427539994158158(−1)
15 7.345236460917255(−1) 2.957584275197416(−1) 1.294692974446239(−1)
16 8.445112388464046(−1) 2.847195061026688(−1) 1.136567577648302(−1)
17 9.272392748240476(−1) 2.524575707052816(−1) 9.435935045249755(−2)
18 9.797689999534666(−1) 1.926868609416974(−1) 6.917199832716925(−2)

b) Laguerre weight functions

For Laguerre weights we can construct Gauss–Radau type quadratures.
The preassigned node is y1 = 0, and for each AT system of generalized
Laguerre weight functions [12]

wm(x) = xsme−x, m = 1, 2, . . . , r

sm > −1, m = 1, 2, . . . , r; si − sj /∈ Z whenever i 6= j, set W̃ with weights

w̃m(x) = xsm+1e−x, m = 1, 2, . . . , r
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is also AT system.
The Vandermonde system (4.6) (for n+1 unknown weights) has a unique

solution for each m = 1, 2, . . . , r.
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