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Abstract. We continue with analyzing quadrature formulas of high degree
of precision for computing the Fourier coefficients in expansions of functions

with respect to a system of orthogonal polynomials, started recently by Bo-
janov and Petrova [Quadrature formulae for Fourier coefficients, J. Comput.

Appl. Math. 231 (2009), 378–391] and we extend their results. Construction

of new Gaussian quadrature formulas for the Fourier coefficients of a function,
based on the values of the function and its derivatives, is considered. We prove

the existence and uniqueness of Kronrod extensions with multiple nodes of

standard Gaussian quadrature formulas with multiple nodes for several weight
functions, in order to construct some new generalizations of quadrature for-

mulas for the Fourier coefficients. For the quadrature formulas for the Fourier

coefficients based on the zeros of the corresponding orthogonal polynomials
we construct Kronrod extensions with multiple nodes and highest algebraic

degree of precision. For this very desirable kind of extensions there do not

exist any results in the theory of standard quadrature formulas.

1. Introduction

Let {Pk}∞k=0 be a system of orthonormal polynomials on [a, b] with respect to
a weight function ω (integrable, non-negative function on [a, b] that vanishes only
at isolated points). The approximation of f by the partial sums Sn(f) of its series
expansions

(1.1) f(x) =

∞∑
k=0

ak(f)Pk(x)

with respect to a given system of orthonormal polynomials {Pk}∞k=0 is a classical
way of recovery of f . The numerical computation of the coefficients ak(f) in (1.1),
i.e.,

(1.2) ak(f) =

∫ b

a

ω(t)Pk(t)f(t) dt,
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requires the use of a quadrature formula. Evidently, an application of the n-point
Gaussian quadrature formula with respect to the weight ω will give the exact result
for all polynomials of degree at most 2n− k − 1, k < 2n− 1.

Following Bojanov and Petrova [3] (see also [2]) and using the same notation,
we consider quadrature formulas of the type

(1.3)

∫ b

a

ω(t)Pk(t)f(t) dt ≈
n∑
j=1

νj−1∑
i=0

cjif
(i)(xj), a < x1 < · · · < xn < b,

where νj are given natural numbers (multiplicities) and Pk(t) is a monic polynomial
of degree k. A number ` is the algebraic degree of precision (ADP) of (1.3) if (1.3)
is exact for all polynomials of degree ` and there is a polynomial of degree `+ 1 for
which this formula is not exact. By e(ν) is denoted the smallest non-negative even
integer ≥ ν (clearly e(ν) = 0 for ν ≤ 0), and by σ(Pk) the number of zeros of Pk in
(a, b) with odd multiplicities. It is easy to see that the ADP(1.3) does not exceed

e(ν1 − τ1) + · · ·+ e(νn − τn) + σ(Pk)− 1,

since the formula is not exact for the polynomial

(t− x1)e(ν1−τ1) · · · (t− xn)e(νn−τn)(t− t1) · · · (t− tm),

where m = σ(Pk), t1, . . . , tm ∈ (a, b), are the zeros of Pk with odd multiplicities,
τi := 1 if xi ∈ {t1, . . . , tm} and τi := 0 otherwise. Notice that in our applications
the polynomial Pk in formula (1.2) for ak(f) is the k-th orthogonal polynomial on
[a, b] with weight ω, thus all its zeros are with multiplicity one and we have that
σ(Pk) = k.

In [3], for the sake of convenience, Bojanov and Petrova defined the formula (1.3)
to be Gaussian, if it has maximal ADP, that is, if

ADP(1.3) = e(ν1 − τ1) + · · ·+ e(νn − τn) + σ(Pk)− 1.

A complete characterization of the Gaussian formulas of form (1.3) and explicit
construction of such formulas in several particular cases is given in [3].

The paper is organized as follows. In Section 2 we repeat general remarks con-
cerning standard Gaussian quadrature formulas with multiple nodes, since the study
and numerical construction of formulas of type (1.3), and their generalizations, for
Fourier coefficients can be reduced to the study and numerical construction of stan-
dard multiple node quadratures. In Subsection 2.1 the conditions of existence of
general real Kronrod extensions with multiple nodes of standard Gaussian quad-
rature formulas with multiple nodes are given. If these extensions exist, then they
are uniquely determined. In Subsection 2.2 we prove the existence and uniqueness
of general real Kronrod extensions with multiple nodes of some standard Gauss-
ian quadrature formulas with multiple nodes for the generalized Chebyshev and
Gori-Micchelli weight functions, in order to construct some new generalizations of
quadrature formulas for the Fourier coefficients by using the important theorem
by Bojanov and Petrova [3, Th. 2.1] (see also Th. 2.2 below) which reveals the
relation between the standard quadratures and the quadratures for Fourier coeffi-
cients. We finish Section 2 by adding some remarks concerning the computational
aspects of the results by Bojanov and Petrova [3], and by extending their results
from [3, Corollary 2.5] to the more general case. In Section 3 a connection to the
Gauss-Kronrod and generalized averaged Gaussian quadrature formulas (all their
nodes are simple) is presented. Finally, in Section 4 for the quadrature formulas
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for the Fourier coefficients (but and for their generalizations) based on the zeros of
the corresponding orthogonal polynomials we construct Kronrod extensions with
multiple nodes and highest algebraic degree of precision. Numerical example is
included. For this very desirable kind of extensions there do not exist any results
in the theory of standard quadrature formulas.

2. General observations and numerical construction

Let

πn(R) :=

{
P (t) : P (t) =

n∑
k=0

dkt
k, dk ∈ R

}
represents the space of all polynomials in one variable of degree at most n. Bojanov
and Petrova [3, Section 2] discuss general remarks concerning Gaussian quadrature
formulas with multiple nodes, since the study of formulas of type (1.3) for Fourier
coefficients can be reduced to the study of standard multiple node quadratures. We
repeat the following theorem established by Ghizzetti and Ossicini [15].

Theorem 2.1. For any given set of odd multiplicities ν1, . . . , νn (νj = 2sj+1, sj ∈
N0, j = 1, . . . , n), there exists a unique quadrature formula of the form

(2.1)

∫ b

a

ω(t)f(t) dt ≈
n∑
j=1

νj−1∑
i=0

ajif
(i)(xj), a ≤ x1 < · · · < xn ≤ b,

of ADP = ν1 + · · ·+νn+n−1, which is the well known Chakalov-Popoviciu quadra-
ture formula (see [5], [38]). The nodes x1, . . . , xn of this quadrature are determined
uniquely by the orthogonality property∫ b

a

ω(t)

n∏
k=1

(t− xk)νkQ(t) dt = 0, ∀Q ∈ πn−1(R).

The corresponding (monic) orthogonal polynomial
∏n
k=1(t−xk) is known in the

classical literature as σ-orthogonal polynomial, with σ = σn = (s1, . . . , sn), where
n indicates the size of the array.

Quadratures of type (2.1) with equal multiplicities ν1 = · · · = νn = ν, with
ν being an odd number (ν = 2s + 1, s ∈ N), have been studied by Turán [44].
In this case, the Gaussian quadrature is called Gauss-Turán quadrature of type
ν (= 2s+ 1), and the corresponding (monic) orthogonal polynomial

∏n
k=1(t− xk)

is called s-orthogonal polynomial.
Bojanov and Petrova [3] describe the connection between quadratures with mul-

tiple nodes and formulas of type (1.3). For the system of nodes x := (x1, . . . , xn)
with corresponding multiplicities ν̄ := (ν1, . . . , νn), they define the polynomials

Λ(t;x) :=

n∏
m=1

(t− xm), Λj(t;x) :=
Λ(t;x)

t− xj
, Λν̄(t;x) :=

n∏
m=1

(t− xm)νm ,

set x
νj
j := (xj , . . . , xj) [xj repeats νj times], j = 1, . . . , n, denote by g[x1, . . . , xm]

the divided difference of g at the points x1, . . . , xm, and state and prove the following
important theorem which reveals the relation between the standard quadratures and
the quadratures for Fourier coefficients.
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Theorem 2.2. For any given sets of multiplicities µ̄ := (µ1, . . . , µk) and ν̄ :=
(ν1, . . . , νn), and nodes y1 < · · · < yk, x1 < · · · < xn, there exists a quadrature
formula of the form

(2.2)

∫ b

a

ω(t)Λµ̄(t;y)f(t) dt ≈
n∑
j=1

νj−1∑
i=0

cjif
(i)(xj),

with ADP = N if and only if there exists a quadrature formula of the form

(2.3)

∫ b

a

ω(t)f(t) dt ≈
k∑

m=1

µm−1∑
λ=0

bmλf
(λ)(ym) +

n∑
j=1

νj−1∑
i=0

ajif
(i)(xj),

which has degree of precision N + µ1 + · · ·+ µk. In the case ym = xj for some m
and j, the corresponding terms in both sums combine in one term of the form

µm+νj−1∑
λ=0

dmλf
(λ)(ym).

Let us suppose that the coefficients aji (j = 1, . . . , n; i = 0, . . . , νj − 1) in (2.3)
are known. By acting as in the first part of the proof of Theorem 2.1 in [3] we can
determine the coefficients cji (j = 1, . . . , n; i = 0, . . . , νj − 1) in (2.2). Namely,
applying (2.3) to the polynomial Λµ̄(·;y)f , where f ∈ πN (R), the first sum in (2.3)
vanishes and we can obtain (see [3, Eq. (2.4)])∫ b

a

ω(t)Λµ̄(t;y)f(t) dt =

n∑
j=1

(
νj−1∑
i=0

aji
[
Λµ̄(t;y)f(t)

](i)∣∣∣
t=xj

)
=

n∑
j=1

νj−1∑
i=0

cjif
(i)(xj),

where
(2.4)

cji =

νj−1∑
s=i

ajs

(
s

i

) [
Λµ̄(t;y)

](s−i)∣∣∣
t=xj

(j = 1, 2, . . . , n; i = 0, 1, . . . , νj − 1).

2.1. General real Kronrod extensions of Chakalov-Popoviciu quadratures.
Numerically stable methods for constructing nodes xj and coefficients aji in Gauss-
Turán and Chakalov-Popoviciu quadrature formulas with multiple nodes can be
found in [16], [12], [28], [43]. For the asymptotic representation of the coefficients
aji see [35]. Some interesting results concerning this theory and its applications
can be found in [25], [42], and references therein, and [14], [21], [35]. The remain-
der term for these quadratures, when integrand is an analytic function, has been
analyzed in [26], [29], [27], [30], [31].

The following generalized Chebyshev weight functions ω(t) = ωi(t) will be of
interest in this paper:

(a) ω1(t) = (1− t2)−1/2, (b) ω2(t) = (1− t2)1/2+s,
(c) ω3(t) = (1− t)−1/2(1 + t)1/2+s, (d) ω4(t) = (1− t)1/2+s(1 + t)−1/2.
The Chebyshev polynomials Tn are s-orthogonal on (−1, 1) for each s ≥ 0 (see

Bernstein [1]). Ossicini and Rosati [34] found three other weight functions ωi(t) (i =
2, 3, 4) for which the s-orthogonal polynomials can be identified as the Chebyshev
polynomials of the second, third, and fourth kind: Un, Vn, and Wn, which are
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defined by

Un(t) =
sin(n+ 1)θ

sin θ
, Vn(t) =

cos(n+ 1
2 )θ

cos(θ/2)
, Wn(t) =

sin(n+ 1
2 )θ

sin(θ/2)
,

respectively (cf. [9] and [13]), where t = cos θ. However, these weight functions
depend on s (see (b), (c), (d)). It is easy to see that Wn(−t) = (−1)nVn(t), so that
in the investigation it is sufficient to study ω1(t), ω2(t) and one of ω3(t) and ω4(t).

For each n ∈ N, Gori and Micchelli [17] introduced an interesting class of weight
functions defined on [−1, 1] for which explicit Gauss-Turán quadrature formulas of
all orders can be found. In other words, these classes of weight functions have the
peculiarity that the corresponding s-orthogonal polynomials, s ∈ N, of the same
degree, are independent of s. This class includes certain generalized Jacobi weight
functions ωn,µ(t) = |Un−1(t)/n|2µ+1(1 − t2)µ, where Un−1(cos θ) = sinnθ/ sin θ
(Chebyshev polynomial of the second kind) and µ > −1. In this case, the Chebyshev
polynomials Tn appear as s-orthogonal polynomials, s ∈ N.

Let σ∗ = σ∗m = (s∗1, s
∗
2, . . . , s

∗
m) (s∗µ ∈ N0, µ = 1, 2, . . . ,m). Following the well-

known idea of Kronrod [20], [8] (see also [32], [33], [24]), we extend formula of type
(2.1),

(2.5)

∫ b

a

f(t)ω(t) dt ≈
n∑
ν=1

2sν∑
i=0

aνif
(i)(xν),

where a ≤ x1 < x2 < · · · < xn ≤ b, to the interpolatory quadrature formula

(2.6)

∫ b

a

f(t)ω(t) dt ≈
n∑
ν=1

2sν∑
i=0

bνif
(i)(xν) +

m∑
µ=1

2s∗µ∑
j=0

c∗µjf
(j)(x∗µ),

where xν are the same nodes as in (2.5), and the new nodes x∗µ and new weights
bνi, c

∗
µj are chosen to maximize the degree of precision of (2.6) which is greater than

or equal to

n∑
ν=1

(2sν + 1) +

m∑
µ=1

(2s∗µ + 1) +m− 1 = 2

(
n∑
ν=1

sν +

m∑
µ=1

s∗µ

)
+ n+ 2m− 1.

We call the quadrature formula (2.6) Chakalov-Popoviciu-Kronrod quadrature for-
mula. A particular case of this formula is the Gauss–Turán-Kronrod quadrature
formula, if s1 = s2 = · · · = sn = s.

The well-known Gauss-Kronrod quadrature formula, if s1 = s2 = · · · = sn =
0, s∗1 = s∗2 = · · · = s∗m = 0, and m = n + 1, is a particular case of both just
mentioned quadrature formulae. In the theory of Gauss-Kronrod quadrature for-
mulas, the Sieltjes polynomials En+1(t), whose zeros are the nodes x∗µ, namely

En+1(t) ≡ En+1(t, ω) :=
∏n+1
µ=1(t − x∗µ), play an important role. Also, of foremost

interest are weight functions for which the Gauss-Kronrod quadrature formula has
the property that:

(i) All n + 1 nodes x∗µ are in (a, b) and are simple (i.e., that all zeros of the
Stieltjes polynomial En+1(t) are in (a, b) and are simple).

Also, desirable are weight functions which have in addition to (i) the following
properties:
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(ii) The interlacing property. Namely, the nodes x∗µ and xν separate each other
(i.e., the n+ 1 zeros of En+1(t) separate the n zeros of the orthogonal polynomial∏n
ν=1(t− xν)); and
(iii) all quadrature weights are positive.
On the basis of the above facts, it seems it is most natural to consider Chakalov-

Popoviciu-Kronrod quadratures (2.6) in which m = n+ 1, i.e.,

(2.7)

∫ b

a

f(t)ω(t) dt ≈
n∑
ν=1

2sν∑
i=0

bνif
(i)(xν) +

n+1∑
µ=1

2s∗µ∑
j=0

c∗µjf
(j)(x∗µ).

We know that in the general case of quadratures with multiple nodes not all quad-
rature weights have to be positive. Therefore, for Kronrod extensions of Gaussian
quadrature formulas with multiple nodes we cannot consider the property (iii) as
desirable.

On the other hand, it is desirable that the nodes x∗µ, µ = 1, . . . , n+1, be all real,
x∗1 < x∗2 < · · · < x∗n+1, as well as to satisfy the interlacing property, i.e.,

(2.8) x∗1 < x1 < x∗2 < x2 < · · · < xn < x∗n+1.

We are interested in the Chakalov-Popoviciu-Kronrod quadratures (2.7) in which
the nodes x∗µ, µ = 1, . . . , n+ 1, satisfy the property x∗1 < x∗2 < · · · < x∗n+1.

Proposition 2.3. Let the nodes be ordered. The interpolatory quadrature formula

(2.7) with multiple nodes has degree of precision 2
(∑n

ν=1 sν +
∑n+1
µ=1 s

∗
µ

)
+ 3n+ 1

if and only if the following orthogonality conditions

(2.9)

∫ b

a

n∏
ν=1

(t− xν)2sν+1
n+1∏
µ=1

(t− x∗µ)2s∗µ+1tk ω(t) dt = 0, k = 0, 1, . . . , n,

hold.

Proof. Let πn(t) ≡ πn,σ(t) =
∏n
ν=1(t − xν) be the σ-orthogonal polynomial based

on the nodes xν , and E
(σ∗)
n+1 (t) =

∏n+1
µ=1(t − x∗µ) be the corresponding generalized

Stieltjes polynomial based on the nodes x∗µ. The conditions (2.9) can be reinter-
preted in the form

(2.10)

∫ b

a

E
(σ∗)
n+1 (t)πn,σ(t) tk ω̃(t) dt = 0, k = 0, 1, . . . , n,

where ω̃(t) = ω(t)
∏n
ν=1(t − xν)2sν

∏n+1
µ=1(t − x∗µ)2s∗µ is the new implicitly given

weight function (see Engels [7, pp. 214–226]). Therefore, because of (2.10), the

generalized (monic) Stieltjes polynomial E
(σ∗)
n+1 (t) is uniquely determined (cf. [32,

p. 145]).
Suppose now that the quadrature formula (2.7) has the degree of precision

2
(∑n

ν=1 sν +
∑n+1
µ=1 s

∗
µ

)
+ 3n+ 1, and let

fk(t) =

n∏
ν=1

(t− xν)2sν+1
n+1∏
µ=1

(t− x∗µ)2s∗µ+1 tk, k ∈ {0, 1, . . . , n}.

Then, we have that

deg(fk) ≤
n∑
ν=1

(2sν + 1) +

n+1∑
µ=1

(2s∗µ + 1) + n = 2

(
n∑
ν=1

sν +

n+1∑
µ=1

s∗µ

)
+ 3n+ 1.
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Let us determine, for instance, f
(i)
k (x1), i = 0, 1, . . . , 2s1. Using the following

representation fk(t) = (t− x1)2s1+1 uk(t), where

uk(t) =

n∏
ν=2

(t− xν)2sν+1
n+1∏
µ=1

(t− x∗µ)2s∗µ+1 tk, k ∈ {0, 1, . . . , n},

and by using the Leibnitz’s formula, we have

f
(i)
k (t) =

i∑
`=0

(
i

`

)
u

(i−`)
k (t)

(
(t− x1)2s1+1

)(`)
, i = 0, 1, . . . , 2s1.

Therefore, f
(i)
k (x1) = 0, i = 0, 1, . . . , 2s1. In a similar way we conclude that

f
(i)
k (xν) = 0; i = 0, 1, . . . , 2sν , ν = 2, . . . , n,

f
(i)
k (x∗µ) = 0; i = 0, 1, . . . , 2s∗µ, µ = 1, . . . , n+ 1.

Using these facts, for the given functions fk, we have that

n∑
ν=1

2sν∑
i=0

bνif
(i)
k (xν) +

n+1∑
µ=1

2s∗µ∑
j=0

c∗µjf
(j)
k (x∗µ) = 0.

Because of the latter, we conclude that (2.9) holds.
Now, let the orthogonality conditions (2.9) hold. Consider an arbitrary polyno-

mial g(t) of degree ≤ 2
(∑n

ν=1 sν +
∑n+1
µ=1 s

∗
µ

)
+ 3n + 1, which can be represented

in the form

g(t) =

n∏
ν=1

(t− xν)2sν+1
n+1∏
µ=1

(t− x∗µ)2s∗µ+1 un(t) + vq(t),

where un(t), vq(t) are polynomials of the degrees n, q, respectively, and q = 2
(∑n

ν=1 sν+∑n+1
µ=1 s

∗
µ+n

)
. As an interpolatory quadrature formula (2.7) is exact for each poly-

nomial of degree ≤ 2
(∑n

ν=1 sν +
∑n+1
µ=1 s

∗
µ + n

)
. Therefore, because of the last

facts and (2.10),∫ b

a

g(t)ω(t) dt =

∫ b

a

n∏
ν=1

(t− xν)2sν+1
n∏
µ=1

(t− x∗µ)2s∗µ+1 un(t)ω(t) dt+

∫ b

a

vq(t)ω(t) dt

=

∫ b

a

vq(t)ω(t) dt =

n∑
ν=1

2sν∑
i=0

bνiv
(i)
q (xν) +

n+1∑
µ=1

2s∗µ∑
j=0

c∗µjv
(j)
q (x∗µ).

Because of g(i)(xν) = v
(i)
q (xν), ν = 1, . . . , n, i = 0, 1, . . . , 2sν , and g(j)(x∗µ) =

v
(j)
q (x∗µ), µ = 1, . . . , n+ 1, j = 0, 1, . . . , 2s∗µ, the previous formula reduces to∫ b

a

g(t)ω(t) dt =

n∑
ν=1

2sν∑
i=0

bνig
(i)(xν) +

n+1∑
µ=1

2s∗µ∑
j=0

c∗µjg
(j)(x∗µ),

what means that the quadrature formula (2.7) has the degree of precision 2(
∑n
ν=1 sν+∑n+1

µ=1 s
∗
µ) + 3n+ 1. �
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For the uniqueness of the Chakalov-Popoviciu-Kronrod quadrature formula (2.7)
we have the following statement.

Proposition 2.4. If the interpolatory quadrature formula (2.7) with multiple nodes

and degree of precision 2
(∑n

ν=1 sν +
∑n+1
µ=1 s

∗
µ

)
+ 3n+ 1 exists, then it is unique.

Proof. Let us write the interpolatory quadrature formula of type (2.7) in the form

(2.11)

∫ b

a

f(t)ω(t) dt ≈
2n+1∑
ν=1

2sν∑
i=0

aνif
(i)(xν),

where n of its nodes xν are fixed. It has a degree of precision equal to N =
3n+ 2

∑2n+1
ν=1 sν + 1 if and only if K = 2n+ 1 + 2

∑2n+1
ν=1 sν coefficients aνi satisfy

the following system of N + 1 linear equations

(2.12)

2n+1∑
ν=1

2sν∑
i=0

aνiu
(i)
j (xν) =

∫ b

a

uj(t)ω(t) dt, j = 0, 1, . . . , N,

where uj(t), j = 0, 1, . . . , N , are linearly independent functions from the space

πN (R). Assume the matrix
[
u

(i)
j (xν)

]
with N + 1 rows and K columns has rank

N + 1 − q (q > 1 because N > K). If all nodes are mutually different, this is
equivalent to the following statement: The boundary differential problem

(2.13)
dN+1u

dtN+1
= 0, u

(i)
j (xν) = 0 (i = 0, 1, . . . , 2sν ; ν = 1, 2, . . . , 2n+ 1)

has q linearly independent solutions Uk, k = 0, 1, . . . , q − 1 (see [14, pgs. 41–43]).
The system (2.12) is consistent if and only if the q conditions

(2.14)

∫ b

a

Uk(t)ω(t) dt = 0, k = 0, 1, . . . , q − 1,

are satisfied. In that case (2.12) has ∞K−(N+1−q) solutions. (We use the same
notation as in [14].)

It is easy to see that the problem (2.13) has the following n + 1 linearly inde-
pendent nontrivial solutions

tk
2n+1∏
ν=1

(t− xν)2sν+1, k = 0, 1, . . . , n.

Denoting them as Uk(t), the conditions (2.14) become the conditions (2.9). The
system (2.12) has one and only one solution, because

K − (N + 1− q) =

(
2n+ 1 + 2

2n+1∑
ν=1

sν

)
+ (n+ 1)−

(
3n+ 2

2n+1∑
ν=1

sν + 2

)
= 0.

�

The above results can be obtained for the more general case of the quadrature
formula (2.7). Namely, for each node x∗µ /∈ (a, b) instead of the multiplicity 2s∗µ + 1

the multiplicity n∗µ + 1 (n∗µ ∈ N0) can be considered, since the factor (t− x∗µ)n
∗
µ+1

does not change sign on (−1, 1) and thus ω̃ is a weight function.
For calculating the weight coefficients in (2.7) we can use the numerically stable

methods from [16], [28], [43].
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2.2. Explicit expressions of the generalized Stieltjes polynomials. We now
study some cases of the quadrature formula (2.7) in detail for a subclass of the
Gori-Micchelli weight functions, as well as for the generalized Chebyshev weights.
• As first, consider a subclass of the Gori-Micchelli weight functions,

(2.15) ωn,`(t) =

[
Un−1(t)

n

]2`

(1− t2)`−1/2, ` ∈ {0, 1, . . . , s}, s ∈ N.

In the particular case ` = 0, (2.15) reduces to the Chebyshev weight function of
first kind ωn,0(t) = (1− t2)−1/2.

Recall that for the weight functions (2.15), the Chebyshev polynomials of first
kind Tn are s-orthogonal. In this case (σ = σn = (s, s, . . . , s)), the orthogonality
conditions (2.9) have the form

(2.16)

∫ 1

−1

[Tn(t)]2s+1
n+1∏
µ=1

(t− x∗µ)2s∗µ+1 tk U2`
n−1(t)(1− t2)`−1/2 dt = 0,

where k = 0, 1, . . . , n. If

α

n+1∏
µ=1

(t− x∗µ)2s∗µ+1 = [Un−1(t)]2s+1−2`(t2 − 1)s+1−`,

where α is a normalization constant, then the conditions (2.16) obtain the form∫ 1

−1

[Un−1(t)Tn(t)]2s+1 tk (1− t2)1/2+s dt = 0, k = 0, 1, . . . , n,

and since 2Tn(t)Un−1(t) = U2n−1(t) (cf. Monegato [32, Eq. (21), p. 143]),∫ 1

−1

[U2n−1(t)]2s+1 tk (1− t2)1/2+s dt = 0, k = 0, 1, . . . , n.

In fact, the last conditions hold for k = 0, 1, . . . , 2n − 2 (see [34]), which means
that it has to be 2n − 2 ≥ n, i.e., n ≥ 2. Therefore, in this case (n ≥ 2, σ∗n+1 =
((s − `)/2, s − `, . . . , s − `, (s − `)/2)), when the quadrature formula (2.2) has the
form (x∗1 = −1, x∗n+1 = 1)∫ 1

−1

f(t)ωn,`(t) dt ≈
n∑
ν=1

2s∑
i=0

bνif
(i)(xν) +

n∑
µ=2

2(s−`)∑
j=0

c∗µjf
(j)(x∗µ)(2.17)

+

s−∑̀
j=0

(
c∗1,jf

(j)(−1) + c∗n+1,jf
(j)(1)

)
,

we have just proved the following statement.

Theorem 2.5. In the Kronrod extension (2.17) of the Gauss-Turán quadrature
formula (2.5), where sν = s, ν = 1, . . . , n, with the weight function (2.15), and

for n ≥ 2, the corresponding generalized Stieltjes polynomial E
(σ∗)
n+1 (t) is given by

E
(σ∗)
n+1 (t) ≡ (t2 − 1)Un−1(t), i.e., the nodes x∗µ, µ = 2, . . . , n, are the zeros of the

Chebyshev polynomial of second kind Un−1(t) and x∗1 = −1, x∗n+1 = 1.

The zeros of Tn(t) and E
(σ∗)
n+1 (t) interlace (i.e., satisfy the property (2.8)), since

2(t2 − 1)Un−1(t) = 2n−1(t2 − 1)T ′n(t) (cf. [41, Lemma 1, p. 180]).
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The algebraic degree of precision of the quadrature formula (2.17) as a Kronrod
extension is N = n(4s− 2`+ 3) + 1.

Corollary 2.6. There exists a unique quadrature formula of the form∫ 1

−1

f(t)(1− t2)1/2+s[Un−1(t)]2s+1 dt ≈
n∑
ν=1

2s∑
i=0

b̃νif
(i)(xν)

of ADP = 2n(s+1) (n ≥ 2). Its nodes xν are the zeros of the Chebyshev orthogonal
polynomial of the first kind Tn and the coefficients can be calculated using (2.4) via
the coefficients of quadrature formula (2.17).

There also exists a unique quadrature formula of the form∫ 1

−1

f(t)ωn,`(t)[Tn(t)]2s+1 dt ≈
n∑
µ=2

2(s−`)∑
j=0

c̃∗µjf
(j)(x∗µ)+

s−∑̀
j=0

[
c̃∗1,jf

(j)(−1) + c̃∗n+1,jf
(j)(1)

]
of ADP = 2n(s − ` + 1) + 1 (n ≥ 2). Its nodes x∗µ are the zeros of the Chebyshev
orthogonal polynomial of second kind Un−1(t) and the coefficients can be calculated
using (2.4) via the coefficients of quadrature formula (2.17).

We see that the first interpolatory quadrature formula in this corollary is the
quadrature formula (2.21) below with n−1 nodes. Thus, it has the algebraic degree
of precision (n− 1)(2s+ 3) + 2s+ 1, and we conclude that the quadrature formula
(2.17) has the algebraic degree of precision ADP = N = 2n(2s− `+ 2)− 1 (n ≥ 2).
Therefore, the quadrature formula (2.17) is the Chakalov-Popoviciu-Lobatto type
quadrature formula. Finally, the second quadrature formula in Corollary 2.6 has
the algebraic degree of precision ADP = n(2s− 2`+ 3)− 1, and it is the Gaussian
quadrature formula in the cases when s− ` is odd.

Consider now the generalized Chebyshev weight functions of the second, third
and fourth kind.
• Let σn = (s, . . . , s) and ω(t) ≡ w2(t) = (1 − t2)1/2+s. The orthogonality

conditions (2.9), in this case, reduce to

(2.18)

∫ 1

−1

[Un(t)]2s+1
n+1∏
µ=1

(t− x∗µ)2s∗µ+1 tk (1− t2)1/2+s dt = 0, k = 0, 1, . . . , n.

If β
∏n+1
µ=1(t − x∗µ)2s∗µ+1 = T 2s+1

n+1 (t), where β is a normalization constant and

σ∗n+1 = (s, s, . . . , s), then the conditions (2.18) obtain the form, since Tn+1(t)Un(t) =
U2n+1(t)/2, ∫ 1

−1

[U2n+1(t)]2s+1 tk (1− t2)1/2+s dt = 0, k = 0, 1, . . . , n.

In fact, the last conditions hold for k = 0, 1, . . . , 2n. Therefore, in this case, when
the quadrature formula (2.7) has the form

(2.19)

∫ 1

−1

f(t) (1− t2)1/2+s dt ≈
n∑
ν=1

2s∑
i=0

bνif
(i)(xν) +

n+1∑
µ=1

2s∑
j=0

c∗µjf
(j)(x∗µ),

we have just proved the following statement:

Theorem 2.7. In the Kronrod extension (2.19) of the Gauss-Turán quadrature for-
mula (2.5), where sν = s, ν = 1, . . . , n, with the weight function ω2(t) = (1−t2)1/2+s



KRONROD EXTENSIONS WITH MULTIPLE NODES OF QUADRATURE ... 11

the corresponding generalized Stieltjes polynomial E
(σ∗)
n+1 (t) (σ∗n+1 = (s, s, . . . , s)) is

given by E
(σ∗)
n+1 (t) ≡ Tn+1(t), i.e., the nodes x∗µ, µ = 1, . . . , n + 1, are the zeros of

the Chebyshev polynomial Tn+1(t).

It is obvious that in this case the interlacing property (2.8) holds, since it holds
for the polynomials Un(t) and Tn+1(t). The algebraic degree of precision of the
quadrature formula (2.19) is N = 2(2n + 1)(s + 1), since it is in fact the Gauss-
Turán quadrature.

Corollary 2.8. There exists a unique Gaussian quadrature formula of the form

(2.20)

∫ 1

−1

f(t) (1− t2)1/2+s[Tn+1(t)]2s+1 dt ≈
n∑
ν=1

2s∑
i=0

b̃νif
(i)(xν),

of ADP = n(2s + 3). Its nodes xν are the zeros of the Chebyshev polynomial of
second kind Un and the coefficients can be calculated using (2.4) via the coefficients
of quadrature formula (2.19).

There also exists a unique Gaussian quadrature formula of the form

(2.21)

∫ 1

−1

f(t) (1− t2)1/2+s[Un(t)]2s+1 dt ≈
n+1∑
µ=1

2s∑
j=0

c̃∗µjf
(j)(x∗µ)

of ADP = n(2s+3)+2s+1. Its nodes x∗µ are the zeros of the Chebyshev polynomial
of first kind Tn+1 and the coefficients can be calculated using (2.4) via the coefficients
of quadrature formula (2.19).

• Let σn = (s, . . . , s) and ω(t) ≡ ω4(t) = (1 − t)1/2+s(1 + t)−1/2. The orthogo-
nality conditions (2.9), in this case, reduce to
(2.22)∫ 1

−1

[P (1/2,−1/2)
n (t)]2s+1

n+1∏
µ=1

(t−x∗µ)2s∗µ+1 tk (1−t)1/2+s(1+t)−1/2 dt = 0, k = 0, 1, . . . , n,

where P
(1/2,−1/2)
n is the Jacobi polynomial orthogonal on (−1, 1) with respect to

the weight function (1− t)1/2(1 + t)−1/2 (see [34]). If

γ

n+1∏
µ=1

(t− x∗µ)2s∗µ+1 = (1 + t)s+1[P (−1/2,1/2)
n (t)]2s+1,

where γ is a normalization constant and σ∗n+1 = (s/2, s, . . . , s), then the conditions
(2.22) reduce to the form∫ 1

−1

[U2n(t)]2s+1 tk (1− t2)1/2+s dt = 0, k = 0, 1, . . . , n,

since P
(1/2,−1/2)
n (t)P

(−1/2,1/2)
n (t) = const · U2n(t) (cf. [32, Eq. (33), p. 147]). In

fact, these conditions hold for k = 0, 1, . . . , 2n − 1. Therefore, in this case, when
the quadrature formula (2.7) has the form (x∗1 = −1)
(2.23)∫ 1

−1

f(t)ω4(t) dt ≈
n∑
ν=1

2s∑
i=0

bνif
(i)(xν) +

n+1∑
µ=2

2s∑
j=0

c∗µjf
(j)(x∗µ) +

s∑
j=0

c∗1,jf
(j)(−1),

we have just proved the following statement:
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Theorem 2.9. In the Kronrod extension (2.23) of the Gauss-Turán quadrature
formula (2.5), where sν = s, ν = 1, . . . , n, with the weight function ω4(t) =

(1 − t)1/2+s(1 + t)−1/2 the corresponding generalized Stieltjes polynomial E
(σ∗)
n+1 (t)

(σ∗n+1 = (s/2, s, . . . , s)) is given by E
(σ∗)
n+1 (t) ≡ (t+ 1)P

(−1/2,1/2)
n (t), i.e., the nodes

x∗µ, µ = 2, . . . , n+ 1, are the zeros of P
(−1/2,1/2)
n and x∗1 = −1.

It is obvious that for this case the interlacing property (2.8) holds, since it holds

for the zeros of the polynomials P
(1/2,−1/2)
n and (t+ 1)P

(−1/2,1/2)
n (t).

The algebraic degree of precision of the quadrature formula (2.23) as a Kronrod
extension is N = n(4s+ 3) + s+ 1.

Corollary 2.10. There exists a unique quadrature formula of the form∫ 1

−1

f(t) (1− t2)1/2+s[P (−1/2,1/2)
n (t)]2s+1 dt ≈

n∑
ν=1

2s∑
i=0

b̃νif
(i)(xν),

of ADP = n(2s + 3) − 1. Its nodes xν are the zeros of the Chebyshev orthogonal

polynomial of fourth kind P
(1/2,−1/2)
n and the coefficients can be calculated using

(2.4) via the coefficients of quadrature formula (2.23).
There also exists a unique quadrature formula of the form∫ 1

−1

f(t)
(1− t)1/2+s

(1 + t)1/2
[P (1/2,−1/2)
n (t)]2s+1 dt ≈

n+1∑
µ=2

2s∑
j=0

c̃∗µjf
(j)(x∗µ) +

s∑
j=0

c̃∗1,jf
(j)(−1)

of ADP = n(2s + 3) + s. Its nodes x∗µ are the zeros of the Chebyshev orthogonal

polynomial of third kind P
(−1/2,1/2)
n and the coefficients can be calculated using (2.4)

via the coefficients of quadrature formula (2.23).

Proof. Consider the quadrature formula (2.23). By using Theorem 2.2 we conclude
that the corresponding quadrature formula∫ 1

−1

f(t) (1− t2)1/2+s dt ≈
n∑
ν=1

2s∑
i=0

b̂νif
(i)(xν) +

n+1∑
µ=2

2s∑
j=0

ĉ∗µjf
(j)(x∗µ)

has the algebraic degree of precision N = 4n(s + 1) − 1, and the quadrature for-
mula (2.23) as the Gauss-Turán-Radau type quadrature has the algebraic degree of
precision 4n(s+ 1) + s. The assertion of the corollary follows. �

Both quadrature formulas from Corollary 2.10 are the Gaussian ones in the cases
when s is odd.
• When the quadrature formula (2.7) has the form (x∗n+1 = 1)∫ 1

−1

f(t)ω3(t) dt ≈
n∑
ν=1

2s∑
i=0

bνif
(i)(xν) +

n∑
µ=1

2s∑
j=0

c∗µjf
(j)(x∗µ) +

s∑
j=0

c∗n+1,jf
(j)(1),

where ω3(t) = (1 − t)−1/2(1 + t)1/2+s is the generalized Chebyshev weight of the
third kind, in a similar way as in the previous case the following statement can be
proved.

Theorem 2.11. In the previous Kronrod extension of the Gauss-Turán quadra-
ture formula (2.5), where sν = s, ν = 1, . . . , n, with the weight function ω3(t) =

(1 − t)−1/2(1 + t)1/2+s the corresponding generalized Stieltjes polynomial E
(σ∗)
n+1 (t)
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(σ∗n+1 = (s, . . . , s, s/2)) is given by E
(σ∗)
n+1 (t) ≡ (t− 1)P

(1/2,−1/2)
n (t), i.e., the nodes

x∗µ, µ = 1, . . . , n, are the zeros of P
(1/2,−1/2)
n (t) and τ∗n+1 = 1.

Now, an analogous corollary as Corollary 2.10 can be formulated.
We finish this section by adding some remarks concerning the computational

aspects of the results by Bojanov and Petrova [3], and by extending their results
from [3, Corollary 2.5] to the more general case.

Corollary 2.3 in [3] says that if one chooses points x1 < x2 < · · · < xn and even
multiplicities νj , j = 1, . . . , n, so that Λ(t;x) be the corresponding σ-orthogonal
(σ = (ν1/2, . . . , νn/2)) polynomial with respect to the weight ω, then it is possible to
construct the monic polynomial Pk(t) = (t−y1) · · · (t−yk) orthogonal on [a, b] with
respect to the measure ω(t) Λν̄(t;x) (see [10], [12], [18]). Therefore, the points ym,
m = 1, . . . , k, with multiplicity 1, and the points xj with multiplicities νj + 1, j =
1, . . . , n, are the nodes in the uniquely determined Gaussian quadrature formula,

(2.24)

∫ b

a

ω(t)f(t) dt ≈
k∑

m=1

bm0f(ym) +

n∑
j=1

νj−1∑
i=0

ajif
(i)(xj),

with ADP= 2k+
∑n
j=1 νj +n−1. The coefficients of the last quadrature are calcu-

lated as the ones in the interpolatory quadrature formula (see [28], [43]). Now, the
coefficients cji (j = 1, . . . , n; i = 0, 1, . . . , νj − 1) in the corresponding quadrature
formula (1.3) are calculated by (2.4), where aji (j = 1, . . . , n; i = 0, 1, . . . , νj − 1)
are from (2.24).

Corollary 2.12. For any given set of even multiplicities ν̄ = (ν1, . . . , νn) and
weight ω, there exists a unique Gaussian quadrature (with ADP= ν1+· · ·+νn+n−1)
of the form

(2.25)

∫ b

a

ω(t)Λ(t;x)f(t) dt ≈
n∑
j=1

νj−1∑
i=0

cjif
(i)(xj).

Its nodes {xj}nj=1 are the nodes of the Chakalov-Popoviciu quadrature formula

(2.26)

∫ b

a

ω(t)f(t) dt ≈
n∑
j=1

νj∑
i=0

ajif
(i)(xj)

of ADP= ν1 + · · ·+ νn + 2n− 1, and sign(cj,νj−1) = (−1)n−j, j = 1, . . . , n.

Proof. Since the first part of this corollary states the same as Corollary 2.4 in [3],
it only remains to prove the last part. Applying (2.26) to Λ(·;x)Q, where Q is a
polynomial of degree ν1 + · · ·+ νn + n− 1, we have that

[Λ(t;x)Q(t)]
(i)

(xj) = iΛj(xj ;x)Q(i−1)(xj)+

i−2∑
`=0

d`jQ
(`)(xj), i = 2, . . . ,min(n, νj),

and therefore we obtain (2.25), where

cji =

νj∑
s=i+1

ajs

(
s

i

)
Λ(s−i)(xj ;x) (j = 1, . . . , n; i = 0, 1, . . . , νj − 1).

Therefore, cj,νj−1 = aj,νj
(
νj
νj−1

)
Λ′(xj ;x) = νj aj,νjΛj(xj ;x), and since aj,νj > 0,

when νj is even, we conclude that sign(cj,νj−1) = sign(Λj(xj ;x)) = (−1)n−j , j =
1, . . . , n. The proof follows. �
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3. Connection to Gauss-Kronrod and generalized averaged Gaussian
quadrature formulas

Consider quadrature formulas of the type

(3.1)

∫ b

a

f(t)Pn(t)ω(t) dt ≈
n+1∑
j=1

bjf(xj), Pn(t) = (t− y1)(t− y2) · · · (t− yn),

where y := (y1, . . . , yn) is a given set of points and yi 6= xj for all i and j. Let Pn(t)
be the monic orthogonal polynomial with respect to the weight function ω(t).

Following Bojanov and Petrova [3, Sections 3.1, 3.2]), we associate with (3.1)
the quadrature formula

(3.2)

∫ b

a

f(t)ω(t) dt ≈
n∑
j=1

αjf(yj) +

n+1∑
j=1

βjf(xj).

We know that (3.2) has ADP = N if and only if the quadrature (3.1) has ADP =
N − n. The coefficients bj , j = 1, . . . , n+ 1, are given by the relation (see [3, Sect.
3.2])

(3.3) bj = βjPn(xj), j = 1, . . . , n+ 1.

Lemma 3.4 in [3] shows that the question of constructing formulas of type (3.1) of
the highest ADP with n+ 1 nodes in a special case when Pn(t) is fixed to be n-th
polynomial on [a, b] with the weight ω becomes a question of constructing Gauss-
Kronrod formulas of type (3.2) on [a, b] with the weight ω. In fact, in this case
N = 3n+ 1, and ADP(3.1) = N − n = 2n+ 1. In the case when the corresponding
Gauss-Kronrod quadrature formula is positive, there exist the effective numerical
procedures of its numerically stable construction given by Laurie [23], and Calvetti
et al. [4] (see also Monegato [33]).

The existence of the positive Gauss-Kronrod q.f. depends on ω, and there are
several cases of non-existence known, e. g. for the Gauss–Laguerre and Gauss–
Hermite cases [19]. Recently, for the Gegenbauer weight ω(α,α)(t) = (1 − t2)α,
Peherstorfer and Petras [36] have shown nonexistence of Gauss–Kronrod formulas
for n sufficiently large and α > 5/2. Analogous results for the Jacobi weight function
ω(α,β)(t) = (1−t)α(1+t)β can be found in their paper [37], particularly nonexistence
for large n of Gauss–Kronrod formulas when min(α, β) ≥ 0 and max(α, β) > 5/2.
In such cases it is of interest to find an adequate alternative to the corresponding
Gauss–Kronrod quadrature formulae.

An alternative approach are the Anti-Gaussian formulas introduced by Laurie
[22], which have been slightly generalized in [6], and in Spalević’s paper [39]. Such
formulas always exist and are positive. In [39] it is proposed a very simple numer-
ical method for constructing the averaged Gaussian quadrature formulas. In [40]
it was tried to answer whether the averaged Gaussian formulas are an adequate
alternative to the corresponding Gauss–Kronrod quadrature formulas, to estimate
the remainder term of a Gaussian rule.

The maximal polynomial degree of precision of the generalized averaged Gaussian
quadrature formulas (3.1) in general is N = 2n + 2 (2n + 3 in the symmetric
case [a, b] = [−c, c], ω(−t) = ω(t)) (see [39, p. 1486]). Therefore, in these cases
ADP(3.1) = N − n = n+ 2 (n+ 3 in the symmetric case).
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Example. In [39, Ex. 2.2] the Jacobi weight function ω(α,β)(t) with α =
1/10, β = 13/5, on [−1, 1] is considered. Respective Matlab routines r jacobi.m,
for the coefficients in the three-term recurrence relation of the corresponding Jacobi
orthogonal polynomials, and gauss.m, for the nodes and weight coefficients in the
corresponding Gauss quadrature formula, are downloadable from the Web site of
Walter Gautschi, which contains a suite of many other useful routines, in part
assembled as a companion piece to the book in [10]. So, the nodes and corresponding
weight coefficients of the corresponding quadrature formula (3.2) are displayed in
the table in [39, p. 1488].

As we have observed there, the corresponding quadrature formula (3.2), which
has the degree of exactness 2n+ 2, is an extension of Gauss formula. Nonexistence
for large n of Gauss-Kronrod formulae, for the case of Jacobi weight function under
consideration has been proved by Peherstorfer and Petras [35]. Using the Mat-
lab routine kronrod.m, which is downloadable from the mentioned Web site, we
obtained in the considered case (ω(1/10,13/5)(t), n = 14) that the Gauss-Kronrod
quadrature formula does not exist. For 1 ≤ n ≤ 13 the Matlab routine kronrod.m

generates the corresponding Gauss-Kronrod quadrature formulas.
Now, the nodes and the weight coefficients in (3.1) in the considered Jacobi case,

obtained by (3.3), are given as follows.

x1 =− 9.686625499734723e− 001 b1 = 3.238722682811740e− 008

x2 =− 8.878728134056509e− 001 b2 = − 1.654833893907501e− 007

x3 =− 7.743502857984884e− 001 b3 = 4.574035484062901e− 007

x4 =− 6.309958682484870e− 001 b4 = − 9.390505362302107e− 007

x5 =− 4.632684854851569e− 001 b5 = 1.610843298436290e− 006

x6 =− 2.776956155761358e− 001 b6 = − 2.438855724849397e− 006

x7 =− 8.152901380092521e− 002 b7 = 3.356667231984657e− 006

x8 = 1.175565290185397e− 001 b8 = − 4.271741556540400e− 006

x9 = 3.117686462151886e− 001 b9 = 5.075337723677705e− 006

x10 = 4.935042803199599e− 001 b10 =− 5.654368868938921e− 006

x11 = 6.556481067408614e− 001 b11 = 5.903012486495493e− 006

x12 = 7.918514028863188e− 001 b12 =− 5.730895950696384e− 006

x13 = 8.967804407043425e− 001 b13 = 5.061534260973886e− 006

x14 = 9.663230344398555e− 001 b14 =− 3.797258505019950e− 006

x15 = 9.977311827889372e− 001 b15 = 1.500468754863419e− 006

4. Quadratures with fixed multiple nodes

Here, we discuss quadratures of the form

(4.1)

∫ b

a

ω(t)Λµ̄(t;y)f(t) dt ≈
k∑

m=1

λm−1∑
s=0

bmsf
(s)(ym) +

n∑
j=1

νj−1∑
i=0

ajif
(i)(xj),

where all {µi}ki=1, {λm}km=1, {νj}nj=1 are odd nonnegative integers, which generalize
the quadratures [3, Eq. (3.7)]. The nodes y1, . . . , yk are fixed and we look for n
other points x1, . . . , xn, to obtain highest possible ADP. Let us suppose in this
section that yi, xj ∈ (a, b) (i = 1, . . . , k; j = 1, . . . , n), and yi 6= xj for all i, j.
Clearly, if n = 0 the maximal ADP of such formula will be λ1 + · · ·+ λk − 1, since
the formula will not be exact for Λµ̄(t;y). In this case any interpolatory formula
based on the nodes {yi}ki=1 is Gaussian. The following theorem is true.
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Theorem 4.1. For any given set of distinct points y = (y1, . . . , yk) and odd mul-
tiplicities λ1, . . . , λk, there exists a unique quadrature formula of the form (4.1) of

highest ADP (which is
∑k
m=1 λm +

∑n
j=1 νj +n− 1). The nodes {xj}nj=1, with odd

multiplicities ν̄ = (ν1, . . . , νn), coincide with the nodes of the Ghakalov-Popoviciu
quadrature formula with ADP =

∑n
j=1 νj + n− 1,

(4.2)

∫ b

a

ω̃(t)g(t) dt ≈
n∑
j=1

νj−1∑
i=0

αjig
(i)(xj),

where the weight function ω̃ is given by

(4.3) ω̃(t) = ω(t)Λµ̄(t;y)Λλ̄(t;y) = ω(t)Λµ̄+λ̄(t;y),

and the coefficients aji in (4.1) are computed from the coefficients αjk in (4.2) by

(4.4) aji =

νj−1∑
k=i

(
k

i

)(
Λλ̄(t;y)−1

)(k−i)

t=xj
αjk, j = 1, . . . , n; i = 0, 1, . . . , νj − 1.

Proof. Let H be the Hermite interpolating polynomial of degree λ1 + · · ·+ λk − 1
for the function f and nodes y. Then, by Newton’s formula,

(4.5) f(t) = H(t) + f [yλ1
1 , . . . , yλkk , t]Λλ̄(t;y).

Multiplying this identity by ω(t)Λµ̄(t;y) and integrating over [a, b] we obtain
(4.6)∫ b

a

ω(t)Λµ̄(t;y)f(t) dt =

∫ b

a

ω(t)Λµ̄(t;y)H(t) dt+

∫ b

a

ω̃(t)f [yλ1
1 , . . . , yλkk , t] dt,

where ω̃ is given by (4.3). It is well known that the Hermite interpolating polyno-
mial of degree λ1 + · · ·+ λk − 1 has the form

H(t) =

k∑
m=1

λm−1∑
s=0

`ms(t)f
(s)(ym),

where `ms(t) are the fundamental functions of Hermite interpolation, so that we
have ∫ b

a

ω(t)Λµ̄(t;y)H(t) dt =

k∑
m=1

λm−1∑
s=0

Cmsf
(s)(ym),

where Cms =
∫ b
a
ω(t)Λµ̄(t;y)`ms(t) dt, m = 1, . . . , k; s = 0, 1, . . . , λm − 1. Further,

by using the uniqueness of the Chakalov-Popoviciu quadrature formula (4.2) with
respect to the weight function ω̃(t), given by (4.3), we have∫ b

a

ω̃(t)f [yλ1
1 , . . . , yλkk , t] dt =

n∑
j=1

νj−1∑
i=0

αjif
(i)[yλ1

1 , . . . , yλkk , xj ],

which is exact for each polynomial f of degree at most
∑k
m=1 λm+

∑n
j=1 νj +n−1,

since then f [yλ1
1 , . . . , yλkk , t] is a polynomial of degree

∑n
j=1 νj + n − 1. We have

used the notation

f (i)[yλ1
1 , . . . , yλkk , xj ] =

di

dti

(
f [yλ1

1 , . . . , yλkk , t]
)∣∣∣∣
t=xj

.
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From (4.5), we have f [yλ1
1 , . . . , yλkk , t] = f(t)

[
Λλ̄(t;y)

]−1 −H(t)
[
Λλ̄(t;y)

]−1
and

f (i)[yλ1
1 , . . . , yλkk , t] =

i∑
ν=0

(
i

ν

)
f (ν)(t)

[
Λλ̄(t;y)−1

](i−ν) −
i∑

ν=0

(
i

ν

)
H(ν)(t)

[
Λλ̄(t;y)−1

](i−ν)

=

i∑
ν=0

(
i

ν

)[
Λλ̄(t;y)−1

](i−ν)

{
f (ν)(t)−

k∑
m=1

λm−1∑
s=0

`(ν)
ms(t)f

(s)(ym)

}
.

By using the last equality, we obtain

n∑
j=1

νj−1∑
i=0

αji f
(i)[yλ1

1 , . . . , yλkk , xj ] =

n∑
j=1

νj−1∑
i=0

αji

i∑
ν=0

(
i

ν

)[
Λλ̄(t;y)−1

](i−ν)

t=xj
f (ν)(xj)

+

k∑
m=1

λm−1∑
s=0

α̃msf
(s)(ym),

where

α̃ms = −
n∑
j=1

νj−1∑
i=0

αji

i∑
ν=0

(
i

ν

)[
Λλ̄(t;y)−1

](i−ν)

t=xj
`(ν)
ms(xj).

Finally, we can easily derive that

αji

i∑
ν=0

(
i

ν

)[
Λλ̄(t;y)−1

](i−ν)

t=xj
f (ν)(xj) = ajif

(i)(xj),

where aji (j = 1, . . . , n; i = 0, 1, . . . , νj − 1) are given by (4.4).
Therefore, the coefficients {αji} (j = 1, . . . , n; i = 0, 1, . . . , νj−1) and the nodes

{xj}nj=1 are uniquely characterized as parameters of the Gaussian quadrature (4.2).
It follows that the coefficients {aji} (j = 1, . . . , n; i = 0, 1, . . . , νj−1) given by (4.4)
and {bms} (m = 1, . . . , k; s = 0, 1, . . . , λm − 1) in (4.1), are uniquely determined
because the formula (4.1) is of interpolatory type. The proof is completed. �

Theorem 4.1, which generalizes Theorem 3.6 in [3], shows that one can improve
the precision of the quadrature∫ b

a

ω(t)Λµ̄(t;y)f(t) dt ≈
k∑

m=1

λm−1∑
s=0

βmsf
(s)(ym), Λµ̄(t;y) =

k∏
i=1

(t− yi)µi ,

where µi (i = 1, . . . , k), λm (m = 1, . . . , k) are nonnegative odd integers, following
the strategy of Kronrod, namely by adding additional nodes {xj}nj=1 which are of
multiplicities νj (j = 1, . . . , n), where νj (j = 1, . . . , n) are nonnegative odd integers.

One can achieve the highest possible precision
∑k
m=1 λm +

∑n
j=1 νj + n − 1 only

by adding specific nodes, the nodes of the Chakalov-Popoviciu quadrature formula
(4.2) on [a, b] with weight ω̃ given by (4.3).

Corollary 4.2. Let λ1 = · · · = λk = 1 and Pk(t) = Λ(t;y) = (t − y1) · · · (t − yk)
be the k-th σ-orthogonal polynomial with respect to the weight function ω on [a, b],
where σ = ((µ1−1)/2, . . . , (µk−1)/2) and µ1, . . . , µk are nonnegative odd integers.
Then there exists a unique Gaussian quadrature (with ADP = k+

∑n
j=1 νj +n− 1)
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of type (4.1). This formula is∫ b

a

ω(t)Λµ̄(t;y)f(t) dt ≈
n∑
j=1

νj−1∑
i=0

αjif
(i)[y1, y2, . . . , yk, xj ],

where {αji} (j = 1, . . . , n; i = 0, 1, . . . , νj − 1) are the weights and {xj}nj=1 are the
nodes of the Chakalov-Popoviciu quadrature formula on [a, b] with weight ω̂(t) =
ω(t)Λµ̄(t;y)Λ(t;y),

(4.7)

∫ b

a

ω̂(t)g(t) dt ≈
n∑
j=1

νj−1∑
i=0

αjig
(i)(xj).

Proof. Here, H(t) = Lk−1(t), where Lk−1(t) is the Lagrange interpolating polyno-
mial of degree k−1 based on the nodes y1, . . . , yk. The proof follows the argument in

Theorem 4.1 and the fact that the first integral in (4.6),

∫ b

a

ω(t)Λµ̄(t;y)Lk−1(t) dt =

0, because of the σ-orthogonality of Pk. This completes the proof. �

Particularly interesting subcase of Corollary 4.2 is as follows.

Corollary 4.3. Let µm = λm = 1, m = 1, . . . , k, and Pk(t) = Λ(t;y) = (t −
y1) · · · (t− yk) be the k-th orthogonal polynomial with respect to the weight function
ω on [a, b]. Then there exists a unique Gaussian quadrature (with ADP = k +∑n
j=1 νj + n− 1) of type

(4.8)

∫ b

a

ω(t)Pk(t)f(t) dt ≈
k∑

m=1

bmf(ym) +

n∑
j=1

νj−1∑
i=0

ajif
(i)(xj).

This formula is∫ b

a

ω(t)Pk(t)f(t) dt ≈
n∑
j=1

νj−1∑
i=0

αjif
(i)[y1, y2, . . . , yk, xj ],

where {αji} (j = 1, . . . , n; i = 0, 1, . . . , νj − 1) are the weights and {xj}nj=1 are the
nodes of the Chakalov-Popoviciu quadrature formula (4.7) on [a, b] with the weight
function ω̂(t) = ω(t)Pk(t)2.

A very popular method for obtaining a practical error estimate in numerical
integration by standard quadratures is to use two quadrature formulae A and B,
where the nodes used by formula B form a proper subset of those used by formula
A, and where the rule A is also of higher degree of precision. Kronrod originated
this method (see [20]), which has been used many times to date. For more details
concerning with this theory for standard quadrature formulas see for example [32],
[33], [22], [39], [40]. The difference |A(f) − B(f)|, where f is the integrand, is
usually quite a good estimate of the error for the rule B. We are not aware, in
the theory of standard quadratures, of the case where A is a quadrature based on
Gauss nodes, and B is its Kronrod extension with multiple nodes.

Let Pk be the k-th orthogonal polynomial with respect to the weight ω on [a, b].
Theorem 3.6 of Bojanov and Petrova [3] shows that one can improve the pre-

cision of the quadrature formula
∫ b
a
ω(t)Pk(t)f(t) dt ≈

∑k
m=1 βmf(ym), Pk(t) =

(t − y1) · · · (t − yk), following the strategy of Kronrod by adding additional nodes
{xj}nj=1. The case n = k + 1 is best known. One can achieve the highest possible
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precision 3k + 1 only by adding specific nodes, the nodes of the Gauss quadrature
on [a, b] with the weight ω P 2

k . But, what we wish to point out here, on the basis of

Corollary 4.3, is that one can achieve the highest possible precision 2k+
∑k+1
j=1 νj by

adding additional nodes {xj}k+1
j=1 with odd multiplicities νj , j = 1, . . . , k+ 1, being

the nodes of the corresponding Chakalov-Popoviciu quadrature (where n = k + 1)
on [a, b] with the weight ω P 2

k .
Observe that the last quadrature formula is based on the nodes ym, the zeros

of the corresponding orthogonal polynomial Pk with respect to the weight ω. Its
algebraic degree of precision is equal to k − 1. Its coefficients in fact are equal to

zero. Namely, by putting f(t) = Pk(t)/(t−ym), we have 0 =
∫ b
a
ω(t)Pk(t)Pk(t)/(t−

ym) dt = βmP
′
k(ym), which implies βm = 0, m = 1, . . . , k.

Let T̂n and Ûn be the monic Chebyshev polynomials of the first and second kind,
respectively. For the subclass of Gori-Micchelli weight functions of the type (2.15),

ω̂n,s(t) = (1 − t2)1/2+s[Ûn(t)]2s+2, s ∈ N0, the coefficients {αji} (j = 1, . . . , n +
1; i = 0, 1, . . . , 2p) of the Gauss-Turán quadrature formulas

(4.9)

∫ 1

−1

(1− t2)1/2+s[Ûn(t)]2s+2f(t) dt ≈
n+1∑
j=1

2p∑
i=0

αjif
(i)(ξj), p ∈ N,

can be explicitly computed (cf. Gori and Micchelli [17], and especially Yang [45]).

The nodes ξj , j = 1, . . . , n + 1, are the zeros of T̂n+1. From Corollary 4.2 it
immediately follows:

Corollary 4.4. The quadrature formula

(4.10)

∫ 1

−1

(1− t2)1/2+s[Ûn(t)]2s+1f(t) dt ≈
n+1∑
j=1

2p∑
i=0

αjif
(i)[η1, η2, . . . , ηn, ξj ],

where s ∈ N0, p ∈ N, and αji, ξj are the parameters which appear in (4.9), and

η1, . . . , ηn are the zeros of Ûn, is the only Gaussian quadrature formula (exact for all
polynomials of degree (2p+3)n+2p+1), of the form (4.1) with ω(t) = (1−t2)1/2+s,
k := n, n := n+ 1, µi = 2s+ 1, λi = 1, i = 1, . . . , n; νj = 2p+ 1, j = 1, . . . , n+ 1;

Λµ̄(t;y) = [Ûn(t)]2s+1.

We end this section by finding an example which confirms the interesting and
important statement of Corollary 4.3, which is an immediate consequence of Corol-
lary 4.4 for s = 0. Namely, we can construct the Kronrod extension, with multiple
nodes and highest ADP, of the quadrature formula for Chebyshev-Fourier coeffi-
cients of the second kind, which is based on the zeros of Ûn, and with βm = 0,
m = 1, . . . , n, ∫ 1

−1

√
1− t2 Ûn(t)f(t) dt ≈

n∑
m=1

βmf(ηm),

as follows.

Corollary 4.5. The quadrature formula

(4.11)

∫ 1

−1

√
1− t2 Ûn(t)f(t) dt ≈

n+1∑
j=1

2p∑
i=0

αjif
(i)[η1, . . . , ηn, ξj ],
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where p ∈ N, and αji, ξj are the parameters which appear in (4.9) with s = 0, and

η1, . . . , ηn are the zeros of Ûn, is the only Gaussian quadrature formula (exact for

all polynomials of degree (2p+ 3)n+ 2p+ 1), of the form (4.8) with ω(t) =
√

1− t2,
k := n, n := n + 1, µi = λi = 1, i = 1, . . . , n; νj = 2p + 1, j = 1, . . . , n + 1;

Pn = Ûn.

Example. The nodes in (4.9) are zeros of T̂n+1 given by ξj = cos (2j−1)π
2(n+1) ,

j = 1, . . . , n+ 1. The coefficients αji are given by (see [45, Eq. (3.5)])

αj0 =
π(n+ 1)2s+1%0

22(s+1)n+1
, αji =

π(n+ 1)2s+1

22(s+1)n+1

p∑
`=[ i+1

2 ]

(1− ξ2
j )` b2`−i,j,2`

(i− 1)! 22` ` (n+ 1)2`

∑̀
k=0

′
(

2`

`− k

)
%k ,

where bk,j,` = 1
k! (Lj(t)

−`)
(k)
t=ξj

for k ∈ N0, j = 1, . . . , n+ 1, ` ∈ N,

Lj(t) =
T̂n+1(t)

(t− ξj) T̂
′
n+1(ξj)

, j = 1, . . . , n+ 1,

and %k are the coefficients from the Fourier-Chebyshev series of the form

ω̂n,s(t)
√

1− t2 =

(
n+ 1

2n

)2s+2 ∞∑
k=0

′
%k T2k(n+1)(t) ,

where the convergence holds w.r.t. the weighted L1-norm
∫ 1

−1
|f(t)|(1− t2)−1/2dt.

The prime on the summations indicates that the first term is halved.
Finally, the points ηm, m = 1, . . . , n, in (4.10), as the zeros of Ûn, are given by

ηm = cos(mπ/(n+ 1)), m = 1, . . . , n. Some numerical examples of calculating the
coefficients αji from (4.9) by [45, Eq. (3.5)] can be found in [31].

Consider now the calculation of the integral

I = In =

∫ 1

−1

√
1− t2 Ûn(t)f(t) dt (n ∈ N),

by (4.11), where f(t) = et. Let p = 1, for the sake of simplicity. By using the
quoted formulas, we obtain, for j = 1, . . . , n+ 1,

αj0 =
(n+ 1)π

22n+1
%0, αj1 =

π(1− ξ2
j )b1,j,2

22n+3(n+ 1)
(%0+%1), αj2 =

π(1− ξ2
j )

22n+3(n+ 1)
(%0+%1),

where

b0,j,2 = 1, b1,j,2 = −2

n+1∑
k=1,k 6=j

1

ξj − ξk
; %0 =

1

(n+ 1)2
, %0 + %1 =

1

2(n+ 1)2
.

For f(t) = et, t ∈ [−1, 1], and t /∈ {η1, η2, . . . , ηn}, we use the well-known formula

f [η1, . . . , ηn, t] =

n∑
k=1

eηk

Û ′n(ηk)(ηk − t)
+

et

Ûn(t)
,
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Table 1. The coefficients αji from (4.11) when n = 5 and p = 1.

j αj0

1 .2556634646476068716196812649153241279457331867981e-3

2 .2556634646476068716196812649153241279457331867981e-3

3 .2556634646476068716196812649153241279457331867981e-3

4 .2556634646476068716196812649153241279457331867981e-3

5 .2556634646476068716196812649153241279457331867981e-3

6 .2556634646476068716196812649153241279457331867981e-3

j αj1

1 -.8574720254918946739677216669779694286924422719574e-6

2 -.6277130887290624331743990566198128168479950077446e-6

3 -.2297589367628322407933226103581566118444472642128e-6

4 .2297589367628322407933226103581566118444472642128e-6

5 .6277130887290624331743990566198128168479950077446e-6

6 .8574720254918946739677216669779694286924422719574e-6

j αj2

1 .5946598861672669341073580096439351481276194639361e-7

2 .4438601816798730410063910849224377221280090048578e-6

3 .8282543747430193886020463688804819294432560633220e-6

4 .8282543747430193886020463688804819294432560633220e-6

5 .4438601816798730410063910849224377221280090048578e-6

6 .5946598861672669341073580096439351481276194639361e-7

in order to derive the expressions for hi = f (i)[η1, . . . , ηn, ξj ], i ≤ 2. Thus,

h1 =

n∑
k=1

eηk

Û ′n(ηk)(ηk − ξj)2
+

eξj

Ûn(ξj)
− eξj Û ′n(ξj)

Û2
n(ξj)

,

h2 =

n∑
k=1

eηk

Û ′n(ηk)(ηk − ξj)3
+

eξj

Ûn(ξj)
−
eξj
(
2Û ′n(ξj) + Û ′′n (ξj)

)
Û2
n(ξj)

+
2eξj Û ′n(ξj)

2

Û3
n(ξj)

.

In Table 1 the coefficients αji from (4.11) when n = 5 and p = 1 are displayed.
We calculated the integral I = In by the quadrature formula in Corollary 3.10

from [3] (the values In(B)) and by (4.11) (the values In(Q)), for p = 1 and n =
2, 4, 6. The exact digits in In(B) and In(Q) are underlined.

I2 = 5.223312066295347966...e− 2

I2(B) = 5.221557556...e− 2

I2(Q) = 5.223312066295211333...e− 2

I4 = 2.66508330148350987834889652789614...e− 4

I4(B) = 2.6650833004654...e− 4

I4(Q) = 2.66508330148350987834889652770...e− 4

I6 = 5.495100894749276729283075957798070370281965375170...e− 7

I6(B) = 5.49510089474927643322...e− 7

I6(Q) = 5.4951008947492767292830759577980703702819653654...e− 7

The values of In computed by In(Q), for some values of n, are given in Table 2.
The same values are computed and by In(B).
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Table 2. The values of In computed by In(Q), for some values of n.

n In(Q)

8 6.094870483400303e-10

10 4.214999205369452e-13

20 5.939219550071948e-31

30 5.176695099972224e-51

40 1.601990967471637e-72

50 4.093862931060132e-95

At the end let us mention that we have used the traditional way of naming the
Gauss-Kronrod quadratures, although it would have been better to use the name
Gauss-Kronrod-Skutsch quadratures (see [11] for details).
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quadratures, II, Appl. Numer. Math. 60 (2010), 1–9.

32. G. Monegato, Stieltjes polynomials and related quadrature rules, SIAM Rev. 24 (1982), 137–
158.

33. G. Monegato, An overview of the computational aspects of Kronrod quadrature rules, Numer.

Algor. 26 (2001), 173–196.
34. A. Ossicini, F. Rosati, Funzioni caratteristiche nelle formule di quadratura gaussiane con

nodi multipli, Boll. Un. Mat. Ital. (4) 11 (1975), 224–237.

35. F. Peherstorfer, Gauss-Turán quadrature formulas: asymptotics of weights, SIAM J. Numer.
Anal. 47 (2009), 2638–2659.

36. F. Peherstorfer and K. Petras, Ultraspherical Gauss-Kronrod quadrature is not possible for

λ > 3, SIAM J. Numer. Anal. 37 (2000), 927–948.
37. F. Peherstorfer and K. Petras, Stieltjes polynomials and Gauss-Kronrod quadrature for Jacobi

weight functions, Numer. Math. 95 (2003), 689–706.
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