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Abstract

Interval quadrature formulae of Gaussian type on R and R
+ for exponential weight

functions of the form w(x) = exp(−Q(x)), where Q is a continuous function on
its domain and such that all algebraic polynomials are integrable with respect to
w, are considered. For a given set of nonoverlapping intervals and an arbitrary
n, the uniqueness of the n-point interval Gaussian rule is proved. The results can
be applied also to corresponding quadratures over (−1, 1). An algorithm for the
numerical construction of interval quadratures is presented. Finally, in order to
illustrate the presented method, two numerical examples are done.
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1 Introduction

In this paper we consider Gaussian interval quadrature rule for the weight
functions of the form

w1(x) = exp(−Q1(x)), x ∈ R, and w2(x) = exp(−Q2(x)), x ∈ R
+,
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where Q1 and Q2 are supposed to be continuous functions on their domains,
and given such that all algebraic polynomials are integrable with respect to
w1 and w2. In this paper, when we want to refer to any of these two weights,
we refer to the general weight w defined on I (R or R

+). The index is added
only when results are given specifically for a given weight.

The set of all algebraic polynomials is denoted by P and its subset of all
algebraic polynomials of degree at most n by Pn, where n is a natural number.

We also adopt the following definitions

Hn =
{

h = (h1, . . . , hn) ∈ R
n
∣

∣

∣ hk ≥ 0, k = 1, . . . , n
}

,

Hh
n =

{

h = (h1, . . . , hn) ∈ Hn

∣

∣

∣ ‖h‖1 =
n
∑

k=1

hk ≤ h
}

, n ∈ N, h ≥ 0.

Given h = (h1, . . . , hn) ∈ Hn, we define a Gaussian interval quadrature rule
for the weight w to be

∫

I

p(x)w(x)dx =
n
∑

k=1

σk

w(Ik)

∫

Ik

p(x)w(x)dx, p ∈ P2n−1, (1.1)

where Ik, k = 1, . . . , n, are nonoverlapping intervals, of the length 2hk, k =
1, . . . , n, respectively, whose union is the proper subset of R

+ in the case of
the weight w2. Quantities w(Ik), k = 1, . . . , n, are defined as

w(Ik) =
∫

Ik

w(x)dx, k = 1, . . . , n.

Midpoints of the intervals Ik, k = 1, . . . , n, are denoted by xk, k = 1, . . . , n,
and are called the nodes of the quadrature rule (1.1), so that we have Ik =
(xk − hk, xk + hk), k = 1, . . . , n. Accordingly the quantities σk, k = 1, . . . , n,
are called the weights.

In order to simplify our notation we define

I1
k = (xk − hk, xk + hk), I2

k = (xk − hk, xk), k = 1, . . . , n,

and Ok = (xk + hk, xk+1 − hk+1), k = 1, . . . , n − 1, On = (xn + hn, +∞), and
the interval O1

0 = (−∞, x1 − h1), in case we are discussing the weight w1 and
O2

0 = (0, x1 − h1) if the weight w2 is concerned. We use the notation O0 for
both intervals O1

0 and O2
0 and which interval is really referred would be clear
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from the context. Finally, the union of Ok, k = 1, . . . , n, we denote by Ou, i.e.,
Ou = ∪n

k=0Ok.

Given h = (h1, . . . , hn) ∈ Hn, we define the set of admissible nodes of the
quadrature rule (1.1), to be the set

X1
n(h) =

{

x = (x1, . . . , xn) ∈ R
n | xk + hk < xk+1 − hk+1

}

,

X2
n(h) =

{

x = (x1, . . . , xn) ∈ R
n | 0 < x1 − h1, xk + hk < xk+1 − hk+1

}

,

for the weights w1 and w2, respectively. Note that the closure of X1
n, for ex-

ample, is given by

X1
n(h) =

{

x = (x1, . . . , xn) | xk + hk ≤ xk+1 − hk+1

}

.

When dependence on the weight is not important, we denote by Xn(h) the
both sets.

Note that, according to continuity, we have

lim
hk→0+

1

w(Ik)

∫

Ik

p(x)w(x)dx = p(xk).

Accordingly, the Gaussian interval quadrature rule, for h = 0, reduces to the
standard Gaussian quadrature rule.

We are now able to formulate our main result.

Theorem 1.1 Given h ∈ Hn there exists the unique Gaussian interval quadra-

ture rule

∫

I

p(x)w(x)dx =
n
∑

k=1

σk

w(Ik)

∫

Ik

p(x)w(x)dx, p ∈ P2n−1,

where intervals Ik, k = 1, . . . , n, are nonoverlapping and Ik has the length

2hk. In the case of the weight w supported on I = R
+, in addition, we have

x1 − h1 > 0.

2 Preliminary results

We need the following interpolatory lemma.
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Lemma 2.1 (i) Given h ∈ Hn, the set of nodes x ∈ Xn(h), and the sequence

of numbers jk ∈ {1, 2}, k = 1, . . . , n, the interpolation problem

1

w(Im
k )

∫

Im
k

p(x)w(x)dx = fk,m, m = 1, jk; k = 1, . . . , n,

has the unique solution p ∈ PN , where N + 1 =
∑n

k=1 jk.

(ii) Given h ∈ Hn, the set of nodes x ∈ Xn(h) and the sequence of numbers

jk ∈ {1, 2}, k = 1, . . . , n, for every c ∈ R, there exists the unique polynomial

pc(x) = cxN+1 + qc(x), qc ∈ PN , where N + 1 =
∑n

k=1 jk, such that

1

w(Im
k )

∫

Im
k

p(x)w(x)dx = 0, m = 1, jk; k = 1, . . . , n,

which has exactly jk zeros in every interval Ik, and pc = cp1.

Proof. For the proof of part (i) we consider the appropriate homogenous
interpolation problem, i.e., the one with fk,m = 0, m = 1, jk, k = 1, . . . , n. We
note that for jk = 2 there must be a zero of the polynomial p inside every
interval I2

k and also at least one inside every interval Ik\I
2
k . If jk = 1 it must

be at least one zero inside Ik in total at least jk zeros inside every interval Ik,
k = 1, . . . , n, i.e., p must have at least N + 1 zeros. Since p ∈ PN , it must be
p ≡ 0.

For the proof of part (ii) we just note that we can rewrite the system of
equations as

1

w(Im
k )

∫

Im
k

qc(x)w(x)dx = −
c

w(Im
k )

∫

Im
k

xN+1w(x)dx, m = 1, jk; k = 1, . . . , n,

which according to part (i) has the unique solution. Also, as we can see pc is
linear in c, and has exactly jk, zeros in each interval Ik, k = 1, . . . , n. 2

In the case fk,m = 0, m = 1, 2, for some k ∈ {1, . . . , n}, and hk = 0, we note
that p(xk) = 0, by continuity. Since p has two zeros in Ik, for hk > 0, there
must be some zero of p′ inside Ik, and by continuity we have p′(xk) = 0, for
hk = 0. This means that for fk,m = 0, m = 1, 2, and hk = 0, our interpolation
conditions become p(xk) = p′(xk) = 0.
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The following lemma is rather trivial and we do not give its proof. The proof
is based on the fact that, according to the assumptions we made, polynomials
are integrable with respect to w.

Lemma 2.2 (i) Given ε > 0 and n ∈ N0, there exists δ > 0 such that

0 ≤

+∞
∫

M

xnw(x)dx < ε,

provided M > δ.

(ii) Given any ε > 0 and n ∈ N0, there exists δ > 0 such that

0 ≤

−M
∫

−∞

(−x)nw1(x)dx < ε,

provided M > δ.

We need the following lemma which is similar to the one given in [8].

Lemma 2.3 Given h ≥ 0, there exists an M > 0 such that for every h ∈ Hh
n

the nodes of the quadrature rule (1.1) are uniformly bounded, i.e.,

|xk| < M, k = 1, . . . , n.

Proof. Suppose that the statement of this lemma is wrong. Then for every
M > 0 there exist some hM ∈ Hh

n , such that |xk| ≥ M , for some k = 1, . . . , n.
Since nodes are ordered, suppose that we have ν ∈ {0, 1, . . . , n − 1} nodes
which are bounded and n − ν nodes which are not. Since, we have ν nodes
which are bounded, we can always create a sequence such that all bounded
nodes as well as the respective lengths are convergent. Denote those sequences
by xj = (xj

1, . . . , x
j
n) and hj = (hj

1, . . . , h
j
n), j ∈ N.

We distinguish two cases. First consider the weight w2 = exp(−Q2(x)), where
Q2 is continuous on R

+. Consider a sequence of polynomials pj of degree 2n−1
with leading coefficient −1, satisfying the following interpolation problems

1

w2(Im
k,j)

∫

Im
k,j

pj(x)w2(x)dx = 0, m = 1, 2; k = 1, . . . , n − 1,

1

w2(In,j)

∫

In,j

pj(x)w2(x)dx = 0,
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where Ik,j ≡ I1
k,j = (xj

k − hj
k, x

j
k + hj

k) and I2
k,j = (xj

k − hj
k, x

j
k) for j ∈ N.

According to Lemma 2.1 part (ii), the polynomial pj exists for every j ∈ N

and it has exactly two zeros in each Ik,j, k = 1, . . . , n−1, and has one additional
zero in In,j. Note that this polynomial annihilates the quadrature sum in (1.1),
and is positive on the set (0, xj

n−hj
n)\∪n−1

k=1Ik,j and negative on (xj
n +hj

n, +∞).
We are going to show that integral of such a polynomial cannot be zero, and
hence, we show that the quadrature rule (1.1) whose nodes are not bounded
for h ∈ Hh

n cannot exist.

Suppose that the first ν nodes and lengths are convergent and that other n−ν
nodes are not, i.e., suppose that xj

k > Mj , k = ν+1, . . . , n, where the sequence
Mj tends to infinity. Then we have

∫

R+

pj(x)w2(x)dx =
∫

Ou
j
\On,j

pjw2(x)dx +
∫

On,j

pj(x)w2(x)dx

=
∫

Ou
j
\On,j

pjw2(x)dx −
∫

On,j

(−pj)(x)w2(x)dx,

where Ou
j = ∪n

k=0Ok,j and Ok,j = (xj
k + hj

k, x
j
k+1 − hj

k+1), k = 1, . . . , n − 1,
On,j = (xj

n + hj
n, +∞).

Since the nodes xj
k and the lengths hj

k, k = 1, . . . , n− ν, are convergent, there
exist some interval (α, β), α, β ∈ R

+, independent of j, with the property
(α, β) ⊂ Ou

j \On,j for j > j0. Then we have

∫

Ou
j
\On,j

pj(x)w2(x)dx≥

β
∫

α

pj(x)w2(x)dx

≥

β
∫

α

(x − α)2n−1−2n1(β − x)2n1−1w2(x)dx = J > 0,

where n1 denotes the number of intervals Ik,j with the property xj
k + hj

k < α
and where we used the simple fact that x − xj

k ± hj
k > x − α, k = 1, . . . , n1

and xj
k ±hj

k −x > β −x, k = n1 +1, . . . , n, for x ∈ (α, β). Note that the lower
bound J does not depend of j.

Denote M j
+ = xj

n + hj
n. For the integral over On,j we have the following in-

equality

∫

On,j

(−pj)(x)w2(x)dx ≤

+∞
∫

M
j
+

x2n−1w2(x)dx = Jj,
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where we used the fact that x > x − xj
k ± hj

k, k = 1, . . . , n, for x > M j
+. Note

that the integral Jj can be made arbitrarily small according to the fact that
polynomials are integrable, i.e., we have Jj → 0 as j tends to +∞.

We obviously have

0 =
∫

R+

pj(x)w2(x)dx ≥ J − Jj → J > 0,

as j tends to infinity, which is a contradiction.

For the weight w1 we use the same construction. We choose some sequence
such that n1 nodes are diverging to −∞ and n2 nodes are diverging to +∞
and n − n1 − n2 nodes which are bounded. We can always assume that the
sequences of the nodes xj

k and the lengths hj
k, k = n1 + 1, . . . , n − n2 are

convergent. Then we can also extract some interval (α, β) ⊂ Ou
j , α, β ∈ R, for

j > j0.

First consider a sequence of polynomials p1
j of degree 2n − 1, with the lead-

ing coefficient −1, which exists according to Lemma 2.1, part (ii), with the
property

1

w1(Im
k,j)

∫

Im
k,j

p1
j (x)w1(x)dx = 0, k = 1, . . . , n − 1,

1

w1(In,j)

∫

In,j

p1
j(x)w1(x)dx = 0.

For this sequence of polynomials we have that the quadrature sums in (1.1)
are zero. For the integral we have

∫

R

p1
j(x)w1(x)dx =

∫

Ou
j
\On,j

p1
j (x)w1(x)dx −

∫

On,j

(−p1
j )(x)w1(x)dx.

Using the same arguments as for the weight w2, we can give the following
bound

∫

Ou
j
\On,j

p1
j(x)w1(x)dx ≥

β
∫

α

(x − α)2n−2n1(β − x)2n1−1w1(x)dx = J1 > 0.

Denote M−
j = xj

1 − hj
1 and M+

j = xj
n + hj

n, then using integrability of the
polynomials with respect to w1, we have
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∫

On,j

(−p1
j )(x)w1(x)dx≤

∫

M+

j

(x + M−
j )2n−1w1(x)dx

≤
n
∑

k=0

(

n

k

)

(M−
j )k

+∞
∫

M+

j

x2n−1−kw1(x)dx

≤ (1 + M−
j )2n−1

+∞
∫

M+

j

x2n−1w1(x)dx

≤
(2M−

j )2n−1

(M+
j )2n

+∞
∫

M+

j

x4n−1w1(x)dx ≤
(2M−

j )2n−1ε

(M+
j )2n

= J1
j ,

for M+
j > δ+, according to Lemma 2.2 part (i). Again, note that J1 is a

constant which does not depend of j. This gives a natural bound

0 =
∫

R

pj(x)w1(x)dx ≥ J1 − J1
j .

Now, for the same sequence of nodes and lengths we introduce a sequence
of polynomials p2

j of degree 2n − 1, with the leading coefficients 1, which are
solutions of the following interpolation problem

1

w1(I1,j)

∫

I1,j

p2
j (x)w1(x)dx = 0,

1

w1(Im
k,j)

∫

Im
k,j

p2
j (x)w1(x)dx = 0, m = 1, 2; k = 2, . . . , n,

which exists according to Lemma 2.1, part (ii). For this sequence, again, the
quadrature sum in (1.1) is annihilated, and for the integral we have

∫

R

p2
j(x)w1(x)dx = −

∫

O1,j

(−p2
j )(x)w1(x)dx +

∫

Ou
j
\O1,j

p2
j (x)w1(x)dx,

where we can estimate

∫

Ou
j
\O1,j

p2
j(x)w1(x)dx ≥

β
∫

α

(x − α)2n−2n1−1(β − x)2n1w1(x)dx = J2 > 0.

Note that J2 does not depend of j and
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∫

O1,j

(−p2
j)(x)w1(x)dx≤

−M−

j
∫

−∞

(M+
j − x)2n−1w1(x)dx

≤
(2M+

j )2n−1

(M−
j )2n

−M−

j
∫

−∞

(−x)4n−1w1(x)dx

≤
(2M+

j )2n−1

(M−
j )2n

ε = J2
j ≥ 0,

for M−
j > δ−, according to Lemma 2.2 part (ii). This consideration gives a

natural bound

0 =
∫

R

p2
j(x)w1(x)dx ≥ J2 − J2

j .

We are going now to prove that at least one of the sequences J1
j and J2

j tends
to zero. Suppose it is J2

j , this produces a contradiction since

0 =
∫

R

p2
jw1(x)dx ≥ J2 − J2

j → J2 > 0.

Suppose that J1
j → c ∈ R

+ ∪ {+∞}. Then obviously we have

J2
j =

(2M+
j )2n−1ε

(M−
j )2n

=
24n−2ε2

(2M−
j )2n−1ε

(M+
j )2n

M+
j M−

j

→ 0,

for M+
j , M−

j → +∞, which is desired a contradiction. Using the same ar-
guments we get a similar contradiction under hypotheses J2

j → c ∈ R
+ ∪

{+∞}. 2

Lemma 2.4 Given h ≥ 0, there exists some ε0 such that for every h ∈ Hh
n

and respective nodes x ∈ Xn(h), we have

xk+1 − hk+1 − xk − hk > ε0, k = 1, . . . , n.

In addition, if we are studying the weight w2 we have ε0 < x1 − h1.

Proof. Assume the contrary. Then for every ε > 0 there would exist two
sequences xj and hj such that

xj
ν+1 − hj

ν+1 − xj
ν − hj

ν ≤ ε.
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We may assume that the sequences xj and hj are convergent, since, those
two sequences belong to the compact sets. Now, consider the sequence of
polynomials pj of degree 2n− 2, with the leading coefficient 1, which satisfies
the following interpolation problem

1

w(Im
k,j)

∫

Im
k,j

pj(x)w(x)dx = 0, m = 1, 2; k = 1 . . . , ν − 1,

1

w(Iν,j)

∫

Im
ν,j

pj(x)w(x)dx =
1

w(Iν+1,j)

∫

Im
ν+1,j

pj(x)w(x)dx = 0,

1

w(Im
k,j)

∫

Im
k,j

pj(x)w(x)dx = 0, m = 1, 2; k = ν + 2 . . . , n.

Every polynomial in this sequence annihilates the quadrature sum in (1.1) and
also every polynomial is positive on Ou

j \ Oν,j and is negative on Oν,j, so that
we have

0 =
∫

I

pj(x)w(x)dx =
∫

Ou
j
\Oν,j

pj(x)w(x)dx −
∫

Oν,j

(−pj)(x)w(x)dx.

Obviously first integral is bounded from below with for example

+∞
∫

M

(x − M)2n−2w(x)dx > 0

and the second integral tends to zero as j → +∞, since

0≤
∫

Oν,j

(−pj)(x)w(x)dx

≤ (M + xj
ν+1 + hj

ν+1)
2ν−1(M − xj

ν − hj
ν)

2(n−ν)−1 max
x∈O

j
ν

w(x)ε,

which produces a contradiction.

Finally, for the weight w2, consider two sequences hj and xj for which for
every ε > 0 we have xj

1 −hj
1 < ε. Then, consider a sequence of polynomials pj ,

of degree 2n− 1 with leading coefficient 1, which is a solution of the following
interpolation problem
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1

w(I1,j)

∫

I1,j

pj(x)w2(x)dx = 0,

1

w(Im
k,j)

∫

Im
k,j

pj(x)w2(x)dx = 0, m = 1, 2; k = 2, . . . , n.

Obviously every polynomial pj is positive on Ou
j \O1,j and negative on O1,j

and annihilates the quadrature sum in (1.1). Thus, we have

0 =
∫

R+

pj(x)w2(x)dx =
∫

Ou
j
\O1,j

pj(x)w2(x)dx −
∫

O1,j

(−pj)(x)w2(x)dx.

First integral is bounded from bellow by

+∞
∫

M

(x − M)2n−1w2(x)dx > 0,

while the second integral is bounded from above by

M2n−1
∫

O1,j

w2(x)dx → 0,

as j → +∞. 2

According to previous two lemmas we can define the set

Xε0,M
n =

{

x ∈ R
n
∣

∣

∣ |xn| < M, xν+1 − hν+1 − xν − hν > ε0, ν = 1 . . . , n
}

for the weight w1 and

Xε0,M
n =

{

x ∈ R
n
∣

∣

∣ ε0 < x1 − h1, xn < M, xν+1 − hν+1 − xν − hν > ε0, ν = 1 . . . , n
}

for the weight w2, and also we know that nodes of the quadrature rules belong
to these two sets for the respective weights.

Lemma 2.5 For h ∈ Hh
n there exists some δ0 > 0 such that σk > δ0, k =

1, . . . , n, where σk, k = 1, . . . , n, are weights in the quadrature rule (1.1).

Proof. Assume the contrary. Then there would exist some sequences hj and
xj , such that we have σj

ν → 0, for some ν ∈ {1, . . . , n} as j tends to infinity.
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Since the sets Hh
n and Xε0,M

n (h) are compact we can extract convergent sub-
sequences. Now, consider a sequence of polynomials pj, of degree 2n − 2 with
leading coefficient 1, which satisfy the following interpolation problem

1

w(Im
k,j)

∫

Im
k,j

pj(x)w(x)dx = 0, m = 1, 2; k = 1, . . . , ν − 1, ν + 1, . . . , n.

For this sequence of polynomials we have

∫

I

pj(x)w(x)dx =
∫

Oj∪Iν,j

pj(x)w(x)dx =
σj

ν

w(Iν,j)

∫

Iν,j

pj(x)w(x)dx

≤σj
ν(M + xj

ν + hj
ν)

2(ν−1)(M − xj
ν + hj

ν)
2(n−ν),

according to the convergence of the sequences hj and xj ,

lim
j→+∞

σj
ν ≥

∫+∞
M (x − M)2n−2w(x)dx

(M − xν − hν)2(ν−1)(M − xν + hν)2(n−ν)
> 0,

which produces a contradiction. 2

Trivially, the weights are bounded from above, since, for the polynomial p ≡ 1,
we have

∫

I

w(x)dx =
n
∑

k=1

σk > σν , ν = 1, . . . , n.

3 Proof of the main result

Finally, we are able to prove our main result. The proof is based on an idea
given in [3]. The difference is that we are going to apply the technique to
the system (1.1) directly, which in turn gives us opportunity to develop a
numerical algorithm for the construction of the quadrature rule.

In the sequel we need the following notation

∆hk

k (πℓw)= ∂xk







1

w(Ik)

∫

Ik

πℓw(x)dx





 =
(πℓw)(xk + hk) − (πℓw)(xk − hk)

w(Ik)
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−
w(xk + hk) − w(xk − hk)

w2(Ik)

∫

Ik

πℓ(x)w(x)dx.

Note that we have a continuity, i.e.,

∆0
k(πℓw)= lim

hk→0+
∆hk

k (πℓw)

= lim
hk→0+

w(xk + hk)(πℓ(xk + hk) − πℓ(ζ)) − w(xk − hk)(πℓ(xk − hk) − πℓ(ζ))

w(η)2hk

= π′
ℓ(xk),

where, according to the mean value theorem, we used

∫

Ik

w(x)dx = w(η)2hk,
1

w(Ik)

∫

Ik

πℓ(x)w(x)dx = πℓ(ζ).

Proof of Theorem 1.1. By πℓ, ℓ ∈ N0, we denote polynomials orthonormal
with respect to the weight w, and then we define a vector representing the
weights σ = (σ1, . . . , σn).

We are going to fix some h ≥ 0, and we consider the following family of
functions

F h

ℓ (σ,x) =
n
∑

k=1

σk

w(Ik)

∫

Ik

πℓ(x)w(x)dx − δℓ,0, ℓ = 0, 1, . . . , 2n − 1, h ∈ Hh
n ,

as well as the family of mappings Fh(σ,x) = (F h

0 , F h

1 , . . . , F h

2n−1), h ∈ Hh
n . As

a domain of the functions F h

ℓ , ℓ = 0, 1, . . . , 2n − 1, and the mapping Fh, we

consider the set D = [δ0, µ0]
n × Xε0,M

n (h), where µ0 =
∫

I w(x)dx. According
to the property

∫

I

πℓ(x)w(x)dx = δℓ,0, ℓ = 0, 1, . . . , 2n − 1,

we conclude that any solution of the equation

Fh(σ,x) = 0,

i.e., of the system of equations

F h

ℓ (σ,x) =
n
∑

k=1

σk

w(Ik)

∫

Ik

πℓ(x)w(x)dx − δℓ,0 = 0, ℓ = 0, . . . , 2n − 1, (3.1)
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gives a quadrature rule of the form (1.1).

First we establish easily that F h

ℓ , ℓ = 0, 1, . . . , 2n − 1, are continuous func-
tions on their domain. Second we conclude that the partial derivatives of the
functions F h

ℓ are given by

∂σk
F h

ℓ =
1

w(Ik)

∫

Ik

πℓ(x)w(x)dx, ∂xk
F h

ℓ = σk∆
hk

k (πℓw).

As it can be inspected we see that partial derivatives are continuous as func-
tions on D, this implies that the mapping Fh is Fréchet differentiable (see [?],
[11]).

Next we prove that the mapping Fh has a nonsingular Jacobian on D. First, we
easily establish that the determinant of the Jacobian matrix can be expressed
in the form

J =

(

n
∏

k=1

σk

)

det[ A B ], (3.2)

where

A =

























1

w(I1)

∫

I1

π0(x)w(x)dx · · ·
1

w(In)

∫

In

π0(x)w(x)dx

...
. . .

...

1

w(I1)

∫

I1

π2n−1(x)w(x)dx · · ·
1

w(In)

∫

In

π2n−1(x)w(x)dx

























and

B =



























∆h1

1 (π0w) ∆h2

2 (π0w) · · · ∆hn
n (π0w)

∆h1

1 (π1w) ∆h2

2 (π1w) · · · ∆hn
n (π1w)

...
...

. . .
...

∆h1

1 (π2n−1w) ∆h2

2 (π2n−1w) · · · ∆hn
n (π2n−1w)



























.

We know that the weights σk ∈ [δ0, µ0], k = 1, . . . , n, so if J = 0, then it must
be that the rows of the determinant are linearly dependent. This leads to a
conclusion that the following interpolation problem

14



1

w(Ik)

∫

Ik

p(x)w(x)dx = 0, ∆hk

k (pw) = 0, k = 1, . . . , n,

has a nontrivial solution for p ∈ P2n−1. Note that

∆hk

k (pw)=
(pw)(xk + hk) − (pw)(xk − hk)

w(Ik)

−
w(xk + hk) − w(xk − hk)

w2(Ik)

∫

Ik

πℓ(x)w(x)dx

=
(pw)(xk + hk) − (pw)(xk − hk)

w(Ik)
,

since the second term is zero according to the first interpolation condition.
Hence, a consequence of the assumption J = 0 is the existence of the solution
of the following interpolation problem

1

w(Ik)

∫

Ik

p(x)w(x)dx = 0,
(pw)(xk + hk) − (pw)(xk − hk)

w(Ik)
= 0, k = 1, . . . , n.

According to the first interpolation condition, p must have a zero inside of
each Ik. According to the second interpolation condition we have

(pw)(xk + hk) = (pw)(xk − hk) if hk 6= 0

or p′(xk) = 0 if hk = 0.

Combining these facts, we conclude that p must have at least two zeros in each
Ik, k = 1, . . . , n. Hence, the polynomial p must have at least 2n zeros and only
such a polynomial from P2n−1 is p ≡ 0. Hence, our interpolation problem has
only trivial solutions. Accordingly, the corresponding determinant is not equal
to zero.

Finally, we have that themapping Fh has a nonsingular Jacobian on its do-
main. According to the implicit function theorem, the known solution for
h = 0 can be extended uniquely for all h ∈ Hh

n , since the family Fh depends
continuously on h. 2

We emphasize here that the system of equations (3.1), with the same method
of proof, can be used also for the weight functions of the form w3(x) =
exp(−Q3(x)), x ∈ (−1, 1), where Q3 is continuous and such that polynomials
are integrable with respect to w3, to prove the existence and uniqueness of

15



the quadrature rule (1.1). Here, the same argument applies that Jacobian J
is non singular at the solution.

4 Numerical construction

We have the following simple result:

Theorem 4.1 Nodes and weights in the quadrature rule (1.1) are continuous

functions of h.

Proof. According to the implicit function Theorem, differentiability of F im-
plies continuity with respect to the parameter. 2

Theorem 4.2 Let xh1

k , σh1

k , k = 1, . . . , n, be nodes and weights of the Gaus-

sian interval quadrature rule for the vector of the lengths h1. There exists

some ε > 0, such that for all h, with the property ||h− h1|| < ε, the Newton-

Kantorovich process applied to the nonlinear system of equations

F h

ℓ (σ,x) = 0, ℓ = 0, 1, . . . , 2n − 1, (4.1)

converges with the starting values xh1

k , σh1

k , k = 1, . . . , n.

Proof. We note that Jacobian of the system of equations (4.1) is non-singular
for the sequence of lengths h1 at the solution xh1 and σh1 and the convergence
of the Newton-Kantorovich method can be established (cf. [6,11]). 2

The previous two theorems can be used to design an algorithm for constructing
quadrature rules (1.1). Namely, for constructing Gaussian interval quadrature
rules for the weight w, with the given vector of the lengths h, we can state the
following algorithm:

1◦ Choose h0 = 0, x0 = x0 and σ0 = σ0, where x0 and σ0 are nodes and
weights of the Gaussian quadrature rule for the weight w. Take h1 = h.

2◦ Solve the system (3.1) using the Newton-Kantorovich method for the lengths
h1 with the starting values x1 and σ1.

3◦ If the method diverges take h1 = h0 + (h1 − h0)/2, x1 = x0 and σ1 = σ0

and go back to Step 2◦.
4◦ Take h0 = h1, x0 = x1 and σ0 = σ1. If h0 6= h go back to Step 2◦.

16



5◦ Return h0, x0 and σ0.

The Newton-Kantorovich method has the following form

yk+1 = yk − J−1F h(yk),

where J is given in (3.2) and where we are using y = (σ,x). As it can be seen
we must be able to compute the integrals of the form

∫

Ik

πℓ(x)w(x) dx, ℓ ∈ N0, k = 1, . . . , n. (4.2)

Since the weight function w is continuous, we can apply the Gauss-Legendre
quadrature for computing the integrals (4.2). Using the N -point Gauss-Legendre
quadrature rule, with the nodes tm and the weights Am, m = 1, . . . , N , we have
the following approximation of the integral

∫

Ik

πm(x)w(x)dx ≈ hk

N
∑

ℓ=1

Aℓ(πmw)(hktℓ + xk).

It is trivial that the quadrature sum to the right converges to the integral on
the left, since, pm(x)w(x) is a continuous function.

As an illustration we give two examples.

Example 4.1. We consider the construction of the Gaussian interval quadra-
ture rule for the weight function w3(x) = (1 + sin2(πx))χ[−1,1](x). The con-
struction of polynomials πn, n ∈ N0, orthonormal with respect to w3 can
be done using a software presented in [4]. The coefficients of the three-term
recurrence relation

xπn(x) = βn+1πn+1(x) + αnπn(x) + βnπn−1(x),

are given in Table 4.1. Due to the symmetry argument we have αn = 0, n ∈ N0.

In Table 4.1 we present the nodes xk and the weights σk, k = 1, . . . , 20, of
the interval quadrature rule for the lengths hk, k = 1, . . . , n. Numbers in
parentheses indicate decimal exponents.

In these computations we used the Gauss-Legendre quadrature rule with
N = 200, which can be constructed easily using the software presented in
[4]. We emphasize that only 6 iterations are needed to achieve the machine
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n βn hn xn σn

0 .1732050807568877(1)

1 .5625357494354858 .5(−3) −.9918786560396439 .1956804397339318(−1)

2 .4744097291915951 .5(−3) −.9614381075560322 .4251776720722553(−1)

3 .5451748814372039 .5(−3) −.9080446112010355 .6989649666054748(−1)

4 .4902516082531161 .5(−3) −.8329679467843836 .1062769691409894

5 .5116615917925814 .5(−3) −.7393850335196595 .1557774933444651

6 .4960434357623456 .5(−3) −.6308744385377325 .2115648925047616

7 .5043712049750382 .5(−3) −.5101786576975410 .2521640009724387

8 .4992622199415154 .5(−3) −.3789105635382944 .2538678888971356

9 .5018594691915659 .5(−3) −.2372713857587796 .2149883222579176

10 .5000692849492345 .5(−3) −.8382147223781044(−1) .1702023935242340

11 .5008805207452746 1.(−2) .7773915805021710(−1) .1695740403227302

12 .5002567008862471 1.(−2) .2317904609560994 .2131028185764868

13 .5004970651019456 1.(−2) .3737399160708616 .2526704845526047

14 .5002662750464688 1.(−2) .5051421897004346 .2523796479631700

15 .5003247686077697 1.(−2) .6258704045058415 .2128404700920239

16 .5002308842803479 1.(−2) .7343498427170446 .1572976039307774

17 .5002353021643951 1.(−2) .8278804340496836 .1074210611029361

18 .5001915456563984 1.(−2) .9029506268697068 .7053778826824858(−1)

19 .5001820387838695 1.(−2) .9565319074873180 .4317303040340147(−1)

20 .5001580813732057 1.(−2) .9888837787522304 .2417878630451257(−1)

Table 4.1
Three-term recurrence coefficients βn for the weight function w3(x) = (1 +
sin2(πx))χ[−1,1]. The lengths hk, nodes xk and weights σk in the Gaussian inter-
val quadrature rule (1.1) for the weight function w3

precision (m.p. ≈ 2.22 × 10−16). The condition number of the Jacobian J is
approximately equal to 102.

Example 4.2. As another example we consider a construction of the interval
quadrature rule for the weight function w1(x) = (1+x2) exp(−x2) on R. Table
4.2 gives results and necessary data for the computation. We emphasize that
in this case we needed only 5 iterations to achieve the machine precision. The
condition number of the Jacobian was approximately 106. Hence, we used the
higher precision arithmetics for computations. Finally, we emphasize that in
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n βn hn xn σn

0 .1630546158916783(1)

1 .9128709291752769 .5(−2) −.3612388438899722(1) .3088689648398463(−4)

2 .1125462867742275(1) .5(−2) −.2709854370117718(1) .4442533429127377(−2)

3 .1359179318946780(1) .5(−2) −.1926462245521316(1) .8699337386563393(−1)

4 .1527966904418630(1) .5(−2) −.1180470276632278(1) .4432275725131416

5 .1692733753984765(1) .5(−2) −.4110974306984462 .7945347145218178

6 .1834362605472096(1) 1.(−2) .4109390457868029 .7946527364203003

7 .1969724283534903(1) 1.(−2) .1180387980330989(1) .4433091460680362

8 .2093412469129451(1) 1.(−2) .1926426174233540(1) .8701506670179548(−1)

9 .2211564341431752(1) 1.(−2) .2709855088042445(1) .4443848801467260(−2)

10 .2322528159157648(1) 1.(−2) .3612424340490755(1) .3089714047003200(−4)

Table 4.2
The three-term recurrence coefficients βn for the weight w2(x) = (1 + x2) exp(−x2)
on R. The lengths hk, the nodes xk and the weights σk in the Gaussian interval
quadrature rule (1.1) for the weight function w2.

the case of the classical weight functions, the corresponding algorithms for
constructing Gaussian interval quadrature rules are much more efficient and
they are presented in [7–10].
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