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Abstract

We consider the remainder term of the Gauss—Turan quadrature formulae

1 n 2s '
Rush = | RCYCLED B) DRI

- v=1 i=0

foranalytic functions in some region of the complex plane containing the infertall] inits interior. The remainder

term is presented in the form of a contour integral over confocal ellipses or circles. A strong error analysis is given
for the case with a generalized class of weight functions, introduced recently by Gori and Micchelli. Also, we discuss
a general case with an even weight function define@i-ah 1]. Numerical results are included.
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1. Introduction

We consider the error terR, (f) in the Gauss—Turan quadrature formula with multiple nodes (see
[26])

1 n 2s '
[ w0508 =3" 3 4w + Rus(), (L.1)

v=1i=0

Here,w is an integrable weight function on the intervatl, 1). It is well-known that the quadrature
formula (1.1) is exact for all algebraic polynomials of degree at most21)n — 1, and that its nodes
are the zeros of the correspondisgrthogonal polynomiak, ;(z) of degreen. For more details on
Gauss—Turan quadratures andrthogonal polynomials see the bof@§ and survey papdd 4], as well
as very recent papefs5,19]

An analysis for analytic functions of the reminder teRp(f) of Gauss—Turan quadratures (1.1),
with generalized Chebyshev weight functions, was givej1@8-18] The aim in this paper is to extend
this analysis to certain wide classes of weight functions. After some general considerations in Sections 2,
we study in Section 3 the case with a generalized class of weight functions, introduced recently by Gori
and Micchelli[10], and then in sequel we develop an error analysis for even weight functions defined on
[—1, 1].

2. Remainder term for analytic functions

Let I be a simple closed curve in the complex plane surroundirlg the interdall] andD be its
interior. If the integrand is an analytic function iD and continuous o®, then we take as our starting
point the well-known expression of the remainder tetm, (f) in the form of the contour integral (cf.
[20])

1
Rn,s(f) = Z_f Kn,s(z)f(z) dz. (21)
7Tl r
The kernel is given by
0n.5(2)
K”l s :’—1 _1’17 22
sO= e FhY (2.2)
where
1 2s+1
0n.5(2) = [n";(t—)]t w()ds, neN (2.3)
1 —

andmn, () is the correspondingrorthogonal polynomial with respect to the measure) dr on (-1, 1).
Suppose that, (1) = k,t" + kn—1t"" T4 o with i, = ;c,(f) > 0, and also that the weight(r) is an

even function orj—1, 1].



G.V. Milovanowt, M.M. Spalewi’/ Journal of Computational and Applied Mathematics 178 (2005) 333—34635

Lemma 2.1. Letw(—t) = w(z). In the expansion

_Zb(S) e ]’ |Z|>19

Tn,s (Z>
for n > 1 there holds

(s)
,=0, b

(é)
b n,2j

and forn = 1 there holdsl/m1 s (z) = b{’pz %, whereb{’) = 1/k1 > 0.

Proof. It can be done in an analogous way as one of Lemma 1 in Stenger’s [2afpeor by taking a
new weight functionw,, 5, defined by (sef?, pp. 214-226]w, (t) = (7. (1)1 w(t). Since this weight
is also even oii—1, 1], we havern, ;(—t) = (—1)"n, (¢) (cf. [9]). Now, applying Lemma 1 fronfi25]
the proof is finished. O

Thus, in our case, fag|>1, we haven, ;(z)] ! = b’(f)zj -n-2j and
25+1
1 . .
—n(2s+1) ) -2
[nn (Z)]ZH—]. Z bn 2] ’
ie.,
— E s Z—n(2s+l)—2j. 24
[7 S(Z)]ZS—H' Z n.2j ( )
] ,] o
Itis clear thab, 2j41=0 andbff)zj > 0.

If b,(f)z,{ are known, by usinfl1, Eq. 0.314]it is possible to determinEf,f)zj in the following way

7(s) 25+1 1) (s) (s)
bro=brgt byy=—— (S) Z(Zk(s+1)—1)b;2k n 22k
n,0 k=1

Lemma 2.2. For g, ;(z) in (2.3)there holds

n, S‘(Z) Z Cy(lS)zj —n—Zj—l’ |z| > 1, (25)
wherec(‘) >0 (n,s, j € Ng).

Proof. This resultis an immediate consequence of Lemma 3 f&@5hand the representation (2.3), i.e.,

1
0ns(2) = / @) @ d,
1 z—1t

wherew, ;(¢) is the new weight function introduced above in the proof of Lemma 21.
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An alternative expression for the kernel (2.2) can be givekiasz) =R, (g;), Whereg (1) =1/(z—1)
(cf.[20,16).

If (1.1) is a symmetric quadrature formula, i.e.,ui{z) is an even weight function op-1, 1] and
I' is a symmetric curve (e.g., a circle with center at origin and ragius 1), or a confocal ellipse),
then the functiong, (1) = z/(z% — t?) is even on[—1, 1]. In this case for the nodes in (1.1) satisfy
(cf 9]) ©v=—t—vt1 v=1,2,...,n) (if nis odd thenz, 2111 = 0). For the coefficients we have

Aiy=(-1) A n—v+1 (if nis odd and is odd thenA; 1,,/21+1 = 0).

In[21]itwas proved thaA, » > 0foreven. Ifwe conS|derthefunctlorg;Z(t) 2. ()=, ()=t /(z>—1?)
andf(t) = f@t) — fs(t) = 2(f(t) — f(=1)), wherefs(t) = 2(f(t)—|—f( 1)), which are continuous and
odd, and whose derivatives of an arbitrary order are continuous functignslod] which are even if
is odd, and odd if is even.

Now, it is not difficult to conclude thak, ;(f) =0 andR, ;(g) =0, K, 5(z) = Ry.5(g;) = Rn.s(&2)
anan,s(f) = Rn,s(f?)-

Therefore, some analogous bounds of the modulus of the remainder term, which for Gauss-type quadra-
ture formula have been derived by Sherer and Schira[@g&eSection 2), hold for Gauss—Turan type
quadrature formula.

The integral representation (2.1) leads directly to the error estimate

Ry, s(f)l<ﬁ (rznea}XIKn,s(z)l) <rznee}XIf(z)|) , (2.6)

wheref(I') is the length of the contour.
A general estimate can be obtained by Holder inequality. Thus,

1 1/r ) 1/r
<2—(y§ |Kn,s(z>|r|dz|> (f I |dz|> ,
s I I

IRm(f)|< MKl 10 (2.7)

1
|Rn,s(f)| = 2_ ‘% Kn,s(z)f(z) dz
T r

where I<r< +00,1/r +1/r' =1, and

(1 f@IdzDY" 1<r <+ o0,
1Al = {me}xlf(z)l r = +4o0.

The case = +oo (r' = 1) gives

[Rn.s (DI 5 (maX|Kns(Z)|> (?g If(Z)IIdZI) (n) (maXIKns(Z)I> (TGG}XIJ‘(ZN) ;

i.e., (2.6). On the other side, for= 1 (+' = +00), the estimate (2.7) reduces to

1
|Rn.,s(f)|<_2 (?g |Kn,s (2] dzl) (max If(Z)I) , (2.8)
T r zell



G.V. Milovanowt, M.M. Spalewi’/ Journal of Computational and Applied Mathematics 178 (2005) 333-34837

which is evidently stronger than the previous, because of inequality

f | K5 (2)]] dz| < £(I') (mal;len,s(Z)l) :
r Z€

Also, the case = r’ = 2 could be of some interest.

For getting the estimate (2.6) or (2.8) it is necessary to study the magnityde ofz)| on I" or the
quantityL, ¢(I') := (1/2n) 5£F|Kn,s (z)]] dz|, respectively.

Taking the contour” as a confocal ellipse with foci at the pointd and sum of semi-axes> 1, and
w as one of the four generalized weight functions:

(a) w:l_(t) = (l — l‘z)—l/z, (b) wz(t) — (1 _ [2)1/2+S,
(© wat) = (1— 1)~"Y2(L+ Y2+ (d) wa(r) = (1 — Y25 (14 Y2,

we studied in detail the estimates (2.6) and (2.8)1i®-18] In that cases certain analytical results
can be done. Namely, it is well-known that the Chebyshev polynomials of firstZkimae s-orthogonal
subject tow1(¢) on[—1, 1] for eachs >0 (sed1]), and that for three other weighis (¢), i =2, 3, 4, the
s-orthogonal polynomials can be identified as Chebyshev polynomials of the second, third, and fourth
kind: U,, V,,, andW,,, which are defined by

sin 1o co 1/2)0 sin 1/2)0
%’ Vn(COSO): M’ Wn(COSO):M,

U,(cosh) =
n(€0S0) cos0/2 sin 6/2

respectively (sef6,20]). Such weights, however, depend®mNotice that the weight function in (d) can
be omitted from an investigation becausé®gf(—¢) = (—1)" V,,(¢).

The error term in Gaussian quadratu¢es- 0) for these weights was studied in the case +oco and
r =1 by Gautschi and Varga&] and Huntef12], respectively (see al48-5,7,23,24,13]

3. Error estimates for Gauss—Turan quadratures with Gori—Micchelli weight functions

Recently, Gori and Micchellil0] have introduced for eaama class of weight functions defined on
[—1, 1] for which explicit Gauss—Turan quadrature formulae can be found far bdlthe other words,
these classes of weight functions have the peculiarity that the correspanaiitigngonal polynomials,
of the same degree, are independerst dhis class includes certain generalized Jacobi weight functions
Wn (1) = |Up—1(2) /0?1 — 12)*, whereU, _1(cos 0) = sin nd/ sin 0 (Chebyshev polynomial of the
second kind) ang.> — 1. In this case, the Chebyshev polynomi@jsr) appear to bes-orthogonal
polynomials.

For simplicity, in this section we consider the case 1 andu=1/2, i.e.,

w(t) = 1wy 1/2() = |Up-1(t) /0> V1 — 12, (3.1)
We take the contour as an ellipse with foci at the pointisl and sum of semi-axes> 1,

E,={zeC: z=3€" + o), 0<0<2n}. (3.2)
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Now, we consider the estimate (2.8) for= 1, whenl' = E,. Sincez = 1 (¢ + ¢1), ¢ = ¢€’, and
|dz| = 2=Y/2,/a; — cos @ do, where we put
aj=aj(@=73 +a¢), jeN, ¢>1, (3.3)
we have

1 (% 0,1(2)(az — cos D)Y?
Ly1(Ey) = .
271\/5 0 |7Tn,1(Z)|

Theorem 3.1. Let E, (¢ > 1) be given by(3.2), bz, = 0" + 0~2"/4 anday, be defined by3.3). Then
for the weight functiorf3.1),the quantityL, 1(&,) can be expressed in the form

1 T (a2, — c0sH)(by, + c0sh)
L,1(&,) = do. 3.5
100) 2n23 /0 \/ (azn + cosb)3 (33

(3.4)

Furthermore the following estimate

T 1—x — 924293 + 4x*
Lﬂ,l(EQ)SW\/ 1P (3.6)

holds wherex = ¢,

Proof. Forz € &,,i.e.,z= 3(¢+ &71), ¢ = 0&’, we have
s (@) =Ta(2) =3 (" +&7")

and, according to (2.3) and (3.1),

1 1 T 2s+1 _ 2
Qn,s(z)=—2/ n ()™ " Un-1(0) V1—1t2de.
neJ_1

z—1

Using the equalitiesB, Uz, 1 =Usz,_ 1+ U,_1and 31— t2)U(k+1),,_1Ukn_1 =T, — Tk+1n (fork=1
andk = 2), the previous integral becomes

1 /1 LO* 21,0 = Tan() = Ton®)
16n2 J_4 (z—HV1—1¢2 ‘

In the simplest case= 1, (3.7) reduces to

o @ ENE )
B g T @ )

(3.7)

n,s (Z) =

o 1@ = T (azy — €0S 10)Y2(by, + cos 20)1/2
On, 1)1 = 4n293n (az — cos 2)1/2

’

whereby, = 02" + ¢~2"/4 anda; defined by (3.3).
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Now, by substitution this expression in (3.4), we obtain

1 T — cos 210)(b cos 40
Lo 1(Ey) = / (az ) (b2 + ) 4
: 2n203" J, (azn + COS 210)3

or (3.5), because of periodicity of the integrand.
A upper bound of_, 1(E,) can be derived, applying the Cauchy’s inequality, in the form

L (E) < NG (/” (a2, — c0S0) (b2, + COSO) d6>1/2
m RS o293 \ o (azn + €0S0)3 ’

ie., (3.6). O

In a similar way, as i1118] for generalized Chebyshev weights(r), i =1, 2, 3, 4, after some calcu-
lations and using Lemma 2.2, we can obtain a simple estimate of the remainder term in the form

294n + an -1

ST (3.8)

T
|Rn,1()I <52 <ZrT€1%X If(z)l)

Itis easy to show that the bound obtained in (3.6) is smaller than one in (3.8), because of the inequality

1—x— 024203 +4x4 /20 4+ /x—1\°

5 < 3 (x>1).
x(x — 1) NEIVER

The functiong — log,o(L,,1(E,)), as well as its bounds which appear on the right sides in (3.6) and

(3.8) are given irFig. 1L As we can see, the bound (3.6) is very precise especially for larger values of
andp.

~N
0 f
A S~
22 s \ —— '~
Y P e~ e
\\-\\. \\_\%
4 R
6 ~
\\
-8 I~
T~
1.02 1.04 1.06 1.08 1.1 1.12

Fig. 1. Log g of the valued.,, 1(E,) (solid line) and its bounds given by (3.6) (dashed line) and (3.8) (dot-dashed lime}-fbd
(top) andn = 30 (bottom).
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4. Error estimates for even weight functions

In this section we consider the Gauss—Turan quadrature rule with respect to an even weight functions
(w(—t) = w(r) on[—1, 1]). We suppose that the contoliis a central circle with a radius-t ¢, where
e>0.

Theorem 4.1. Let f be an analytic function ifz : |z| <1+ 2¢} (¢ > 0), i.e,,

+00

f@=Y ad. ll<1+2, (4.1)
k=0
and the coefficientE(s) and c,(f)Zk »; be given as if2.4) and (2.5), respectively. Therthe remainder
termR, (f) in the Gauss—Turan quadrature formylh 1) can be expressed in the form

—+00
Rus(f) = aon(s 12k e (4.2)
k=0
( ) ko 7)) ()
Wheree . Z/ Obn 2] nYZk 2j"

Proof. By using the representation (2.2), from (2.4) and Lemma 2.2, we have

+00

(2) —s) . o
Kn,s(z)zmi”(’zwz jz:%bfz,)zﬂ n(2s+1)—2j ZC;(f)zj n-2j-1|
i.e.,
+00
Kns() =Y ez 2th=2-1 170 4.3)
k=0
Now, we obtain
+00 +00
Rus(f) = 7§ Z Za] LI+ -2%-14 (4.4)
=0 k=0

Both series, (4.1) and the last in (4.3), converge uniformly and absolutely in the arfpulug +

%s <zl <1+ %s} and, therefore, the double sum in (4.4) also converges uniformly and absolutely in
this annulus. So we may interchange integration and summation in (4.4). All terms integrate to zero
except those for which = 2n(s + 1) + 2k. Summing the residues fgr— 2n(s +1) — 2k — 1= -1 we

obtain (4.2). O

Let u; be moments of the weight functian(z), i.e., u; = f_ll w(®)t/ dr (j=0,1,...).Inthe same
time introduce the quantities

ZZA,\ : )'f(,’ (j=0,1,...). (4.5)

v=1 i=0
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According to Theorem 4.1, by putting’(r) = gi(t) = r2*6+tD+2 e obtain the following
consequence:

(s _
Corollary 4.2, e;}( = U2 (s+1)+2k — H2on(s+1)+2k> k=0,1,....

It is easy to see thaﬁsi >0, 1.8, figy (s+1)+2k > Hon(s+1)+2- It follows, e.g., from the representation

(” =R, (gk) = fll <Pn(t)g,E2n(s+l)) dt, whered, () (> 0) is the influence function (s€8]).
If we prove that the quantitiegy, 11,12« are positive for a sufficiently largk, then the previous
inequality shows thaty,, ;11)+2 — 0, whenk — +o0.
In order to proveriy, 1)+ > 0 we take that, s are fixed, and consider the part of the double sum
in (4.5),

@n(s + 1) + 2k)! 2n(s+1)+2k—1 : _
(2n(s + 1) + 2k — 1)! ALy T Ay T (a)

(2n(s + 1) + 2k)! (s 1) 422 PP
ns+ 1) 1 2k — 21 211 o + A, HDTET2), (b)

If A11 <0, then by summing in (a) and (b) we obtain the positive expressions.
If A11> 0, we sum separately, firstly the quantities on the left sides in (a) and (b), and then the quantities
on the right sides. For instance the sum of the quantities on the left sides of (a) and (b) gives

(2n(s + 1) + 2k)! 21(5+D)+2%—2 A11t1
17 +A21|>0,
@n(s+1) + 2k —2)! 2n(s+1)+2k—-1
sinceAz 1 >0, andA1 171/(2n(s +1) + 2k — 1) — 0, whenk — +o0.
For the other parts of the double sum in (4.5) the same conclusion holds. Therefore therkgexists

such that for alk > ko we haveiiy, 1)1« > 0. Also, I|m,H+oo e’ ».x = 0,andthe sequeno:e )k —0.1
is bounded. The same conclusion can be derived from the foIIowmg corollary of Theorem 4.1.

SN

Corollary 4.3. effi = Uy (s+1)+24[1 + O(D)].

Proof. Let

Xo= _Mmax | (x,=1"%), where m,(1,) =0
2,....1n

y=

Let us define a positive constaht= L, ; such that

K216+ Xn: 3 @+t 2+~

|7y
= = (2(+1) 0)!
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Fork=0,1, ..., we have
2
i ZS |A | (2]’1(S+1)+2k)’ |T’|2n(s+l)+2k—i
; "Yens 4+ —i+2k)! "
y=1 i=0
o @n(s+1D+2k)---2n(s+1)+ 1)

<
O 2+ D+ 2k —25) - (2n(s + 1) + 1— 25)
n 25

(2n(s + 1)! sty
Aj; v , s+1)—i
ngl ; |(2n(s+]_)_i)! Ty
_ iz @+ D420 @nis+ D+ D
= =¥

Cn(s+1)+2k—25)---2n(s+1)+1—2s5)"
Sincexp < 1, we have

1

’

H2n(s+1)+2k > 2/ w(n)r T gy >A[—(XO + 1)}
(1+x0)/2 2

whereA = 2f(11+x0)/2 w(t) dt > 0. Further,

2n(s+1)+2k
2ok [ 2vo0 (ARt | p
0 = 1+ xo A 2n(s+1)+2k-

That means that

2
Xn: XS: |A 7| (Zn(S + 1) + Zk)' IT’|2n(S+l)+2k—i
"Yens 4+ —i+2k)! "

y=1 =0
L 2xg PG HDH% @n(s +1) +2k)---(2n(s +1) + 1)
S FonGtDr2k | 7 2ns+ 1) +2k—25)- - 2nGs+ 1) +1—25)

Consider now the expression
@n(s+1)+2k)---2n(s + 1)+ 1) _a@+1)---(a+2k—1)
s+ +2k—25)--2n(s+1)+1-25) bb+1)---(b+2k—-1°
where we putt =2n(s + 1) + 1 (> 0) andb = 2n(s + 1) — 2s + 1 (> 0). We also have that>b (In

fact,a = b for s = 0, otherwisez > b.).
By using the well-known fact that

r¢ = Ilim kK< — lim (2k — D12k — 1)¢

we have
a@+1)---@+2k—1) (k—DI2k—D"/I'@ Ib)
b(b+1)---(b+2k—1) (2 — D2k — 1P/r(b)  T(a)

(2k — )77,
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whenk — +o0. Further, ford = (1 + xg)/(2x0) > 1 we have2xo/(1 + xg)1% = 1/d%. Because of

[ 2x0 ]Zk 2n(s+1) +2k)---2n(s + 1) + 1) T k="
1+x0| @Cn(s+1D)+2k—25)---2n(s+1)+1—2s) TI'(a) d% ’

whenk — 400, whered > 1,a — b > 0, and limy_ 40 (2k — 1)~?/d% = 0, we conclude that

2s
2”: S A @165 + D +200 4142k
@+ —i+2k)!

v=1 i=0
n 2s
2n(s + 1) + 2k)! (s _i
<D 1AL : |7, | 21O HDF
= = 2n(s +1) —i + 2k)!

_ L ZXO 2n(s+1)+2ka(a+1)”.(a+2k_1)
SH2ns+1) 1+ xo bb+1)---(b+2k—1)

with

—- 0, k— 4oo. O

LT 2% 2n(s+l)+2ka(a+1)...(a+2k—1)
Al T x bb+1)---(b+2k—1)

In some particular cases we can prove that the remaiRgle( /) decreases monotonically to zero,
when allay in the expansion (4.1) are nonnegative. For similar investigations in the case of Gaussian
quadraturess(= 0) see StenggP5].

At the end we consider some error bounds. Namely, for the remainder term in Gauss—Turan quadrature
formula (1.1) we can derive the following estimate

[Rn,s (DI Rus £ (4.6)

We proved that the sequenceflfi)kzovlp_. (n, s-fixed) is bounded, and to converge to zero, when
k — +oo. If a given sequence belongs to the spétdp > 1), we apply Holder’'s inequality to (4.2) to
obtain

+00 p /400 1/q
|Rn,s<f>|<(2(efii>1’> (Z |azn<s+1>+2k|‘I) , (4.7)
k=0

k=0

where ¥Yp 4+ 1/g = 1.
The quantitiess), = (325 (efii)p)l/l’ are independent dfand can be computed. In particular, if

p — +00, we get

+o00
|Rus ()19, 8) D lasn(sr 142, (4.8)
k=0
where
v(n,s) = ar(l‘i)oo = sup e’(f} (4.9)

k=0,1,...
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0. 0025
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~
0.001 ah
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Fig. 2. Quantitiese,(l"){ (dashed line) andy,, (s+1)4-2« (solid line) as functions ik (casen = 10,s = 1).
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Fig. 3. Graphs fon = 10,5 =0, 1, 2 (left) ands = 1,n =5, 10, 15 (right).

is a quantity which there exists always, what we proved above, and it can be calculated, e.g., by using

Corollary 4.3.
In the casep = g = 2 the estimate (4.7) of type (4.6) gives

oo 1/2
1/2
1Ry sl = (Z (e,ifi)z) =Wy (4.10)
k=0

A calculation ofW,  in (4.10) for Gaussian rulés = 0) was given by Wilf[27] and Stengej25].

Example 4.4. As an even weight function we take the generalized Gegenbauer weight fungtion=
Ix|~Y3(1 — x2)1/* and consider the estimates given by (4.8) and (4.9).

Atypical graph illustrating the relationship betweeélﬁ( anduy, s+1)+2« IS given inFig. 2(casen = 10,
s =1). The supremum(10, 1) = sup(eNOe%k is also displayed in the same figure.
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Numerical values of(n, s) = SUR.cn, e,(f_;{ fors =0,1,2 andn =10 are

v(10,0) = 4.35x 103, (10,1)=1.31x 1073, (10,2) =6.99x 10°%.

Similarly, forn =5, 10, 15 ands = 1, these supremums are

v(5,1) =6.94x 1073, 1(10,1)=1.31x 103, (15 1) =4.86x 10°*.

The corresponding graphs are displayeéig. 3.
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