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Abstract

We consider the remainder term of the Gauss–Turán quadrature formulae

Rn,s(f ) =
∫ 1

−1
w(t)f (t)dt −

n∑
�=1

2s∑
i=0

Ai,�f
(i)(��)

for analytic functions in some regionof thecomplexplanecontaining the interval[−1,1] in its interior.The remainder
term is presented in the form of a contour integral over confocal ellipses or circles. A strong error analysis is given
for the casewith a generalized class of weight functions, introduced recently byGori andMicchelli.Also, we discuss
a general case with an even weight function defined on[−1,1]. Numerical results are included.
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1. Introduction

We consider the error termRn,s(f ) in the Gauss–Turán quadrature formula with multiple nodes (see
[26])

∫ 1

−1
w(t)f (t)dt =

n∑
�=1

2s∑
i=0

Ai,�f
(i)(��) + Rn,s(f ). (1.1)

Here,w is an integrable weight function on the interval(−1,1). It is well-known that the quadrature
formula (1.1) is exact for all algebraic polynomials of degree at most 2(s + 1)n − 1, and that its nodes
are the zeros of the correspondings-orthogonal polynomial�n,s(t) of degreen. For more details on
Gauss–Turán quadratures ands-orthogonal polynomials see the book[9] and survey paper[14], as well
as very recent papers[15,19].
An analysis for analytic functions of the reminder termRn,s(f ) of Gauss–Turán quadratures (1.1),

with generalized Chebyshev weight functions, was given in[16–18]. The aim in this paper is to extend
this analysis to certain wide classes of weight functions. After some general considerations in Sections 2,
we study in Section 3 the case with a generalized class of weight functions, introduced recently by Gori
and Micchelli[10], and then in sequel we develop an error analysis for even weight functions defined on
[−1,1].

2. Remainder term for analytic functions

Let � be a simple closed curve in the complex plane surrounding the interval[−1,1] andD be its
interior. If the integrandf is an analytic function inD and continuous onD, then we take as our starting
point the well-known expression of the remainder termRn,s(f ) in the form of the contour integral (cf.
[20])

Rn,s(f ) = 1

2�i

∮
�
Kn,s(z)f (z)dz. (2.1)

The kernel is given by

Kn,s(z) = �n,s(z)

[�n,s(z)]2s+1 , z /∈ [−1,1], (2.2)

where

�n,s(z) =
∫ 1

−1

[�n,s(t)]2s+1

z − t
w(t)dt, n ∈ N (2.3)

and�n,s(t) is the correspondings-orthogonal polynomial with respect to the measurew(t)dt on(−1,1).
Suppose that�n,s(t) = �ntn + �n−1t

n−1 + · · ·, with �n = �(s)n >0, and also that the weightw(t) is an
even function on[−1,1].
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Lemma 2.1. Letw(−t) = w(t). In the expansion

1

�n,s(z)
=

+∞∑
j=0

b
(s)
n,j z

−n−j , |z|�1,

for n>1 there holds

b
(s)
n,2j+1 = 0, b

(s)
n,2j >0 (j = 0,1, . . .),

and forn = 1 there holds1/�1,s(z) = b
(s)
1,0z

−1, whereb(s)1,0 = 1/�1>0.

Proof. It can be done in an analogous way as one of Lemma 1 in Stenger’s paper[25], or by taking a
new weight functionwn,s , defined by (see[2, pp. 214–226]) wn,s(t)= [�n,s(t)]2sw(t). Since this weight
is also even on[−1,1], we have�n,s(−t) = (−1)n�n,s(t) (cf. [9]). Now, applying Lemma 1 from[25]
the proof is finished. �

Thus, in our case, for|z|�1, we have[�n,s(z)]−1 =∑+∞
j=0 b

(s)
n,2j z

−n−2j and

1

[�n,s(z)]2s+1 = z−n(2s+1)


+∞∑

j=0

b
(s)
n,2j z

−2j



2s+1

,

i.e.,

1

[�n,s(z)]2s+1 =
+∞∑
j=0

b
(s)

n,2j z
−n(2s+1)−2j . (2.4)

It is clear thatb
(s)

n,2j+1 = 0 andb
(s)

n,2j >0.

If b(s)n,2k are known, by using[11, Eq. 0.314], it is possible to determineb
(s)

n,2j in the following way

b
(s)

n,0 = b2s+1
n,0 , b

(s)

n,2j = 1

jb
(s)
n,0

j∑
k=1

(2k(s + 1) − j) b
(s)
n,2k b

(s)

n,2j−2k.

Lemma 2.2. For �n,s(z) in (2.3) there holds

�n,s(z) =
+∞∑
j=0

c
(s)
n,2j z

−n−2j−1, |z|>1, (2.5)

wherec(s)n,2j >0 (n, s, j ∈ N0).

Proof. This result is an immediate consequence of Lemma 3 from[25] and the representation (2.3), i.e.,

�n,s(z) =
∫ 1

−1

�n,s(z)

z − t
wn,s(t)dt,

wherewn,s(t) is the new weight function introduced above in the proof of Lemma 2.1.�
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Analternative expression for the kernel (2.2) can be given asKn,s(z)=Rn,s(gz), wheregz(t)=1/(z−t)

(cf. [20,16]).
If (1.1) is a symmetric quadrature formula, i.e., ifw(t) is an even weight function on[−1,1] and

� is a symmetric curve (e.g., a circle with center at origin and radius� (>1), or a confocal ellipse),
then the functionĝz(t) = z/(z2 − t2) is even on[−1,1]. In this case for the nodes in (1.1) satisfy
(cf. [9]) �� = −�n−�+1 (� = 1,2, . . . , n) (if n is odd then�[n/2]+1 = 0). For the coefficients we have
Ai,� = (−1)iAi,n−�+1 (if n is odd andi is odd thenAi,[n/2]+1 = 0).
In [21] itwasproved thatAi,� >0 foreveni. Ifweconsider the functionsgz(t)=gz(t)−ĝz(t)=t/(z2−t2)

andf (t)= f (t)− fs(t)= 1
2(f (t)− f (−t)), wherefs(t)= 1

2(f (t)+ f (−t)), which are continuous and
odd, and whose derivatives of an arbitrary order are continuous functions on[−1,1] which are even ifi
is odd, and odd ifi is even.
Now, it is not difficult to conclude thatRn,s(f ) = 0 andRn,s(g) = 0,Kn,s(z) = Rn,s(gz) = Rn,s(ĝz)

andRn,s(f ) = Rn,s(fs).
Therefore, someanalogous bounds of themodulus of the remainder term,which forGauss-type quadra-

ture formula have been derived by Sherer and Schira (see[22, Section 2]), hold for Gauss–Turán type
quadrature formula.
The integral representation (2.1) leads directly to the error estimate

|Rn,s(f )|� �(�)

2�

(
max
z∈�

|Kn,s(z)|
)(

max
z∈�

|f (z)|
)
, (2.6)

where�(�) is the length of the contour�.
A general estimate can be obtained by Hölder inequality. Thus,

|Rn,s(f )| = 1

2�

∣∣∣∣
∮

�
Kn,s(z)f (z)dz

∣∣∣∣ �
1

2�

(∮
�
|Kn,s(z)|r |dz|

)1/r(∮
�
|f (z)|r ′ |dz|

)1/r ′

,

i.e.,

|Rn,s(f )|� 1

2�
‖Kn,s‖r ‖f ‖r ′, (2.7)

where 1�r� + ∞, 1/r + 1/r ′ = 1, and

‖f ‖r :=
{
(
∮

�|f (z)|r |dz|)1/r 1�r < + ∞,

max
z∈�

|f (z)| r = +∞.

The caser = +∞ (r ′ = 1) gives

|Rn,s(f )|� 1

2�

(
max
z∈�

|Kn,s(z)|
)(∮

�
|f (z)||dz|

)
�
�(�)

2�

(
max
z∈�

|Kn,s(z)|
)(

max
z∈�

|f (z)|
)
,

i.e., (2.6). On the other side, forr = 1 (r ′ = +∞), the estimate (2.7) reduces to

|Rn,s(f )|� 1

2�

(∮
�
|Kn,s(z)||dz|

)(
max
z∈�

|f (z)|
)
, (2.8)



G.V. Milovanović, M.M. Spalevi´c / Journal of Computational and Applied Mathematics 178 (2005) 333–346337

which is evidently stronger than the previous, because of inequality∮
�
|Kn,s(z)||dz|��(�)

(
max
z∈�

|Kn,s(z)|
)
.

Also, the caser = r ′ = 2 could be of some interest.
For getting the estimate (2.6) or (2.8) it is necessary to study the magnitude of|Kn,s(z)| on� or the

quantityLn,s(�) := (1/2�)
∮

�|Kn,s(z)||dz|, respectively.
Taking the contour� as a confocal ellipse with foci at the points∓1 and sum of semi-axes�>1, and

w as one of the four generalized weight functions:

(a)w1(t) = (1− t2)−1/2, (b) w2(t) = (1− t2)1/2+s ,
(c) w3(t) = (1− t)−1/2(1+ t)1/2+s , (d) w4(t) = (1− t)1/2+s(1+ t)−1/2,

we studied in detail the estimates (2.6) and (2.8) in[16–18]. In that cases certain analytical results
can be done. Namely, it is well-known that the Chebyshev polynomials of first kindTn ares-orthogonal
subject tow1(t) on [−1,1] for eachs�0 (see[1]), and that for three other weightswi(t), i =2,3,4, the
s-orthogonal polynomials can be identified as Chebyshev polynomials of the second, third, and fourth
kind:Un, Vn, andWn, which are defined by

Un(cos�) = sin(n + 1)�

sin �
, Vn(cos�) = cos(n + 1/2)�

cos�/2
, Wn(cos�) = sin(n + 1/2)�

sin �/2
,

respectively (see[6,20]). Such weights, however, depend ons. Notice that the weight function in (d) can
be omitted from an investigation because ofWn(−t) = (−1)nVn(t).
The error term in Gaussian quadratures(s = 0) for these weights was studied in the caser = +∞ and

r = 1 by Gautschi and Varga[8] and Hunter[12], respectively (see also[3–5,7,23,24,13]).

3. Error estimates for Gauss–Turán quadratures with Gori–Micchelli weight functions

Recently, Gori and Micchelli[10] have introduced for eachn a class of weight functions defined on
[−1,1] for which explicit Gauss–Turán quadrature formulae can be found for alls. In the other words,
these classes of weight functions have the peculiarity that the correspondings-orthogonal polynomials,
of the same degree, are independent ofs. This class includes certain generalized Jacobi weight functions
wn,�(t) = |Un−1(t)/n|2�+1(1− t2)�, whereUn−1(cos�) = sin n�/ sin � (Chebyshev polynomial of the
second kind) and�> − 1. In this case, the Chebyshev polynomialsTn(t) appear to bes-orthogonal
polynomials.
For simplicity, in this section we consider the cases = 1 and� = 1/2, i.e.,

w(t) = wn,1/2(t) = |Un−1(t)/n|2
√
1− t2. (3.1)

We take the contour� as an ellipse with foci at the points±1 and sum of semi-axes�>1,

E� = {z ∈ C : z = 1
2 (�e

i� + �−1e−i�), 0��<2�}. (3.2)
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Now, we consider the estimate (2.8) fors = 1, when� = E�. Sincez = 1
2 (	 + 	−1), 	 = �ei�, and

|dz| = 2−1/2√a2 − cos 2�d�, where we put

aj = aj (�) = 1
2 (�

j + �−j ), j ∈ N, �>1, (3.3)

we have

Ln,1(E�) = 1

2�
√
2

∫ 2�

0

|�n,1(z)|(a2 − cos 2�)1/2

|�n,1(z)|3 d�. (3.4)

Theorem 3.1. LetE� (�>1) be given by(3.2),b2n = �2n + �−2n/4 anda2n be defined by(3.3).Then,
for the weight function(3.1),the quantityLn,1(E�) can be expressed in the form

Ln,1(E�) = 1

2n2�3n

∫ �

0

√
(a2n − cos�)(b2n + cos�)

(a2n + cos�)3
d�. (3.5)

Furthermore, the following estimate

Ln,1(E�)�
�

2n2

√
1− x − 9x2 + 29x3 + 4x4

x(x − 1)5
(3.6)

holds, wherex = �4n.

Proof. For z ∈ E�, i.e.,z = 1
2(	 + 	−1), 	 = �ei�, we have

�n,s(z) = Tn(z) = 1
2

(
	n + 	−n

)
and, according to (2.3) and (3.1),

�n,s(z) = 1

n2

∫ 1

−1

Tn(t)
2s+1Un−1(t)

2

z − t

√
1− t2 dt.

Using the equalities 2TnU2n−1=U3n−1+Un−1 and 2(1− t2)U(k+1)n−1Ukn−1=Tn −T(2k+1)n (for k=1
andk = 2), the previous integral becomes

�n,s(z) = 1

16n2

∫ 1

−1

Tn(t)
2s−2(2Tn(t) − T3n(t) − T5n(t))

(z − t)
√
1− t2

dt. (3.7)

In the simplest cases = 1, (3.7) reduces to

�n,1(z) = �

8n2
(2	n + 	−n)(	n − 	−n)

	3n(	 − 	−1)

i.e.,

|�n,1(z)| = �

4n2�3n
(a2n − cos 2n�)1/2(b2n + cos 2n�)1/2

(a2 − cos 2�)1/2
,

whereb2n = �2n + �−2n/4 andaj defined by (3.3).
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Now, by substitution this expression in (3.4), we obtain

Ln,1(E�) = 1

2n2�3n

∫ �

0

√
(a2n − cos 2n�)(b2n + cos 2n�)

(a2n + cos 2n�)3
d�,

or (3.5), because of periodicity of the integrand.
A upper bound ofLn,1(E�) can be derived, applying the Cauchy’s inequality, in the form

Ln,1(E�)�
√

�

2n2�3n

(∫ �

0

(a2n − cos�)(b2n + cos�)

(a2n + cos�)3
d�

)1/2
,

i.e., (3.6). �

In a similar way, as in[18] for generalized Chebyshev weightswi(t), i = 1,2,3,4, after some calcu-
lations and using Lemma 2.2, we can obtain a simple estimate of the remainder term in the form

|Rn,1(f )|� �

2n2

(
max
z∈E�

|f (z)|
)
2�4n + �2n − 1

�2n(�2n − 1)3
. (3.8)

It is easy to show that the bound obtained in (3.6) is smaller than one in (3.8), because of the inequality

1− x − 9x2 + 29x3 + 4x4

x(x − 1)5
<

(
2x + √

x − 1√
x(

√
x − 1)3

)2
(x >1).

The function� �→ log10(Ln,1(E�)), as well as its bounds which appear on the right sides in (3.6) and
(3.8) are given inFig. 1. As we can see, the bound (3.6) is very precise especially for larger values ofn
and�.

1.02 1.04 1.06 1.08 1.1 1.12

-8

-6

-4

-2

0

Fig. 1. Log10 of the valuesLn,1(E�) (solid line) and its bounds given by (3.6) (dashed line) and (3.8) (dot-dashed line) forn=10
(top) andn = 30 (bottom).
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4. Error estimates for even weight functions

In this section we consider the Gauss–Turán quadrature rule with respect to an even weight functions
(w(−t) = w(t) on [−1,1]). We suppose that the contour� is a central circle with a radius 1+ ε, where
ε >0.

Theorem 4.1. Let f be an analytic function in{z : |z|<1+ 2ε} (ε >0), i.e.,

f (z) =
+∞∑
k=0

akz
k, |z|<1+ 2ε, (4.1)

and the coefficientsb
(s)

n,2j andc
(s)
n,2k−2j be given as in(2.4)and (2.5), respectively. Then, the remainder

termRn,s(f ) in the Gauss–Turán quadrature formula(1.1)can be expressed in the form

Rn,s(f ) =
+∞∑
k=0

a2n(s+1)+2k e
(s)
n,k, (4.2)

wheree(s)n,k =∑k
j=0 b

(s)

n,2j c
(s)
n,2k−2j .

Proof. By using the representation (2.2), from (2.4) and Lemma 2.2, we have

Kn,s(z) = �n,s(z)

[�n,s(z)]2s+1 =

+∞∑

j=0

b
(s)

n,2j z
−n(2s+1)−2j




+∞∑

j=0

c
(s)
n,2j z

−n−2j−1


 ,

i.e.,

Kn,s(z) =
+∞∑
k=0

e
(s)
n,kz

−2n(s+1)−2k−1, |z|>1. (4.3)

Now, we obtain

Rn,s(f ) = 1

2�i

∮
�

+∞∑
j=0

+∞∑
k=0

aj e
(s)
n,k z

j−2n(s+1)−2k−1 dz. (4.4)

Both series, (4.1) and the last in (4.3), converge uniformly and absolutely in the annulus{z : 1 +
1
2 ε < |z|<1+ 3

2ε} and, therefore, the double sum in (4.4) also converges uniformly and absolutely in
this annulus. So we may interchange integration and summation in (4.4). All terms integrate to zero
except those for whichj = 2n(s + 1)+ 2k. Summing the residues forj − 2n(s + 1)− 2k − 1= −1 we
obtain (4.2). �

Let �j be moments of the weight functionw(t), i.e.,�j = ∫ 1
−1w(t)tj dt (j = 0,1, . . .). In the same

time introduce the quantities

�j =
n∑

�=1

2s∑
i=0

Ai,�
j !

(j − i)! �j−i
� (j = 0,1, . . .). (4.5)
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According to Theorem 4.1, by puttingf (t) = gk(t) = t2n(s+1)+2k, we obtain the following
consequence:

Corollary 4.2. e(s)n,k = �2n(s+1)+2k − �2n(s+1)+2k, k = 0,1, . . . .

It is easy to see thate(s)n,k >0, i.e.,�2n(s+1)+2k > �2n(s+1)+2k. It follows, e.g., from the representation

e
(s)
n,k = Rn,s(gk) = ∫ 1

−1
n(t)g
(2n(s+1))
k dt , where
n(t) (>0) is the influence function (see[9]).

If we prove that the quantities�2n(s+1)+2k are positive for a sufficiently largek, then the previous
inequality shows that�2n(s+1)+2k → 0, whenk → +∞.
In order to prove�2n(s+1)+2k >0 we take thatn, s are fixed, and consider the part of the double sum

in (4.5),

(2n(s + 1) + 2k)!
(2n(s + 1) + 2k − 1)! (A1,1�

2n(s+1)+2k−1
1 + A1,n�

2n(s+1)+2k−1
n ) (a)

+ (2n(s + 1) + 2k)!
(2n(s + 1) + 2k − 2)! (A2,1�

2n(s+1)+2k−2
1 + A2,n�

2n(s+1)+2k−2
n ). (b)

If A1,1<0, then by summing in (a) and (b) we obtain the positive expressions.
If A1,1>0,we sumseparately, firstly the quantities on the left sides in (a) and (b), and then thequantities

on the right sides. For instance the sum of the quantities on the left sides of (a) and (b) gives

(2n(s + 1) + 2k)!
(2n(s + 1) + 2k − 2)! �2n(s+1)+2k−2

1

[
A1,1�1

2n(s + 1) + 2k − 1
+ A2,1

]
>0,

sinceA2,1>0, andA1,1 �1/(2n(s + 1) + 2k − 1) → 0, whenk → +∞.
For the other parts of the double sum in (4.5) the same conclusion holds. Therefore, there existsk0

such that for allk�k0 we have�2n(s+1)+2k >0. Also, limk→+∞ e
(s)
n,k = 0, and the sequence(e(s)n,k)k=0,1,...

is bounded. The same conclusion can be derived from the following corollary of Theorem 4.1.

Corollary 4.3. e(s)n,k = �2n(s+1)+2k[1+ o(1)].
Proof. Let

x0 = max
�=1,2,...,n

|��| (�� = �(n,s)� ), where �n,s(��) = 0.

Let us define a positive constantL ≡ Ln,s such that

Lx
2n(s+1)
0 =

n∑
�=1

2s∑
i=0

|Ai,�| (2n(s + 1))!
(2n(s + 1) − i)! |��|2n(s+1)−i .
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Fork = 0,1, . . . , we have

n∑
�=1

2s∑
i=0

|Ai,�| (2n(s + 1) + 2k)!
(2n(s + 1) − i + 2k)! |��|2n(s+1)+2k−i

�x2k0
(2n(s + 1) + 2k) · · · (2n(s + 1) + 1)

(2n(s + 1) + 2k − 2s) · · · (2n(s + 1) + 1− 2s)

×
n∑

�=1

2s∑
i=0

|Ai,�| (2n(s + 1))!
(2n(s + 1) − i)! |��|2n(s+1)−i

= Lx
2n(s+1)+2k
0

(2n(s + 1) + 2k) · · · (2n(s + 1) + 1)

(2n(s + 1) + 2k − 2s) · · · (2n(s + 1) + 1− 2s)
.

Sincex0<1, we have

�2n(s+1)+2k >2
∫ 1

(1+x0)/2
w(t)t2n(s+1)+2k dt�A

[
1

2
(x0 + 1)

]2n(s+1)+2k

,

whereA = 2
∫ 1
(1+x0)/2

w(t)dt >0. Further,

x
2n(s+1)+2k
0 �

[
2x0

1+ x0

]2n(s+1)+2k 1

A
�2n(s+1)+2k.

That means that

n∑
�=1

2s∑
i=0

|Ai,�| (2n(s + 1) + 2k)!
(2n(s + 1) − i + 2k)! |��|2n(s+1)+2k−i

�
L

A
�2n(s+1)+2k

[
2x0

1+ x0

]2n(s+1)+2k
(2n(s + 1) + 2k) · · · (2n(s + 1) + 1)

(2n(s + 1) + 2k − 2s) · · · (2n(s + 1) + 1− 2s)
.

Consider now the expression

(2n(s + 1) + 2k) · · · (2n(s + 1) + 1)

(2n(s + 1) + 2k − 2s) · · · (2n(s + 1) + 1− 2s)
= a(a + 1) · · · (a + 2k − 1)

b(b + 1) · · · (b + 2k − 1)
,

where we puta = 2n(s + 1) + 1 (>0) andb = 2n(s + 1) − 2s + 1 (>0). We also have thata�b (In
fact,a = b for s = 0, otherwisea >b.).
By using the well-known fact that

�(	) = lim
k→+∞

k!k	

	(	 + 1) · · · (	 + k)
= lim

k→+∞
(2k − 1)!(2k − 1)	

	(	 + 1) · · · (	 + 2k − 1)
,

we have

a(a + 1) · · · (a + 2k − 1)

b(b + 1) · · · (b + 2k − 1)
∼ (2k − 1)!(2k − 1)a/�(a)

(2k − 1)!(2k − 1)b/�(b)
= �(b)

�(a)
(2k − 1)a−b,
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whenk → +∞. Further, ford = (1+ x0)/(2x0)>1 we have[2x0/(1+ x0)]2k = 1/d2k. Because of[
2x0

1+ x0

]2k
(2n(s + 1) + 2k) · · · (2n(s + 1) + 1)

(2n(s + 1) + 2k − 2s) · · · (2n(s + 1) + 1− 2s)
∼ �(b)

�(a)

(2k − 1)a−b

d2k
,

whenk → +∞, whered >1, a − b>0, and limk→+∞ (2k − 1)a−b/d2k = 0, we conclude that∣∣∣∣∣
n∑

�=1

2s∑
i=0

Ai,�
(2n(s + 1) + 2k)!

(2n(s + 1) − i + 2k)! �2n(s+1)+2k−i
�

∣∣∣∣∣
�

n∑
�=1

2s∑
i=0

|Ai,�| (2n(s + 1) + 2k)!
(2n(s + 1) − i + 2k)! |��|2n(s+1)+2k−i

��2n(s+1)
L

A

[
2x0

1+ x0

]2n(s+1)+2k
a(a + 1) · · · (a + 2k − 1)

b(b + 1) · · · (b + 2k − 1)

with

L

A

[
2x0

1+ x0

]2n(s+1)+2k
a(a + 1) · · · (a + 2k − 1)

b(b + 1) · · · (b + 2k − 1)
→ 0, k → +∞. �

In some particular cases we can prove that the remainderRn,s(f ) decreases monotonically to zero,
when alla2k in the expansion (4.1) are nonnegative. For similar investigations in the case of Gaussian
quadratures (s = 0) see Stenger[25].
At the end we consider some error bounds. Namely, for the remainder term in Gauss–Turán quadrature

formula (1.1) we can derive the following estimate

|Rn,s(f )|�‖Rn,s‖‖f ‖. (4.6)

We proved that the sequence(e(s)n,k)k=0,1,... (n, s-fixed) is bounded, and to converge to zero, when
k → +∞. If a given sequence belongs to the space�p (p�1), we apply Hölder’s inequality to (4.2) to
obtain

|Rn,s(f )|�
(+∞∑
k=0

(e
(s)
n,k)

p

)1/p(+∞∑
k=0

|a2n(s+1)+2k|q
)1/q

, (4.7)

where 1/p + 1/q = 1.
The quantities�(s)n,p = (

∑+∞
k=0 (e

(s)
n,k)

p)1/p are independent off and can be computed. In particular, if
p → +∞, we get

|Rn,s(f )|��(n, s)
+∞∑
k=0

|a2n(s+1)+2k|, (4.8)

where

�(n, s) = �(s)n,∞ = sup
k=0,1,...

e
(s)
n,k (4.9)
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Fig. 2. Quantitiese(s)
n,k

(dashed line) and�2n(s+1)+2k (solid line) as functions ink (casen = 10,s = 1).
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Fig. 3. Graphs forn = 10,s = 0,1,2 (left) ands = 1, n = 5,10,15 (right).

is a quantity which there exists always, what we proved above, and it can be calculated, e.g., by using
Corollary 4.3.
In the casep = q = 2 the estimate (4.7) of type (4.6) gives

‖Rn,s‖ =
(+∞∑
k=0

(e
(s)
n,k)

2

)1/2
= W

1/2
n,s . (4.10)

A calculation ofWn,s in (4.10) for Gaussian rule(s = 0) was given by Wilf[27] and Stenger[25].

Example 4.4.As an even weight function we take the generalized Gegenbauer weight functionw(x) =
|x|−1/3(1− x2)1/4 and consider the estimates given by (4.8) and (4.9).

A typical graph illustrating the relationship betweene
(s)
n,k and�2n(s+1)+2k is given inFig. 2(casen=10,

s = 1). The supremum�(10,1) = supk∈N0
e
(1)
10,k is also displayed in the same figure.
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Numerical values of�(n, s) = supk∈N0
e
(s)
n,k for s = 0,1,2 andn = 10 are

�(10,0) = 4.35× 10−3, �(10,1) = 1.31× 10−3, �(10,2) = 6.99× 10−4.

Similarly, for n = 5,10,15 ands = 1, these supremums are

�(5,1) = 6.94× 10−3, �(10,1) = 1.31× 10−3, �(15,1) = 4.86× 10−4.

The corresponding graphs are displayed inFig. 3.
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[18] G.V.Milovanović,M.M.Spalević,Anerrorexpansion for someGauss–TuránquadraturesandL1-estimatesof the remainder
term, BIT, to appear.
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