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aDepartment Mathematics, Faculty of Electronic Engineering, University of Niš, P.O. Box 73, 18000 Niš,

Serbia and Montenegro
bDepartment of Mathematics and Informatics, Faculty of Science, University of Kragujevac, P.O. Box 60,

34000 Kragujevac, Serbia and Montenegro

Received 11 October 2004

Abstract

We present a method based on the Chakalov–Popoviciu quadrature formula of Lobatto type, a rather general
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109–119). We generalize their results by using some of our numerical procedures for stable calculation of the
quadrature formula with multiple nodes of Gaussian type and proposed methods for estimating the remainder term
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1. Introduction

Recently, we have considered some numerical procedures for stable calculating quadrature formulae
with multiple nodes of Gaussian type. Also we have proposed some methods for estimating the remainder
term in such type of quadrature formulae. For more details on the quadrature formulae with multiple nodes
and their construction see [6,14,15,20].

Let n ∈ N and let �−1,n,1 = (p, s1, s2, . . . , sn, q) be a sequence of nonnegative integers. Here, we
consider a rather general case of the quadrature formulas with multiple nodes of Gaussian type, i.e.,

∫ 1

−1
f (x)w(x) dx = G�−1,n,1(f ) + R�−1,n,1[f ], (1.1)

where

G�−1,n,1(f ) =
p−1∑
i=0

Ai,0f
(i)(−1) +

n∑
�=1

2s�∑
i=0

Ai,�f
(i)(��) +

q−1∑
i=0

Ai,n+1f
(i)(1).

We called the quadrature formula (1.1) (see for example [23,24]) the Chakalov–Popoviciu quadrature
formula of Lobatto type (ChPL formula). The integrand f is a differentiable function, and w is a weight
function on the interval [−1, 1]. The fixed nodes −1, 1 in (1.1) have multiplicities p, q, respectively. The
arbitrary nodes �� (� = 1, 2, . . . , n), for which is important to assume that are ordered, say

�1 < �2 < · · · < �n, �� ∈ (−1, 1), (1.2)

have odd multiplicities 2s1 + 1, 2s2 + 1, . . . , 2sn + 1, respectively. The quadrature formula (1.1) has the
maximum degree of exactness N − 1, where

N = 2

(
n∑

�=1

s� + n

)
+ p + q, (1.3)

and the corresponding orthogonality conditions

∫ 1

−1
(1 + x)p(1 − x)q

n∏
�=1

(x − ��)
2s�+1xkw(x) dx = 0, k = 0, 1, . . . , n − 1, (1.4)

are satisfied.
If p = q = 0, i.e., the first and last sum in G�−1,n,1(f ) are equal to zero, then the ChPL quadrature

formula reduces to the Chakalov–Popoviciu quadrature; in particular to the Gauss–Turán quadrature
formula when s1 = s2 = · · · = sn = s, s ∈ N. Finally, if s = 0 we have the standard Gauss quadrature
formula.

For some m ∈ N0, t ∈ (−1, 1), let f ∈ Cm[−1, 1], with f (m) Hölder continuous. Denote by

Im(wf ; t) :=
∫ 1

−1
= f (x)

(x − t)m+1 w(x) dx (1.5)
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the finite part integral in sense of Hadamard. In the sequel, we shall use the following definition (see [9]):

Im(wf ; t) =
∫ 1

−1

f (x) −∑m
k=0

f (k)(t)

k! (x − t)k

(x − t)m+1 w(x) dx +
m∑

k=0

f (k)(t)

k! Im−k(w; t). (1.6)

When m = 0 (1.5) reduces to the Hilbert transform with the Cauchy principal value integral (see [8]).
Integrals with strong singularities are involved in several singular boundary integral equations. Such

integrals are defined in the Cauchy principal value sense or as the Hadamard finite part, and their numerical
evaluation is of interest in many problems of applied mathematics. Some quadrature methods are given for
both these types of integrals (see for instance [9] and the very recent paper [10], as well as the references
therein). A method based on the Gauss–Turán quadrature formulae for the particular class of weight
functions (see [7]),

wn,�(x) = |Un−1(x)/n|2�+1(1 − x2)�, (1.7)

where � > − 1 is a parameter and Uj , j ∈ N, are the Chebyshev polynomials of the second kind, for
approximating the previous kinds of singular or hypersingular integrals has been presented recently by
Gori and Santi [8,9].

In this paper we generalize the results from [8,9] by using the ChPL quadrature formulae (a rather
general case of Gaussian quadratures with multiple nodes which includes the Gauss–Turán quadratures)
for approximating integrals with strong singularities, as well as using more general classes of weight
functions. An application of quadrature formulae to integrals with strong singularities can produce the
undesirable effect that one of nodes in the corresponding quadrature formula being too close (or coinciding
with) the singularity, giving rise to severe numerical cancellations. Gori and Santi [8,9] proposed how to
avoid this problem by using the Gauss–Turán quadrature formulae for the Gori–Michelli weight functions
(1.7). Besides this kind of weights, in this paper, we consider more general weight functions. In Section 2
we propose a method for numerical calculation of the corresponding integrals with strong singularities by
using ChPL quadrature formulae and analyze numerically the cancellation problem (see Example 2.1).
As we will see a plenty of ChPL quadrature formulas, for instance, with the same number of nodes and
degree of exactness, enable us to avoid the numerical cancellation and to use those ChPL quadratures,
which have their nodes “far” to the singularity t, for numerically stable calculation of the corresponding
integral. We also discuss some error estimates for our method in Section 3, in particular under analyticity
assumptions on the integrand. As contours we consider circles and confocal ellipses. The advantage of
the elliptical contours is that such choice needs the analyticity of f “almost” only on the interval [−1, 1].
We derive error bounds for singular integrals from our bounds for the regular integration problem (see
[16–19]).

2. ChPL quadrature rules for finite part integrals

Applying the rule (1.1) to the ordinary integral in (1.6) yields the following quadrature rule with multiple
nodes for a Hadamard finite part integral,

Im(wf ; t) =
n+1∑
�=0

2s�∑
k=0

B
(m)
k,� (t)f (k)(��) +

m∑
k=0

Cm−k(t)
f (k)(t)

k! + e(m)
�−1,n,1

(f ; t)

=: Q(m)
�−1,n,1

(f ; t) + e(m)
�−1,n,1

(f ; t), (2.1)
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where s0 = (p − 1)/2, sn+1 = (q − 1)/2, �0 = −1, �n+1 = 1, and the nodes {��}n�=1 are the zeros of the
nth �-orthogonal polynomial in [−1, 1] with respect to the weight w(x)(1 + x)p(1 − x)q . The function
f is assumed to have the required derivatives at least at the nodes −1, 1, ��, � = 1, 2, . . . , n; t is assumed
to be different from any −1, 1, �1, �2, . . . , �n; and there results e

(m)
�−1,n,1(f ; t) = 0 when f ∈ PN+m−1, N

is given by (1.3). Furthermore, by using (1.1) we obtain

B
(m)
k,� (t) =

2s�∑
h=k

(−1)h−k

(
h

k

)
(m + h − k)!

m!(�� − t)m+1+h−k
Ah,�,

Cm−k(t) = Im−k(w; t) − G�−1,n,1[(x − t)k−m−1], (2.2)

where �=0, 1, . . . , n+1.The knowledge of I0(w; t) is required, which then yields Im−k , k=0, 1, . . . , m−1.
Namely, differentiating with respect to t, we have∫ 1

−1
= w(x) dx

(x − t)m−k+1 = 1

(m − k)!
dm−k

dtm−k

(
−
∫ 1

−1

w(x) dx

x − t

)
.

The evaluation of the Hilbert transform (as a Cauchy principal value integral)

−
∫ 1

−1

w(�,�)(x)

x − t
dx, |t | < 1,

of the Jacobi weight function w(�,�)(x)= (1−x)�(1+x)� by analytic and numerical means was analyzed
by Gautschi and Wimp [5]. For the evaluation of Cm−k(t), in some cases, we refer to [13,22].

For p = q = s1 = · · · = sn = 0, (2.1) reduces to the Gaussian type of quadrature rule given in [12].
When one of the nodes, say ��, coincides with t, and f is assumed to have derivatives up to the order

m + 2s� + 1 at �� (� = 1, 2, . . . , n), a formula similar to (2.1) can be derived in an analogous way as in
[9], where

Q(m)
�−1,n,1

(f ; t) =
n+1∑
�=0
��=j

2s�∑
k=0

Ak,�

[
�k g(x, t)

�xk

]
x=��

+
2sj∑
k=0

Ak,j

k!f (m+k+1)(t)

(m + k + 1)!

+
m∑

k=0

f (k)(t)

k! Im−k(w; t) (�j = t)

and

g(x, t) = f (x) −∑m
k=0 f (k)(t)(x − t)k/k!
(x − t)m+1 .

Example 2.1. Let, for simplicity, p = q = 0, i.e., the first and last sum of G�−1,n,1(f ) be equal to zero.
Then, instead of �−1,n,1 we use the simpler notation �n, what means �n = (s1, s2, . . . , sn). In [9] the
following integral:

I1(t) =
∫ 1

−1
= e3x

(x − t)2

dx√
1 − x2

, t ∈ (−1, 1),
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was calculated by using the corresponding Gauss–Turán quadrature formula with 3 nodes, for t = 0.25
and 0.99 (s = 0, 1, 2, 3). It is interesting to see if we can use the same formula for calculating I1(10−7),
whose the exact value is I1(10−7) = 20.80606116382459179149318694 . . . . Because of a symmetry
and odd number of nodes, this formula contains the node �2 = 0 which is too closes to the singularity
t = 10−7. This evidently produces a undesirable effect of numerical cancellation and our numerical tests
confirm it. If we use Chakalov–Popoviciu quadratures with the same degree of exactness and 3 nodes,
�3 ∈ {(s1, s2, s3)|s1+s2+s3=3s}, for calculating of I1(10−7), the same effect of cancellation is appeared
in symmetric cases (see below for an explanation of the “symmetric case”). For instance, for s = 3 and
�3 ∈ {(4, 1, 4), (2, 5, 2), (1, 7, 1), (0, 9, 0)}, we have a break of calculation, which is an expected fact.
But, in all other cases we can calculate the requested integral. For instance, in the case �3 = (4, 3, 2),
we calculate this integral with the relative error of 4.766 × 10−21. The nodes of the corresponding
Chakalov–Popoviciu quadrature are

�1 = −0.8046729485232233424646958196,
�2 = 0.2220134540924115178710298040,
�3 = 0.9163329282300332083251062954.

To avoid the problem with cancellation in these cases, also in the cases when the weight function belongs
to the class (1.7), it is possible to use the corresponding Gauss–Turán quadrature formula with an even
number of nodes, as it was recommended by Gori and Santi [8,9]. But, what is the outlet for a more
general case, for instance, if the weight function do not belong to the just quoted class?

Let us calculate, by using here introduced quadratures with multiple nodes, the following integral:

I2(t) = −
∫ 1

−1

ex

x − t
dx, t ∈ (−1, 1),

which has been also calculated earlier by some other methods (cf. Criscuolo [2], Monegato [21], Caliò
and Marchetti [1]). It is very suitable for its calculation to use the ChPL quadrature formulae (in this
example only the Chakalov–Popoviciu), since we have not any problem with finding the derivatives
of ex .

We consider the calculation of I2(10−7) = 2.114501653585488530929518697 . . . . Since w(x) ≡ 1
(an even weight function), we expect again a cancellation in all symmetric cases, when we use the
corresponding quadratures with odd number of nodes for calculating I2(10−7), since one of nodes has
to be 0 and it is “close” to the given singularity t = 10−7. For instance, in our quadratures with 5 nodes,
we have a cancellation in the calculation of I2(10−7), when �5 is (1, 1, 1, 1, 1) and (0, 0, 5, 0, 0). But,
if err = err(t) denotes the relative error in calculating I2(t), in some nonsymmetric cases, for t = 10−7,
we obtain: err = 5.412 × 10−25 for �5 = (5, 0, 0, 0, 0); err = 5.292 × 10−25 for �5 = (0, 5, 0, 0, 0);
err = 5.768 × 10−25 for �5 = (0, 0, 0, 5, 0); err = 6.407 × 10−25 for �5 = (0, 0, 0, 0, 5). In the case
�5=(0, 5, 0, 0, 0), the nodes of the corresponding Chakalov–Popoviciu quadrature formula are as follows:

�1 = −0.9561237249519224056867035966,
�2 = −0.3182374828393608645562747534,
�3 = 0.5747728071754024024326923928,
�4 = 0.8270431253847736362768375459,
�5 = 0.9669724514977142583407200493.
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Table 1
Relative errors of calculating I2(10−11)

�9 err(10−11)

(1, 0, 0, 0, 0, 0, 0, 0, 0) 3.285(−26)

(0, 1, 0, 0, 0, 0, 0, 0, 0) 3.289(−26)

(0, 0, 1, 0, 0, 0, 0, 0, 0) 3.294(−26)

(0, 0, 0, 1, 0, 0, 0, 0, 0) 3.302(−26)

(0, 0, 0, 0, 0, 1, 0, 0, 0) 3.319(−26)

(0, 0, 0, 0, 0, 0, 1, 0, 0) 3.327(−26)

(0, 0, 0, 0, 0, 0, 0, 1, 0) 3.334(−26)

(0, 0, 0, 0, 0, 0, 0, 0, 1) 3.338(−26)

We end this example by calculating the following integral

I2(10−11) = 2.114501750741740433954728301 . . .

by certain Chakalov–Popoviciu quadratures with 9 nodes.
Taking �9 =(0, 0, 0, 0, 1, 0, 0, 0, 0) we have cancellation in the calculation of I2(10−11). But, for some

nonsymmetric quadratures we get satisfactory results. The corresponding relative errors of calculating
I2(t) for some selected nonsymmetric quadratures and t = 10−11 are displayed in Table 1. Numbers in
parentheses indicate decimal exponents.

3. Analysis of the error term e
(m)
�−1,n,1(f ; t)

Introduce �(x; w) by

�(x; w) = (1 + x)p(1 − x)q
n∏

�=1

(x − ��)
2s�+1 =

n+1∏
�=0

(x − ��)
2s�+1,

where �0 = −1, �n+1 = 1, s0 = (p − 1)/2, sn+1 = (q − 1)/2. We recall that it is possible to associate,
with any system of �-orthogonal polynomials and with the corresponding ChPL quadrature rule (1.1),
the kernel function K�−1,n,1(z; w) given by (see, for instance [17])

K�−1,n,1(z; w) = ��−1,n,1
(z; w)

�(z; w)
, z /∈ [−1, 1], (3.1)

where

��−1,n,1
(z; w) =

∫ 1

−1
w(x)

�(x; w)

z − x
dx,

which plays a fundamental role in a representation of the remainder term of the ChPL quadrature formula
(1.1) by means of a contour integral. In fact, when F is analytic in a domain D containing [−1, 1] and 	
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is a curve in D surrounding [−1, 1], then the following expression for the remainder term is well-known
(cf. [3]):

R�−1,n,1[F ] = 1

2
i

∮
	
K�−1,n,1(z; w)F(z) dz. (3.2)

The kernel can be given alternatively by

K�−1,n,1(z; w) = R�−1,n,1

[
1

z − ·
]

.

We recall that the authors of [3] observed that the estimates of the error term of the type (3.2) are
good even for small values of n and less conservative than other estimates given in terms of high-order
derivatives of the integrand.

Let K
(m)
�−1,n,1(z, t; w) be the corresponding kernel function of the quadrature formula (2.1). Suppose

now, that the function f is a single-valued holomorphic in a domain D. Then, the following representation
of the error in (2.1) can be given.

Theorem 3.1. One has

K(m)
�−1,n,1

(z, t; w) = 1

(z − t)m+1 K�−1,n,1(z; w). (3.3)

Proof. The proof follows by applying the residue theorem, with respect to z, to the function

f (z)�(x; w)

(z − t)m+1(z − x)�(z; w)
,

and then integrating with respect to the variable x on the interval [−1, 1]. �

On the basis of (3.3) we can represent the error in (2.1) by

e(m)
�−1,n,1

(f ; t) = 1

2
i

∮
	
K(m)

�−1,n,1
(z, t; w)f (z)dz. (3.4)

Consider now the symmetric ChPL quadrature formula, i.e., the quadrature formula (1.1) in which

w(−x) = w(x), p = q, s� = sn−�+1

(
� = 1, . . . ,

[n
2

])
. (3.5)

On the basis of well-known facts for the symmetric ChPL quadrature formula we can almost immedi-
ately conclude:

• The nodes satisfy

�n−�+1 = −��

(
� = 1, . . . ,

[n
2

])
.

• There holds 
�n(−x)=(−1)n 
�n(x), where 
�n(x)=∏n
�=1(x−��) is the corresponding �-orthogonal

polynomial with respect to the weight function wL(x) = wL
p,q(x) = (1 − x2)pw(x).



696 G.V. Milovanović, M.M. Spalević / Journal of Computational and Applied Mathematics 189 (2006) 689–702

• The coefficients satisfy

Ai,� = (−1)iAi,n−�+1

(
� = 0, 1, . . . ,

[n
2

]
; i = 0, 1, . . . , 2s�

)
.

In particular, Ai,[n/2]+1 = 0, if n is odd and i = 1, 3, . . . , 2s[n/2]+1 − 1.

Lemma 3.2. If for the ChPL quadrature formula (1.1) conditions (3.5) hold, then

R�−1,n,1[xk]
{ = 0, k is odd,

has the same sign independently of k, k is even.

Proof. By using the above facts for a symmetric ChPL quadrature formula it is easy to conclude that
R�−1,n,1[xk] = 0 if k is odd.

Let now k be even. On the basis of conditions (3.5) and (1.3) we have that N is even. Therefore, k − N

is even. Now, we have that

(xk)(N)�0 on [−1, 1].
Recently, we have introduced the so-called influence function �(x) for the ChPL quadrature formula

(1.1) (see [23]) and proved that its sign does not change in the interval (−1, 1), as well as

R�−1,n,1[xk] =
∫ 1

−1
�(x)(xk)(N) dx.

Therefore, each R�−1,n,1[xk] (k is even) has the same sign as the influence function. �

3.1. Circular contour

Let 	 be a circle C� with center at origin and radius � (> 1), i.e., C� = {z : |z| = �}, � > 1.

Theorem 3.3. If for the ChPL quadrature formula (1.1) conditions (3.5) hold, then

max
z∈C�

|K�−1,n,1(z; w)| = |K�−1,n,1(�; w)|. (3.6)

Proof. Since

K�−1,n,1(z; w) =
+∞∑
k=N

R�−1,n,1[xk]
zk+1 , (3.7)

for z = � we have

K�−1,n,1(�; w) =
+∞∑
k=N

R�−1,n,1[xk]
�k+1 . (3.8)
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According to Lemma 3.2, from (3.8) we conclude that

|K�−1,n,1(�; w)| =
∣∣∣∣∣
+∞∑
k=N

R�−1,n,1[xk]
�k+1

∣∣∣∣∣=
+∞∑
k=N

|R�−1,n,1[xk]|
�k+1 .

On the other side, from (3.7) it follows:

|K�−1,n,1(z; w)|�
+∞∑
k=N

|R�−1,n,1[xk]|
�k+1 .

Therefore,

max
z∈C�

|K�−1,n,1(z; w)| =
+∞∑
k=N

|R�−1,n,1[xk]|
�k+1 = |K�−1,n,1(�; w)|. �

Now, from (3.3), (3.4), and (3.6) the estimate below of |e(m)
�−1,n,1(f ; t)| is easily derived.

Corollary 3.4. If for the ChPL quadrature formula (1.1) conditions (3.5) hold, then

|e(m)
�−1,n,1

(f ; t)|� �

(� − |t |)m+1 |K�−1,n,1(�; w)|
(

max
z∈C�

|f (z)|
)

.

Theorem 3.5. Let f ∈ CM+1[−1, 1], M = N + m. Then, there exists � ∈ (−1, 1) such that

e(m)
�−1,n,1

(f ; t) = f (M+1)(�)

(M + 1)!
∫ 1

−1

(
n∏

�=1

(x − ��)
2s�+2

)
(1 − x2)pw(x) dx.

Proof. We have e
(m)
�−1,n,1(f ; t) = R�−1,n,1[g], where g ≡ g(x, t) is defined above.

Further, if f ∈ CN [−1, 1], then

R�−1,n,1[g] =
[

�Ng(x, t)

�xN

]
x=�

1

N !
∫ 1

−1
w(x)(1 − x2)p

(
n∏

�=1

(x − ��)
2s�+2

)
dx, (3.9)

where � ∈ (−1, 1). Since (see [9, p. 113])[
�Ng(x, t)

�xN

]
x=�

= 1

m! f (M+1)(
)B(m + 1, N + 1) = N !
(M + 1)! f (M+1)(
),

where 
 ∈ (−1, 1), by substituting in (3.9), we have that

R�−1,n,1[g] = f (M+1)(
)

(M + 1)!
∫ 1

−1

(
n∏

�=1

(x − ��)
2s�+2

)
(1 − x2)pw(x) dx.

Finally, we obtain

e(m)
�−1,n,1

(f ; t) = �(m)
�−1,n,1

f (M+1)(
), 
 ∈ (−1, 1), (3.10)
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Table 2
The values of �(m)

�−1,n,1 for some selected m, p, q

m 2 2 2 4 4 4
p 1 3 5 1 3 5
q 1 3 5 1 3 5

�(m)
�−1,n,1 4.193(−78) 3.543(−87) 2.177(−92) 1.225(−81) 9.071(−89) 4.922(−98)

where

�(m)
�−1,n,1

= 1

(M + 1)!
∫ 1

−1

(
n∏

�=1

(x − ��)
2s�+2

)
(1 − x2)pw(x) dx. �

The coefficient �(m)
�−1,n,1 in (3.10) can be given alternatively in the form

�(m)
�−1,n,1

= 1

(M + 1)!

⎡
⎣∫ 1

−1
xNw(x) dx −

p−1∑
i=0

(−1)N−iAi0
N !

(N − i)!

−
q−1∑
i=0

Ai,n+1
N !

(N − i)! −
n∑

�=1

2s�∑
i=0

Ai�
N !

(N − i)! �N−i
�

⎤
⎦ .

Example 3.6. Let w(x) = 1/
√

1 − x2, n = 10, and

s1 = s3 = s4 = s9 = s10 = 1, s2 = s5 = s6 = s7 = 2, s8 = 3.

The values of �(m)
�−1,n,1 for some m, p, q are displayed in Table 2.

3.2. Elliptic contour

Let now the contour 	 be an ellipse E� with foci at the points ±1 and sum of semi-axes � > 1, i.e.,

E� =
{
z ∈ C : z = 1

2 (�ei� + �−1e−i�), 0�� < 2

}

. (3.11)

When � → 1, then the ellipse shrinks to the interval [−1, 1], while with increasing � it becomes more
and more circle-like. The advantage of the elliptical contours, regarding to the circular ones, is that such
choice needs the analyticity of f in a smaller region of complex plane, especially when � is near to 1.

According to (3.3), for z = 1
2 (�ei� + �−1e−i�) we have

|K(m)
�−1,n,1

(z, t; w)| = |K�−1,n,1(z; w)|
[a2

1 − sin2� − 2ta1 cos � + t2](m+1)/2
, (3.12)

where we used the usual notation aj = aj (�) = 1
2 (�j + �−j ), j ∈ N, � > 1.



G.V. Milovanović, M.M. Spalević / Journal of Computational and Applied Mathematics 189 (2006) 689–702 699

For the remainder in the corresponding quadrature formula (2.1), by using (3.4), we obtain the following
error bound:

|e(m)
�−1,n,1

(f ; t)|�L(m)
�−1,n,1

(E�, t; w)

(
max
z∈E�

|f (z)|
)

, (3.13)

where, because of z = 1
2 (� + �−1), � = �ei�, and |dz| = 2−1/2√a2 − cos 2� d�,

L(m)
�−1,n,1

(E�, t; w) = 1

2


∮
E�

|K(m)
�−1,n,1

(z, t; w)||dz|

= 1

2

√

2

∫ 2


0

∣∣∣∣K(m)
�−1,n,1

(
1

2
(�ei� + �−1e−i�), t; w

)∣∣∣∣ (a2 − cos 2�)1/2 d�,

where the kernel is given by (3.12).
Consider the denominator of the fraction in (3.12) which we define as h(�)(m+1)/2, where

h(�) = a2
1 − sin2� − 2ta1 cos � + t2 is a continuous-differentiable function of an arbitrary order. Since

h(2
 − �) = h(�) (� ∈ [0, 
]), for determining of an extremum of the function h(�), i.e., h(�)−(m+1)/2,
it is sufficient to consider its behavior on the interval [0, 
]. It is clear that if the function h(�)−(m+1)/2

attains the maximum value on the interval [0, 
] at a point �, then it is equivalent to the fact that h(�)
attains the minimum value at the same point on [0, 
]. We have that h′(�)= 2 sin �(ta1 − cos �). By using
this formula and by investigation the sign of the derivative on [0, 
], we conclude that the point �, in
which the function h(�) attains the minimum value on [0, 
], is equal to 0, 
, and arccos(ta1), if ta1 > 1,
ta1 < − 1, and |ta1|�1, respectively.

Let � = �(�, t) = max�∈[0,
] h(�)−(m+1)/2. On the basis of the previous analysis, we conclude that

� =

⎧⎪⎨
⎪⎩

1

(a1 − |t |)m+1 , |t |a1 > 1,

1

[(a1 − |t |)2 − (1 − |t |a1)
2](m+1)/2

, |t |a1 �1.

(3.14)

Denoting

L�−1,n,1(E�; w) := 1

2


∮
E�

|K�−1,n,1(z; w)||dz|

= 1

2

√

2

∫ 2


0

∣∣∣∣K�−1,n,1

(
1

2
(�ei� + �−1e−i�); w

)∣∣∣∣ (a2 − cos 2�)1/2 d�,

and by using (3.12), (3.14), we obtain

L(m)
�−1,n,1

(E�, t; w)��L�−1,n,1(E�; w).

Substituting the last inequality in (3.13) we obtain the following error bound for (2.1),

|e(m)
�−1,n,1

(f ; t)|��L�−1,n,1(E�; w)

(
max
z∈E�

|f (z)|
)

. (3.15)

The error bounds (3.13) are very precise. For the Gauss quadrature formulae such bounds are considered
by Hunter [11]. Another interesting approach has been given by Gautschi and Varga [4]. The case of
Gauss–Turán quadratures has been considered in [16].
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Fig. 1. Log10 of the values L
(2)
�−1,n,1(E�, 0; w) (solid line) and its bound given by (3.16) (dashed line) for n= 10 (top) and n= 30

(bottom), when 1 < ��1.5.
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Fig. 2. Log10 of the values L
(5)
�−1,n,1(E�, 0; w) (solid line) and its bound given by (3.16) (dashed line) for n= 10 (top) and n= 50

(bottom), when 1 < ��1.5.

The error bounds (3.15) can be easily computed for the Gauss–Turán quadratures formulae and some
classes of weight functions, especially if we use upper bounds of L�−1,n,1(E�; w) which are rather simple
for calculation. For more details see the recent papers [17–19].

Example 3.7. The Gauss–Turán quadrature formulae for s = 1 and the Gori–Michelli weight functions
(1.7) with � = 1

2 , i.e.,

w(x) = wn,1/2(x) = |Un−1(x)/n|2
√

1 − x2,
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have been considered in [19]. By using the results from [19, Theorem 3.1] and our considerations for the
error bounds, when the contour is an ellipse, we obtain in this case

L(m)
�−1,n,1

(E�, t; w) = 1

2n2�3n

∫ 


0

√
(a2n − cos 2n�)(b2n + cos 2n�)

(a2n + cos 2n�)3(a2
1 − sin2� − 2ta1 cos � + t2)m+1 d�,

where b2n = �2n + �−2n/4, as well

L(m)
�−1,n,1

(E�, t; w)�
�


2n2

√
1 − x − 9x2 + 29x3 + 4x4

x(x − 1)5
, (3.16)

where x = �4n.
Let t =0, for simplicity. The function � 	→ log10(L

(m)
�−1,n,1(E�, 0; w)), as well as its bound which appear

on the right side in (3.16) are displayed in Fig. 1 for m = 2, i.e., in Fig. 2 for m = 5, respectively.
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References

[1] F. Caliò, E. Marchetti, Complex Gauss–Kronrod integration rules for certain Cauchy principal value integrals, Computing
50 (1993) 165–173.

[2] G. Criscuolo, A new algorithm for Cauchy principal value and Hadamard finite-part integrals, J. Comput. Appl. Math. 78
(1997) 255–275.

[3] J.D. Donaldson, D. Elliott, A unified approach to quadrature rules with asymptotic estimates of their remainders, SIAM
J. Numer. Anal. 9 (1972) 573–602.

[4] W. Gautschi, R.S. Varga, Error bounds for Gaussian quadrature of analytic functions, SIAM J. Numer. Anal. 20 (1983)
1170–1186.

[5] W. Gautschi, J. Wimp, Computing the Hilbert transform of a Jacobi weight function, BIT 27 (1987) 203–215.
[6] A. Ghizzetti, A. Ossicini, Quadrature Formulae, Akademie Verlag, Berlin, 1970.
[7] L. Gori, C.A. Micchelli, On weight functions which admit explicit Gauss–Turán quadrature formulas, Math. Comp. 69

(1996) 269–282.
[8] L. Gori, E. Santi, On the evaluation of Hilbert transforms by means of a particular class of Turán quadrature rules, Numer.

Algorithms 10 (1995) 27–39.
[9] L. Gori, E. Santi, Quadrature rules based on s-orthogonal polynomials for evaluating integrals with strong singularities,

in: W. Gautschi, G.H. Golub, G. Opfer (Eds.), Applications and Computation of Orthogonal Polynomials (Oberwolfach,
1998), Internat. Ser. Numer. Math., vol. 131, Birkhäuser, Basel, 1999, pp. 109–119.

[10] T. Hasegawa, Uniform approximations to finite Hilbert transform and its derivative, J. Comput. Appl. Math. 163 (2004)
127–138.

[11] D.B. Hunter, Some error expansions for Gaussian quadrature, BIT 35 (1995) 64–82.
[12] N.I. Ioakimidis, On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their

derivatives, Math. Comp. 44 (1985) 191–198.
[13] F.G. Lether, Subtracting out complex singularities in numerical integration, Math. Comp. 31 (1977) 223–229.
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