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Abstract

We present some sharp inequalities for symmetric functions and give an application to orthogonal
polynomials.
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1. Introduction

Symmetric functions are important in several branches of mathematics, especially
in approximation theory, probability theory, combinatorics and algebra, and they have
many applications in different areas (see [5, Chapter 1] for details about symmetric func-
tions).
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Let Q(x) be a polynomial of degree(e N) with zerosi,,,v=1,...,n,i.e.,

Q)=C[Jex=r). c#o0. (1.1)
k=1
It is well known that the coefficients of the polynomial (1.1) can be represented, using
symmetric functions, in the following form:

Olx) = C(xn - U}l,lxn_l + Un,an_z —t (_1)11011,)1),

whereo, i, k=1, ..., n, are the so-calledlementary symmetric functions

Opn k= Z Aig s hip, k=1,...,n,

(i1seenit)

and where the summation is performed over all combinations. ., ix) of the basic set
{1,...,n}. Thus,

Op1=A1+tA2+ -+ Ay, op2=MA2+ -+ Ap_1hy, ...,
On,n =A1A2: - Ay

For the convenience we pu} o =1 ando, x =0, k > n or k < 0. When we want to refer
to the all elementary symmetric functions, we use notasigr= (0,0, - .., on.n), Where
o, represents a vector with+ 1 components.

There are several classical inequalities with symmetric functions (cf. [3,6,8,12,13,15—
17]). For some recent results see [1,4,7,11,14]. For example, some general results on the
positivity of symmetric functions have been recently obtained by Timofte [14].

In this paper we present the positivity for a special family of symmetric polynomials
p; (0,) and give some applications to orthogonal polynomials. The paper is organized as
follows. The main inequality; (¢,) > 0 (Theorem 2.3) is stated in Section 2 and its proof
is given in Section 3. A determinant representatiorppfo,) is presented in Section 4
and some special cases are analyzed in Section 5. Finally, Section 6 is devoted to some
applications to linear functionals and orthogonal polynomials.

2. Inequalities

In this paper we assume that all zeros of the polynomial (1.1) are positive, i.e.,
M>0 v=1 ... n
Let the derivatives oD (x) at the point zero be denoted B/ (0), i.e.,
dk
ix) , ke NO
dxk x=0

0“0 =

Obviously, we have

0% = (-1)"*kCoppk, k=0,1,...,n. (2.1)
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We also define the sequence

145 1

~ K dxk O(x) N

Qk k € Np.

Lemma 2.1. The sequenc@y, k € Ny, satisfies the following recurrence relation

(=180 -
OnQe="— e F DT Y Dok 0 kN0 (22)
: v=max{0,k—n}

If the sum is empty, we consider it to be zero.

Proof. Put f(x) = Q(x) andg(x) =1/Q(x), obviously we havefg = 1. If we apply the
Leibnitz rule for the derivative of a product, we get

k
=3 (4) 000 = 5o

x=0 -0

Substituting £ (0) = 0™ (0), g™ (0) = Q,, and using (2.1), the previous equation re-
duces to

dk
ﬁ(fg)

(=180 =
Onn Q== + (=D Y (=D o400y, k€N,
’ v=0

According to the fact that, , = 0 fork < 0, we can truncate the summation in the previous
form and so we get (2.2).
Equality in (2.2) holds even for the choiége= 0, in which case it reduces t@¢ =

1/00) = (=1)"/(Conn). O

For k > 0, in (2.2) we have the homogenous difference equatiprp £ 0), which
generates the solutiom,’,‘)n Ok = pi(0,)Qo, Where pi(a,), k € N, is a polynomial in

On,0s--+»0n,n-
Now, we can state the following result:

Lemma 2.2. The solution of the difference equati¢h2) admits a representation of the
following form

of Ok =pi@n)Qo, keN,

where p; is a polynomial of degreé of the elementary symmetric functioss,, v =
0,1,...,n.

Proof. Fork = 1 the statement is obvious, since

On.n 01= On,n—1 Qo and PZ (o0n)= On,n—1-

Assuming it is true forQ1, we are able to prove the statement @y, since
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1
2
Onon Qr=— Z(_l)van,n—k+u0n,n Oy

v=0
= _(O'n,no'n,an - Un,n—lpf (O'n)) Qo= Pg (0,)Qo,

where p;(0,) = ann—l — on.n0n.n—2. Repeating the same arguments, we can prove that
our statement holds fdr < n. Starting from that point, we can apply the induction.

Assuming that statement holds f@;_,, ..., Qr—1, we prove that it is true foQy,
since
k-1
op Ok =D D (=DYoy, tonn ko, O

v=k—n

k—1
=(=D"1Q0 > (D0},  onn kil (@) = pi (@) Qo,

v=k—n

where obviously we have

pi(on) = (=Dt Z (—DVor, " ounkppi(@n), k>n. O

v=k—n

Adopting py(0,) =1 andpj(o,) =0, k < 0, we rewrite the recurrence (2.2) for the
sequenc&)y, k € No, into the recurrence for the sequengdo ), k € No. Thus, we have

k=1

PR =80+ Dt Y (=DYoy o arupi(on),  keNo.
v=max0,k—n}

(2.3)

Using the previously defined quantities, we can state our main result.

Theorem 2.3. Provided all zeros.,,, v =1, ..., n, counting multiplicities, of the polyno-
mial Q are positive, we have
pi(o,) >0, keNp. (2.4)

As an illustration, we give values of the polynomial$, k € N, for the case when the
polynomial Q has only two zeros. Thus, we have the following statement:

Theorem 2.4. Suppose that the polynomi@l is of the second degree, then

[k/2]
pi(o2) = Z ay ﬂflzv (02,002,2)", k€N, (2.5)

where the coeﬁicientz’z‘ ,» v, k € Np, satisfy the following recurrences
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alzc’v = alz‘;l — aéfuz_l, v=1 ..., [k/2] -1, alzcyo =1 keNp,
af,=(-1",  a3'=0, veNo, db,=0, vg¢{01... [k/2}.
(2.6)
Moreover,
k —
ab,=0'(" ") Kz ab,=0. k<. 2.7)

3. Proof of Theorem 2.3

We assume that the polynomi@l hasM distinct zeros, denoted y,,, v=1,..., M.
Their multiplicities are denoted byt,,, respectively, where

M
Z M, =n.
v=1

Proof of Theorem 2.3. Obviously, in the case = 1, the polynomialQ has only one
simple zero. There is nothing to prove, since using (2.3), we can calculate

pre1)=1>0

and (2.4) holds.
In the sequel, we assumme> 1. First, we assume that for the zexg we have multi-
plicity M1 > 2. Consider now the following polynomials:

[oom g
P, =1 dt, Pry—1, ke N. 3.1
469 +O/1_[M (t—;LU)f—Mlt t, q€Py-1, ke (3.1)

v=1

For different polynomialg € Py;—1 we have different polynomialg;. For example, tak-
ing the special casg= 0, we haveP, = 1.
For a polynomialy € Py,—1 which is not identically zero, since

Q(x) q(x) o
[Tl — ) * — 12
we conclude tha®/ has zeros a,, v=1,..., M, of the multiplicitiesM, — 1 — 6, 1,
v=1,..., M, respectively, and a zero at the point zero of the multiplikitit is also easy

to verify that the degree of; isn + k — 1.
We show that the system of equations

P(x) =

MKy
() q@)

P(uy) =1 dt =0, =1,...,n, 3.2

k() +O/1_[M (t—uv)l_ﬂlt t v n (3.2)

v=1

has a solutiory € Py_1.
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First, note that we can rewrite this system of equations in the form
MHv+1

/ . o) (") *dt =-8,0, v=01,...,M -1, (3.3)
Ky

M
v:]_(t —m) =M

where we use the conventigry = 0. To prove that the system (3.3) has a unique solution,
it is enough to prove that the corresponding homogeneous system

MHv+1

o() q(t) & dr
M —p)t—

has only the trivial solutioly = 0 in Pj;_1. Note that the polynomial

o) it
i —
[Tom1(t =)t — 1
has a constant sign on the intervgls,, u,+1), v=0,1,..., M — 1, since it has no zeros
in these intervals. Therefore, the homogenous equations (3.4) imply that polynpmial
must have at least one zero in each of the intergyals u,+1), v=0,1,..., M — 1. This
means that the polynomiglmust have at leas¥ zeros, the only polynomial from®,_1
satisfying this condition is, of course a polynomial which is identically zero.

This means that the system of equations (3.2) has a unique soju&idy,_1. We de-
note that solutiog ™. So that there exists (uniquely) polynomi#al of the form (3.1), which
has zeros at,, v=1,..., M, of the orderM,, — 8, 1, v=1,..., M, denoted here®;.

For the polynomial P;")’, we know that it has zeros of the ordef, — 1 — 4, ;1 at the
pointsu,, v=1,..., M, and a zero of degreke at the point zero. Since it is of degree
k +n — 2, there areM — 1 more zeros those are zeros¢df Using Role’s theorem, we
know that(P;*)" must have at least one zero in each intetwal, i1 1), v=1,..., M —1,
since the polynomiaP;* has zeros at the points,, v=1,..., M. There areM — 1 such
zeros, so that the zeros @f ¢,, v=1,..., M — 1, are simple and belong to the intervals
¢y € (Uy, Uy+1),v=1,..., M — 1. Since the polynomial

0 (x) xk

[0 — o) ¥ —
does not have any zeros in the interd@l 1), it is of a constant sign there®” is also of
the positive sign on the intervaD, w1). If it is not the case, then sincg’(0) = 1, there
is at least one zero of the polynomif in the interval(0, 1.1) suppose it is the point.
Then, according to the Role’s theorem, there must be at least one zero of the polynomial
(P} inthe interval(¢, 1), but this is a contradiction. Thus, the polynom&l is of the
positive sign on the intervaD, u1).

Obviously, P} cannot have zero in the intervigl1, u2), if it does then(P;)" must have
two zeros in the intervalu, u2) and those must be zerosgf, which is a contradiction.

This leads to an observation that the polynon#igilx)/(x — n1)M1~1 has a constant sign
on the interval0, o) and that sign ig—1)M1-1,

Consider now the rational functial /(x**1 Q). It has poles of ordet + 1 at the point
zero and of ordeM,, at pointsu,, v =1, ..., M. Whenx approaches the complex infinity,

=0, v=0,1,...,M—1, (3.4)

q(x),
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we haveP;/(x**10) = 0(x~2). Applying the Cauchy residue theorem to the function
Pi/(x*+1Q), over the contour which has in its interior{€y1, . .., uy}, we have

1/ P\W Py(x)
k’<Q) ——Z (3.5)

*x=ity xk+1Q(x)
But since polynomial is of the form (3.1), we know tha‘l’,f”)(O) =38,0,v=0,1,... k.
Using the Leibnitz rule, we get

1/P\® 1 &k B 1/1\®
M8 L i 33" e
k! Q x=0 k! V=0 Y x=0 k! Q x=0
Thus, for every polynomiaPy, of the form (3.1), we have
1/P\W
ilo) [ Lo
Now, chooseP, = P}, using (3.5), we have
1 (x—p)Pi(x)
Ok =——1 k . (3.6)
BT 0w ey,
This equation can be rewritten in the form
. + 0 Ok ZCott PR (x—pup™
Pk(‘fn)— =-=D'—7 e =
Qo py (= 1) 0(x) x=pu1
okl pr(x) 1
=-(-1" 5 T — . (3.7)
M (x — p1) x=p1 Hl):z(ﬂl_ﬂv) v

Taking only the sign of the terms, from this equation we get

0 P (x)
sgn(py (o)) = —(=1) ng((x

ppMi-1

1
)i ;
x=p1/ [Tomo SQN1 — 1)) Mv

= —(-D"(-1M1 l_[<—1>Mv = (-
v=2
This proves inequality (2.4) in the casf > 2
In the caseM1 = 1, we consider the polynomial, of the following form:

X

o
P (x):1+/tk4
¢ s | JCE D)

Using the same arguments as in the cége> 2, we can prove that there exist (uniquely)
g* and respective®;*, such that

qg(t)dt, qe€Py-o.

Ky
Pf(uv)=l+/tk#q*(t)dz=0, v=2,..., M.

o HV=1(X )
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Also, it is easy to show that all — 2 zeros ofy* are contained in the intervalg.,, ty+1),
v=2,...,M -1, and that the polynomiat has the positive sign on the interv@l 1.).
Using (3.5), we find
1 Pi(u)

u’frl Q' (n1)’

which gives

Ok =

1
[T, sgn(pa — py) My
where we used the fact thaf; = 1. This proves (2.4), also forthecadg =1. O

Sgr(pZ(Un)) = _(_1))1 — (_1)n+2y:1M,) =1

There is one simple generalization of Theorem 2.3. Suppose all zeros of the polynomial
Q are bigger thag, i.e.,; <i,,v=1,...,n, then we have

oW)=C[Jec—r)=C]J(x-¢—-0n-0)=C[](>—25) =",
v=1 v=1 v=1

where we putif =i, — ¢, v=1,...,n, andy = x — {. We can express elementary
symmetric functions of the polynomigb* using elementary symmetric functions of the
polynomial Q; we have

k= Y Mydi= D G =) O = ),
@i

Loeensik) (@i1,050k)

ie.,
k .
_— i /n—j . A
O‘n,k_jgo(_l)k ](k—j>§k ]Gn,]~ (3.8)

We can apply Theorem 2.3 to the polynomgal, sincer’ > 0,v =1,..., n. Therefore,
i (0':) >0, keNp,

and
k—1 R
pi(er) =dco+ Dt YT DY (o) " okl (o)),
v=max{0,k—n}

wheres ) = (0:,01 .., 0, ) ande, = (0,0, - -, 0n.n)- Using (3.8), we get

pf(en)=pi(o}) >0

and the recurrence relation for the polynomiﬁ,’[sg (0,) is given by

k—1 n k—v—1
Pl =8o+ (Dt Y (Z(—l)"‘f ¢ Un,j)
}

v=max0,k—n j=0
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n—k+v .
« ( Z:O (_1);z—k+ufj(n - ’l: ; 11) B j>§"k+vj6n,j>l?ﬁ’{(0n)~
(3.9)
We have proved the following result:
Theorem 3.1. If the zeros of the polynomia are bigger tharz, then
pi(@n) >0, keNo,
where the polynomialp,’c"f(an), k € No, are generated using the recurren(9).

In the case =0, we havep,’j’o(a,,) = pp (o).

4. Determinant representation of py

It is not surprising that our polynomials; (¢,) can be represented in a determinant
form. Namely, we have the following result:

Theorem 4.1. The polynomiap; (¢,), k € N, admits the following determinant represen-
tation:

Po -1 0
B Bo -1
B B Po -1
PR =l Bs e B o -1 : (4.1)

Bn-1 Bn—2 -+ B1 Bo —1
) ﬂn—l IBn—Z ﬁl /30

whereg, = (=%, yonn—v-1,v=01,....n— 1

Proof. Introducingg, = (—1)"0, ,0nn—v-1,v=0,1,...,n — 1, andB_1 = —1, the re-
currence relation (2.3) becomes

i
Y Biov-1plen) =80, i€No.

v=max{0,i —n}
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Fori =0,1,...,k, k > n, it gives the following system of linear equations:

B-1pg(0n) =-1,
Bops(on) + B-1p (o) =0,
B1po(0,) + Bopi(o,) + B-1p5(0,) =0,
ﬂn—lpg(an) + ,Bn—ZPE (@n)+---+ ,3—117:1’ (on) =0,

ﬂn—lp;z_n (on) + ﬂn—ZPZ,nJr]_(an) +---+ ﬂ—ll’}: (6,) =0

Since the determinant of this system is equalfo1)* = (—1)* % 0, we can solve it for
py (0,) using Cramer’s rule, which leads to the following determinant representation:

B-1 -1

Bo B-1 0

1 Po PB-1 0
tory = : :
PRlon) = "0k | By1 -+ 1 Bo B-1 ol

Bn-1 -+ P1 Po B-1
Bn-1 -+ B1 Po
Expanding this determinant with respect to the last column, we get (401).

co...

5. Special cases
5.1. Case of a single zero of multiplicity

Suppose that polynomiad has a single zerai of multiplicity n, i.e., let Q(x) =
(x —11)". In this special case, the elementary symmetric functignshave the following
values:

Op k= (Z)Alj_, k € Np,

which is verified easily recalling the definition of the elementary symmetric functions and
recalling the number of combinations @lements okth class.

Theorem 5.1. If the polynomialQ has a single zera; of multiplicity n, then

" _(k+n-1
Pk(an)—< n—1 )

Proof. Obviously, fork = 0, there is nothing to prove since our statement becomes

O+n-1
-1

k(n—1)

O(n-1) __
907D =1,

pg(o'n) = <



G.V. Milovanowt; A.S. Cvetkowi/ J. Math. Anal. Appl. 311 (2005) 191-208 201

Thus, we assume > 0. If we replace values fopj (o,) given in the statement into (2.3),
we get

ktn—1\ 1 = _v< n )(v—l—n—l)
(r) = 3 () ()

v=max{0,k—n}
which can be reduced to

i (—1)”<kfv>(”:f11>=o. (5.1)

v=max{0,k—n}
Using an expansion of the geometric series, it is easy to verify the following expansion:

A+x)" an=1 xnt _+°° ' ¢ o on vin—1
(n—l)!dx"_1<l+x>_e§0x Z =D (Z—v)( n—1 > (5.2)

v=max0,{—n}

However, using the Bézout’s theorem, we get

dn—l xn—l dn—l N (_1)n—l dn—l (_1)n—1 (n _ l)'
= y— = = ’
dxI\14x) " @ I\""27 15k dx" T\ 1+x (L+x)

sincer,_» is a polynomial of degree — 2. Using this fact, (5.2) is transformed into

1_+°O ¢ ¢ 1 n v+n—1
_KXE)X Z (_)<€—v>< n—1 )’

v=max{0,{—n}

which means that all coefficients wiltt, ¢ € N, on the right-hand side must be zero, i.e.,
(5.1) holds fork e N. 0O

5.2. Casen =2

In the case: = 2, we already stated Theorem 2.4 in Section 2. We give now a proof of
this theorem.

Proof of Theorem 2.4. In the case: = 2, the representation (4.1) reduces to a determinant
of a tridiagonal matrix. Namely,

fo —1 @)
Br1 Bo -1
pi(o2) = L Bo - ,
g
O B1 Bo

wherefo = 02,1 andf1 = —02,202,0.
Using the well-known relation for determinants of the tridiagonal matrices (see [9]), we
have the following recurrence?(o2) = op7_1(02) + f1p7_,(02), i.e.,

p2(02) =021p? 1(62) — 0220207 5(02), k>2. (5.3)
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The rest of the proof goes inductively. Namely, we suppose that

[(k—1)/2]

pi_1(02) = Z 053105,11_2"(62,002,2)” and
v=0
[(k—2)/2]

pE_o(02) = Z a§v20§12 2 (02,002,2)" .

Then, using (5.3), we find

[(k—1)/2] [(k—2)/2]
pio2) = Z alz‘ Ulaglz (02,002,2)" — Z a’2‘ vzoé‘ 1272 (02,0022)" 1
v=0
[(k=1)/2]
—da5gtopq + Z (a5t — a5 2 )05 1% (02,2020)"
1 k [k/2]
2 (1 + (=1 )612 [(k—2)/2]° (02 202,0) >

and using this relation, we get the relations (2.6). It is easy to checlpfnand p% have
representations as it is stated in this theorem.
To prove the last relation, we can check directly

() e () (1)

which, after dividing by(—1)", becomes the basic binomial identity (see [9, p. 5311
5.3. Case« =3,4,5,6

In this subsection we present special caseskfer3, 4,5, 6 andn arbitrary. The case
k = 2 is already known in the literature (see [10, p. 73]) and we present it for completeness,
hence, forik = 2 we have

2
ph(oy,) = 01— OnnOnn—2>0, nel.

For bigger values ok we can use some computer algebra, for exanMid¢hematica
Maple, to construct the polynomialsy (o ,). We present our results in the following state-
ment.

Theorem 5.2. We have

3 2
pg(an) =0un-1—" 20n n—20n,n—10n.n + On n— 3% n»

4 2 2
pﬁ (0,) = Onn—1—" 30’1 n=20, n—1%n,n +o Onn— ZUn n + 20” n—=30n,n—10,

3
— On,n—40y p»
Lo =0, 4o 3 30/ 3 o

p5(6") - O—n,nfl - ”s"*zo—n,nflans” + n,n— 20n,n— 10n n + On,n— 3Un n—19;

3
- 20n,n—30'n,n—20—n’n - 20n,n—40'n,n—lan,n + O—n,n—SUn,na
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8 4 2 2 2 3 2
Pg (G") = Gn,nfl - Sa”snfzotn,n—la”s" + 60n,11—20n,n—10n,)1 + 40";”*30n,i1710n,n

3 3 3 2 3
— 0y n—2%n — 60-'1,’1—30-’1-,"—20'”,'1—1011,11 - 30-’1,"—4o-n,n710—n,n

2 4 4 4 5
+ 0.n—3%,n + 2011,”—4071,”—20}:,;1 + ZU’LH—SO—H’"—]-Un,n — On,n—69, n>

for anyn € N.

Proof. Direct calculation. O

6. Application to thetheory of orthogonal polynomials

Here we want to present an inspiration for our result. Suppose that we have a linear
functional £ acting on the space of all algebraic polynomi&s The moments of the
functional £ are given bym; = £(x*), k € No. Suppose that the sequence of moments
satisfies the following recurrence relation:

k J k—v
my ((€+a)h)
ZF Z.GZWZ(Sk.O, k € Np, (6.1)
v=0 {=—j
whereh, « anday, £ = —j, ..., j, are arbitrary real numbers.
Let a polynomialQ of degreen = 2; be defined by

and such that all its zeros be positive and different from 1. Hence, we can request that this
polynomial Q is normalized such tha@ (1) = 1.

We are interested in a representation of the linear functi6nHlis known (see [2]) that
every linear functional acting on the space of all polynomials can be represented with a
function of the bounded variatiaf using Stieltjes—Lebesgue integral

E(P)=/p(X)d¢(X), peP.
R
Under a condition that is positive definite, the functiog is nondecreasing. For the
special case when zeros @fare bigger than 1, we can state that the respective linear func-
tional £ is positive definite. Moreover, we can reconstruct the measure which represents it.
Thus, we have the following result:

Theorem 6.1. If all zerosA,, v =1,...,n, counting multiplicities, of the polynomiad
are bigger tharil, then the linear functional admits the representation

+00

Lp)=)_ Qip(li+j—a)h),

i=0
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where

1 d 1
Q’_ﬂdxf(Qm) 20

The functionall is positive definite.

, 1 €Np.

Proof. Denote byf the generating function for the sequence of momentsk € No, i.e.,
the function
+00 my
_ k
fay=3_ ~ut.
k=0
The recurrence relation (6.1) for the moments has as a consequence the following relation:

f(u)Q(eXp(hu)) = exp((j — a)hu).

As it is well known, we can expand the rational functionQl(x) into the partial fraction
decomposition

M M,

_ Qv
Q(x) ZZ ’ (6.2)

_ l
1= l(x M)

where we assume th& hasM distinct zerogu, with the multiplicitiesM,,,v=1,..., M.
Using this partial fraction decomposition, the expansion of the geometric series and the
expansion of the function exp), we have for sufficiently close to zero

M M, .
B 0y eXp((j — a)hu)
f@0=2.2 (@xp(hut) — fiy)

v=1/¢=1

M M,
B N Qe ¢+i-1 ((z+1—a>h>"
B ;; (_M\))Z ( >/'Lv ];) k!

+0o0 k+oo €+._1 Qu,
=2 g i+ o) Z”Zf ()

Now, from this equation we can |dent|fy the moments as

mk—Z((z+J—a)h ZZ( 1)‘5(“; )fgj‘f k € No.

v=1/¢=1

On the other S|de, from (6.2), we have
1d 1 L+i—1\0yy
= —— 1 =,
0= i (Q(x)> — 2;;( ) ( i >M€+z
so that we can interpret our linear functional in the following form:
+00

Lp)=)_ Qip(li+j—a)h).

i=0

M M,
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Since we know that! A Q; = pi(6,)Qo, according to Lemma 2.2, and since

n,n
n
—Ay
Q=[]15->0

v=1

using Theorem 2.3, we conclude th@t > 0 and our functional is positive definite. O

Of course, since our result cannot depend on the order of enumeration of the coefficients
ag, L =—j,...,J, of the polynomialQ, if all zeros of Q are positive and smaller than 1,
then we can change the order of enumeration of the coefficignts= —j, ..., j, and
have all zeros of sucl®) bigger than 1. However, we need to change the sigh ahd
« also. Now, our representation Theorem 6.1 is applicable, so that we have the following
corollary.

Corollary 6.2. If all zerosi,, v=1,...,n, counting multiplicities, of the polynomiad
are positive and smaller thah then the linear functional admits the representation

+00
Lp)=)_ QFp(—Gi+j+ah),

i=0

where

. 1d 1
0= v (x"Qa/x))

The functionall is positive definite.

i € Np.

x=0

Using the same arguments, we can state the similar results provided a sequence of mo-
ments satisfies the following recurrence relation:

k
>
p!
v=0

P —

"i (a1
‘ (k—v)!

=d&k0, keNp. (6.3)

Then, we define polynomia) in the following way:

Obviously, the polynomiap has degree = 2 — 1. Using the same arguments as before,
we can state the following result:

Theorem 6.3. If all zeros A, v =1, ..., n, counting multiplicities, of the polynomiad
are bigger thanl, then the linear functional admits the representation

+00

Lp)=>_ 0Qip((i+j—a—1/2h),

i=0
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where

_ld 1
Qi =gy (Q(x))

The functionall is positive definite.

, 1eNp.
x=0

For the case when all zeros are positive and smaller than 1, we have the following
corollary:

Corollary 6.4. If all zerosa,, v=1,...,n, counting multiplicities, of the polynomi&}
are positive and smaller thah then the linear functional admits the representation

+oo

Lp)=Y_ 0ip(—Gi+j+a—1/2h),

i=0

where
, 1e€Np.

L, 1d 1
Qi = EW(x"Q(l/x)) —o

The functionall is positive definite.

As an illustrative example, we consider the case when the polynankas only one
zerox1 with multiplicity M (in this case, of course, = Mj). Since the polynomial is
normalized Q(1) = 1), we have

_ X — A1 My
Q(X)_<1—)»1) :

Now, from this equation we can read

(=D M1\ .
=" A 5 K:_ g eaay M 2,
ac= o (g 1 )M Joeos [M/2]

wherej = [(M1 + 1)/2]. So that moments satisfy the following recurrence relation

(4 i — M1/2)h)k—V
Z@ az(( +a+j 1/2)h) — 80 kel
v! ~. (k—v)!

AssumingXi > 1, we know, according to Theorems 6.1 and 6.3, that the sequence of
moments can be represented as a sequence of moments of the linear funttidriae
following form:

+00

Lp)=Y  0ip(i—a+Mi/Dh), Qi

i=0

_ (My); (i — DM
==
1! )‘11 !

It is easy to see that the functionélis positive definite as we expect according to the
previous theorems.
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It can be checked easily that this linear functional coincides with the Meixner linear
functional of the first kind (see [2]). Actually, the Meixner polynomials of the first kind
(see [2, p. 161]) are orthogonal with respect to the linear functional

CM(P)—Zp(l) l(ﬁ)’, peP,ce(01), B>0.

Our linear functionall coincides with this one if we choogse= 1/i1, 8 = M1, « =0,
h =1 and if we apply the shift foM,/2.

The case\1 € (0, 1), applying the Corollaries 6.2 and 6.4, leads again to the Meixner
polynomials of the first kind which are orthogonal with respect to the linear functional

! (ﬂ)l
)

ﬁM(p)—Zp —(i+B) , peP,c>1 >0,

i=0
where we need to choose=1/11, 8 = M1, h = 1 and again we need to shift faf,/2.
This gives directly the following result:

Theorem 6.5. Assume that a sequence of momentsk € N, satisfies the recurrence re-
lation (6.1) or (6.3), with zeros ofD, being all bigger thari or positive and smaller thath.

Then, there exists a sequence of polynomials orthogonal with respect to the corresponding
linear functionalZ.
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