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Abstract

We present some sharp inequalities for symmetric functions and give an application to orth
polynomials.
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1. Introduction

Symmetric functions are important in several branches of mathematics, esp
in approximation theory, probability theory, combinatorics and algebra, and they
many applications in different areas (see [5, Chapter 1] for details about symmetric
tions).
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Let Q(x) be a polynomial of degreen(∈ N) with zerosλν , ν = 1, . . . , n, i.e.,

Q(x) = C

n∏
k=1

(x − λν), C �= 0. (1.1)

It is well known that the coefficients of the polynomial (1.1) can be represented,
symmetric functions, in the following form:

Q(x) = C
(
xn − σn,1x

n−1 + σn,2x
n−2 − · · · + (−1)nσn,n

)
,

whereσn,k , k = 1, . . . , n, are the so-calledelementary symmetric functions,

σn,k =
∑

(i1,...,ik)

λi1 · · ·λik , k = 1, . . . , n,

and where the summation is performed over all combinations(i1, . . . , ik) of the basic se
{1, . . . , n}. Thus,

σn,1 = λ1 + λ2 + · · · + λn, σn,2 = λ1λ2 + · · · + λn−1λn, . . . ,

σn,n = λ1λ2 · · ·λn.

For the convenience we putσn,0 = 1 andσn,k = 0, k > n or k < 0. When we want to refe
to the all elementary symmetric functions, we use notationσ n = (σn,0, . . . , σn,n), where
σ n represents a vector withn + 1 components.

There are several classical inequalities with symmetric functions (cf. [3,6,8,12,1
17]). For some recent results see [1,4,7,11,14]. For example, some general results
positivity of symmetric functions have been recently obtained by Timofte [14].

In this paper we present the positivity for a special family of symmetric polynom
pn

k (σ n) and give some applications to orthogonal polynomials. The paper is organiz
follows. The main inequalitypn

k (σ n) > 0 (Theorem 2.3) is stated in Section 2 and its pr
is given in Section 3. A determinant representation ofpn

k (σ n) is presented in Section
and some special cases are analyzed in Section 5. Finally, Section 6 is devoted t
applications to linear functionals and orthogonal polynomials.

2. Inequalities

In this paper we assume that all zeros of the polynomial (1.1) are positive, i.e.,

λν > 0, ν = 1, . . . , n.

Let the derivatives ofQ(x) at the point zero be denoted byQ(k)(0), i.e.,

Q(k)(0) = dkQ(x)

dxk

∣∣∣∣
x=0

, k ∈ N0.

Obviously, we have

Q(k)(0) = (−1)n−kk!Cσn,n−k, k = 0,1, . . . , n. (2.1)
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We also define the sequence

Qk = 1

k!
dk

dxk

1

Q(x)

∣∣∣∣∣
x=0

, k ∈ N0.

Lemma 2.1. The sequenceQk , k ∈ N0, satisfies the following recurrence relation:

σn,nQk = (−1)nδk,0

k! C
+ (−1)k−1

k−1∑
ν=max{0,k−n}

(−1)νσn,n−k+νQν, k ∈ N0. (2.2)

If the sum is empty, we consider it to be zero.

Proof. Putf (x) = Q(x) andg(x) = 1/Q(x), obviously we havefg = 1. If we apply the
Leibnitz rule for the derivative of a product, we get

dk

dxk
(fg)

∣∣∣∣
x=0

=
k∑

ν=0

(k

ν

)
f (k−ν)(0)g(ν)(0) = δk,0.

Substitutingf (ν)(0) = Q(ν)(0), g(ν)(0) = Qν , and using (2.1), the previous equation
duces to

σn,nQk = (−1)nδk,0

k! C
+ (−1)k−1

k−1∑
ν=0

(−1)νσn,n−k+νQν, k ∈ N0.

According to the fact thatσn,k = 0 for k < 0, we can truncate the summation in the previ
form and so we get (2.2).

Equality in (2.2) holds even for the choicek = 0, in which case it reduces toQ0 =
1/Q(0) = (−1)n/(Cσn,n). �

For k > 0, in (2.2) we have the homogenous difference equation (δk,0 = 0), which
generates the solutionσk

n,nQk = pn
k (σ n)Q0, wherepn

k (σ n), k ∈ N, is a polynomial in
σn,0, . . . , σn,n.

Now, we can state the following result:

Lemma 2.2. The solution of the difference equation(2.2) admits a representation of th
following form:

σk
n,nQk = pn

k (σ n)Q0, k ∈ N,

wherepn
k is a polynomial of degreek of the elementary symmetric functionsσn,ν , ν =

0,1, . . . , n.

Proof. For k = 1 the statement is obvious, since

σn,nQ1 = σn,n−1Q0 and pn
1(σ n) = σn,n−1.

Assuming it is true forQ1, we are able to prove the statement forQ2, since
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e

σ 2
n,nQ2 = −

1∑
ν=0

(−1)νσn,n−k+νσn,nQν

= −(
σn,nσn,n−2 − σn,n−1p

n
1(σ n)

)
Q0 = pn

2(σ n)Q0,

wherepn
2(σ n) = σ 2

n,n−1 − σn,nσn,n−2. Repeating the same arguments, we can prove
our statement holds fork � n. Starting from that point, we can apply the induction.

Assuming that statement holds forQk−n, . . . ,Qk−1, we prove that it is true forQk ,
since

σk
n,nQk = (−1)k−1

k−1∑
ν=k−n

(−1)νσ k−ν−1
n,n σn,n−k+νσ

ν
n,nQν

= (−1)k−1Q0

k−1∑
ν=k−n

(−1)νσ k−ν−1
n,n σn,n−k+νp

n
ν (σ n) = pn

k (σ n)Q0,

where obviously we have

pn
k (σ n) = (−1)k−1

k−1∑
ν=k−n

(−1)νσ k−ν−1
n,n σn,n−k+νp

n
ν (σ n), k > n. �

Adopting pn
0(σ n) = 1 andpn

k (σ n) = 0, k < 0, we rewrite the recurrence (2.2) for th
sequenceQk , k ∈ N0, into the recurrence for the sequencepn

k (σ n), k ∈ N0. Thus, we have

pn
k (σ n) = δk,0 + (−1)k−1

k−1∑
ν=max{0,k−n}

(−1)νσ k−ν−1
n,n σn,n−k+νp

n
ν (σ n), k ∈ N0.

(2.3)

Using the previously defined quantities, we can state our main result.

Theorem 2.3. Provided all zerosλν , ν = 1, . . . , n, counting multiplicities, of the polyno
mial Q are positive, we have

pn
k (σ n) > 0, k ∈ N0. (2.4)

As an illustration, we give values of the polynomialspn
k , k ∈ N, for the case when th

polynomialQ has only two zeros. Thus, we have the following statement:

Theorem 2.4. Suppose that the polynomialQ is of the second degree, then

p2
k(σ 2) =

[k/2]∑
ν=0

ak
2,νσ

k−2ν
2,1 (σ2,0σ2,2)

ν, k ∈ N0, (2.5)

where the coefficientsak , ν, k ∈ N0, satisfy the following recurrences:
2,ν
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-

ak
2,ν = ak−1

2,ν − ak−2
2,ν−1, ν = 1, . . . , [k/2] − 1, ak

2,0 = 1, k ∈ N0,

a2ν
2,ν = (−1)ν, a2ν+1

2,ν = 0, ν ∈ N0, ak
2,ν = 0, ν /∈ {

0,1, . . . , [k/2]}.
(2.6)

Moreover,

ak
2,ν = (−1)ν

(k − ν

ν

)
, k � 2ν, ak

2,ν = 0, k < 2ν. (2.7)

3. Proof of Theorem 2.3

We assume that the polynomialQ hasM distinct zeros, denoted byµν , ν = 1, . . . ,M .
Their multiplicities are denoted byMν , respectively, where

M∑
ν=1

Mν = n.

Proof of Theorem 2.3. Obviously, in the casen = 1, the polynomialQ has only one
simple zero. There is nothing to prove, since using (2.3), we can calculate

p1
k(σ 1) = 1> 0

and (2.4) holds.
In the sequel, we assumen > 1. First, we assume that for the zeroµ1 we have multi-

plicity M1 � 2. Consider now the following polynomials:

Pk(x) = 1+
x∫

0

Q(t)∏M
ν=1(t − µν)

q(t)

t − µ1
tk dt, q ∈ PM−1, k ∈ N. (3.1)

For different polynomialsq ∈ PM−1 we have different polynomialsPk . For example, tak
ing the special caseq ≡ 0, we havePk ≡ 1.

For a polynomialq ∈ PM−1 which is not identically zero, since

P ′
k(x) = Q(x)∏M

ν=1(x − µν)

q(x)

x − µ1
xk,

we conclude thatP ′
k has zeros atµν , ν = 1, . . . ,M , of the multiplicitiesMν − 1 − δν,1,

ν = 1, . . . ,M , respectively, and a zero at the point zero of the multiplicityk. It is also easy
to verify that the degree ofPk is n + k − 1.

We show that the system of equations

Pk(µν) = 1+
µν∫
0

Q(t)∏M
ν=1(t − µν)

q(t)

t − µ1
tk dt = 0, ν = 1, . . . , n, (3.2)

has a solutionq ∈ PM−1.
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First, note that we can rewrite this system of equations in the form
µν+1∫
µν

Q(t)∏M
ν=1(t − µν)

q(t)

t − µ1
tk dt = −δν,0, ν = 0,1, . . . ,M − 1, (3.3)

where we use the conventionµ0 = 0. To prove that the system (3.3) has a unique solut
it is enough to prove that the corresponding homogeneous system

µν+1∫
µν

Q(t)∏M
ν=1(t − µν)

q(t)

t − µ1
tk dt = 0, ν = 0,1, . . . ,M − 1, (3.4)

has only the trivial solutionq ≡ 0 in PM−1. Note that the polynomial

Q(t)∏M
ν=1(t − µν)

tk

t − µ1
,

has a constant sign on the intervals(µν,µν+1), ν = 0,1, . . . ,M − 1, since it has no zero
in these intervals. Therefore, the homogenous equations (3.4) imply that polynomq

must have at least one zero in each of the intervals(µν,µν+1), ν = 0,1, . . . ,M − 1. This
means that the polynomialq must have at leastM zeros, the only polynomial fromPM−1
satisfying this condition is, of course a polynomial which is identically zero.

This means that the system of equations (3.2) has a unique solutionq ∈ PM−1. We de-
note that solutionq∗. So that there exists (uniquely) polynomialPk of the form (3.1), which
has zeros atµν , ν = 1, . . . ,M , of the orderMν − δν,1, ν = 1, . . . ,M , denoted hereP ∗

k .
For the polynomial(P ∗

k )′, we know that it has zeros of the orderMν − 1 − δν,1 at the
pointsµν , ν = 1, . . . ,M , and a zero of degreek at the point zero. Since it is of degre
k + n − 2, there areM − 1 more zeros those are zeros ofq∗. Using Role’s theorem, w
know that(P ∗

k )′ must have at least one zero in each interval(µν,µν+1), ν = 1, . . . ,M −1,
since the polynomialP ∗

k has zeros at the pointsµν , ν = 1, . . . ,M . There areM − 1 such
zeros, so that the zeros ofq∗ ζν , ν = 1, . . . ,M − 1, are simple and belong to the interva
ζν ∈ (µν,µν+1), ν = 1, . . . ,M − 1. Since the polynomial

Q(x)∏M
ν=1(t − µν)

xk

x − µ1
q(x),

does not have any zeros in the interval(0,µ1), it is of a constant sign there,P ∗
k is also of

the positive sign on the interval(0,µ1). If it is not the case, then sinceP ∗
k (0) = 1, there

is at least one zero of the polynomialP ∗
k in the interval(0,µ1) suppose it is the pointζ .

Then, according to the Role’s theorem, there must be at least one zero of the poly
(P ∗

k )′ in the interval(ζ,µ1), but this is a contradiction. Thus, the polynomialP ∗
k is of the

positive sign on the interval(0,µ1).
Obviously,P ∗

k cannot have zero in the interval(µ1,µ2), if it does then(P ∗
k )′ must have

two zeros in the interval(µ1,µ2) and those must be zeros ofq∗, which is a contradiction
This leads to an observation that the polynomialP ∗

k (x)/(x − µ1)
M1−1 has a constant sig

on the interval(0,µ2) and that sign is(−1)M1−1.
Consider now the rational functionPk/(x

k+1Q). It has poles of orderk + 1 at the point
zero and of orderMν at pointsµν , ν = 1, . . . ,M . Whenx approaches the complex infinit
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ly)
we havePk/(x
k+1Q) = O(x−2). Applying the Cauchy residue theorem to the funct

Pk/(x
k+1Q), over the contour which has in its interior co{0,µ1, . . . ,µM}, we have

1

k!
(

Pk

Q

)(k) ∣∣∣∣
x=0

= −
M∑

ν=1

Res
x=µν

Pk(x)

xk+1Q(x)
. (3.5)

But since polynomialPk is of the form (3.1), we know thatP (ν)
k (0) = δν,0, ν = 0,1, . . . , k.

Using the Leibnitz rule, we get

1

k!
(

Pk

Q

)(k) ∣∣∣∣
x=0

= 1

k!
k∑

ν=0

(
k

ν

)
P (ν)(1/Q)(k−ν)

∣∣∣∣
x=0

= 1

k!
(

1

Q

)(k) ∣∣∣∣
x=0

= Qk.

Thus, for every polynomialPk of the form (3.1), we have

1

k!
(

Pk

Q

)(k) ∣∣∣∣
x=0

= Qk.

Now, choosePk = P ∗
k , using (3.5), we have

Qk = − 1

µk+1
1

(x − µ1)P
∗
k (x)

Q(x)

∣∣∣∣
x=µ1

. (3.6)

This equation can be rewritten in the form

pn
k (σ n) = σk

n,nQk

Q0
= −(−1)n

Cσk+1
n,n

µk+1
1

P ∗
k (x)

(x − µ1)M1−1

(x − µ1)
M1

Q(x)

∣∣∣∣
x=µ1

= −(−1)n
σ k+1

n,n

µk+1
1

P ∗
k (x)

(x − µ1)M1−1

∣∣∣∣
x=µ1

1∏M
ν=2(µ1 − µν)Mν

. (3.7)

Taking only the sign of the terms, from this equation we get

sgn
(
pn

k (σ n)
) = −(−1)n sgn

(
P ∗

k (x)

(x − µ1)M1−1

∣∣∣∣
x=µ1

)
1∏M

ν=2 sgn(µ1 − µν)Mν

= −(−1)n(−1)M1−1
M∏

ν=2

(−1)Mν = (−1)n+∑M
ν=1 Mν = 1.

This proves inequality (2.4) in the caseM1 � 2.
In the caseM1 = 1, we consider the polynomialsPk of the following form:

Pk(x) = 1+
x∫

0

tk
Q(t)∏M

ν=1(x − µν)
q(t) dt, q ∈ PM−2.

Using the same arguments as in the caseM1 � 2, we can prove that there exist (unique
q∗ and respectiveP ∗

k , such that

P ∗
k (µν) = 1+

µν∫
tk

Q(t)∏M
ν=1(x − µν)

q∗(t) dt = 0, ν = 2, . . . ,M.
0
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Also, it is easy to show that allM −2 zeros ofq∗ are contained in the intervals(µν,µν+1),
ν = 2, . . . ,M − 1, and that the polynomialP ∗

k has the positive sign on the interval(0,µ2).
Using (3.5), we find

Qk = − 1

µk+1
1

P ∗
k (µ1)

Q′(µ1)
,

which gives

sgn
(
pn

k (σ n)
) = −(−1)n

1∏M
ν=2 sgn(µ1 − µν)Mν

= (−1)n+∑M
ν=1 Mν = 1,

where we used the fact thatM1 = 1. This proves (2.4), also for the caseM1 = 1. �
There is one simple generalization of Theorem 2.3. Suppose all zeros of the polyn

Q are bigger thanζ , i.e.,ζ < λν , ν = 1, . . . , n, then we have

Q(x) = C

n∏
ν=1

(x − λν) = C

n∏
ν=1

(
x − ζ − (λν − ζ )

) = C

n∏
ν=1

(
y − λ∗

ν

) = Q∗(y),

where we putλ∗
ν = λν − ζ , ν = 1, . . . , n, and y = x − ζ . We can express elementa

symmetric functions of the polynomialQ∗ using elementary symmetric functions of t
polynomialQ; we have

σ ∗
n,k =

∑
(i1,...,ik)

λ∗
i1

· · ·λ∗
ik

=
∑

(i1,...,ik)

(λi1 − ζ ) · · · (λik − ζ ),

i.e.,

σ ∗
n,k =

k∑
j=0

(−1)k−j
(n − j

k − j

)
ζ k−j σn,j . (3.8)

We can apply Theorem 2.3 to the polynomialQ∗, sinceλ∗
ν > 0,ν = 1, . . . , n. Therefore,

pn
k

(
σ ∗

n

)
> 0, k ∈ N0,

and

pn
k

(
σ ∗

n

) = δk,0 + (−1)k−1
k−1∑

ν=max{0,k−n}
(−1)ν

(
σ ∗

n,n

)k−n−1
σ ∗

n,n−kp
n
ν

(
σ ∗

n

)
,

whereσ ∗
n = (σ ∗

n,0, . . . , σ
∗
n,n) andσ n = (σn,0, . . . , σn,n). Using (3.8), we get

p
n,ζ
k (σ n) = pn

k

(
σ ∗

n

)
> 0

and the recurrence relation for the polynomialsp
n,ζ
k (σ n) is given by

p
n,ζ
k (σ n) = δk,0 + (−1)k−1

k−1∑
(−1)ν

(
n∑

(−1)n−j ζ n−j σn,j

)k−ν−1
ν=max{0,k−n} j=0
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ant

n-
×
(

n−k+ν∑
j=0

(−1)n−k+ν−j
( n − j

n − k + ν − j

)
ζ n−k+ν−j σn,j

)
pn,ζ

ν (σ n).

(3.9)

We have proved the following result:

Theorem 3.1. If the zeros of the polynomialQ are bigger thanζ , then

p
n,ζ
k (σ n) > 0, k ∈ N0,

where the polynomialspn,ζ
k (σ n), k ∈ N0, are generated using the recurrence(3.9).

In the caseζ = 0, we havepn,0
k (σ n) = pn

k (σ n).

4. Determinant representation of pn
k

It is not surprising that our polynomialspn
k (σ n) can be represented in a determin

form. Namely, we have the following result:

Theorem 4.1. The polynomialpn
k (σ n), k ∈ N, admits the following determinant represe

tation:

pn
k (σ n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β0 −1 O
β1 β0 −1
β2 β1 β0 −1
...

. . .
. . .

. . .
. . .

βn−1 βn−2 · · · β1 β0 −1
. . .

. . .
. . .

. . .
. . .

βn−1 βn−2 · · · β1 β0 −1
O βn−1 βn−2 · · · β1 β0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (4.1)

whereβν = (−1)νσ ν
n,nσn,n−ν−1, ν = 0,1, . . . , n − 1.

Proof. Introducingβν = (−1)νσ ν
n,nσn,n−ν−1, ν = 0,1, . . . , n − 1, andβ−1 = −1, the re-

currence relation (2.3) becomes

i∑
βi−ν−1p

n
ν (σ n) = −δi,0, i ∈ N0.
ν=max{0,i−n}
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:

and
For i = 0,1, . . . , k, k � n, it gives the following system of linear equations:

β−1p
n
0(σ n)

β0p
n
0(σ n) + β−1p

n
1(σ n)

β1p
n
0(σ n) + β0p

n
1(σ n) + β−1p

n
2(σ n)

βn−1p
n
0(σ n) + βn−2p

n
1(σ n) + · · · + β−1p

n
n(σ n)

βn−1p
n
k−n(σ n) + βn−2p

n
k−n+1(σ n) + · · · + β−1p

n
k (σ n)

= −1,

= 0,

= 0,

...

= 0,

...

= 0.

Since the determinant of this system is equal to(β−1)
k = (−1)k �= 0, we can solve it for

pn
k (σ n) using Cramer’s rule, which leads to the following determinant representation

pn
k (σ n) = 1

(−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β−1 −1
β0 β−1 0
β1 β0 β−1 0
...

. . .
...

βn−1 · · · β1 β0 β−1 0
. . .

. . .
...

βn−1 · · · β1 β0 β−1 0
βn−1 · · · β1 β0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Expanding this determinant with respect to the last column, we get (4.1).�

5. Special cases

5.1. Case of a single zero of multiplicityn

Suppose that polynomialQ has a single zeroλ1 of multiplicity n, i.e., let Q(x) =
(x −λ1)

n. In this special case, the elementary symmetric functionsσn,k have the following
values:

σn,k =
(n

k

)
λk

1, k ∈ N0,

which is verified easily recalling the definition of the elementary symmetric functions
recalling the number of combinations ofn elements ofkth class.

Theorem 5.1. If the polynomialQ has a single zeroλ1 of multiplicityn, then

pn
k (σ n) =

(
k + n − 1

n − 1

)
λ

k(n−1)
1 .

Proof. Obviously, fork = 0, there is nothing to prove since our statement becomes

pn
0(σ n) =

(
0+ n − 1

)
λ

0(n−1)
1 = 1.
n − 1
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),

ion:

e.,

of of

nant

), we
Thus, we assumek > 0. If we replace values forpn
k (σ n) given in the statement into (2.3

we get(
k + n − 1

n − 1

)
= (−1)k−1

k−1∑
ν=max{0,k−n}

(−1)ν
(

n

n − k + ν

)(
ν + n − 1

n − 1

)
,

which can be reduced to
k∑

ν=max{0,k−n}
(−1)ν

(
n

k − ν

)(
ν + n − 1

n − 1

)
= 0. (5.1)

Using an expansion of the geometric series, it is easy to verify the following expans

(1+ x)n

(n − 1)!
dn−1

dxn−1

(
xn−1

1+ x

)
=

+∞∑
�=0

x�
�∑

ν=max{0,�−n}
(−1)ν

(
n

� − ν

)(
ν + n − 1

n − 1

)
. (5.2)

However, using the Bézout’s theorem, we get

dn−1

dxn−1

(
xn−1

1+ x

)
= dn−1

dxn−1

(
rn−2 + (−1)n−1

1+ x

)
= dn−1

dxn−1

(
(−1)n−1

1+ x

)
= (n − 1)!

(1+ x)n
,

sincern−2 is a polynomial of degreen − 2. Using this fact, (5.2) is transformed into

1=
+∞∑
�=0

x�
�∑

ν=max{0,�−n}
(−1)ν

(
n

� − ν

)(
ν + n − 1

n − 1

)
,

which means that all coefficients withx�, � ∈ N, on the right-hand side must be zero, i.
(5.1) holds fork ∈ N. �
5.2. Casen = 2

In the casen = 2, we already stated Theorem 2.4 in Section 2. We give now a pro
this theorem.

Proof of Theorem 2.4. In the casen = 2, the representation (4.1) reduces to a determi
of a tridiagonal matrix. Namely,

p2
k(σ 2) =

∣∣∣∣∣∣∣∣∣∣∣∣

β0 −1 O
β1 β0 −1

β1 β0
. . .

. . .
. . . −1

O β1 β0

∣∣∣∣∣∣∣∣∣∣∣∣
,

whereβ0 = σ2,1 andβ1 = −σ2,2σ2,0.
Using the well-known relation for determinants of the tridiagonal matrices (see [9]

have the following recurrencep2
k(σ 2) = β0p

2
k−1(σ 2) + β1p

2
k−2(σ 2), i.e.,

p2(σ 2) = σ2,1p
2 (σ 2) − σ2,2σ2,0p

2 (σ 2), k > 2. (5.3)
k k−1 k−2
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ness,

te-
The rest of the proof goes inductively. Namely, we suppose that

p2
k−1(σ 2) =

[(k−1)/2]∑
ν=0

ak−1
2,ν σ k−1−2ν

2,1 (σ2,0σ2,2)
ν and

p2
k−2(σ 2) =

[(k−2)/2]∑
ν=0

ak−2
2,ν σ k−2−2ν

2,1 (σ2,0σ2,2)
ν .

Then, using (5.3), we find

p2
k(σ 2) =

[(k−1)/2]∑
ν=0

ak−1
2,ν σ k−2ν

2,1 (σ2,0σ2,2)
ν −

[(k−2)/2]∑
ν=0

ak−2
2,ν σ k−2−2ν

2,1 (σ2,0σ2,2)
ν+1

= ak−1
2,0 σk

2,1 +
[(k−1)/2]∑

ν=1

(ak−1
2,ν − ak−2

2,ν−1)σ
k−2ν
2,1 (σ2,2σ2,0)

ν

− 1

2

(
1+ (−1)k

)
ak−2

2,[(k−2)/2]σ
k−2[k/2]
2,1 (σ2,2σ2,0)

[k/2],

and using this relation, we get the relations (2.6). It is easy to check thatp2
1 andp2

2 have
representations as it is stated in this theorem.

To prove the last relation, we can check directly

(−1)ν
(k − ν

ν

)
= (−1)ν

(k − 1− ν

ν

)
− (−1)ν−1

(k − 1− ν

ν − 1

)
,

which, after dividing by(−1)ν , becomes the basic binomial identity (see [9, p. 53]).�
5.3. Casesk = 3,4,5,6

In this subsection we present special cases fork = 3,4,5,6 andn arbitrary. The case
k = 2 is already known in the literature (see [10, p. 73]) and we present it for complete
hence, fork = 2 we have

pn
2(σ n) = σ 2

n,n−1 − σn,nσn,n−2 > 0, n ∈ N.

For bigger values ofk we can use some computer algebra, for exampleMathematica,
Maple, to construct the polynomialspn

k (σ n). We present our results in the following sta
ment.

Theorem 5.2. We have

pn
3(σ n) = σ 3

n,n−1 − 2σn,n−2σn,n−1σn,n + σn,n−3σ
2
n,n,

pn
4(σ n) = σ 4

n,n−1 − 3σn,n−2σ
2
n,n−1σn,n + σ 2

n,n−2σ
2
n,n + 2σn,n−3σn,n−1σ

2
n,n

− σn,n−4σ
3
n,n,

pn
5(σ n) = σ 5

n,n−1 − 4σn,n−2σ
3
n,n−1σn,n + 3σ 2

n,n−2σn,n−1σ
2
n,n + 3σn,n−3σ

2
n,n−1σ

2
n,n

− 2σn,n−3σn,n−2σ
3
n,n − 2σn,n−4σn,n−1σ

3
n,n + σn,n−5σ

5
n,n,
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linear

nts

at this

t
ith a

e
func-
ents it.
pn
6(σ n) = σ 8

n,n−1 − 5σn,n−2σ
4
n,n−1σn,n + 6σ 2

n,n−2σ
2
n,n−1σ

2
n,n + 4σn,n−3σ

3
n,n−1σ

2
n,n

− σ 3
n,n−2σ

3
n,n − 6σn,n−3σn,n−2σn,n−1σ

3
n,n − 3σn,n−4σ

2
n,n−1σ

3
n,n

+ σ 2
n,n−3σ

4
n,n + 2σn,n−4σn,n−2σ

4
n,n + 2σn,n−5σn,n−1σ

4
n,n − σn,n−6σ

5
n,n,

for anyn ∈ N.

Proof. Direct calculation. �

6. Application to the theory of orthogonal polynomials

Here we want to present an inspiration for our result. Suppose that we have a
functionalL acting on the space of all algebraic polynomialsP . The moments of the
functionalL are given bymk = L(xk), k ∈ N0. Suppose that the sequence of mome
satisfies the following recurrence relation:

k∑
ν=0

mν

ν!
j∑

�=−j

a�

((� + α)h)k−ν

(k − ν)! = δk,0, k ∈ N0, (6.1)

whereh, α anda�, � = −j, . . . , j , are arbitrary real numbers.
Let a polynomialQ of degreen = 2j be defined by

Q(x) =
j∑

�=−j

a�x
�+j

and such that all its zeros be positive and different from 1. Hence, we can request th
polynomialQ is normalized such thatQ(1) = 1.

We are interested in a representation of the linear functionalL. It is known (see [2]) tha
every linear functionalL acting on the space of all polynomials can be represented w
function of the bounded variationφ using Stieltjes–Lebesgue integral

L(p) =
∫
R

p(x)dφ(x), p ∈P .

Under a condition thatL is positive definite, the functionφ is nondecreasing. For th
special case when zeros ofQ are bigger than 1, we can state that the respective linear
tionalL is positive definite. Moreover, we can reconstruct the measure which repres
Thus, we have the following result:

Theorem 6.1. If all zerosλν , ν = 1, . . . , n, counting multiplicities, of the polynomialQ
are bigger than1, then the linear functionalL admits the representation

L(p) =
+∞∑

Qip
(
(i + j − α)h

)
,

i=0
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elation:

nd the
where

Qi = 1

i!
di

dxi

(
1

Q(x)

) ∣∣∣∣
x=0

, i ∈ N0.

The functionalL is positive definite.

Proof. Denote byf the generating function for the sequence of momentsmk , k ∈ N0, i.e.,
the function

f (u) =
+∞∑
k=0

mk

k! uk.

The recurrence relation (6.1) for the moments has as a consequence the following r

f (u)Q
(
exp(hu)

) = exp
(
(j − α)hu

)
.

As it is well known, we can expand the rational function 1/Q(x) into the partial fraction
decomposition

1

Q(x)
=

M∑
ν=1

Mν∑
�=1

Qν,�

(x − µν)�
, (6.2)

where we assume thatQ hasM distinct zerosµν with the multiplicitiesMν , ν = 1, . . . ,M .
Using this partial fraction decomposition, the expansion of the geometric series a
expansion of the function exp(x), we have foru sufficiently close to zero

f (u) =
M∑

ν=1

Mν∑
�=1

Qν,� exp((j − α)hu)

(exp(hu) − µν)�

=
M∑

ν=1

Mν∑
�=1

Qν,�

(−µν)�

+∞∑
i=0

(� + i − 1

i

) 1

µi
ν

+∞∑
k=0

((i + j − α)h)k

k! uk

=
+∞∑
k=0

uk

k!
+∞∑
i=0

(
(i + j − α)h

)k
M∑

ν=1

Mν∑
�=1

(−1)�
(� + i − 1

i

)Qν,�

µ�+i
ν

.

Now, from this equation we can identify the moments as

mk =
+∞∑
i=0

(
(i + j − α)h

)k
M∑

ν=1

Mν∑
�=1

(−1)�
(� + i − 1

i

)Qν,�

µ�+i
ν

, k ∈ N0.

On the other side, from (6.2), we have

Qi = 1

i!
di

dxi

(
1

Q(x)

) ∣∣∣∣
x=0

=
M∑

ν=1

Mν∑
�=1

(−1)�
(� + i − 1

i

)Qν,�

µ�+i
ν

,

so that we can interpret our linear functional in the following form:

L(p) =
+∞∑

Qip
(
(i + j − α)h

)
.

i=0
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ficients
1,

lowing

of mo-

re,
Since we know thatσ i
n,nQi = pn

i (σ n)Q0, according to Lemma 2.2, and since

Q0 =
n∏

ν=1

−λν

1− λν

> 0,

using Theorem 2.3, we conclude thatQi > 0 and our functionalL is positive definite. �
Of course, since our result cannot depend on the order of enumeration of the coef

a�, � = −j, . . . , j , of the polynomialQ, if all zeros ofQ are positive and smaller than
then we can change the order of enumeration of the coefficientsa�, � = −j, . . . , j , and
have all zeros of suchQ bigger than 1. However, we need to change the sign ofh and
α also. Now, our representation Theorem 6.1 is applicable, so that we have the fol
corollary.

Corollary 6.2. If all zerosλν , ν = 1, . . . , n, counting multiplicities, of the polynomialQ
are positive and smaller than1, then the linear functionalL admits the representation

L(p) =
+∞∑
i=0

Q∗
i p

(−(i + j + α)h
)
,

where

Q∗
i = 1

i!
di

dxi

(
1

xnQ(1/x)

) ∣∣∣∣
x=0

, i ∈ N0.

The functionalL is positive definite.

Using the same arguments, we can state the similar results provided a sequence
ments satisfies the following recurrence relation:

k∑
ν=0

mν

ν!
j−1∑

�=−j

a�

((� + α + 1/2)h)k−ν

(k − ν)! = δk,0, k ∈ N0. (6.3)

Then, we define polynomialQ in the following way:

Q(x) =
j−1∑

�=−j

a� x�+j .

Obviously, the polynomialQ has degreen = 2j − 1. Using the same arguments as befo
we can state the following result:

Theorem 6.3. If all zerosλν , ν = 1, . . . , n, counting multiplicities, of the polynomialQ
are bigger than1, then the linear functionalL admits the representation

L(p) =
+∞∑

Qip
(
(i + j − α − 1/2)h

)
,

i=0
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owing

ce of

the
where

Qi = 1

i!
di

dxi

(
1

Q(x)

) ∣∣∣∣
x=0

, i ∈ N0.

The functionalL is positive definite.

For the case when all zeros are positive and smaller than 1, we have the foll
corollary:

Corollary 6.4. If all zerosλν , ν = 1, . . . , n, counting multiplicities, of the polynomialQ
are positive and smaller than1, then the linear functionalL admits the representation

L(p) =
+∞∑
i=0

Q∗
i p

(−(i + j + α − 1/2)h
)
,

where

Q∗
i = 1

i!
di

dxi

(
1

xnQ(1/x)

) ∣∣∣∣
x=0

, i ∈ N0.

The functionalL is positive definite.

As an illustrative example, we consider the case when the polynomialQ has only one
zeroλ1 with multiplicity M1 (in this case, of course,n = M1). Since the polynomialQ is
normalized (Q(1) = 1), we have

Q(x) =
(

x − λ1

1− λ1

)M1

.

Now, from this equation we can read

a� = (−1)�+j

(1− λ1)M1

( M1

� + j

)
λ

�+j

1 , � = −j, . . . , [M1/2],

wherej = [(M1 + 1)/2]. So that moments satisfy the following recurrence relation

k∑
ν=0

mν

ν!
[M1/2]∑
�=−j

a�

((� + α + j − M1/2)h)k−ν

(k − ν)! = δk,0, k ∈ N0.

Assumingλ1 > 1, we know, according to Theorems 6.1 and 6.3, that the sequen
moments can be represented as a sequence of moments of the linear functionalL of the
following form:

L(p) =
+∞∑
i=0

Qip
(
(i − α + M1/2)h

)
, Qi = (M1)i

i!
(λ1 − 1)M1

λ
M1+i
1

.

It is easy to see that the functionalL is positive definite as we expect according to
previous theorems.
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It can be checked easily that this linear functional coincides with the Meixner l
functional of the first kind (see [2]). Actually, the Meixner polynomials of the first k
(see [2, p. 161]) are orthogonal with respect to the linear functional

LM(p) =
+∞∑
i=0

p(i)
ci(β)i

i! , p ∈ P, c ∈ (0,1), β > 0.

Our linear functionalL coincides with this one if we choosec = 1/λ1, β = M1, α = 0,
h = 1 and if we apply the shift forM1/2.

The caseλ1 ∈ (0,1), applying the Corollaries 6.2 and 6.4, leads again to the Mei
polynomials of the first kind which are orthogonal with respect to the linear functiona

LM(p) =
+∞∑
i=0

p
(−(i + β)

)c−i (β)i

i! , p ∈ P, c > 1, β > 0,

where we need to choosec = 1/λ1, β = M1, h = 1 and again we need to shift forM1/2.
This gives directly the following result:

Theorem 6.5. Assume that a sequence of momentsmk , k ∈ N0, satisfies the recurrence re
lation (6.1) or (6.3), with zeros ofQ, being all bigger than1 or positive and smaller than1.
Then, there exists a sequence of polynomials orthogonal with respect to the corresp
linear functionalL.
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