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18000 Nǐs, Serbia, aleksandarcvetkovic@pmf.ni.ac.rs

c University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000
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1 Introduction

The first results on orthogonal trigonometric polynomials of semi-integer degree
were given in 1959 by Abram Haimovich Turetzkii (see [7]). They are connected
with quadrature rules with an even maximal trigonometric degree of exactness in
the case of an odd number of nodes. A trigonometric polynomial of semi-integer
degree n + 1

2 is a trigonometric function of the following form

n∑

ν=0

[
cν cos

(
ν +

1
2

)
x + dν sin

(
ν +

1
2

)
x

]
, (1)

where cν , dν ∈ R, |cn| + |dn| "= 0. The coefficients cn and dn are called the
leading coefficients.

Let us denote by Tn, n ∈ N0, the linear space of all trigonometric polyno-
mials of degree less than or equal to n, i.e., the linear span of the following
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set {1, cos x, sin x, . . . , cos nx, sin nx}, by T
1/2
n , n ∈ N0, the linear space of all

trigonometric polynomials of semi-integer degree less than or equal to n + 1
2 ,

i.e., the linear span of {cos(k + 1
2 )x, sin(k + 1

2 )x : k = 0, 1, . . . , n}, and by T

and T1/2 the set of all trigonometric polynomials and the set of trigonometric
polynomials of semi-integer degree, respectively.

For an integrable and nonnegative weight function w(x) on the interval
[0, 2π), vanishing there only on a set of a measure zero, and a given set xν ,
ν = 0, 1, . . . , 2n, of distinct points in [0, 2π), Turetzkii in [7] considered an in-
terpolatory quadrature rule of the form

∫ 2π

0
t(x)w(x) dx =

2n∑

ν=0

wνt(xν), t ∈ Tn. (2)

Such a quadrature rule can be obtained from the trigonometric interpolation
polynomial (cf. [2], [4]). A simple generalization dealing with a translation
of the interval [0, 2π) was given in [5]. Thus, the mentioned problem can be
considered on any interval whose length is equal to 2π, i.e., on any interval of
the form [L,L + 2π), L ∈ R.

Definition 1. A quadrature rule of the form
∫ L+2π

L
f(x)w(x) dx =

n∑

ν=0

wνf(xν) + Rn(f),

where L ∈ R, L ≤ x0 < x1 < · · · < xn < L + 2π, has a trigonometric degree of
exactness equal to d if Rn(f) = 0 for all f ∈ Td and there exists g ∈ Td+1 such
that Rn(g) "= 0.

Turetzkii tried to increase the trigonometric degree of exactness of a quadra-
ture rule (2) in such a way that he did not specify in advance the nodes xν ,
ν = 0, 1, . . . , 2n. His approach was a simulation of the development of Gaussian
quadrature rules for algebraic polynomials. He proved that the trigonometric
degree of exactness of the quadrature rule (2) is 2n if and only if the nodes xν

(∈ [0, 2π)), ν = 0, 1, . . . , 2n, are zeros of a trigonometric polynomial of semi-
integer degree n + 1

2 which is orthogonal on [0, 2π) with respect to the weight
function w(x) to every trigonometric polynomial of a semi-integer degree less
than or equal to n − 1

2 . It is said that such a quadrature rule is of Gaussian
type, because it has the maximal trigonometric degree of exactness.

The trigonometric polynomial of semi-integer degree An+ 1
2
, which is orthog-

onal on [0, 2π) with respect to a weight function w(x) to every trigonometric
polynomial of a semi-integer degree less than or equal to n − 1

2 , with given
leading coefficients cn and dn, is uniquely determined (see [7, §3]) and it has in
[0, 2π) exactly 2n + 1 distinct simple zeros (see [7, Theorem 3]).

Orthogonal trigonometric polynomials of semi-integer degree were studied
in detail in [5], where two choices of the leading coefficients for such orthogonal
systems were considered: cn = 1, dn = 0 and cn = 0, dn = 1. It was proved that
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such orthogonal systems satisfied some five–term recurrence relations. Also, a
numerical method for constructing Gaussian type quadratures based on the
five–term recurrence relations was presented. For some special weight functions
the explicit formulas for the five-term recursion coefficients were obtained in [6].

A concept of orthogonality in the space T1/2 can be considered more gener-
ally. Namely, it is known that orthogonal algebraic polynomials can be defined
with respect to a moment functional (see [1], [4]). In this paper we consider
orthogonal trigonometric polynomials of semi-integer degree with respect to a
linear functional defined on the vector space T. The paper is organized as fol-
lows. The second section gives a general concept of trigonometric polynomials
of semi-integer degree which are orthogonal with respect to a given linear func-
tional. It is also an introduction to a very suitable matrix notation for this
purpose. The third section establishes the existence of three-term recurrence
relations. Also, the corresponding Christofell-Darboux formulas are proved.

2 Orthogonality with respect to a moment func-
tional

Definition 2. Let m0 be a real number, {mC
n }, {mS

n}, n ∈ N, two sequences of
real numbers, and let L be a linear functional defined on the vector space T by

L[1] = m0, L[cos nx] = mC
n , L[sinnx] = mS

n , n ∈ N.

Then L is called the moment functional determined by m0 and by the sequences
{mC

n }, {mS
n}.

For a 2 × 2 type matrix [tij ], whose entries are trigonometric polynomials,
for the brevity we denote by L[[tij ]] the following 2 × 2 type matrix [L[tij ]].

For each k ∈ N0 let denote by xk the column vector

xk =
[
cos

(
k +

1
2

)
x sin

(
k +

1
2

)
x
]T

.

For k, j ∈ N0, let define matrices mk,j by

mk,j = L[xk(xj)T ]. (3)

By definition, mk,j is a matrix of type 2 × 2 and its elements are linear combi-
nations of the moments m0, {mC

n }, {mS
n}, n ∈ N. For each n ∈ N0, the matrices

mk,j , k, j = 0, 1, . . . , n, are used to define the so-called moment matrix

Mn = [mk,j ]nk,j=0. (4)

We denote its determinant by ∆n, i.e.,

∆n = det Mn. (5)

Lemma 1. The moment matrix Mn, n ∈ N0, is a symmetric matrix.
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Proof. It is easy to see that all of the matrices mk,k, k = 0, 1, . . . , n, are sym-
metric. Since

L[xj(xk)T ] = L
[(

xk(xj)T
)T ]

,

it follows that mj,k = mT
k,j , k, j = 0, 1, . . . , n, i.e., the moment matrix Mn is

symmetric.

If L is a moment functional and An+ 1
2
(x) is a trigonometric polynomial

of semi-integer degree n + 1
2 such that L[An+ 1

2
t] = 0 for every t ∈ T

1/2
n−1,

then An+ 1
2

is an orthogonal trigonometric polynomial of semi-integer degree
n + 1

2 with respect to the moment functional L. One can start with the
basis

{
cos(k + 1

2 )x, sin(k + 1
2 )x : k = 0, 1, . . . , n

}
of T

1/2
n and use the Gramm-

Schmidt orthogonalization method to generate a new basis, whose elements are
mutually orthogonal with respect to L. It is obvious that in any basis of T

1/2
n , for

all k = 0, 1, . . . , n we have two linearly independent trigonometric polynomials
of the same semi-integer degree k + 1

2 .
The orthogonal trigonometric polynomials of semi-integer degree with re-

spect to a suitable weight function w on [0, 2π), considered in [7], [5] and [6],
are orthogonal trigonometric polynomials of semi-integer degree with respect to
the linear functional Lw, defined by

Lw[t] :=
∫ 2π

0
t(x) w(x) dx, t ∈ T. (6)

It is required that the orthogonal trigonometric polynomial of semi-integer de-
gree n + 1

2 is orthogonal to every element of T
1/2
n−1. As a matter of fact, the

orthogonality is considered only in terms of trigonometric polynomials of dif-
ferent semi-integer degrees, i.e., trigonometric polynomials of the same semi-
integer degree have to be orthogonal to all trigonometric polynomials of lower
semi-integer degrees, but they may not be orthogonal among themselves. So,
we follow this idea when we define orthogonal trigonometric polynomials of
semi-integer degree with respect to a moment functional. Let us denote by

Ak(x) =
[
A(1)

k+ 1
2
(x) A(2)

k+ 1
2
(x)

]T
, k ∈ N0,

the vector whose elements are two linearly independent trigonometric polyno-
mials of semi-integer degree k + 1

2 . We use the following notation

S{A0(x), . . . ,An(x)} =
{

A(1)
1
2

(x), A(2)
1
2

(x), . . . , A(1)
n+ 1

2
(x), A(2)

n+ 1
2
(x)

}
, n ∈ N0,

for the set consisting of components of the vectors Ak(x), k = 0, 1, . . . , n.
We may also call Ak(x) a trigonometric polynomial of semi-integer degree

k + 1
2 . By 0 we denote the zero vector [0 0]T , as well as the 2 × 2 type zero

matrix, which will be clear from the context, and finally, by I and Î we denote
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the identity matrix of type 2 × 2 and the matrix

Î =

[
0 −1
1 0

]
,

respectively.

Definition 3. Let L be a moment functional. A sequence of trigonometric
polynomials of semi-integer degree {An(x)}+∞

n=0 is said to be orthogonal with
respect to L if the following conditions are satisfied:

L[xkAT
n ] = 0, k < n; L[xnAT

n ] = Kn, (7)

where Kn, n ∈ N0, is an invertible 2 × 2 type matrix.

Notice that in Definition 3 is indirectly assumed that L permits the existence
of such an orthogonal sequence {An(x)}+∞

n=0.

Lemma 2. Let L be a moment functional and {Ak}+∞
k=0 be a sequence of orthog-

onal trigonometric polynomials of semi-integer degree with respect to L. Then
the set S{A0,A1, . . . ,An} forms a basis for T

1/2
n , n ∈ N0.

Proof. Since dim(T1/2
n ) = 2n + 2 and the set S{A0,A1, . . . ,An} has 2n + 2

elements, only we need to prove is a linear independence. Let consider the sum
aT

0 A0 + aT
1 A1 + · · · + aT

nAn, where ak = [a1
k a2

k]T , aj
k ∈ R, k = 0, 1, . . . , n,

j = 1, 2. Multiplying the previous sum from the right hand side by the (xk)T and
applying L, due to orthogonality, it follows from aT

0 A0+aT
1 A1+· · ·+aT

nAn = 0
that aT

k KT
k = 0. Since Kk is invertible, it follows that ak = 0. Therefore,

S{A0,A1, . . . ,An} is a linearly independent system, which forms a basis for
T

1/2
n .

Orthogonal trigonometric polynomials of semi-integer degree An, n ∈ N0,
can be written as

An = Cn,nxn + Cn,n−1xn−1 + · · · + Cn,0x0, (8)

where Cn,k, k = 0, 1, . . . , n, are 2 × 2 type real matrices. The matrix Cn,n is
called the leading coefficient of An.

Lemma 3. Let L be a moment functional and An, n ∈ N0, be an orthogonal
trigonometric polynomial of semi-integer degree n + 1

2 with respect to L. Then
the leading coefficient Cn,n is an invertible matrix.

Proof. According to Lemma 2, there exists a matrix C ′
n,n such that

xn = C ′
n,nAn + Bn−1,

where Bn−1 is a vector whose components belong to T
1/2
n−1. Comparing coeffi-

cients of xn, we obtain C ′
n,nCn,n = I, which implies that Cn,n is invertible.

5
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If {An} is a sequence of orthogonal trigonometric polynomials of semi-integer
degree and Cn,n denotes the leading coefficient of An, then Ãn = C−1

n,nAn yields
the corresponding monic sequence {Ãn} of orthogonal trigonometric polynomi-
als of semi-integer degree. Namely, we have

L[xkÃT
n ] = L[xkAT

n (C−1
n,n)T ] = 0, k = 0, 1, . . . , n − 1,

and
L[xnÃT

n ] = L[xnAT
n (C−1

n,n)T ] = Kn(C−1
n,n)T ,

and Kn(C−1
n,n)T is invertible matrix by Lemma 3.

For an orthogonal system of trigonometric polynomials of semi-integer degree
{An} with respect to a moment functional L, let us denote by µn, n ∈ N0, the
following matrix

µn = L[AnAT
n ]. (9)

It is obvious that the matrix µn, n ∈ N0, given by (9) is symmetric.

Lemma 4. Let L be a moment functional and An, n ∈ N0, be an orthogonal
trigonometric polynomial of semi-integer degree n + 1

2 with respect to L. Then
the matrix µn, n ∈ N0, given by (9) is invertible.

Proof. Since µn = L[AnAT
n ] = Cn,nL[xnAT

n ] = Cn,nKn, it is invertible accord-
ing to Lemma 3.

Theorem 1. Let L be a moment functional and An, n ∈ N0, an orthogonal
trigonometric polynomial of semi-integer degree n + 1

2 with respect to L. Then
An is uniquely determined by the matrix Kn.

Proof. Suppose contrary that there exist An and A′
n, both satisfying the orthog-

onality conditions (7) with the same Kn. Let Cn,n and C ′
n,n denote the leading

coefficients of An and A′
n, respectively. Since the system S{A0,A1, . . . ,An}

forms a basis of T
1/2
n , the elements of A′

n can be written in terms of that basis.
So, there exist 2 × 2 type matrices Ck, k = 0, 1, . . . , n, such that

A′
n = CnAn + Cn−1An−1 + · · · + C0A0.

Multiplying the both hand sides of the above equation from the right by AT
k , k =

0, 1, . . . , n−1, and applying the moment functional L, we get that CkL[AkAT
k ] =

0, k = 0, 1, . . . , n − 1, by orthogonality. According to Lemma 4, it follows
that Ck = 0 for all k = 0, 1, . . . , n − 1, i.e., A′

n = CnAn. Comparing the
leading coefficients leads to C ′

n,n = CnCn,n, i.e., Cn = C ′
n,nC−1

n,n and An =
Cn,nC ′−1

n,nA′
n. By using (7) we obtain

Kn = L[xnAT
n ] = L[xnA′T

n ](Cn,nC ′−1
n,n )T = Kn(Cn,nC ′−1

n,n )T ,

which implies that Cn,nC ′−1
n,n = I. Thus, Cn,n = C ′

n,n and An = A′
n.

6
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Theorem 2. Let L be a moment functional. A system of orthogonal trigono-
metric polynomials of semi-integer degree with respect to the moment functional
L exists if and only if ∆n "= 0, n ∈ N0.

Proof. Using the expanded form (8) of An and the matrices mk,j defined by
(3), we get

L[xkAT
n ] = L[xk(Cn,nxn + Cn,n−1xn−1 + · · · + Cn,0x0)T ]

= mk,nCT
n,n + mk,n−1C

T
n,n−1 + · · · + mk,0C

T
n,0.

It is easy to see that the orthogonality conditions (7) are equivalent to the
following system of linear equations

Mn





CT
n,0
...

CT
n,n−1

CT
n,n




=





0
...
0

Kn




, (10)

where Mn is the moment matrix, defined by (4).
Let us suppose that a system of orthogonal trigonometric polynomials of

semi-integer degree with respect to the moment functional L exists. For each
Kn it is unique by Theorem 1. Hence, the system of equations (10) has a unique
solution, which implies that ∆n "= 0.

Let us now suppose that ∆n "= 0. Then for each invertible matrix Kn the
system of equations (10) has a unique solution (Cn,0, . . . , Cn,n). Let denote
An =

∑n
k=0 Cn,kxk. The system (10) is equivalent to the following

L[xkAT
n ] = 0, k = 0, 1, . . . , n − 1; L[xnAT

n ] = Kn,

i.e., orthogonal trigonometric polynomials of semi-integer degree with respect
to the moment functional L exist.

Definition 4. A moment functional L is said to be regular if ∆n "= 0 for all
n ∈ N0.

Definition 5. A moment functional L is said to be positive definite if for all
t ∈ T1/2, t "= 0, the following inequality L[t2] > 0 holds.

Theorem 3. If a moment functional L is positive definite, then ∆n > 0 for all
n ∈ N0.

Proof. Let us assume that L is positive definite. Let v be an eigenvector of
the moment matrix Mn, corresponding to an eigenvalue λ. For a trigonometric
polynomial of semi-integer degree n+ 1

2 defined by t(x) =
∑n

k=0 vT
k xk, it follows

that vT Mnv = L[t2] > 0. On the other hand, vT Mnv = λ‖v‖2, which implies
that λ > 0. Therefore, all eigenvalues are positive and then ∆n = det Mn >
0.

7
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According to Theorems 2 and 3 we have the following result:

Corollary 1. For a positive definite moment functional L, there exists a system
of orthogonal trigonometric polynomials of semi-integer degree with respect to
L, i.e., every positive definite moment functional is regular.

Definition 6. Let L be a positive definite moment functional. A system of
trigonometric polynomials of semi-integer degree {A∗

n(x)}+∞
n=0 is said to be or-

thonormal with respect to L if the following conditions are satisfied

L[A∗
m(A∗

n)T ] = δm,nI, m, n ∈ N0, (11)

where δm,n is Kronecker delta function.

Lemma 5. Let L be a regular moment functional and let {An} be a system of
orthogonal trigonometric polynomials of semi-integer degree with respect to L.
Then L is a positive definite moment functional if and only if all of the matrices
µn, n ∈ N0, given by (9), are positive definite.

Proof. If L is a positive definite moment functional, then for any nonzero vector
a with real entries, t(x) = aT An(x) is a nonzero trigonometric polynomial of
semi-integer degree n + 1

2 by Lemma 2. Therefore, aT µna = L(t2) > 0, which
means that µn is a positive definite matrix.

Let us now suppose that all of the matrices µn, n ∈ N0, given by (9), are
positive definite. According to Lemma 2, every nonzero trigonometric poly-
nomial of semi-integer degree n + 1

2 can be represented in the following form
t(x) =

∑n
k=0 tk(x), where tk(x) = aT

k Ak(x), k = 0, 1, . . . , n, and an differs from
the zero vector. Because of orthogonality we get

L[t2] =
n∑

k=0

L[t2k] =
n∑

k=0

aT
k µkak,

which is positive since all of the matrices µn, n ∈ N0, are positive definite.

Theorem 4. If L is a positive definite moment functional, then there ex-
ists a system of orthonormal trigonometric polynomials of semi-integer degree
{A∗

n(x)} with respect to L.

Proof. Let {An} be a system of orthogonal trigonometric polynomials of semi-
integer degree with respect to L, and let µn, n ∈ N0, be the matrix defined by
(9). According to Lemma 5, the matrix µn is positive definite. Let νn be the
positive definite square root of µn, i.e., the unique positive definite matrix such
that µn = νnνn (see [8]). Since µn is a symmetric matrix, the matrix νn is
also symmetric. Let define A∗

n(x) = ν−1
n An(x). Then we have

L[A∗
n(A∗

n)T ] = ν−1
n L[AnAT

n ]ν−1
n = ν−1

n µnν−1
n = I,

which proves the assertion.

8
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Remark 1. It is easy to see that a system of orthonormal trigonometric polyno-
mials of semi-integer degree with respect to a positive definite moment functional
L is not unique. As a matter of fact, if {A∗

n} is an orthonormal system, then
for any orthogonal 2 × 2 type matrix On, {OnA∗

n} is also an orthonormal sys-
tem with respect to the same moment functional L. Moreover, if A∗

n and Â∗
n

are two vectors of orthonormal trigonometric polynomials of semi-integer degree
with respect to a positive definite moment functional L, then A∗

n and Â∗
n differ

by multiplication by an orthogonal 2 × 2 type matrix.

3 Three-term recurrence relations

It is well known that orthogonal algebraic polynomials satisfy the three-term
recurrence relation (see [1], [3], [4]). Such a recurrence relation is one of the
most important piece of information for the constructive and computational use
of orthogonal polynomials. Knowledge of the recursion coefficients allows the
zeros of orthogonal polynomials to be computed as eigenvalues of a symmetric
tridiagonal matrix, and with them the Gaussian quadrature rule, and also allows
an efficient evaluation of expansions in orthogonal polynomials.

For the orthogonal trigonometric polynomials of semi-integer degree with
respect to a regular moment functional L, there exists three-term recurrence
relations in a vector-matrix form. Actually, two kinds of recurrence relations
exist, the first one with cosine function, and the second one with sine function.

3.1 Three-term recurrence relation with cosine function

Theorem 5. Let L be a regular moment functional and {An} be a system of
orthogonal trigonometric polynomials of semi-integer degree with respect to L.
Then,

2 cos xAn = γC
n An+1 + αC

n An + βC
n An−1, n = 0, 1, . . . ; A−1 = 0, (12)

where βC
0 is arbitrary 2 × 2 type matrix and αC

n , βC
n and γC

n are 2 × 2 type
matrices given by

γC
n = L[2 cos xAnAT

n+1]µ
−1
n+1, n ∈ N0, (13)

αC
n = L[2 cos xAnAT

n ]µ−1
n , n ∈ N0,

βC
n = µn(γC

n−1)
T µ−1

n−1, n ∈ N.

Proof. Since the components of 2 cos xAn are trigonometric polynomials of semi-
integer degree n + 1 + 1

2 , they can be represented as a linear combination of
orthogonal trigonometric polynomials of semi-integer degree at most n + 1 + 1

2
by Lemma 2. Therefore, in a vector notation, there exist 2 × 2 type matrices
Ck, k = 0, 1, . . . , n + 1, such that

2 cos xAn = Cn+1An+1 + CnAn + · · · + C0A0.

9
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Multiplying the both hand sides of the previous equation by AT
k , k =

0, 1, . . . , n−2, from the right and applying the moment functional L, due to or-
thogonality we obtain Ckµk = L[2 cos xAnAT

k ] = 0, which implies that Ck = 0,
since µk is an invertible matrix. Therefore, the three-term recurrence relation
(12) holds.

Let us now multiply the both hand sides of the equation (12) by AT
n from

the right and apply the moment functional L. Due to orthogonality we obtain

L[2 cos xAnAT
n ] = αC

n L[AnAT
n ] = αC

n µn,

which yields the expression for αC
n . In the similar way, multiplying the equation

(12) by AT
n+1 from the right and applying the moment functional L, because of

orthogonality, we obtain the expression for γC
n .

To finish the proof, we write the recurrence relation (12) with n + 1 instead
of n, transpose the written equation, multiply by An from the left and apply
L. Then, we obtain

L[2 cos xAnAT
n+1] = µnβC

n+1,

i.e., γC
n µn+1 = µnβT

n+1. Changing n by n−1, it is easy to get what is stated.

Remark 2. Although the matrix coefficient βC
0 in (12) can be chosen arbitrarily,

since it multiplies A−1 = 0, it is convenient for later purposes to define βC
0 =

µ0.

Lemma 6. All of the matrices γC
n , n ∈ N0, and βC

n , n ∈ N, in (12) are
invertible.

Proof. Writing An and An+1 in the recurrence relation (12) in the expanded
forms (8) and comparing the highest coefficients at both hand sides it follows
that Cn,n = γnCn+1,n+1. Since the matrices Cn,n and Cn+1,n+1 are invertible
by Lemma 3, the matrix γn, is also invertible for all n ∈ N0. The assertion for
the matrix βn, n ∈ N, follows from the last equation in (13) and Lemma 4.

We proved in Theorem 4 the existence of an orthonormal sequence {A∗
n} of

trigonometric polynomials of semi-integer degree for a positive definite moment
functional L. For such a case, the recurrence relation can be considered, too.
The steps in proof are the same as in Theorem 5 with µn = I, n ∈ N0.

Theorem 6. Let L be a positive definite moment functional and {A∗
n} be a

system of orthonormal trigonometric polynomials of semi-integer degree with
respect to L. Then,

2 cos xA∗
n = β∗C

n+1A
∗
n+1+α∗C

n A∗
n+(β∗C

n )T A∗
n−1, n = 0, 1, . . . ; A−1 = 0, (14)

where β∗C
0 is arbitrary 2×2 type matrix and α∗C

n and β∗C
n are 2×2 type matrices

given by

α∗C
n = L[2 cos xA∗

n(A∗
n)T ], β∗C

n = L[2 cos xA∗
n−1(A

∗
n)T ], n ∈ N0. (15)

Remark 3. It is easy to see that each α∗C
n , n ∈ N0, is symmetric and all of

the matrices β∗C
n , n ∈ N, are invertible.
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3.2 Three-term recurrence relation with sine function

Let {An} be a system of orthogonal trigonometric polynomials of semi-integer
degree with respect to a regular moment functional L.

Since the components of 2 sin xAn are trigonometric polynomials of semi-
integer degree n+1+ 1

2 , they can also be represented as a linear combination of
orthogonal trigonometric polynomials of semi-integer degree at most n + 1 + 1

2
by Lemma 2. A consequence of this fact is that one can consider the following
representation

2 sin xAn = Sn+1An+1 + SnAn + · · · + S0A0,

for some matrices Sk, k = 0, 1, . . . , n + 1. By using the above equation, in
analogous way as in the proof of Theorem 5, the following result can be proved.

Theorem 7. Let L be a regular moment functional and {An} be a system of
orthogonal trigonometric polynomials of semi-integer degree with respect to L.
Then,

2 sin xAn = γS
nAn+1 + αS

nAn + βS
nAn−1, n = 0, 1, . . . ; A−1 = 0, (16)

where αS
n, βS

n and γS
n are 2 × 2 type matrices given by

γS
n = L[2 sin xAnAT

n+1]µ
−1
n+1, n ∈ N0, (17)

αS
n = L[2 sin xAnAT

n ]µ−1
n , n ∈ N0,

βS
n = µn(γS

n−1)
T µ−1

n−1, n ∈ N.

The matrix coefficient βS
0 can be chosen arbitrarily, but we define it as

βC
0 = µ0.

Analogously as in Lemma 6, we can prove that all of the matrices γS
n , n ∈ N0,

and βS
n , n ∈ N, are invertible.

With µn = I, n ∈ N0, the following result can be easily proved.

Theorem 8. Let {A∗
n} be a system of orthonormal trigonometric polynomials

of semi-integer degree with respect to a positive definite moment functional L.
Then we have the following three-term recurrence relation with sine function,

2 sin xA∗
n = β∗S

n+1A
∗
n+1+α∗S

n A∗
n+(β∗S

n )T A∗
n−1, n = 0, 1, . . . ; A−1 = 0, (18)

where α∗S
n and β∗S

n are 2 × 2 type matrices given by

α∗S
n = L[2 sin xA∗

n(A∗
n)T ], β∗S

n = L[2 sin xA∗
n−1(A

∗
n)T ], n ∈ N0. (19)

The matrix coefficient β∗S
0 can be chosen arbitrarily.

Also, each α∗S
n , n ∈ N0, is symmetric and all of the matrices β∗S

n , n ∈ N,
are invertible.
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3.3 Monic orthogonal trigonometric polynomials of semi-
integer degree

In the sequel, by {An(x)} we will denote the sequence of the monic orthogonal
trigonometric polynomials of semi-integer degree with respect to a regular mo-
ment functional L. Thus, An(x) is a vector of two trigonometric polynomials of
semi-integer degree, such that the first one is with the leading cosine function,
and the second one with the leading sine function. We use the following quite
natural notation

An(x) =




AC

n+ 1
2
(x)

AS
n+ 1

2
(x)



 ,

where AC
n+ 1

2
(x) and AS

n+ 1
2
(x) have the following expanded forms

AC
n+ 1

2
(x) = cos

(
n +

1
2

)
x +

n−1∑

ν=0

[
c(n)
ν cos

(
ν +

1
2

)
x + d(n)

ν sin
(
ν +

1
2

)
x

]
, (20)

AS
n+ 1

2
(x) = sin

(
n +

1
2

)
x +

n−1∑

ν=0

[
f (n)

ν cos
(
ν +

1
2

)
x + g(n)

ν sin
(
ν +

1
2

)
x

]
, (21)

for some real coefficients c(n)
ν , d(n)

ν , f (n)
ν and g(n)

ν , ν = 0, 1, . . . , n − 1.
For a monic system of orthogonal trigonometric polynomials of semi-integer

degree {An} with respect to a regular moment functional L, the matrix γC
n in

(12) is the identity matrix I (see proof of Lemma 6), hence, recurrence relation
(12) has the following form

2 cos xAn = An+1 + αC
n An + βC

n An−1, n = 0, 1, . . . ; A−1 = 0. (22)

Here, we have βC
n = µnµ−1

n−1, n ∈ N, βC
0 = µ0.

When the monic orthogonal trigonometric polynomials of semi-integer degree
are in question, the situation with the recurrence relation with sine function is
something different from the case with cosine function. The reason for this lies
in the following simple equality

2 sin x

[
cos(k + 1

2 )x

sin(k + 1
2 )x

]
=

[
sin(k + 1 + 1

2 )x − sin(k − 1
2 )x

− cos(k + 1 + 1
2 )x + cos(k − 1

2 )x

]
.

In order to obtain the recurrence relation with sine function for the monic
orthogonal trigonometric polynomials of semi-integer degree we only need to
see the following equalities:

Î

[
sin(k + 1

2 )x

− cos(k + 1
2 )x

]
=

[
cos(k + 1

2 )x

sin(k + 1
2 )x

]
, Î2 = −I.

12
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For the monic system of orthogonal trigonometric polynomials of semi-
integer degree {An} with respect to a regular moment functional L, the re-
currence relation (16) has the following form

2 sin xAn = −ÎAn+1 + αS
nAn + βS

nAn−1, n = 0, 1, . . . ; A−1 = 0. (23)

Since (−Î)T = Î, from the last equation in (17) and (23) we get here βS
n =

µnÎµ−1
n−1, n ∈ N.

3.4 Orthonormal trigonometric polynomials of semi-integer
degree

If L is a positive definite moment functional, then by {A∗
n(x)} we will denote the

sequence of the orthonormal trigonometric polynomials of semi-integer degree
with respect to L, given by A∗

n(x) = ν−1
n An(x), where the matrix νn is the

positive square root of the matrix µn, n ∈ N0. As it was said, {An(x)} is a
sequence of the monic trigonometric polynomials of semi-integer degree with
respect to L. Then, the recursion coefficients β∗C

n and β∗S
n are given as follows

β∗C
n = L[2 cos xA∗

n−1(A
∗
n)T ] = ν−1

n−1L[2 cos xAn−1AT
n ]ν−1

n (24)

= ν−1
n−1L[AnAT

n ]ν−1
n = ν−1

n−1µnν−1
n = ν−1

n−1νn;

β∗S
n = L[2 sin xA∗

n−1(A
∗
n)T ] = ν−1

n−1L[2 sin xAn−1AT
n ]ν−1

n (25)

= ν−1
n−1L[−ÎAnAT

n ]ν−1
n = −ν−1

n−1Îµnν−1
n = −ν−1

n−1Îνn.

Some simple properties of the recursion coefficients matrices α∗C
n , α∗S

n , n ∈
N0, and β∗C

n , β∗S
n , n ∈ N, of the recurrence relations (14) and (18) are given in

Subsections 3.1 and 3.2. The following result gives some connections between
these coefficients.

Theorem 9. Let {A∗
n(x)} be the sequence of the orthonormal trigonometric

polynomials of semi-integer degree with respect to a positive definite moment
functional L, satisfying the three-term recurrence relations (14) and (18). Then
the recursion coefficients matrices satisfy the following commutativity condi-
tions:

β∗C
k β∗S

k+1 = β∗S
k β∗C

k+1

β∗C
k+1α

∗S
k+1 + α∗C

k β∗S
k+1 = α∗S

k β∗C
k+1 + β∗S

k+1α
∗C
k+1 (26)

(β∗C
k )T β∗S

k + α∗C
k α∗S

k + β∗C
k+1(β

∗S
k+1)

T

= (β∗S
k )T β∗C

k + α∗S
k α∗C

k + β∗S
k+1(β

∗C
k+1)

T ,

for k ≥ 0, where β∗C
0 = β∗S

0 = 0.

13
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Proof. Using the recurrence relations (14) and (18), there are two different ways
of calculating the matrices

L[4 cos x sin xA∗
k(A∗

k+2)
T ], L[4 cos x sin xA∗

k(A∗
k+1)

T ], L[4 cos x sin xA∗
k(A∗

k)T ],

which lead to the desired commutativity equalities. Thus, using recurrence
relations and the fact that {A∗

n(x)} is orthonormal with respect to L, we have

L[4 cos x sin xA∗
k(A∗

k+2)
T ] = L[2 cos xA∗

k2 sin x(A∗
k+2)

T ]

= L
[(

β∗C
k+1A

∗
k+1 + α∗C

k A∗
k + (β∗C

k )T A∗
k−1

)
×

×
(
(A∗

k+3)
T (β∗S

k+3)
T + (A∗

k+2)
T (α∗S

k+2)
T + (A∗

k+1)
T β∗S

k+2

)]

= L[β∗C
k+1A

∗
k+1(A

∗
k+1)

T β∗S
k+2] = β∗C

k+1β
∗S
k+2,

and, analogously,

L[4 cos x sin xA∗
k(A∗

k+2)
T ] = L[2 sin xA∗

k2 cos x(A∗
k+2)

T ] = β∗S
k+1β

∗C
k+2,

which leads to the first equation in (26).
Further, from

L[4 cos x sin xA∗
k(A∗

k+1)
T ] = L[2 cos xA∗

k2 sin x(A∗
k+1)

T ]

= L
[(

β∗C
k+1A

∗
k+1 + α∗C

k A∗
k + (β∗C

k )T A∗
k−1

)
×

×
(
(A∗

k+2)
T (β∗S

k+2)
T + (A∗

k+1)
T (α∗S

k+1)
T + (A∗

k)T β∗S
k+1

)]

= β∗C
k+1α

∗S
k+1 + α∗C

k β∗S
k+1,

and

L[4 cos x sin xA∗
k(A∗

k+1)
T ] = L[2 sin xA∗

k2 cos x(A∗
k+1)

T ]

= β∗S
k+1α

∗C
k+1 + α∗S

k β∗C
k+1,

we obtain the second equation in (26). Notice, that we here use the fact that
matrices α∗C

k and α∗S
k are symmetric.

Finally, from

L[4 cos x sin xA∗
k(A∗

k)T ] = L[2 cos xA∗
k2 sin x(A∗

k)T ]

= L
[(

β∗C
k+1A

∗
k+1 + α∗C

k A∗
k + (β∗C

k )T A∗
k−1

)
×

×
(
(A∗

k+1)
T (β∗S

k+1)
T + (A∗

k)T (α∗S
k )T + (A∗

k−1)
T β∗S

k

)]

= β∗C
k+1(β

∗S
k+1)

T + α∗C
k α∗S

k + (β∗C
k )T β∗S

k ,

and

L[4 cos x sin xA∗
k(A∗

k)T ] = L[2 sin xA∗
k2 cos x(A∗

k)T ]
= β∗S

k+1(β
∗C
k+1)

T + α∗S
k α∗C

k + (β∗S
k )T β∗C

k ,

we get the third equation in (26).
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3.5 Christoffel-Darboux formulas

As a direct corollary of the three-term recurrence relation for algebraic orthogo-
nal polynomials the Christoffel-Darboux formula can be proved (see [1], [3], [4]).
According to the fact that we proved three-term recurrence relations for orthog-
onal trigonometric polynomials of semi-integer degree, a similar formula can be
expected in this trigonometric case. Actually, since we have two recurrence
relation, we have two Christoffel-Darboux formulas.

Theorem 10 (Christoffel-Darboux formulas). Let {A∗
n} be a sequence of or-

thonormal trigonometric polynomials of semi-integer degree with respect to a
positive definite linear functional. Then, for all x, y ∈ R, and for all nonnega-
tive integers n, the following formula

n∑

k=0

(A∗
k(x))T A∗

k(y) =
(β∗C

n+1A∗
n+1(x))T A∗

n(y) − (A∗
n(x))T (β∗C

n+1A∗
n+1(y))

2(cos x − cos y)
,

n∑

k=0

(A∗
k(x))T A∗

k(y) =
(β∗S

n+1A∗
n+1(x))T A∗

n(y) − (A∗
n(x))T (β∗S

n+1A∗
n+1(y))

2(sin x − sin y)

hold.

Proof. Put σ−1 = 0 and

σk =
(
β∗C

k+1A
∗
k+1(x)

)T A∗
k(y) − (A∗

k(x))T
(
β∗C

k+1A
∗
k+1(y)

)
, k = 0, 1, . . . , n.

By using the three-term recurrence relation (14), we get

σk =
(
2 cos xA∗

k(x) − α∗C
k A∗

k(x) − (β∗C
k )T A∗

k−1(x)
)T

A∗
k(y)

−
(
A∗

k(x)
)T

(
2 cos yA∗

k(y) − α∗C
k A∗

k(y) − (β∗C
k )T A∗

k−1(y)
)

= 2(cos x − cos y)(A∗
k(x)

)T A∗
k(y) − (A∗

k(x)
)T (

(α∗C
k )T − α∗C

k

)
A∗

k(y)

−
((

A∗
k−1(x)

)T
β∗C

k A∗
k(y) − (A∗

k(x))T (β∗C
k )T A∗

k−1(y)
)

.

Since the all of the matrices α∗C
k are symmetric (see Remark 3), the second

term on the right hand side of the previous expression of σk is equal to zero.
The third term of the same expression can be written as follows

(
A∗

k(x)
)T (β∗C

k )T A∗
k−1(y) −

(
A∗

k−1(x)
)T

β∗C
k A∗

k(y)

=
(
β∗C

k A∗
k(x)

)T
A∗

k−1(y) −
(
A∗

k−1(x)
)T

β∗C
k A∗

k(y) = σk−1.

Therefore, we have

σk = 2(cos x − cos y)(A∗
k(x)

)T A∗
k(y) + σk−1,

15
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i.e.,
(cos x − cos y)(A∗

k(x)
)T A∗

k(y) = σk − σk−1.

Summing the previous equality for all k = 0, 1, . . . , n, we get the first formula.
In the same way, by using the three-term recurrence relation (18), the second

formula can be proved.
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[4] G. Mastroianni, G.V. Milovanović, Interpolation Processes - Basic Theory
and Applications, Springer Monographs in Mathematics, Springer - Verlag,
Berlin - Heidelberg, 2008.
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