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Abstract

In this paper we investigate some existence questions of positive semi-definite solutions for certain classes
of matrix equations known as the generalized Lyapunov equations. We present sufficient and necessary
conditions for certain equations and only sufficient for others.
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1. Introduction

Recently, Bathia and Drisi [3] studied questions related to the positive semi-definiteness of
solutions of the following matrix equations:

AX + XA = B,

A2X + 2tAXA + XA2 = B,

A3X + t (A2XA + AXA2) + XA3 = B,
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A4X + tA3XA + 6A2XA2 + tAXA3 + XA4 = B,

A4X + 4A3XA + tA2XA2 + 4AXA3 + XA4 = B, (1.1)

where A is a given positive definite matrix and matrix B is positive semi-definite. First equation
is known to be the Lyapunov equation and has a great deal with the analysis of the stability of
motion.

Second equation has been studied by Kwong [10] and he succeeded to give an answer about
the existence of the positive semi-definite solutions. In [3] necessary and sufficient conditions are
given for the parameter t in order that Eq. (1.1) have positive semi-definite solutions, provided
that B is positive semi-definite. For numerous other references see [2,4–10]. There is also a strong
connection between the question of positive semi-definite solutions of these equations and various
inequalities involving unitarily equivalent matrix norms (see [2,6–9]).

We briefly recall that a matrix A is positive definite, provided it is symmetric and for every
vector x /= 0 we have (Ax, x) > 0. A matrix A is positive semi-definite, provided it is symmetric
and for every x we have (Ax, x) � 0.

In this paper we investigate the existence question of positive semi-definite solutions of a
general form of Eq. (1.1). Introducing characteristic polynomials for these equations, in Section
4 we present some sufficient conditions for the existence of these solutions. In the last section we
present results concerning some specific equations.

2. Characteristic polynomial

We denote by 2N and 2N − 1 sets of even and odd natural numbers. First, we prove a simple
lemma to give a motivation for results of this paper.

Lemma 2.1. Suppose we are given matrix equation
m∑

ν=0

aνA
m−νXAν = B, (2.1)

whereB is positive semi-definite,A is positive definite,andaν = am−ν ∈ R, ν = 0, 1, . . . , m, a0 =
am > 0. If the function t �→ ϕm(t), defined by

1

ϕm(t)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m/2−1∑
ν=0

aν cosh
(

m
2 − ν

)
t + 1

2am/2, m ∈ 2N,

(m−1)/2∑
ν=0

aν cosh
(

m
2 − ν

)
t, m ∈ 2N − 1

(2.2)

is positive semi-definite, then Eq. (2.1) has a positive semi-definite solution. If equation has
positive semi-definite solution for any positive definite matrix A then function ϕm is positive
semi-definite.

Proof. Since A is a positive definite matrix, its eigenvectors create a basis. Hence, we can use the
system of eigenvectors as a basis in which the matrix A has a diagonal form, with eigenvalues on
its diagonal. Denote the eigenvalues by λν , ν = 1, . . . , n. Then Eq. (2.1), in the previous basis
with X = (xi,j ) and B = (bi,j ), can be represented in the form

m∑
ν=0

aνλ
m−ν
i λν

j xi,j = bi,j , i, j = 1, . . . , n,
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i.e.,

xi,j = bi,j∑m
ν=0 aνλ

m−ν
i λν

j

, i, j = 1, . . . , n.

If we denote with C = (ci,j ) a matrix with entries

ci,j = 1∑m
ν=0 aνλ

m−ν
i λν

j

, i, j = 1, . . . , n, (2.3)

we can recognize that the matrix X is a direct or Schur product of the matrices C and B, so that
if C and B are positive semi-definite, X is also positive semi-definite.

Since the eigenvalues λν , ν = 1, . . . , n, are positive, we can represent them in the form λi =
exi , where xi ∈ R, i = 1, . . . , n. Applying this to the matrix C, we get for its elements and m

even

ci,j = e−m/2(xi+xj )∑m
ν=0 aνe(m/2−ν)xi e(ν−m/2)xj

= e−m/2(xi+xj )∑m
ν=0 aνe(m/2−ν)(xi−xj )

= 1

2

e−m/2(xi+xj )∑m/2−1
ν=0 aν cosh

(
m
2 − ν

)
(xi − xj ) + 1

2am/2

.

Similarly, for m odd, for elements ci,j of C we get the following expression

ci,j = e−m/2(xi+xj )∑m
ν=0 aνe(m/2−ν)xi e(ν−m/2)xj

= 1

2

e−m/2(xi+xj )∑(m−1)/2
ν=0 aν cosh

(
m
2 − ν

)
(xi − xj )

.

Two matrices X and Y are said to be congruent if there exists a non-singular matrix Z such that
X = Z∗YZ. It is known that congruency preserves definiteness. In both cases, for even and odd
m, our matrix C is congruent with a matrix with elements⎧⎪⎨

⎪⎩
1∑m/2−1

ν=0 aν cosh(m
2 −ν)(xi−xj )+ 1

2 am/2
, m ∈ 2N,

1∑(m−1)/2
ν=0 aν cosh(m

2 −ν)(xi−xj )
, m ∈ 2N − 1,

where in both cases the congruency matrix Z is a diagonal matrix with entries (1/
√

2)e−m/2xi ,
i = 1, . . . , n.

Now we introduce the function t �→ ϕm(t) by (2.2). Then ϕm is going to be positive semi-
definite if and only if our matrix in (2.3) is positive semi-definite. �

According to the Bochner’s theorem (see [13, p. 17,12, p. 290]) the function ϕm is positive
semi-definite if and only if its Fourier transform is nonnegative on the real line. Hence, we can
answer the existence question of positive semi-definite solutions of Eq. (2.1), provided we are
able to answer the question whether the function ϕm is positive semi-definite, conditioned matrix
B is positive semi-definite.
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Next we want to show that we can express denominator of the functions ϕm as polynomials in
cosh(t/2). We have the following auxiliary result:

Lemma 2.2. For n ∈ N, we have

cosh nt =
[n/2]∑
j=0

(−1)jAn,j coshn−2j t, (2.4)

where

An,j =
[n/2]∑
ν=j

(
n

2ν

) (
ν

j

)
. (2.5)

Proof. Using Moivre formula, we have

cos nt = Re(cos t + i sin t)n =
[n/2]∑
ν=0

(
n

2ν

)
(−1)ν cosn−2ν t sin2ν t.

Changing t := it , and using cos it = cosh t , sin it = i sinh t , together with the identity sinh2 t =
cosh2 t − 1, we get

cosh nt =
[n/2]∑
ν=0

(
n

2ν

)
coshn−2ν t

ν∑
j=0

(
ν

j

)
(−1)ν−j cosh2j t

=
[n/2]∑
j=0

(−1)j coshn−2j t

[n/2]∑
ν=j

(
n

2ν

) (
ν

j

)

=
[n/2]∑
j=0

(−1)jAn,j coshn−2j t,

where the coefficients An,j are given by (2.5). �

Using the previous lemmas we can represent the denominator in the functionϕm as a polynomial
in cosh t .

Lemma 2.3. Let m be an even number. Then

ϕm(t) = 1∑m/2
�=0 cosh� t

∑m/2
j=�

(−1)j

2j

(
j

�

) ∑m/2
ν=j

am/2−ν

1+δν,0
(−1)νA2ν,ν−j

. (2.6)

In the case m is an odd integer, we have

ϕm(t) = 1∑(m−1)/2
j=0 (−1)j cosh2j+1 t

2

∑(m−1)/2
ν=j am−1

2 −ν
(−1)νA2ν+1,ν−j

= 1

cosh t
2

∑(m−1)/2
�=0 cosh� t

∑(m−1)/2
j=�

(−1)j

2j

(
j

�

) ∑(m−1)/2
ν=j am−1

2 −ν
(−1)νA2ν+1,ν−j

.
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Proof. The proof can be given using equality (2.4). According to (2.2) and (2.4), for m even we
get

1

ϕm(t)
=

m/2∑
ν=0

am
2 −ν

1 + δν,0
cosh νt

=
m/2∑
ν=0

am
2 −ν

1 + δν,0

ν∑
j=0

(−1)ν−jA2ν,ν−j cosh2j t

2

=
m/2∑
j=0

(−1)j

2j

j∑
�=0

(
j

�

)
cosh� t

m/2∑
ν=j

am
2 −ν

1 + δν,0
(−1)νA2ν,ν−j

=
m/2∑
�=0

cosh� t

m/2∑
j=�

(−1)j

2j

(
j

�

) m/2∑
ν=j

am
2 −ν

1 + δν,0
(−1)νA2ν,ν−j .

Similarly, for odd m, we obtain

1

ϕm(t)
=

(m−1)/2∑
ν=0

am−1
2 −ν

cosh(2ν + 1)
t

2

=
(m−1)/2∑

ν=0

am−1
2 −ν

ν∑
j=0

(−1)ν−j cosh2j+1 t

2
A2ν+1,nu−j

= cosh
x

2

(m−1)/2∑
j=0

(−1)j cosh2j t

2

(m−1)/2∑
ν=j

am−1
2 −ν

(−1)νA2ν+1,ν−j

= cosh
t

2

(m−1)/2∑
�=0

cosh� t

(m−1)/2∑
j=�

(−1)j

2j

(
j

�

) (m−1)/2∑
ν=j

am−1
2 −ν

(−1)νA2ν+1,ν−j .

This completely finishes the proof of this lemma. �

As can be seen in the denominator of the function ϕm we can recognize two polynomials in
cosh x.

Definition 2.1. For m even we define the characteristic polynomial Qm for Eq. (2.1) to be

Qm(cosh t) = 1

ϕm(t)
,

and for m odd we define the corresponding characteristic polynomial to be

Qm(cosh t) = 1

cosh t
2ϕm(t)

.

In the next sections we are going to see a possible answer to the existence question by using
zeros of the polynomial Qm. For example, the characteristic polynomial of the third equation in
(1.1) is given by Q3(z) = 2z + t − 1, and for the fourth equation, Q4(z) = 2z2 + tz + 2.



2406 A.S. Cvetković, G.V. Milovanović / Linear Algebra and its Applications 429 (2008) 2401–2414

3. Some Fourier transforms

First we introduce some common notation. We denote by Lp(R), p � 1, a set of functions
defined on the real line such that

∫
R

|f |p dx < +∞, and we denote by Cp(R), p ∈ N0, a set of
functions defined on the real line with p-th continuous derivative. Especially, we reserve C∞(R)

to represent the functions defined on the real line which are infinitely differentiable.
The Fourier transform f̂ of a given function f ∈ L1(R) is defined in the following way:

f̂ (x) =
∫

R

eixtf (t) dt,

and its inverse transform is given by

f (t) = 1

2π

∫
R

e−ixt f̂ (x) dx (3.1)

(cf. [1, pp. 1–2]). In the sequel we need the following results:

Lemma 3.1. Let f, g ∈ L2(R) ∩ C(R), with f̂ , ĝ ∈ L1(R). Then∫
R

eixtf (t)g(t) dt = 1

2π

∫
R

f̂ (x − y)ĝ(y)dy, x ∈ R. (3.2)

Proof. It is easy to see that the convolution of the functions f̂ and ĝ belongs to L1(R) ∩ C(R),
due to the fact that f̂ and ĝ are Fourier transforms and hence, continuous functions. We can
calculate the inverse Fourier transform of the right-hand side of (3.2), to get

1

2π

∫
R

e−itxdx
1

2π

∫
R

f̂ (x − y)ĝ(y)dy

= 1

2π

∫
R

e−ity ĝ(y)dy
1

2π

∫
R

e−it (x−y)f̂ (x − y)dx = g(t)f (t),

where we used the fact that f and g are continuous, hence, they satisfy the inversion formula
on the whole real line. Since f, g ∈ L2(R), their product belongs to L1(R), which enables an
application of the Fourier transform to the previous identity in order to prove this lemma. �

Lemma 3.2. The convolution of two non-negative functions is a non-negative function, i.e., the
product of two positive semi-definite functions is a positive semi-definite function.

This is an obvious result.
Now, we are interested only in functions t �→ ϕm(t), introduced in the previous section. The fact

that dkϕm(t)/dtk ∈ C∞(R) ∩ L1(R), k ∈ N0, has as a consequence the integrability of ϕ̂m and
an equality in the inversion formula (3.1) over the whole real line. Further, (it)kϕm(t) ∈ L1(R),
k ∈ N0, assures that ϕ̂m ∈ C∞(R). It is not hard to see that also ϕm ∈ L2(R).

In the next section we need the Fourier transform of the function

g(t) = 1

cosh t − σ
, σ ∈ C\[1, +∞),

where [1, +∞) is excluded since for σ ∈ [1, +∞) it is clear that g /∈ L1(R). For this Fourier
transform we refer to [3], where the following results:
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ĝ(x) =
∫

R

eixt

cosh t − σ
dt =

⎧⎨
⎩

2π sinh(x arccos(−σ))√
1−σ 2 sinh xπ

, σ ∈ (−1, 1),

2π sin(x arccosh(−σ))√
σ 2−1 sinh xπ

, σ < −1,
(3.3)

were proved. In general, for a complex σ , we have

ĝ(x) =
∫

R

eixt

cosh t − σ
dt = 2π sinh(x arccos(−σ))√

1 − σ 2 sinh xπ
, σ ∈ C\R.

Also, this result can be found in [3], except the case |σ | = 1, σ /= ±1, which can be proved using
the same arguments given in [3].

Using a limiting process in (3.3) as σ→−1, we can prove that∫
R

eixt

cosh t + 1
dt = 2πx

sinh xπ
. (3.4)

4. Positive semi-definite solutions

According to (3.3) and (3.4), we conclude that the function

g(t) = 1

cosh t − σ
, −1 � σ < 1

is a positive semi-definite function. This enables us to state the following result:

Theorem 4.1. Suppose we are given Eq. (2.1), with a positive definite matrix A, with the char-
acteristic polynomial Qm which all zeros are real and contained in the interval [−1, 1). Then
the corresponding function ϕm is positive semi-definite, i.e., the matrix equation (2.1) has a
positive semi-definite solution provided B is positive semi-definite. If λν are eigenvalues of A,

the corresponding solution X = (xi,j ) is given by

xi,j = bi,j∑m
ν=0 aνλ

m−ν
i λν

j

, i, j = 1, . . . , m.

Proof. Denote zeros of Qm by σi , i = 1, . . . , [m/2]. We distinguish two cases for our matrix
equation

m∑
ν=0

aνA
m−νXAν = B.

Case m is even. Then

ϕm(t) = 1

Qm(cosh t)
=

m/2∏
i=1

1

cosh t − σi

.

Consider now the functions

g1(t) = 1

cosh t − σ1
, gj+1(t) = gj (t)

cosh t − σj+1
, j = 1, . . . , m/2 − 1.

Obviously gj , j = 1, . . . , m/2, belong to L2(R) and their Fourier transforms are L1(R) ∩ C(R)

functions. The function g1 is positive semi-definite according to (3.3). Assuming that gj is positive
semi-definite, according to Lemma 3.1, the function gj+1 has the Fourier transform which is a
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convolution of the Fourier transforms of gj and 1/(cosh t − σj ) and those are both non-negative.
According to Lemma 3.2, the Fourier transform of gj+1 is also non-negative, hence, gj+1 is
positive semi-definite. Now, by induction we conclude that gm/2 = ϕm is positive semi-definite.
Case m is odd. Then

ϕm(t) = 1

cosh t
2Qm(t)

= 1

cosh t
2

[m/2]∏
i=1

1

cosh t − σi

.

Here the proof is the same except that now we take

g0(t) = 1

cosh t
2

, gj+1(t) = gj (t)

cosh t − σj+1
, j = 0, 1, . . . , [m/2] − 1.

The only missing ingredient is positive semi-definiteness of g0. But, we have∫
R

eixt

cosh t
2

dt = 2
∫

R

e2ixt

cosh t
dt = 2π

cosh πx
,

using the Fourier transform given in (3.3), hence g0 is positive semi-definite. �

In order to give further results we need the following lemma.

Lemma 4.1. The function

t �→ 1

(cosh t − σ1)(cosh t − σ2)
(4.1)

for −1 � σ1 < 1 and σ2 < 1, is positive semi-definite.

Proof. The case σ2 ∈ [−1, 1) is covered by Theorem 4.1, so we assume now that σ2 < −1. Using
a partial fraction decomposition we have

1

(cosh t − σ1)(cosh t − σ2)
= 1

σ1 − σ2

(
1

cosh t − σ1
− 1

cosh t − σ2

)
.

Assuming −1 < σ1 and using (3.3), we conclude that the Fourier transform of (4.1) is given by

2π

(σ1 − σ2) sinh(xπ)

⎛
⎝ sinh(x arccos(−σ1))√

1 − σ 2
1

− sin(x arccosh(−σ2))√
σ 2

2 − 1

⎞
⎠ . (4.2)

We are going to prove that this expression is always non negative on R.
Fix x ∈ R+, then

sinh(x arccos(−σ1))

x arccos(σ1)

is strictly increasing function in x arccos(−σ1). According to the fact that x arccos(−σ1) is strictly
increasing function in σ1 ∈ (−1, 1), our function is strictly increasing in σ1. Its minimum is
achieved for σ1 = −1 and its value is 1.

Now consider

g(σ1) = arccos(−σ1)√
1 − σ 2

1

,
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which derivative is given by

g′(σ1) =
σ1 arccos(−σ1) +

√
1 − σ 2

1

(1 − σ 2
1 )3/2

.

The derivative of the numerator is arccos(−σ1) > 0, and therefore it is an increasing function. Its
value for σ1 = −1 is 0 and for σ1 = 1 is π . Hence g′(σ1) is always positive and g is increasing.
The minimum value of the function g is 1 and is achieved for σ1 = −1.

In (4.2), for fixed x ∈ R+, the term
sinh(x arccos(−σ1))√

1 − σ1

has the minimum value x at σ1 = −1.
Now, for fixed x ∈ R+, we consider the function

sin(x arccosh(−σ2))

x arccosh(−σ2)
.

This function has as its global maximum the value 1 at the point σ2 = −1.
For the function

g(σ2) = arccosh(−σ2)√
σ 2

2 − 1
,

we have

g′(σ2) =
−

√
σ 2

2 − 1 − σ2 arccosh(−σ2)

(σ 2
2 − 1)3/2

.

Since the derivative of the numerator of g′ is −arccosh(−σ2), we conclude that it is decreasing,
with value 0 at σ2 = −1. It follows that g′(σ2) is always positive, which shows g is increasing
with the maximum value 1 at σ2 = −1.

In total, for fixed x ∈ R+, we have that
sin(x arccosh(−σ2))√

σ 2
2 − 1

has as its maximum value x at σ2 = −1.
Putting all together, for x ∈ R+, σ1 ∈ (−1, 1) and σ2 < −1, we have

sinh(x arccos(−σ1))√
1 − σ 2

1

− sin(x arccosh(−σ2))√
σ 2

2 − 1
> x − x = 0.

By the continuity argument, for the Fourier transform (4.2) at x = 0, we find that

2

σ1 − σ2

⎛
⎝arccos(−σ1)√

1 − σ 2
1

− arccosh(−σ2)√
σ 2

2 − 1

⎞
⎠ � 0.

This means that our function (4.1) is positive semi-definite.
In the case σ1 = −1, the Fourier transform of the function (4.1) is given by

− 2πx

(σ2 + 1) sinh πx

⎛
⎝1 − sin(x arccosh(−σ2))

x arccosh(−σ2)

arccosh(−σ2)√
σ 2

2 − 1

⎞
⎠ .



2410 A.S. Cvetković, G.V. Milovanović / Linear Algebra and its Applications 429 (2008) 2401–2414

It is easily seen that∣∣∣∣∣∣
sin(x arccosh(−σ2))

x arccosh(−σ2)

arccosh(−σ2)√
σ 2

2 − 1

∣∣∣∣∣∣ � 1,

and we have finished the proof. �

The next lemma shows that essentially the function (4.1) is positive semi-definite only for
−1 � σ1, σ2 < 1 or −1 ≤ σ1 < 1 and σ2 < −1.

Lemma 4.2. The function (4.1) is not positive semi-definite for σ1, σ2 < −1 or σ1 = σ 2 ∈ C\R.

Proof. It is easy to see that for σ1, σ2 < −1, the function (4.1) cannot be positive semi-definite,
because its Fourier transform, for σ1 /= σ2, is given by

2π

(σ1 − σ2) sinh xπ

⎛
⎝ sin(x arccosh(−σ1))√

σ 2
1 − 1

− sin(x arccosh(−σ2))√
σ 2

2 − 1

⎞
⎠ (4.3)

and must have at least one point where both terms in (4.3) are negative.
We consider now the Fourier transform of the function (4.1) in the case σ1 = σ2 = σ < −1,

by a limit process when σ1→σ2 = σ < −1, i.e.,

lim
σ1→σ

2π

(σ1 − σ) sinh xπ

⎛
⎝ sin(x arccosh(−σ1))√

σ 2
1 − 1

− sin(x arccosh(−σ))√
σ 2 − 1

⎞
⎠

= − 2π

sinh xπ

√
σ 2 − 1x cos(x arccosh(−σ)) + σ sin(x arccosh(−σ))

(σ 2 − 1)3/2
.

It is clear that this transform is negative for

x ∈
(

(4k − 1)π

2 arccosh(−σ)
,

2kπ

arccosh(−σ)

)
, k ∈ N.

Consider now the case σ = σ1 = σ2 /∈ R, with σ = a + ib, b > 0. Then we have∫
R

eixt

(cosh t − σ)(cosh t − σ̄ )
dt = 2π

sinh xπ

Im(e−iϕ/2 sinh(x arccos(−σ)))

b
√|1 − σ 2|

= 2π

b sinh xπ
√|1 − σ 2|

(
cos

ϕ

2
sin βx cosh αx

− sin
ϕ

2
cos βx sinh αx

)
,

where we denoted by ϕ the argument of the complex number 1 − σ 2 and α + iβ = arccos(−σ).
Depending on the sign of sin(ϕ/2) and cos(ϕ/2), we can always choose x such that both terms in
the final expression are negative. We conclude that in the case σ1 = σ2 the function (4.1) cannot
be positive semi-definite. �

The previous two lemmas give as an opportunity to give a stronger result than the one obtained
in [3].
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Theorem 4.2. Let B be a positive semi-definite matrix and let A be a positive definite matrix.
Then the equation

A4X − 2tA3XA + 2(2u + 1)A2XA2 − 2tAXA3 + XA4 = B

with (t, u) ∈ R2, has a positive semi-definite solution if and only if (t, u) ∈ D ⊂ R2, where the
domain D is determined by

(t < −2 ∧ u − t + 1 > 0 ∧ u + t + 1 � 0) ∨ (t � −2 ∧ t2/4 − u � 0 ∧ u − t + 1 > 0).

Proof. All we need to do is to construct the corresponding characteristic polynomial of the
mentioned equation. Using the equality (2.6) and Definition 2.1, we have

Q4(z) = 2(z2 − tz + u).

Using Lemmas 4.1 and 4.2, the function ϕ4 is positive semi-definite if and only if zeros σ1 and σ2
of the polynomial Q4 are σ1 ∈ [−1, 1) and σ2 ∈ (−∞, 1). Thus, the function ϕ4(x) is positive
semi-definite on the set

{(t, u) = (σ1 + σ2, σ1σ2)|σ1 ∈ [−1, 1), σ2 ∈ (−∞, 1)} .

Since

σ1,2 = t

2
±

√
t2

4
− u,

we get the system of inequalities

−1 � t

2
+

√
t2

4
− u < 1,

t

2
−

√
t2

4
− u < 1,

which solution is exactly given in the statement of the theorem. �

The domain D from this theorem is presented in Fig. 4.1 for t � −4.
In order to be able to express an influence of the factor cosh t/2 in the function ϕm for m odd,

we have the following result:

Lemma 4.3. The function

ϕ3(t) = 1

cosh t
2 (cosh t − σ)

, σ ∈ (−∞, 1)

is positive semi-definite.

Proof. We have∫
R

eixt

cosh t
2 (cosh t − σ)

dt =
∫

R

e2ixt

cosh t
(

cosh2 t − 1+σ
2

) dt.

For σ ∈ [−1, 1), it is clear that (1 + σ)/2 ∈ [0, 1), so that, according to Lemma 3.2, the corre-
sponding Fourier transform is a non-negative function on R and ϕ3 is positive semi-definite.

For σ ∈ (−∞, −1), we have (1 + σ)/2 ∈ (−∞, 0), so that we denote a2 = −(1 + σ)/2.
Finally, we end-up in∫

R

e2ixt

cosh t (cosh2 t + a2)
dt,

which is non-negative function according to Proposition 4.1 form [3]. �
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Fig. 4.1. The domain D from Theorem 4.2 for t � −4.

Now, we are able the state the main result of the paper.

Theorem 4.3. Suppose we are given Eq. (2.1), with a positive definite matrix A, with the char-
acteristic polynomial Qm which has k1 real zeros contained in the interval [−1, 1) and k2 zeros
smaller than −1, with k1 � k2, for m even, and k1 + 1 � k2, for m odd, where k1 + k2 = [m/2].
Then the corresponding function ϕm is positive semi-definite, i.e., the matrix equation (2.1) has
a positive semi-definite solution, provided B is positive semi-definite. If λν are eigenvalues of A,

the solution X = (xi,j ) is given by

xi,j = bi,j∑m
ν=0 aνλ

m−ν
i λν

j

, i, j = 1, . . . , m.

Proof. Consider first the case when m is even. Then, we can group the zeros of Qm according to
the following xi ∈ [−1, 1), yi ∈ (−∞, 1), i = 1, . . . , k2, and xi ∈ [−1, 1), i = k2 + 1, . . . , k1.
According to the fact that the convolution is commutative and associative and using Lemma 4.1
we conclude that the Fourier transforms of

1

(cosh t − xi)(cosh t − yi)
, i = 1, . . . , k2

are non-negative functions, and therefore the functions itself are positive semi-definite. According
to Lemma 3.2, the Fourier transform of the function

k2∏
i=1

1

(cosh t − xi)(cosh t − yi)
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is non-negative and the function itself is positive semi-definite. Finally, if we include the part

k1∏
i=k2+1

1

cosh t − xi

,

which Fourier transform is a non-negative function, we have that the function ϕm is positive
semi-definite.

Now for m odd, we group the zeros according to the following y0 ∈ (−∞, 1), x1 ∈ [−1, 1)

and yi ∈ (−∞, 1), i = 1, . . . , k2 − 1, and xi ∈ [−1, 1), i = k2, . . . , k1. Using Lemma 4.3, we
have that

1

cosh t
2 (cosh t − y0)

is positive semi-definite. Also all functions

1

(cosh t − xi)(cosh t − yi)
, i = 1, . . . , k2 − 1,

are positive semi-definite according to Lemma 4.1. Finally, the functions

1

cosh t − xi

, i = k2, . . . , k1,

are also positive semi-definite and, therefore, the function ϕm is positive semi-definite. �

5. Examples

Using the previous considerations we are able to give sufficient conditions for the existence of
positive semi-definite solutions of some equations with higher order.

Theorem 5.1. If t ∈ (−6, 10], then the equation

A5X + 5A4XA + tA3XA2 + tA2XA3 + 5AXA4 + XA5 = B

has a positive semi-definite solution, provided B is positive semi-definite.

Proof. In this case we have for the characteristic polynomial

Q5(z) = 4

(
z2 + 2z + t − 6

4

)
.

According to Theorem 4.3, the equation has positive semi-definite solutions, provided the poly-
nomial Q5 has zeros σ1 ∈ [−1, 1) and σ1 ∈ (−∞, 1). Using Viète formulas we have

−2 = σ1 + σ2,
t − 6

4
= σ1σ2,

from which we deduce t = 6 − 4σ1(2 + σ1), σ1 ∈ [−1, 1), so that we have t ∈ (−6, 10]. �

Theorem 5.2. If t ∈ (−∞, −11) ∪ [5, +∞), then the equation

A5X + tA4XA + 10A3XA2 + 10A2XA3 + tAXA4 + XA5 = B

has a positive semi-definite solution, provided B is positive semi-definite.
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Proof. The characteristic polynomial is

Q5(z) = 4

(
z2 + t − 1

2
z + 9 − t

4

)
.

Using Viète formulas and Theorem 4.3, we have a positive semi-definite solution provided

− t − 1

2
= σ1 + σ2,

9 − t

4
= σ1σ2,

with σ1 ∈ [−1, 1) and σ2 ∈ (−∞, 1). Solving this system of equations we get t = −(4σ 2
1 −

2σ1 + 9)/(2σ1 − 1), σ1 ∈ [−1, 1).
Therefore, t ∈ (−∞, −11) ∪ [5, +∞). �
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