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1 Introduction

Let the weight function w(x) be integrable and nonnegative on the interval
[0, 2π), vanishing there only on a set of a measure zero. For given weight
function w(x),

(f, g) =
∫ 2π

0
f(x)g(x)w(x) dx, (1)

denotes the corresponding inner product of the functions f and g.

The trigonometric functions of the following form

An+1/2(x) =
n∑
ν=0

(
cν cos

(
ν +

1

2

)
x+ dν sin

(
ν +

1

2

)
x
)
, (2)

where cν , dν ∈ R, |cn| + |dn| 6= 0, are called trigonometric polynomials of
semi-integer degree n+ 1/2. Coefficients cn and dn are leading coefficients.

For any positive integer n, with T1/2
n we denote the set of all trigonometric

polynomials of semi-integer degree at most n+ 1/2, i.e., linear span of the set{
cos(ν + 1/2)x, sin(ν + 1/2)x, ν = 0, 1, . . . , n

}
.

The trigonometric polynomial of semi-integer degree n+1/2, of the form (2), is
called orthogonal trigonometric polynomial of semi-integer degree n+1/2 with
respect to the weight function w(x) if it is orthogonal on [0, 2π) with respect
to the inner product (1) to every trigonometric polynomial of semi-integer

degree from T
1/2
n−1, i.e., to every trigonometric polynomial of semi-integer degree

less than or equal to n− 1/2. These trigonometric systems have applications
in construction of quadrature formulas with maximal trigonometric degree
of exactness. It is known that orthogonal trigonometric polynomial of semi-
integer degree An+1/2 with given leading coefficients cn and dn, is uniquely
determined (see [1, §3]).

We consider the following two choices of leading coefficients. For the choice
cn = 1, dn = 0, we denote orthogonal trigonometric polynomial of semi-integer
degree by ACn+1/2, and for the choice cn = 0 and dn = 1 by ASn+1/2. For the

expanded forms of ACn+1/2 and ASn+1/2 we use the following notation

ACn+1/2(x) = cos
(
n+

1

2

)
x+

n−1∑
ν=0

(
c(n)
ν cos

(
ν +

1

2

)
x+ d(n)

ν sin
(
ν +

1

2

)
x
)
, (3)

ASn+1/2(x) = sin
(
n+

1

2

)
x+

n−1∑
ν=0

(
f (n)
ν cos

(
ν +

1

2

)
x+ g(n)

ν sin
(
ν +

1

2

)
x
)
. (4)

In [2] we proved that orthogonal trigonometric polynomials of semi-integer de-
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gree ACk+1/2(x) and ASk+1/2(x), k ∈ N, satisfy the following five-term recurrence
relations:

ACk+1/2(x) = (2 cosx− α(1)
k )ACk−1/2(x)− β(1)

k ASk−1/2(x) (5)

−α(2)
k ACk−3/2(x)− β(2)

k ASk−3/2(x),

and

ASk+1/2(x) = (2 cosx− δ(1)
k )ASk−1/2(x)− γ(1)

k ACk−1/2(x) (6)

−γ(2)
k ACk−3/2(x)− δ(2)

k ASk−3/2(x),

where recurrence coefficients are given by α
(2)
1 = β

(2)
1 = γ

(2)
1 = δ

(2)
1 = 0, and

α
(1)
k =

ISk−1J
C
k−1 − Ik−1Jk−1

Dk−1

, α
(2)
k =

ICk−1I
S
k−2 − Ik−1Ik−2

Dk−2

, (7)

β
(1)
k =

ICk−1Jk−1 − Ik−1J
C
k−1

Dk−1

, β
(2)
k =

Ik−1I
C
k−2 − ICk−1Ik−2

Dk−2

,

γ
(1)
k =

ISk−1Jk−1 − Ik−1J
S
k−1

Dk−1

, γ
(2)
k =

Ik−1I
S
k−2 − ISk−1Ik−2

Dk−2

,

δ
(1)
k =

ICk−1J
S
k−1 − Ik−1Jk−1

Dk−1

, δ
(2)
k =

ISk−1I
C
k−2 − Ik−1Ik−2

Dk−2

,

where Dk−j = ICk−jI
S
k−j − I2

k−j, j = 1, 2, and

ICν = (ACν+1/2, A
C
ν+1/2), JCν = (2 cos xACν+1/2, A

C
ν+1/2), (8)

ISν = (ASν+1/2, A
S
ν+1/2), JSν = (2 cos xASν+1/2, A

S
ν+1/2),

Iν = (ACν+1/2, A
S
ν+1/2), Jν = (2 cos xACν+1/2, A

S
ν+1/2).

Knowing recurrence coefficients in five-term recurrence relations (5) and (6)
we can obtain coefficients of expanded forms (3) and (4) for ACn+1/2 and ASn+1/2.

Theorem 1 Coefficients c(k)ν , d(k)
ν , f (k)

ν , g(k)
ν , k ∈ N, ν = 0, 1, . . . , k − 1, of the

representations (3) and (4) can be computed by the following formulas:

c
(1)
0 = 1− α(1)

1 , d
(1)
0 = −β(1)

1 , f
(1)
0 = −γ(1)

1 , g
(1)
0 = −1− δ(1)

1 ;

c
(2)
0 = 1 + c

(1)
0 − α

(1)
2 c

(1)
0 − β

(1)
2 f

(1)
0 − α

(2)
2 ,

d
(2)
0 = −d(1)

0 − α
(1)
2 d

(1)
0 − β

(1)
2 g

(1)
0 − β

(2)
2 ,
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f
(2)
0 = f

(1)
0 − δ

(1)
2 f

(1)
0 − γ

(1)
2 c

(1)
0 − γ

(2)
2 ,

g
(2)
0 = 1− g(1)

0 − δ
(1)
2 g

(1)
0 − γ

(1)
2 d

(1)
0 − δ

(2)
2 ;

for k ≥ 2:

c
(k)
k−1 = c

(k−1)
k−2 − α

(1)
k , d

(k)
k−1 = d

(k−1)
k−2 − β

(1)
k ,

f
(k)
k−1 = f

(k−1)
k−2 − γ

(1)
k , g

(k)
k−1 = g

(k−1)
k−2 − δ

(1)
k ;

for k ≥ 3:

c
(k)
0 = c

(k−1)
0 + c

(k−1)
1 − α(1)

k c
(k−1)
0 − β(1)

k f
(k−1)
0 − α(2)

k c
(k−2)
0 − β(2)

k f
(k−2)
0 ,

c
(k)
k−2 = 1 + c

(k−1)
k−3 − α

(1)
k c

(k−1)
k−2 − β

(1)
k f

(k−1)
k−2 − α

(2)
k ,

d
(k)
0 = −d(k−1)

0 + d
(k−1)
1 − α(1)

k d
(k−1)
0 − β(1)

k g
(k−1)
0 − α(2)

k d
(k−2)
0 − β(2)

k g
(k−2)
0 ,

d
(k)
k−2 = d

(k−1)
k−3 − α

(1)
k d

(k−1)
k−2 − β

(1)
k g

(k−1)
k−2 − β

(2)
k ,

f
(k)
0 = f

(k−1)
0 + f

(k−1)
1 − γ(1)

k c
(k−1)
0 − δ(1)

k f
(k−1)
0 − γ(2)

k c
(k−2)
0 − δ(2)

k f
(k−2)
0 ,

f
(k)
k−2 = f

(k−1)
k−3 − γ

(1)
k c

(k−1)
k−2 − δ

(1)
k f

(k−1)
k−2 − γ

(2)
k ,

g
(k)
0 = −g(k−1)

0 + g
(k−1)
1 − γ(1)

k d
(k−1)
0 − δ(1)

k g
(k−1)
0 − γ(2)

k d
(k−2)
0 − δ(2)

k g
(k−2)
0 ,

g
(k)
k−2 = 1 + g

(k−1)
k−3 − γ

(1)
k d

(k−1)
k−2 − δ

(1)
k g

(k−1)
k−2 − δ

(2)
k ;

and for k ≥ 4, for ν = 1, . . . , k − 3:

c(k)ν = c
(k−1)
ν−1 + c

(k−1)
ν+1 − α

(1)
k c(k−1)

ν − β(1)
k f (k−1)

ν − α(2)
k c(k−2)

ν − β(2)
k f (k−2)

ν ,

d(k)
ν = d

(k−1)
ν−1 + d

(k−1)
ν+1 − α

(1)
k d(k−1)

ν − β(1)
k g(k−1)

ν − α(2)
k d(k−2)

ν − β(2)
k g(k−2)

ν ,

f (k)
ν = f

(k−1)
ν−1 + f

(k−1)
ν+1 − γ

(1)
k c(k−1)

ν − δ(1)
k f (k−1)

ν − γ(2)
k c(k−2)

ν − δ(2)
k f (k−2)

ν ,

g(k)
ν = g

(k−1)
ν−1 + g

(k−1)
ν+1 − γ

(1)
k d(k−1)

ν − δ(1)
k g(k−1)

ν − γ(2)
k d(k−2)

ν − δ(2)
k g(k−2)

ν .

Proof. Substituting ACν+1/2(x) and ASν+1/2(x), ν = k − 2, k − 1, k, given by
(3) and (4) in recurrence relations (5) and (6) and comparing coefficients
multiplying cos(ν + 1/2)x and sin(ν + 1/2)x, ν = 0, 1, . . . , k, on the left and
on the right hand sides of obtained equalities, we get what is stated. 2

Also, in [2], numerical method for construction of the corresponding quadra-
tures with maximal trigonometric degree of exactness was presented. This
method is based on the five-term recurrence relations for orthogonal trigono-
metric polynomials ACn+1/2 and ASn+1/2. In fact, the main problem in procedure
presented in [2] is calculation of five-term recurrence coefficients.
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In this paper, in Section 2, for some special weight functions explicit formulas
for five-term recurrence coefficients as well as explicit formulas for coefficients
of expanded forms (3) and (4) are presented.

In [2] is proved that the case of an symmetric weight function on (0, 2π), i.e.,
case when w(x) = w(2π − x), x ∈ (0, 2π), reduces to algebraic polynomials,
and five-term recurrence relations reduce to the three-term recurrence relations
(see [2, Section 3]). So, in this paper we will not consider such weights.

2 Explicit formulas

For some special weight functions w(x) we can find explicit formulas for re-

currence coefficients α
(j)
k , β

(j)
k , γ

(j)
k , δ

(j)
k , j = 1, 2, k ∈ N, as well as for inte-

grals ICk , ISk , Ik, J
C
k , JSk , Jk, k ∈ N0, and for coefficients c(k)ν , d(k)

ν , f (k)
ν , g(k)

ν ,

ν = 0, 1, . . . , k, k ∈ N (c
(k)
k = g

(k)
k = 1, d

(k)
k = f

(k)
k = 0).

First, we consider weight functions wm(x) = 1 + sinmx, m ∈ N. In the sequel
we need the following integrals (δν,µ is Kronecker delta function, k, ` ∈ N0):

∫ 2π

0
cos(k + 1/2)x cos(`+ 1/2)xwm(x) dx = πδk,`, (9)∫ 2π

0
sin(k + 1/2)x sin(`+ 1/2)xwm(x) dx = πδk,`,∫ 2π

0
cos(k + 1/2)x sin(`+ 1/2)xwm(x) dx

=
π

2
(δk,`−m + δk,m−`−1 − δk,`+m), k ≥ 1,∫ 2π

0
cos(x/2) sin(`+ 1/2)xwm(x) dx =

π

2
(δ1,m−` + δ0,`−m),∫ 2π

0
cosx cos(k + 1/2)x cos(`+ 1/2)xwm(x) dx =

π

2
δk,`±1, k ≥ 1,∫ 2π

0
cosx cos(x/2) cos(`+ 1/2)xwm(x) dx =

π

2
δ0,` +

π

2
δ1,`,∫ 2π

0
cosx sin(k + 1/2)x sin(`+ 1/2)xwm(x) dx =

π

2
δk,`±1, k ≥ 1,∫ 2π

0
cosx sin(x/2) sin(`+ 1/2)xwm(x) dx = −π

2
δ0,` +

π

2
δ1,`,∫ 2π

0
cosx cos(k + 1/2)x sin(`+ 1/2)xw1(x) dx =

π

4
(δk,1−` + δk,`−2 − δk,`+2),∫ 2π

0
cosx cos(k + 1/2)x sin(`+ 1/2)xwm(x) dx

=
π

4
(δk,m−` + δk,m−`−2 + δk,`−m±1 − δk,`+m±1), m > 1.

5



Knowing these integrals it is easy to see that cases m = 1, an odd m > 1, and
an even m must be separately considered.

Theorem 2 For the weight function w1(x) = 1 + sin x we have the following
explicit formulas for coefficients in recurrence relations (5) and (6) (k ∈ N):

α
(1)
k = −δ(1)

k = (−1)k+1 4k

(2k − 1)(2k + 1)
, α

(2)
k = δ

(2)
k = 1 (k > 1), (10)

β
(1)
k = −γ(1)

k =
−2

(2k − 1)(2k + 1)
, β

(2)
k = γ

(2)
k = (−1)k+1 2

2k − 1
(k > 1),

α
(2)
1 = β

(2)
1 = γ

(2)
1 = δ

(2)
1 = 0.

Proof. In order to prove this theorem, we will prove the following explicit
formulas for integrals (ν ∈ N0):

ICν = ISν =
(ν + 1)π

2ν + 1
, JCν = −JSν =

(−1)νπ

2ν + 1
, Iν =

(−1)νπ

2(2ν + 1)
, Jν = 0; (11)

and, also, explicit formulas for coefficients of representations (3) and (4):

for odd k

c
(k)
2i = −g(k)

2i = (−1)[k/2]+1+i k − 2i

2k + 1
, i = 0, 1, . . . , [k/2],

c
(k)
2i−1 = g

(k)
2i−1 = (−1)[k/2]+1+i k + 2i

2k + 1
, i = 1, . . . , [k/2],

d
(k)
2i = −f (k)

2i = (−1)[k/2]+ik + 1 + 2i

2k + 1
, i = 0, 1, . . . , [k/2],

d
(k)
2i−1 = f

(k)
2i−1 = (−1)[k/2]+1+ik + 1− 2i

2k + 1
, i = 1, . . . , [k/2],

and for even k

c
(k)
2i = g

(k)
2i = (−1)k/2+ik + 1 + 2i

2k + 1
, i = 0, 1, . . . , k/2,

c
(k)
2i−1 = −g(k)

2i−1 = (−1)k/2+ik + 1− 2i

2k + 1
, i = 1, . . . , k/2,

d
(k)
2i = f

(k)
2i = (−1)k/2+1+i k − 2i

2k + 1
, i = 0, 1, . . . , k/2,

d
(k)
2i−1 = −f (k)

2i−1 = (−1)k/2+i k + 2i

2k + 1
, i = 1, . . . , k/2.

By direct calculations, using (7), (8), and formulas in Theorem 1, we verify
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formulas (11) for ν = 0; formulas for recurrence coefficients α
(1)
1 , β

(1)
1 , γ

(1)
1 and

δ
(1)
1 ; formulas for coefficients c

(1)
0 , d

(1)
0 , f

(1)
0 and g

(1)
0 ; and (11) for ν = 1.

Suppose that given explicit formulas are exact for two successive nonnegative
integers k−2 and k−1. Starting with formulas (11) for ν = k−2, k−1, k ≥ 2
by direct calculation (using formulas (7)) we obtain recurrence coefficients
(10). We have

Dk−1 =

(
kπ

2k − 1

)2

− π2

4(2k − 1)2
=
π2(2k + 1)

4(2k − 1)
, Dk−2 =

π2(2k − 1)

4(2k − 3)
,

and

α
(1)
k =

ISk−1J
C
k−1 − Ik−1Jk−1

Dk−1

=
ISk−1J

C
k−1

Dk−1

=
kπ

2k − 1
· (−1)k−1π

2k − 1
· 4(2k − 1)

π2(2k + 1)
=

(−1)k−14k

(2k − 1)(2k + 1)
,

α
(2)
k =

ICk−1I
S
k−2 − Ik−1Ik−2

Dk−2

=

(
kπ

2k − 1
· (k − 1)π

2k − 3
− (−1)k−1π

2(2k − 1)
· (−1)k−2π

2(2k − 3)

)
4(2k − 3)

π2(2k − 1)
= 1,

β
(1)
k =

ICk−1Jk−1 − Ik−1J
C
k−1

Dk−1

= −
Ik−1J

C
k−1

Dk−1

=− (−1)k−1π

2(2k − 1)
· (−1)k−1π

2k − 1
· 4(2k − 1)

π2(2k + 1)
=

−2

(2k − 1)(2k + 1)
,

β
(2)
k =

Ik−1I
C
k−2 − ICk−1Ik−2

Dk−2

=

(
(−1)k−1π

2(2k − 1)
· (k − 1)π

2k − 3
− kπ

2k − 1
· (−1)k−2π

2(2k − 3)

)
· 4(2k − 3)

π2(2k − 1)

= (−1)k−1

(
k − 1

2k − 1
− −k

2k − 1

)
2

2k − 1
= (−1)k−1 2

2k − 1
,

γ
(1)
k =

ISk−1Jk−1 − Ik−1J
S
k−1

Dk−1

= −
Ik−1J

S
k−1

Dk−1

= −β(1)
k ,

δ
(1)
k =

ICk−1J
S
k−1 − Ik−1Jk−1

Dk−1

=
ICk−1J

S
k−1

Dk−1

= −α(1)
k ,

γ
(2)
k =

Ik−1I
S
k−2 − ISk−1Ik−2

Dk−2

= β
(2)
k , δ

(2)
k =

ISk−1I
C
k−2 − Ik−1Ik−2

Dk−2

= α
(2)
k .

Using (10), and formulas given in Theorem 1, we directly verify given formulas

for c
(k)
i , d

(k)
i , f

(k)
i , g

(k)
i , i = 0, 1, . . . , k, (c

(k)
k = g

(k)
k = 1 and d

(k)
k = f

(k)
k = 0). For
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example, if k is even, then [(k− 1)/2] = k/2− 1 and for i = 1, . . . , [(k− 3)/2]
we obtain

c
(k)
2i−1 = c

(k−1)
2i−2 + c

(k−1)
2i − α(1)

k c
(k−1)
2i−1 − β

(1)
k f

(k−1)
2i−1 − α

(2)
k c

(k−2)
2i−1 − β

(2)
k f

(k−2)
2i−1

= (−1)k/2+i−1k − 2i+ 1

2k − 1
+ (−1)k/2+ik − 1− 2i

2k − 1

+(−1)k/2+i 4k(k − 1 + 2i)

(2k − 1)2(2k + 1)
+ (−1)k/2+i 2(k − 2i)

(2k − 1)2(2k + 1)

−(−1)k/2−1+ik − 1− 2i

2k − 3
+ (−1)k/2+i 2(k − 2 + 2i)

(2k − 1)(2k − 3)

= (−1)k/2+ik + 1− 2i

2k + 1
,

c
(k)
2i = c

(k−1)
2i−1 + c

(k−1)
2i+1 − α

(1)
k c

(k−1)
2i − β(1)

k f
(k−1)
2i − α(2)

k c
(k−2)
2i − β(2)

k f
(k−2)
2i

= (−1)k/2+ik − 1 + 2i

2k − 1
+ (−1)k/2+i+1k + 1 + 2i

2k − 1

+(−1)k/2+i 4k(k − 1− 2i)

(2k − 1)2(2k + 1)
+ (−1)k/2+i 2(k + 2i)

(2k − 1)2(2k + 1)

−(−1)k/2−1+ik − 1 + 2i

2k − 3
+ (−1)k/2+i 2(k − 2− 2i)

(2k − 1)(2k − 3)

= (−1)k/2+ik + 1 + 2i

2k + 1
.

Also, we have

c
(k)
k−1 = c

(k−1)
k−2 − α

(1)
k

= (−1)k/2−1+1+k/2−1k − 1− 2(k/2− 1)

2(k − 1) + 1
− (−1)k+14k

(2k − 1)(2k + 1)
=

1

2k + 1
,

c
(k)
k−2 = 1 + c

(k−1)
k−3 − α

(1)
k c

(k−1)
k−2 − β

(1)
k f

(k−1)
k−2 − α

(2)
k

= 1− 2k − 3

2k − 1
− 4k

(2k − 1)2(2k + 1)
− 2(k + k − 2)

(2k − 1)2(2k + 1)
− 1 = −2k − 1

2k + 1
,

c
(k)
0 = c

(k−1)
0 + c

(k−1)
1 − α(1)

k c
(k−1)
0 − β(1)

k f
(k−1)
0 − α(2)

k c
(k−2)
0 − β(2)

k f
(k−2)
0

= (−1)k/2
k − 1

2k − 1
+ (−1)k/2+1 k + 1

2k − 1
+ (−1)k/2

4k(k − 1)

(2k − 1)2(2k + 1)

+(−1)k/2
2k

(2k − 1)2(2k + 1)
− (−1)k/2−1 k − 1

2k − 3

+(−1)k/2
2(k − 2)

(2k − 1)(2k − 3)
= (−1)k/2

k + 1

2k + 1
.

Analogously we can verify formulas for c
(k)
i , i = 0, 1, . . . , k − 1, in case when

k is odd, and also formulas for d
(k)
i , f

(k)
i , g

(k)
i , i = 0, 1, . . . , k − 1, k ∈ N.
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Now, only we need to do is to verify formulas (11) for ν = k, using given

explicit formulas for coefficients c
(k)
i , d

(k)
i , f

(k)
i , g

(k)
i , i = 0, 1, . . . , k. Using (9)

we have

ICk =π
(
1 + c

(k)
0 d

(k)
0

)
+ π

k−1∑
ν=0

(
c(k)ν

2
+ d(k)

ν

2)
+ π

k−1∑
ν=0

(
c(k)ν d

(k)
ν+1 − c

(k)
ν+1d

(k)
ν

)
,

ISk = π
(
1 + f

(k)
0 g

(k)
0

)
+ π

k−1∑
ν=0

(
f (k)
ν

2
+ g(k)

ν

2)
+ π

k−1∑
ν=0

(
f (k)
ν g

(k)
ν+1 − f

(k)
ν+1g

(k)
ν

)
,

Ik =
π

2

(
c
(k)
0 g

(k)
0 + f

(k)
0 d

(k)
0

)
+ π

k−1∑
ν=0

(
c(k)ν f (k)

ν + d(k)
ν g(k)

ν

)

+
π

2

k−1∑
ν=0

(
c(k)ν g

(k)
ν+1 + f (k)

ν d
(k)
ν+1

)
− π

2

k−1∑
ν=0

(
c
(k)
ν+1g

(k)
ν + f

(k)
ν+1d

(k)
ν

)
,

JCk =π
(
c
(k)
0

2
− d(k)

0

2
+ c

(k)
0 d

(k)
1 + d

(k)
0 c

(k)
1

)

+2π
k−1∑
ν=0

(
c(k)ν c

(k)
ν+1 + d(k)

ν d
(k)
ν+1

)
+ π

k−2∑
ν=0

(
c(k)ν d

(k)
ν+2 − c

(k)
ν+2d

(k)
ν

)
,

JSk =π
(
f

(k)
0

2
− g(k)

0

2
+ f

(k)
0 g

(k)
1 + g

(k)
0 f

(k)
1

)

+2π
k−1∑
ν=0

(
f (k)
ν f

(k)
ν+1 + g(k)

ν g
(k)
ν+1

)
+ π

k−2∑
ν=0

(
f (k)
ν g

(k)
ν+2 − f

(k)
ν+2g

(k)
ν

)
,

Jk = π
(
c
(k)
0 f

(k)
0 − d

(k)
0 g

(k)
0

)
+
π

2

(
c
(k)
0 g

(k)
1 + c

(k)
1 g

(k)
0 + f

(k)
0 d

(k)
1 + f

(k)
1 d

(k)
0

)
+π

k−1∑
ν=0

(
c(k)ν f

(k)
ν+1 + g(k)

ν d
(k)
ν+1 + g

(k)
ν+1d

(k)
ν + c

(k)
ν+1f

(k)
ν

)

+
π

2

k−2∑
ν=0

(
c(k)ν g

(k)
ν+2 − c

(k)
ν+2g

(k)
ν + f (k)

ν d
(k)
ν+2 − f

(k)
ν+2d

(k)
ν

)
;

Substituting here explicit formulas for coefficients c
(k)
i , d

(k)
i , f

(k)
i , g

(k)
i , i =

0, 1, . . . , k we obtain formulas (11):

Ik =
(−1)k+1π

(2k + 1)2
2
k−1∑
i=0

(k − i)(k + 1 + i) +
(−1)kπ

2(2k + 1)2

(
2
k−1∑
i=0

(k − i)(k + i)− k2

)

+
(−1)kπ

2(2k + 1)2

(
2
k−1∑
i=0

(k − i)(k + 2 + i) + (k + 1)2

)

=
(−1)k+1π

(2k + 1)2

2

3
k(k + 1)(2k + 1) +

(−1)kπ

2(2k + 1)2

(
2

6
k(k + 1)(4k − 1)− k2

)

+
(−1)kπ

2(2k + 1)2

(
2

6
k(k + 1)(4k + 5) + (k + 1)2

)
= (−1)k

π

2(2k + 1)
,

9



ICk = ISk =
π

(2k + 1)2

2k+1∑
i=0

i2 − π

(2k + 1)2

2k∑
i=0

i(i+ 1)

=
π

(2k + 1)2

1

6
(2k + 1)(2k + 2)(4k + 3)

− π

(2k + 1)2

1

3
2k(2k + 1)(2k + 2) =

π(k + 1)

2k + 1
.

On similar way we obtain formulas for integrals JCk , JSk and Jk. 2

Theorem 3 For the weight function wm(x) = 1 + sinmx, where m ≥ 3 is an
odd integer, we have the following explicit formulas for coefficients in five-term
recurrence relations (5) and (6) (` ∈ N0):

α
(1)
1 = −δ(1)

1 = 1, α
(2)
1 = δ

(2)
1 = 0,

for k = `m, ` ≥ 1: α
(2)
k = δ

(2)
k = 1, α

(1)
k = −δ(1)

k =
(−1)`+1

2`+ 1
,

for k = `m+ 1, ` ≥ 1:

α
(2)
k = δ

(2)
k =

(2`+ 1)2 − 1

(2`+ 1)2
, α

(1)
k = −δ(1)

k =
(−1)`

2`+ 1
,

for all other values of integers k > 1 hold α
(2)
k = δ

(2)
k = 1, α

(1)
k = δ

(1)
k = 0,

for k = [m/2] + `m+ 1: β
(2)
k = γ

(2)
k =

(−1)`

2(`+ 1)
,

for k = [m/2] + `m+ 2: β
(2)
k = γ

(2)
k =

(−1)`+1

2(`+ 1)
,

for all other values of positive integers k hold β
(2)
k = γ

(2)
k = 0, and for all

positive integers k hold β
(1)
k = γ

(1)
k = 0.

Proof. The steps in proof is the same as in proof of Theorem 2.

Simultaneously, with formulas for recurrence coefficients, we prove the follow-
ing formulas for integrals:

for ν = `m

ICν = ISν =
(`+ 1)π

2`+ 1
, Iν = Jν = 0, JCν = −JSν = (−1)`

(`+ 1)π

(2`+ 1)2
,

for ν = `m+ [m/2]

ICν = ISν =
(`+ 1)π

2`+ 1
, Iν = (−1)`

π

2(2`+ 1)
, Jν = JCν = JSν = 0,
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for ν = `m− 1, ` ≥ 1

ICν = ISν =
(2`+ 1)π

4`
, Iν = Jν = 0, JCν = −JSν = (−1)`+1 π

4`
,

in the case m > 3, for ν = `m+ 1, . . . , `m+ [m/2]− 1

ICν = ISν =
(`+ 1)π

2`+ 1
, Iν = Jν = JCν = JSν = 0,

and for ν = `m+ [m/2] + 1, . . . , (`+ 1)m− 2

ICν = ISν =
(2`+ 3)π

4(`+ 1)
, Iν = Jν = JCν = JSν = 0;

and for coefficients of representations (3) and (4):

for k = `m+ p, p = 0, 1, . . . , [m/2]

c
(k)
k−2jm = g

(k)
k−2jm = (−1)j

2`+ 1− 2j

2`+ 1
, j = 0, 1, . . . , [`/2],

c
(k)
k−2jm−(2p+1) = −g(k)

k−2jm−(2p+1) = (−1)`+j
2j + 1

2`+ 1
, j = 0, 1, . . . , [(`− 1)/2],

d
(k)
k−(2j+1)m = −f (k)

k−(2j+1)m = (−1)j
2`− 2j

2`+ 1
, j = 0, 1, . . . , [(`− 1)/2],

d
(k)
k−(2j+1)m−(2p+1) = f

(k)
k−(2j+1)m−(2p+1) = (−1)`+j

2(j + 1)

2`+ 1
, j = 0, 1, . . . , [`/2]−1;

for k = `m− p, ` ≥ 1, p = 1, . . . , [m/2]

c
(k)
k−2jm = g

(k)
k−2jm = (−1)j

`− j
`

, j = 0, 1, . . . , [(`− 1)/2],

c
(k)
k−2jm+(2p−1) = −g(k)

k−2jm+(2p−1) = (−1)`+j
j

`
, j = 1, . . . , [`/2],

d
(k)
k−(2j+1)m = −f (k)

k−(2j+1)m = (−1)j
2`− (2j + 1)

2`
, j = 0, 1, . . . , [`/2]− 1,

d
(k)
k−(2j+1)m+(2p−1) = f

(k)
k−(2j+1)m+(2p−1) = (−1)`+j

2j + 1

2`
, j = 0, 1, . . . , [(`−1)/2];

all other coefficients are equal to 0.

By using (9), (7), and Theorem 1, it is easy to see that for all nonnegative
integers k ≤ [m/2] − 1 given formulas are correct, i.e., we have IC0 = IS0 =

JC0 = −JS0 = π, I0 = J0 = 0, α
(1)
1 = −δ(1)

1 = 1, β
(1)
1 = γ

(1)
1 = 0; and

for 1 ≤ k ≤ [m/2] − 1, ICk = ISk = π, Ik = Jk = JCk = JSk = 0, c(k)ν =
d(k)
ν = f (k)

ν = g(k)
ν = 0, ν = 0, 1, . . . , k − 1 (cf. [1, §3, Example 4] 1 ), and

1 Notice that in [1] orthogonal trigonometric polynomials with leading coefficients
c
(n)
n = d

(n)
n = 1 were considered.
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α
(1)
k = δ

(1)
k = β

(j)
k = γ

(j)
k = 0, α

(2)
k = δ

(2)
k = 1 for 1 < k ≤ [m/2] − 1. For

k = [m/2] we have also α
(1)
k = δ

(1)
k = β

(j)
k = γ

(j)
k = 0, α

(2)
k = δ

(2)
k = 1,

c(k)ν = d(k)
ν = f (k)

ν = g(k)
ν = 0, ν = 0, 1, . . . , k − 1, and according to (9) we

obtain ICk = ISk = π, JCk = JSk = Jk = 0, but, now, Ik = π/2, and, because of

that, for k = [m/2] + 1 = m − [m/2], we have β
(2)
k = γ

(2)
k = 1/2, as well as

d
(k)
k−2 = f

(k)
k−2 = −1/2. We set apart these two values of k, in order to compare

this case with case of an even m (see Theorem 4).

Starting with given formulas for ν = k−2, k−1, k ≥ [m/2]+2, by direct calcu-

lation (using (7)) we verify formulas for recurrence coefficients α
(j)
k , β

(j)
k , γ

(j)
k , δ

(j)
k ,

j = 1, 2. Using these formulas and Theorem 1 we obtain formulas for coeffi-
cients c(k)ν , d(k)

ν , f (k)
ν , g(k)

ν , ν = 0, 1, . . . , k.

Finally, using given explicit formulas for coefficients c
(k)
i , d

(k)
i , f

(k)
i , g

(k)
i , i =

0, 1, . . . , k, according to (9), similar as in proof of Theorem 2, we verify given
explicit formulas for integrals ICk , ISk , Ik, J

C
k , JSk , Jk. 2

Theorem 4 For the weight function wm(x) = 1+sinmx, where m is an even
integer, coefficients of five-term recurrence relations (5) and (6) are given by
the following formulas (` ∈ N0):

α
(1)
1 = −δ(1)

1 = 1, α
(2)
1 = δ

(2)
1 = 0,

for m = 2: β
(1)
1 = γ

(1)
1 = 1/2,

for m = 2, k = 2`, ` ≥ 1

α
(1)
k = −δ(1)

k =
(−1)`+1

2`+ 1
, α

(2)
k = δ

(2)
k =

4`2 − 1

4`2
, β

(1)
k = γ

(1)
k =

(−1)`

2`
,

for m = 2, k = 2`+ 1, ` ≥ 1

α
(1)
k = −δ(1)

k =
(−1)`

2`+ 1
, α

(2)
k = δ

(2)
k =

(2`+ 1)2 − 1

(2`+ 1)2
, β

(1)
k = γ

(1)
k =

(−1)`

2(`+ 1)
,

for k = `m/2 + 1, m ≥ 4, where ` is an odd positive integer

α
(2)
k = δ

(2)
k =

(`+ 1)2 − 1

(`+ 1)2
, α

(1)
k = δ

(1)
k = 0,

for k = `m/2, m ≥ 4, where ` is an even positive integer

α
(2)
k = δ

(2)
k = 1, α

(1)
k = −δ(1)

k =
(−1)`/2+1

`+ 1
,

for k = `m/2 + 1, m ≥ 4, where ` is an even positive integer

α
(2)
k = δ

(2)
k =

(`+ 1)2 − 1

(`+ 1)2
, α

(1)
k = −δ(1)

k =
(−1)`/2

`+ 1
,
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for m ≥ 4, for all other values of integers k > 1 hold α
(2)
k = δ

(2)
k = 1 and

α
(1)
k = δ

(1)
k = 0,

for k = m/2 + `m, m ≥ 4: β
(1)
k = γ

(1)
k =

(−1)`

2(`+ 1)
,

for k = m/2 + `m+ 1, m ≥ 4: β
(1)
k = γ

(1)
k =

(−1)`+1

2(`+ 1)
,

for m ≥ 4, for all other values of positive integers k hold β
(1)
k = γ

(1)
k = 0,

and for all even m, for all positive integers k hold β
(2)
k = γ

(2)
k = 0.

Proof. As in previous theorems, we prove simultaneously the following for-
mulas:

for m = 2, ν = 2`

ICν = ISν =
(`+ 1)π

2`+ 1
, Iν = 0,

JCν = −JSν = (−1)`
(`+ 1)π

(2`+ 1)2
, Jν = (−1)`

π

2(2`+ 1)
,

for m = 2, ν = 2`+ 1

ICν = ISν =
(2`+ 3)π

4(`+ 1)
, Iν = 0,

JCν = −JSν = (−1)`
π

4(`+ 1)
, Jν = (−1)`+1 (2`+ 3)π

8(`+ 1)2
,

for ν = `m, m ≥ 4

ICν = ISν =
(`+ 1)π

2`+ 1
, Iν = Jν = 0, JCν = −JSν = (−1)`

(`+ 1)π

(2`+ 1)2
,

for ν = `m+m/2, m ≥ 4

ICν = ISν =
(2`+ 3)π

4(`+ 1)
, Iν = JCν = JSν = 0, Jν = (−1)`+1 (2`+ 3)π

8(`+ 1)2
,

for ν = `m+m/2− 1, m ≥ 4

ICν = ISν =
(`+ 1)π

2`+ 1
, Iν = JCν = JSν = 0, Jν = (−1)`

π

2(2`+ 1)
,

for ν = `m− 1, ` ≥ 1, m ≥ 4

ICν = ISν =
(2`+ 1)π

4`
, Iν = Jν = 0, JCν = −JSν = (−1)`+1 π

4`
,

13



in the case m > 4, for ν = `m+ 1, . . . , `m+m/2− 2

ICν = ISν =
(`+ 1)π

2`+ 1
, Iν = Jν = JCν = JSν = 0,

and for ν = `m+m/2 + 1, . . . , (`+ 1)m− 2

ICν = ISν =
(2`+ 3)π

4(`+ 1)
, Iν = Jν = JCν = JSν = 0;

for k = `m+ p, p = 0, 1, . . . ,m/2− 1

c
(k)
k−2jm = g

(k)
k−2jm = (−1)j

2`+ 1− 2j

2`+ 1
, j = 0, 1, . . . , [`/2],

c
(k)
k−2jm−(2p+1) = −g(k)

k−2jm−(2p+1) = (−1)`+j
2j + 1

2`+ 1
, j = 0, 1, . . . , [(`− 1)/2],

d
(k)
k−(2j+1)m = −f (k)

k−(2j+1)m = (−1)j
2`− 2j

2`+ 1
, j = 0, 1, . . . , [(`− 1)/2],

d
(k)
k−(2j+1)m−(2p+1) = f

(k)
k−(2j+1)m−(2p+1) = (−1)`+j

2(j + 1)

2`+ 1
, j = 0, 1, . . . , [`/2]−1;

for k = `m− p, ` ≥ 1, p = 1, . . . ,m/2

c
(k)
k−2jm = g

(k)
k−2jm = (−1)j

`− j
`

, j = 0, 1, . . . , [(`− 1)/2],

c
(k)
k−2jm+(2p−1) = −g(k)

k−2jm+(2p−1) = (−1)`+j
j

`
, j = 1, . . . , [`/2],

d
(k)
k−(2j+1)m = −f (k)

k−(2j+1)m = (−1)j
2`− (2j + 1)

2`
, j = 0, 1, . . . , [`/2]− 1,

d
(k)
k−(2j+1)m+(2p−1) = f

(k)
k−(2j+1)m+(2p−1) = (−1)`+j

2j + 1

2`
, j = 0, 1, . . . , [(`−1)/2];

all other coefficients are equal to 0.

By direct computation as in proof of Theorem 3 we see that for m ≥ 4 for
all k < m/2 − 1 given formulas are correct, i.e., IC0 = IS0 = JC0 = −JS0 = π,

I0 = J0 = 0, α
(1)
1 = −δ(1)

1 = 1, β
(1)
1 = γ

(1)
1 = 0; and for 1 ≤ k ≤ m/2 − 2,

ICk = ISk = π, Ik = Jk = JCk = JSk = 0, c(k)ν = d(k)
ν = f (k)

ν = g(k)
ν = 0,

ν = 0, 1, . . . , k − 1 and α
(1)
k = δ

(1)
k = β

(j)
k = γ

(j)
k = 0, α

(2)
k = δ

(2)
k = 1 for

1 < k ≤ m/2 − 2. Then for k = m/2 − 1 we get also α
(1)
k = δ

(1)
k = β

(j)
k =

γ
(j)
k = 0, α

(2)
k = δ

(2)
k = 1, c(k)ν = d(k)

ν = f (k)
ν = g(k)

ν = 0, ν = 0, 1, . . . , k − 1 and
ICk = ISk = π, Ik = JCk = JSk = 0, but, now, Jk = π/2, and, because of that,

for k = m/2, we have β
(1)
k = γ

(1)
k = 1/2, as well as d

(k)
k−1 = f

(k)
k−1 = −1/2. We

put forward these values of k to see the difference to case of an odd m.

The proof is similar as the proof of Theorems 2 and 3. 2
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Theorem 5 For the weight function w(x) =
√

2 + sinx + cosx five-term
recurrence coefficients are given by the following formulas:

α
(1)
1 =

1

3
(3 +

√
2), β

(1)
1 =

1

3
(−1−

√
2),

γ
(1)
1 =

1

3
(−1 +

√
2), δ

(1)
1 =

1

3
(−3 +

√
2),

and for any integer k ≥ 2

α
(1)
k =


1

(2k − 1)(2k + 1)

(
(−1)[(k−1)/2](2k − 1) +

√
2
)
, k − even,

1

(2k − 1)(2k + 1)

(
(−1)(k−1)/2(2k + 1) +

√
2
)
, k − odd,

α
(2)
k =


1

(2k − 1)2

(
(2k − 1)2 − 1 + (−1)k/2(2k − 1)

√
2
)
, k − even,

1

(2k − 1)2

(
(2k − 1)2 − 1 + (−1)(k+1)/2

√
2
)
, k − odd,

β
(1)
k =


1

(2k − 1)(2k + 1)

(
(−1)[(k−1)/2](2k + 1)−

√
2
)
, k − even,

1

(2k − 1)(2k + 1)

(
(−1)(k+1)/2(2k − 1)−

√
2
)
, k − odd,

β
(2)
k =


1

(2k − 1)2

(
1 + (−1)k/2

√
2
)
, k − even,

1

(2k − 1)2

(
1 + (−1)(k−1)/2(2k − 1)

√
2
)
, k − odd,

γ
(1)
k =


1

(2k − 1)(2k + 1)

(
(−1)[(k−1)/2](2k + 1) +

√
2
)
, k − even,

1

(2k − 1)(2k + 1)

(
(−1)(k+1)/2(2k − 1) +

√
2
)
, k − odd,

γ
(2)
k =


1

(2k − 1)2

(
−1 + (−1)k/2

√
2
)
, k − even,

1

(2k − 1)2

(
−1 + (−1)(k−1)/2(2k − 1)

√
2
)
, k − odd,

δ
(1)
k =


1

(2k − 1)(2k + 1)

(
(−1)[(k−1)/2]+1(2k − 1) +

√
2
)
, k − even,

1

(2k − 1)(2k + 1)

(
(−1)(k+1)/2(2k + 1) +

√
2
)
, k − odd,

δ
(2)
k =


1

(2k − 1)2

(
(2k − 1)2 − 1 + (−1)k/2+1(2k − 1)

√
2
)
, k − even,

1

(2k − 1)2

(
(2k − 1)2 − 1 + (−1)(k−1)/2

√
2
)
, k − odd.
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Proof. The steps in proof are the same as in proof of the Theorem 2. In this
case the following formulas hold (k, ` are nonnegative integers):

∫ 2π

0
cos(k + 1/2)x cos(`+ 1/2)xw(x) dx = π

√
2δk,` +

π

2
δk,`±1, k ≥ 1,∫ 2π

0
cos(x/2) cos(`+ 1/2)xw(x) dx = π(

√
2 + 1/2)δ0,` +

π

2
δ1,`,∫ 2π

0
sin(k + 1/2)x sin(`+ 1/2)xw(x) dx = π

√
2δk,` +

π

2
δk,`±1, k ≥ 1,∫ 2π

0
sin(x/2) sin(`+ 1/2)xw(x) dx = π(

√
2− 1/2)δ0,` +

π

2
δ1,`,∫ 2π

0
cos(k + 1/2)x sin(`+ 1/2)xw(x) dx =

π

2
(δk,`−1 − δk,`+1), k ≥ 1,∫ 2π

0
cos(x/2) sin(`+ 1/2)xw(x) dx =

π

2
(δ0,` + δ1,`),∫ 2π

0
cosx cos(k + 1/2)x cos(`+ 1/2)xw(x) dx

=
π

2
δk,` +

π
√

2

2
δk,`±1 +

π

4
δk,`±2, k > 1,∫ 2π

0
cosx cos(x/2) cos(`+ 1/2)xw(x) dx

=
(
√

2 + 1)π

2
δ0,` +

(2
√

2 + 1)π

4
δ1,` +

π

4
δ2,`,∫ 2π

0
cosx cos(3x/2) cos(`+ 1/2)xw(x) dx

=
(2
√

2 + 1)π

4
δ0,` +

π

2
δ1,` +

π
√

2

2
δ2,` +

π

4
δ3,`,∫ 2π

0
cosx sin(k + 1/2)x sin(`+ 1/2)xw(x) dx =

=
π

2
δk,` +

π
√

2

2
δk,`±1 +

π

4
δk,`±2, k > 1,∫ 2π

0
cosx sin(x/2) sin(`+ 1/2)xw(x) dx

=
(−
√

2 + 1)π

2
δ0,` +

(2
√

2− 1)π

4
δ1,` +

π

4
δ2,`,∫ 2π

0
cosx sin(3x/2) sin(`+ 1/2)xw(x) dx

=
(2
√

2− 1)π

4
δ0,` +

π

2
δ1,` +

π
√

2

2
δ2,` +

π

4
δ3,`,∫ 2π

0
cosx cos(k + 1/2)x sin(`+ 1/2)xw(x) dx =

π

4
(δk,1−` + δk,`−2 − δk,`+2).

Using these formulas, we obtain
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ICn =π(
√

2 + 1/2)c
(n)
0

2
+ π(
√

2− 1/2)d
(n)
0

2
+ πc

(n)
0 d

(n)
0

+π
√

2
n∑
ν=1

(
c(n)
ν

2
+ d(n)

ν

2)
+ π

n−1∑
ν=0

(
c(n)
ν c

(n)
ν+1 + d(n)

ν d
(n)
ν+1

)

+π
n−1∑
ν=0

(
c(n)
ν d

(n)
ν+1 − d(n)

ν c
(n)
ν+1

)
,

ISn =π(
√

2 + 1/2)f
(n)
0

2
+ π(
√

2− 1/2)g
(n)
0

2
+ πf

(n)
0 g

(n)
0

+π
√

2
n∑
ν=1

(
f (n)
ν

2
+ g(n)

ν

2)
+ π

n−1∑
ν=0

(
f (n)
ν f

(n)
ν+1 + g(n)

ν g
(n)
ν+1

)

+π
n−1∑
ν=0

(
f (n)
ν g

(n)
ν+1 − g(n)

ν f
(n)
ν+1

)
,

In =π(
√

2 + 1/2)c
(n)
0 f

(n)
0 + π(

√
2− 1/2)d

(n)
0 g

(n)
0 +

π

2

(
c
(n)
0 g

(n)
0 + d

(n)
0 f

(n)
0

)
+π
√

2
n−1∑
ν=1

(
c(n)
ν f (n)

ν + d(n)
ν g(n)

ν

)

+
π

2

n−1∑
ν=0

(
c(n)
ν f

(n)
ν+1 + f (n)

ν c
(n)
ν+1 + d(n)

ν g
(n)
ν+1 + g(n)

ν d
(n)
ν+1

)

+
π

2

n−1∑
ν=0

(
c(n)
ν g

(n)
ν+1 − g(n)

ν c
(n)
ν+1 + f (n)

ν d
(n)
ν+1 − d(n)

ν f
(n)
ν+1

)
,

JCn =π(1 +
√

2)c
(n)
0

2
+ π(1−

√
2)d

(n)
0

2
+ π

(
c
(n)
0 d

(n)
1 + c

(n)
1 d

(n)
0

)
+π(2

√
2 + 1)c

(n)
0 c

(n)
1 + π(2

√
2− 1)d

(n)
0 d

(n)
1 + π

n∑
ν=1

(
c(n)
ν

2
+ d(n)

ν

2)

+2π
√

2
n−1∑
ν=1

(
c(n)
ν c

(n)
ν+1 + d(n)

ν d
(n)
ν+1

)

+π
n−2∑
ν=0

(
c(n)
ν c

(n)
ν+2 + d(n)

ν d
(n)
ν+2 + c(n)

ν d
(n)
ν+2 − d(n)

ν c
(n)
ν+2

)
,

JSn =π(1 +
√

2)f
(n)
0

2
+ π(1−

√
2)g

(n)
0

2
+ π

(
f

(n)
0 g

(n)
1 + f

(n)
1 g

(n)
0

)
+π(2

√
2 + 1)f

(n)
0 f

(n)
1 + π(2

√
2− 1)g

(n)
0 g

(n)
1 + π

n∑
ν=1

(
f (n)
ν

2
+ g(n)

ν

2)

+2π
√

2
n−1∑
ν=1

(
f (n)
ν f

(n)
ν+1 + g(n)

ν g
(n)
ν+1

)

+π
n−2∑
ν=0

(
f (n)
ν f

(n)
ν+2 + g(n)

ν g
(n)
ν+2 + f (n)

ν g
(n)
ν+2 − g(n)

ν f
(n)
ν+2

)
,
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Jn =π(1 +
√

2)c
(n)
0 f

(n)
0 + π(1−

√
2)d

(n)
0 g

(n)
0 + π

n∑
ν=1

(
c(n)
ν f (n)

ν + d(n)
ν g(n)

ν

)
+
π

2

(
c
(n)
0 g

(n)
1 + c

(n)
1 g

(n)
0 + f

(n)
0 d

(n)
1 + f

(n)
1 d

(n)
0

)
+
π

2
(2
√

2 + 1)
(
c
(n)
0 f

(n)
1 + c

(n)
1 f

(n)
0

)
+
π

2
(2
√

2− 1)
(
d

(n)
0 g

(n)
1 + d

(n)
1 g

(n)
0

)
+π
√

2
n−1∑
ν=1

(
c(n)
ν f

(n)
ν+1 + f (n)

ν c
(n)
ν+1 + d(n)

ν g
(n)
ν+1 + g(n)

ν d
(n)
ν+1

)

+
π

2

n−2∑
ν=0

(
c(n)
ν f

(n)
ν+2 + f (n)

ν c
(n)
ν+2 + d(n)

ν g
(n)
ν+2 + g(n)

ν d
(n)
ν+2

+ c(n)
ν g

(n)
ν+2 + f (n)

ν d
(n)
ν+2 − g(n)

ν c
(n)
ν+2 − d(n)

ν f
(n)
ν+2

)
.

In order to prove this theorem we prove the following formulas for integrals
(ν ∈ N0):

ICν =


π

2(2ν + 1)

(
(−1)ν/2 + 2(ν + 1)

√
2
)
, ν − even,

π

2(2ν + 1)

(
(−1)[ν/2]+1 + 2(ν + 1)

√
2
)
, ν − odd,

ISν =


π

2(2ν + 1)

(
(−1)ν/2+1 + 2(ν + 1)

√
2
)
, ν − even,

π

2(2ν + 1)

(
(−1)[ν/2] + 2(ν + 1)

√
2
)
, ν − odd,

Iν = (−1)[ν/2] π

2(2ν + 1)
,

JCν =


π

(2ν + 1)2

(
1 + (−1)ν/2(ν + 1)

√
2
)
, ν − even,

π

(2ν + 1)2

(
1 + (−1)[ν/2]ν

√
2
)
, ν − odd,

JSν =


π

(2ν + 1)2

(
1 + (−1)ν/2+1(ν + 1)

√
2
)
, ν − even,

π

(2ν + 1)2

(
1 + (−1)[ν/2]+1ν

√
2
)
, ν − odd,

Jν =


(−1)ν/2+1 πν

√
2

(2ν + 1)2
, ν − even,

(−1)[ν/2]π(ν + 1)
√

2

(2ν + 1)2
, ν − odd.

Finally, coefficients of representations (3) and (4) are given as follows. For a
positive integer n, let denote k = [n/4] and m = n− 4[n/4]. Then for an even
n, for ` = 0, 1, . . . , k we have
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c
(n)
4` =

(−1)k+`

2n+ 1

(
(−1)(2−m)/2

(
2(k − `) +

m

2

)√
2 +

2−m
2

(4(k + `) + 1)
)
,

d
(n)
4` =

(−1)k+`+1

2n+ 1

(
m

2
(4(k + `) + 3) +

(
2(k − `) +

m

2

)√
2
)
,

for ` = 0, 1, . . . , k − (2−m)/2

c
(n)
4`+1 =

(−1)k+`+1

2n+ 1

(
m

2
(4(k − `) + 1) +

(
2(k + `) + 1 +

m

2

)√
2
)
,

c
(n)
4`+2 =

(−1)k+`

2n+ 1

((
2(k − `)− 1 +

m

2

)√
2 +

m

2
(4(k + `) + 5)

)
,

d
(n)
4`+1 =

(−1)k+`

2n+ 1

(
(−1)(2−m)/2

(
2(k + `) + 1 +

m

2

)√
2 +

2−m
2

(4(k − `)− 1)
)
,

d
(n)
4`+2 =

(−1)k+`

2n+ 1

(
2−m

2
(4(k + `) + 3) + (−1)(2−m)/2

(
2(k − `)− 1 +

m

2

)√
2
)
,

and, for ` = 0, 1, . . . , k − 1

c
(n)
4`+3 =

(−1)k+`+1

2n+ 1

(
2−m

2
(4(k − `)− 3) + (−1)(2−m)/2

(
2(k + `+ 1) +

m

2

)√
2
)
,

d
(n)
4`+3 = =

(−1)k+`+1

2n+ 1

((
2(k + `+ 1) +

m

2

)√
2 +

m

2
(4(k − `)− 1)

)
.

For an odd n, for ` = 0, 1, . . . , k we have

c
(n)
4` =

(−1)k+`+1

2n+ 1

(
m− 1

2
(4(k − `) + 3) + (−1)(m−1)/2

(
2(k + `) + 1 +

m− 1

2

)√
2
)
,

c
(n)
4`+1 =

(−1)k+`

2n+ 1

((
2(k − `) +

m− 1

2

)√
2 +

3−m
2

(4(k + `) + 3)
)
,

d
(n)
4` =

(−1)k+`

2n+ 1

((
2(k + `) + 1 +

m− 1

2

)√
2 +

3−m
2

(4(k − `) + 1)
)
,

d
(n)
4`+1 =

(−1)k+`+1

2n+ 1

(
m− 1

2
(4(k + `) + 5) + (−1)(m−1)/2

(
2(k − `) +

m− 1

2

)√
2
)
,

and, finally, for ` = 0, 1, . . . , k − (3−m)/2 we have
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c
(n)
4`+2 =

(−1)k+`+1

2n+ 1

(
3−m

2
(4(k − `)− 1) +

(
2(k + `+ 1) +

m− 1

2

)√
2
)
,

c
(n)
4`+3 =

(−1)k+`

2n+ 1

(
(−1)(m−1)/2

(
2(k − `)− 3−m

2

)√
2 +

m− 1

2
(4(k + `) + 7)

)
,

d
(n)
4`+2 =

(−1)k+`+1

2n+ 1

(
(−1)(m−1)/2

(
2(k + `+ 1) +

m− 1

2

)√
2 +

m− 1

2
(4(k − `) + 1)

)
,

d
(n)
4`+3 =

(−1)k+`

2n+ 1

(
3−m

2
(4(k + `) + 5) +

(
2(k − `)− 3−m

2

)√
2
)
.

Coefficients g(n)
ν can be obtained from expressions for c(n)

ν multiplying by −1
the first addend in the brackets on the right hand side, and coefficients f (n)

ν

can be obtained from expressions for d(n)
ν multiplying by −1 the first addend

in the brackets on the right hand side.

All explicit formulas can be obtained by direct calculation using the same
steps as in Theorem 2. 2

We use symbolic computations in Mathematica and software package Orthog-
onalPolynomials described in [3] in order to verify all given formulas.
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