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Abstract In this paper, we define the third order generalized difference operator ∆ 3
i ,

where

(∆ 3
i x)k =

3

∑
i=0

(−1)i

i+ 1

(

3

i

)

xk−i = xk −
3

2
xk−1 + xk−2 −

1

4
xk−3,

and show that it is a linear bounded operator on the Hahn sequence space h. Then

we study the spectrum and point spectrum of the operator ∆ 3
i on h. Furthermore,

we determine the point spectrum of the adjoint of this operator. This is achieved by

studying some properties of the roots of certain third order polynomials.
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1 Preliminaries, background and notation

We denote the space of all complex valued sequences by ω . Each vector subspace

of ω is called a sequence space. The spaces of all bounded, convergent and null se-

quences are denoted by ℓ∞, c and c0, respectively. Also φ is the space of all sequences

that terminate in zeros.

A sequence space X is called an FK–space if it is a complete linear metric space

with continuous coordinates pn : X →C with pn(x) = xn for all x = (xn)
∞
n=1 ∈ X and

every n ∈ N = {1,2, . . .}, where C denotes the complex field. An FK space X ⊃ φ
is said to have AK if X = limm→∞ x[m], where x[m] = ∑m

k=1 xke(k) (m ∈ N) denotes the

m–section of the sequence x = (xk)
∞
k=1 ∈ X and e(k) = (e

(k)
j )∞

j=1 for each k ∈ N is the

sequence with e
(k)
k = 1 and e

(k)
j = 0 for j 6= k. If φ is dense in X , then X is called an AD

space; thus AK implies AD. A normed FK space is called a BK space, that is, a BK

space is a Banach sequence space with continuous coordinates, [4, pp. 272–273]. The

interested reader is also referred to the text books [12,2,1,7]. The sequence spaces ℓ∞,

c and c0 are BK-spaces with the usual supremum norm defined by ‖x‖∞ = supk∈N |xk|.
By ℓ1, ℓp, cs, cs0, bs and bv, we denote the spaces of all absolutely convergent, p-

absolutely convergent; where 1 < p < ∞, convergent, convergent to zero, bounded

series, and bounded variation sequences, respectively. Moreover we denote bv0 as

the sequence space bv∩ c0.

The β –duals of a sequence space X is defined as

Xβ = {a = (ak)
∞
k=1 ∈ ω : ax = (akxk)

∞
k=1 ∈ cs for all x = (xk)

∞
k=1 ∈ X} .

Let X and Y be any two sequence spaces and A = (ank)
∞
n,k=1 be an infinite ma-

trix of complex numbers ank, where k,n ∈ N. Then, we say that A defines a matrix

transformation from X into Y denoted by writing A : X → Y , if for every sequence

x = (xk)
∞
k=1 ∈ X the sequence Ax = (Anx)∞

n=1, the so–called A–transform of x, is in Y ,

where

Anx =
∞

∑
k=1

ankxk (1.1)

provided the series on the right side of (1.1) converges for each n ∈N. For simplicity

in notation, in what follows, the summation without limits runs from 1 to ∞. By

(X : Y ), we denote the class of all matrices A such that A : X → Y . Thus, A ∈ (X : Y )
if and only if An = (ank)

∞
k=1 ∈ Xβ for all n ∈ N, and Ax ∈ Y for all x ∈ X .

The Hahn sequence space h was defined by Hahn [8] and studied by many math-

ematicians (see [15–17]). Kirišci [9–11] compiled all results on h in his papers. In

[9], he defined a new Hahn sequence space derived by the Cesàro mean. Moreover, in

[11], he defined the p–Hahn sequence space hp. Yeşilkayagil and Kirişci [20] stud-

ied the fine spectrum of forward difference operator ∆ on h. More recently, Das [5]

determined the fine spectrum of the lower triangular matrix B(r,s) on h.
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The Hahn sequence space h [8] is defined as

h =

{

x = (xk)
∞
k=1 ∈ ω :

∞

∑
k=1

k|∆xk|< ∞

}

∩ c0, (1.2)

where ∆ denotes the forward difference operator on ω , that is, ∆xk = xk − xk+1 (=
(xk)

∞
k=1 ∈ ω) for all k ∈N. Hahn proved that

hβ = σ∞ =

{

x = (xk)
∞
k=1 ∈ ω : sup

n

1

n

∣

∣

∣

∣

∣

n

∑
k=1

xk

∣

∣

∣

∣

∣

< ∞

}

.

Rao [15, Proposition 1] showed that h is a BK space with AK with respect to the

norm given by ‖x‖= ∑k k|∆xk| for all x ∈ h, and characterizeed the classes (h : Y ) for

Y ∈ {c0,c, ℓ∞, ℓ1,h} [15, Popositions 6–10], in particular, [15, Proposition 10]

Theorem 1 ([15, Proposition 10]) We have A ∈ (h : h) if and only if

lim
n→∞

ank = 0 for all k = 1,2, . . . , (1.3)

∞

∑
n=1

n|ank − an+1,k| converges for all k = 1,2, . . . , (1.4)

sup
k

1

k

∞

∑
n=1

n

∣

∣

∣

∣

∣

k

∑
v=1

(anv − an+1,v)

∣

∣

∣

∣

∣

< ∞. (1.5)

Remark 1 It was shown in [13, Remark 3.10] that the condition in (1.4) is redundant,

so A ∈ (h,h) is and only if the conditions in (1.3) and (1.5) are satisfied.

Let X be a Banach space. Then B(X) is the set of all bounded linear operators

on X into itself. Also X∗ denotes the continuous dual of X , that is, the space of all

continuous linear functionals on X .

The adjoint operator T ∗ : X∗ → X∗ of T ∈ B(X) is defined by

(T ∗y∗)(x) = y∗(T x) for all y∗ ∈ X∗ and x ∈ X , (1.6)

and T ∗ ∈ B(X∗).
If T ∈ B(X), then we write

σ(T ) = σ(T,X) = {λ ∈ C : T −λ I 6∈ B(X)−1}

for the spectrum of T , where I is the identity on X and B(X)−1 is the set of all

invertible operators in B(X), that is, the set of all T ∈ B(X) that are one to one and

onto.

The point or discrete spectrum of T ∈ B(X) is the set

σp(T ) = σp(T,X) = {λ ∈ C : T x = λ x for some x ∈ X \ {0}};

any λ ∈ σp(T ) is said to be an eigen value of T ([12,14,19]).
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2 The spectrum of the matrix operator ∆ 3
i on the Hahn sequence space h

The study of spectra of bounded linear operators is an important area of research

in operator theory, which generalizes the notion of eigenvalues. In particular, the

spectrum of difference operators has many applications in different scientific and

engineering problems concerning the eigenvalues. Our study is motivated by and

related to the results in [6,18] and the references therein.

In this section, we define the matrix operator ∆ 3
i and show ∆ 3

i ∈ B(h). Then we

study the the spectrum and point spectrum of the operator ∆ 3
i on h.

The operator ∆ 3
i is defined by

(

∆ 3
i x
)

k
=

3

∑
i=0

(−1)i

i+ 1

(

3

i

)

xk−i = xk −
3

2
xk−1 + xk−2 −

1

4
xk−3 for x = (xk)

∞
k=1 ∈ ω ;

we use the convention throughout that any term with an index ≤ 0 is equal to zero.

Thus the operator ∆ 3
i x is given by the infinite matrix A = (ank)

∞
n,k=1, where

ank =



































1 (k = n,n− 2)

−3

2
(k = n− 1)

−1

4
(k = n− 3)

0 (otherwise)

(n = 1,2, . . .).

First we show ∆ 3
i ∈ B(h) and compute the operator norm ‖∆ 3

i ‖.

Theorem 2 We have ∆ 3
i ∈ B(h) and ‖∆ 3

i ‖= 49/4.

Proof It is clear that ∆ 3
i is linear.

We have to show by Remark 1 that

lim
n→∞

ank = 0 for all k (2.1)

and

sup
m

cm < ∞, where cm =
1

m

∞

∑
n=1

n

∣

∣

∣

∣

∣

m

∑
k=1

(ank − an+1,k)

∣

∣

∣

∣

∣

for m = 1,2, . . . . (2.2)

The condition in (2.1) is clearly satisfied.

We are going to evaluate supm cm.

We put bn,m = ∑m
k=1(ank − an+1,k) for all n and m. If we omit the terms bn,m that

do not contain at least one nonzero term ank or an+1,k, then the indices of summation

n and k obviously satisfy

1 ≤ n ≤ m+ 3 and max{1,n− 3}≤ k ≤ min{n+ 1,m},

and

cm =
1

m

m+3

∑
n=1

n

∣

∣

∣

∣

∣

max{n+1,m}
∑

k=max{n−3,1}
(ank − an+1,k)

∣

∣

∣

∣

∣

. (2.3)
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We put for m = 1,2, . . .

S
(1)
m =

3

∑
n=1

∣

∣

∣

∣

∣

min{m,n+1}
∑
k=1

(ank − an+1,k)

∣

∣

∣

∣

∣

,

S
(2)
m =

m−1

∑
n=4

n

∣

∣

∣

∣

∣

n+1

∑
k=n−3

(ank − an+1,k)

∣

∣

∣

∣

∣

,

and

S
(3)
m =

m+3

∑
n=max{4,m}

n

∣

∣

∣

∣

∣

m

∑
k=n−3

(ank − an+1,k)

∣

∣

∣

∣

∣

.

(i) First we show

S
(2)
m = 0 for all m = 1,2, . . . . (2.4)

Obviously S
(2)
m = 0 for m = 1,2,3,4. Let m ≥ 5. Then, for 4 ≤ n ≤ m− 1,

∣

∣

∣

∣

∣

n+1

∑
k=n−3

(ank − an+1,k)

∣

∣

∣

∣

∣

= |an,n−3 − an+1,n−3+ an,n−2− an+1,n−2

+ an,n−1 − an+1,n−1+ an,n − an+1,n+ an,n+1− an+1,n+1|

=

∣

∣

∣

∣

−1

4
− 0+ 1+

1

4
− 3

2
− 1+ 1+

3

2
+ 0− 1

∣

∣

∣

∣

= 0,

that is, (2.4) holds.

(ii) Now we show

S
(1)
m =































45

4
(m = 1)

21

4
(m = 2)

29

4
(m ≥ 3).

(2.5)

We obtain

S
(1)
1 =

3

∑
n=1

n|an1 − an+1,1|= |a11 − a21|+ 2|a21− a22|+ 3|a31− a41|

=

∣

∣

∣

∣

1+
3

2

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

−3

2
− 1

∣

∣

∣

∣

+ 3

∣

∣

∣

∣

1+
1

4

∣

∣

∣

∣

=
45

4
,

S
(1)
2 =

3

∑
n=1

n

∣

∣

∣

∣

∣

2

∑
k=1

(ank − an+1,k

∣

∣

∣

∣

∣

= |a11 − a21 + a12 − a22|+ 2|a21− a31+ a22 − a32|+ |a31− a41 + a32 − a42|

=

∣

∣

∣

∣

1+
3

2
+ 0− 1

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

−3

2
− 1+ 1+

3

2

∣

∣

∣

∣

+ 3

∣

∣

∣

∣

1+
1

4
− 3

2
− 1

∣

∣

∣

∣
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=
3

2
+ 0+ 3

5

4
=

21

4
,

and for m ≥ 3

S
(1)
m =

2

∑
n=1

∣

∣

∣

∣

∣

2

∑
k=1

(ank − an+1,k

∣

∣

∣

∣

∣

+ 3

∣

∣

∣

∣

∣

3

∑
k=1

(a3k − a4k

∣

∣

∣

∣

∣

= |a11 − a21 + a12 − a22|+ 2|a21− a31+ a22 − a32 + a23− a33|

+ 3|a31− a41 + a32 − a42+ a33 − a43|

=

∣

∣

∣

∣

1+
3

2
+ 0− 1

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

−3

2
− 1+ 1+

3

2
+ 0− 1

∣

∣

∣

∣

+ 3

∣

∣

∣

∣

1+
1

4
− 3

2
− 1+ 1+

3

2

∣

∣

∣

∣

=
3

2
+ 2+

15

4
=

29

4
,

that is, (2.5) holds.

(iii) Now we show

S
(3)
m =











































1 (m = 1)

21

4
(m = 2)

25

2
(m = 3)

15m

4
+

17

4
(m ≥ 4).

(2.6)

We have

S
(3)
1 = 4|a41 − a51|= 4

∣

∣

∣

∣

−1

4
− 0

∣

∣

∣

∣

= 1,

S
(3)
2 =

5

∑
n=4

n

∣

∣

∣

∣

∣

2

∑
k=1

(ank − an+1,k)

∣

∣

∣

∣

∣

= 4|a41 − a51 + a42 − a52|+ 5|a51− a61 + a52 − a62|

= 4

∣

∣

∣

∣

−1

4
− 0+ 1+

1

4

∣

∣

∣

∣

+ 5

∣

∣

∣

∣

0− 1

4

∣

∣

∣

∣

= 4+
5

4
=

21

4
,

S
(3)
3 =

6

∑
n=4

n

∣

∣

∣

∣

∣

3

∑
k=n−3

(ank − an+1,k)

∣

∣

∣

∣

∣

= 4

∣

∣

∣

∣

∣

3

∑
k=1

(a4k + a5k)

∣

∣

∣

∣

∣

+ 5

∣

∣

∣

∣

∣

3

∑
k=2

(a5k − a6k)

∣

∣

∣

∣

∣

+ 6 |a63 − a73|

= 4|a41 − a51 + a42 − a52+ a43 − a53|+ 5|a52− a62+ a53 − a63|
+ 6|a63− a73|
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= 4

∣

∣

∣

∣

−1

4
− 0+ 1+

1

4
− 3

2
− 1

∣

∣

∣

∣

+ 5

∣

∣

∣

∣

−1

4
− 0+ 1+

1

4

∣

∣

∣

∣

+ 6

∣

∣

∣

∣

−1

4

∣

∣

∣

∣

= 6+ 5+
3

2
=

25

2

and for m ≥ 4

S
(3)
m =

m+3

∑
n=m

n

∣

∣

∣

∣

∣

m

∑
n−3

(ank − an+1,k

∣

∣

∣

∣

∣

= m|am,m−3 − am+1,m−3 + am,m−2 − am+1,m−2 + am,m−1 − am+1,m−1

+ am.m − am+1,m|
+(m+ 1)|am+1,m−2− am+2,m−2+ am+1,m−1 − am+2,m−1 + am+1,m − am+2,m

+(m+ 2)|am+2,m−1− am+3,m−1+ am+2,m − am+3,m|
+(m+ 3)|am+3,m− am+4,m|

= m

∣

∣

∣

∣

−1

4
− 0+ 1+

1

4
− 3

2
− 1+ 1+

3

2

∣

∣

∣

∣

+(m+ 1)

∣

∣

∣

∣

−1

4
− 0+ 1+

1

4
− 3

2
− 1

∣

∣

∣

∣

+(m+ 2)

∣

∣

∣

∣

−1

4
− 0+ 1− 1

4

∣

∣

∣

∣

+(m+ 3)

∣

∣

∣

∣

−1

4
− 0

∣

∣

∣

∣

= m+(m+ 1)
3

2
+(m+ 2)+

m+ 3

4
=

15m

4
+

17

4
.

Finally, it follows from (2.4), (2.5) and (2.6)

cm =
1

m
(S

(1)
m + S

(3)
m =



















































45

4
+ 1 =

49

4
(m = 1)

1

2

(

21

4
+

21

4

)

=
21

4
(m = 2)

1

3

(

29

4
+

25

2

)

=
79

12
(m = 3)

1

m

(

29

4
+

17

4
+

15m

4

)

=
15

4
+

23

2m
(m ≥ 4).

Obviously

c1 ≥ cm for all m ≥ 2, so that sup
m

cm = c1 =
49

4
.

Thus the condition in (2.2) is satisfied, so ∆ 3
i ∈ B(h), and it follws from [13, Corol-

lary 3.15 (a)] that

‖∆ 3
k ‖= sup

m
cm =

49

4
. (2.7)

Now we determine the spectrum of ∆ 3
i ∈ B(h).

Theorem 3 We have

σ(∆ 3
i ,h)⊂

{

λ ∈ C : |1−λ | ≤ 11

4

}

. (2.8)
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Proof We assume |1−λ |> 11/4.

First, we observe that since ∆ 3
i − λ I is a triangle, its inverse B = (bnk)

∞
n,k=1 =

(∆ 3
i −λ I)−1 exists. An application of [3, Theorem 2] yields

B =





































1
1−λ 0 0 0 0 0 · · ·

3
2(1−λ )2

1
1−λ 0 0 0 0 · · ·

5+4λ
4(1−λ )3

3
2(1−λ )2

1
1−λ 0 0 0 · · ·

2λ 2+20λ+5
8(1−λ )4

5+4λ
4(1−λ )3

3
2(1−λ )2

1
1−λ 0 0 · · ·

28λ 2+52λ+1
16(1−λ )5

2λ 2+20λ+5
8(1−λ )4

5+4λ
4(1−λ )3

3
2(1−λ )2

1
1−λ 0 · · ·

16λ 3+150λ 2+84λ−7
32(1−λ )6

28λ 2+52λ+1
16(1−λ )5

2λ 2+20λ+5
8(1−λ )4

5+4λ
4(1−λ )3

3
2(1−λ )2

1
1−λ · · ·

...
...

...
...

...
...

. . .





































.

We obtain the general expression of elements bnk, in terms of ξ = 1/(1−λ ), for all

k ≤ n by the following calculation as

bn,n =
1

1−λ
= ξ ,

bn,n−1 =
3

2(1−λ )2
=

3

2
ξ 2,

bn,n−2 =
5+ 4λ

4(1−λ )3
=

1

4
ξ 2(9ξ − 4),

bn,n−3 =
2λ 2 + 20λ + 5

8(1−λ )4
=

1

8
ξ 2
(

27ξ 2 − 24ξ + 2
)

,

bn,n−4 =
28λ 2 + 52λ + 1

16(1−λ )5
=

1

16
ξ 3
(

81ξ 2 − 108ξ + 28
)

,

bn,n−5 =
16λ 3 + 150λ 2+ 84λ − 7

32(1−λ )6
=

1

32
ξ 3
(

243ξ 3− 432ξ 2+ 198ξ − 16
)

,

bn,n−6 =
4λ 4 + 192λ 3+ 480λ 2+ 68λ − 15

64(1−λ )7

=
1

64
ξ 3
(

729ξ 4− 1620ξ 3+ 1080ξ 2− 208ξ + 4
)

,

bn,n−7 =
3(44λ 4 + 368λ 3+ 342λ 2− 20λ − 5)

128(1−λ )8

=
3

128
ξ 4
(

729ξ 4 − 1944ξ 3+ 1710ξ 2− 544ξ + 44
)

,

...
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bn,k =
1

1−λ

(

3

2
bn−1,k − bn−2,k +

1

4
bn−3,k

)

for all k ≤ n− 1, etc.

We obtain by the computation above

bnk =



























1

1−λ
(k = n),

1

1−λ

(

3

2
bn−1,k − bn−2,k +

1

4
bn−3,k

)

(0 ≤ k ≤ n− 1),

0 (k > n).

(2.9)

Now we prove B ∈ B(h). We have to show by Remark 1 that

lim
n→∞

bnk = 0 for all k (2.10)

and

sup
m

cm < ∞, where cm =
1

m

∞

∑
n=1

n

∣

∣

∣

∣

∣

m

∑
k=1

(bnk − bn+1,k)

∣

∣

∣

∣

∣

for m = 1,2, . . . . (2.11)

First, we observe that the recursion formula (2.9) yields

bn+1,k+1 = bnk for 1 ≤ k ≤ n and n = 1,2, . . . . (2.12)

So in order to show (2.10), it suffices to show

lim
n→∞

αn = 0, where αn = bn1 for all n.

We apply the recursion formula

|αn| ≤
1

|1−λ |

(

3

2
+ 1+

1

4

)

·max{|αn−1|, |αn−2|, |αn−3|}

=
11

4
· 1

|1−λ | · |αn1
|, where |αn1

|= max{|αn−1|, |αn−2|, |αn−3|}

Writing

|αnl+1
|= max{|αnl−1|, |αnl−2|, |αnl−3|} for l ≥ 1,

and |α| = max{|α3|, |α2|, |α1|}, we obtain by repeated application of the recursion

formula

|αn| ≤
(

11

4
· 1

|1−λ |

)n/3

· |α|.

Finally, we put

ρ = 3

√

11

4
· 1

|1−λ | < 1,

and obtain

|αn| ≤ ρn|α| for n ≥ 1,
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hence

0 ≤ lim
n→∞

|αn| ≤ |α| lim
n→∞

ρn = 0.

Thus we have shown (2.10).

Now we show (2.11).

We put

S
(1)
m =

m−1

∑
n=1

n

∣

∣

∣

∣

∣

n+1

∑
k=1

(bnk − bn+1,k)

∣

∣

∣

∣

∣

and S
(2)
m =

∞

∑
n=m

n

∣

∣

∣

∣

∣

m

∑
k=1

(bnk − bn+1,k)

∣

∣

∣

∣

∣

.

We obtain for m = 1, S
(1)
1 = 0 and by Part (2.10)

S
(2)
1 =

∞

∑
n=1

n|bn1 − bn+1,1| ≤ |α|
(

∞

∑
n=1

nρn +
∞

∑
n=1

nρn+1

)

= |α|(1+ρ)S,

where

S =
∞

∑
n=1

nρn < ∞.

Furthermore, if m ≥ 2, we obtain by (2.12), and since bn,n+1 = 0,

S
(1)
m =

m−1

∑
n=1

n

∣

∣

∣

∣

∣

n+1

∑
k=1

(bnk − bn+1,k)

∣

∣

∣

∣

∣

=
m−1

∑
n=1

n |bn1 − bn+1,1+ bn2 − bn+1,2+ · · ·+ bn,n − bn+1,n+ bn,n+1− bn+1,n+1|

=
m−1

∑
n=1

n|bn+1,1|< |α|
m−1

∑
n=1

nρn+1

and

S
(2)
m =

∞

∑
n=m

n

∣

∣

∣

∣

∣

m

∑
k=1

(bnk − bn+1,k)

∣

∣

∣

∣

∣

=
∞

∑
n=m

n|bn+1,1 − bn,m|< |α|
∞

∑
n=m

nρn+1 +
∞

∑
n=m

n|bn−m+1,1|

< |α|
(

∞

∑
n=m

nρn+1+
∞

∑
n=1

(n+m)ρn

)

,

and so

S
(1)
m + S

(2)
m = |α|

(

(ρ + 1)S+m
∞

∑
n=1

ρn

)

.

Consequently, we have

sup
m

cm = sup
m

1

m

(

S
(1)
m + S

(2)
m

)

< ∞.

Thus we have also shown (2.11).
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Now we show that the point spectrum of the operator ∆ 3
i on the Hahn space is

equal to the empty set.

Theorem 4 We have

σp(∆
3
i ,h) = /0. (2.13)

Proof We assume that λ is an eigenvalue of the operator ∆ 3
i . Then there exist non–

zero eigenvectors x ∈ h such that ∆ 3
i x = λ x, that is,























1 0 0 0 0 0 · · ·
− 3

2
1 0 0 0 0 · · ·

1 − 3
2

1 0 0 0 · · ·
− 1

4
1 − 3

2
1 0 0 · · ·

0 − 1
4

1 − 3
2

1 0 · · ·
0 0 − 1

4
1 − 3

2
1 · · ·

...
...

...
. . .

. . .
. . .

. . .















































x1

x2

x3

...

xn

...

























= λ

























x1

x2

x3

...

xn

...

























.

This yields

x1 = λ x1,

−3

2
x1 + x2 = λ x2,

x1 −
3

2
x2 + x3 = λ x3,

−1

4
x1 + x2 −

3

2
x3 + x4 = λ x4,

...

−1

4
xn−3 + xn−2−

3

2
xn−1 + xn = λ xn,

...

Let k ∈ N is the smallest index for which xk 6= 0. Then xk = λ xk implies λ = 1

and then xk+1 = (−3/2)xk + xk+1, that is, xk = 0, a contradiction.

If T ∈ B(h) given by a matrix A, that is, if T (x) = Ax for all x ∈ h, then it is known

[19, IV. 8, Problem 7, p. 233] that the adjoint operator T ∗ : h∗ → h∗ is defined by the

transpose At of the matrix A.We note that the continuous dual h∗ of h is isometrically

isomorphic to ([13, Propostion 2.3]) σ∞.

3 Roots of polynomials

We want to estimate the point spectrum of T ∗. To be able to achieve this we need to

study the roots of the polynomial

P(z) = z3 − 4z2 + 6z+ 4(−1+λ )= 0. (3.1)



12 Eberhard Malkowsky et al.

We put λ = 1+ reiθ
(

r = |λ − 1| ≥ 0, θ ∈ [0,2π)
)

. The roots of any polynomial are

continuous functions of its coefficients; in our case they are a continuous function of

the constant term a0 = 4reiθ and in this problem we are only interested in the roots

zk of the polynomial

P(z) = z3 − 4z2 + 6z+ 4reiθ . (3.2)

If r = 0, then z1 = 0 and the other two roots are then the complex numbers 2± i
√

2.

If θ = 0 or θ = π , that is, a0 =±4r real, then z1 will be always real,

z1 = z1(a0) =
4

3
+

3

√

3
√

3

√

27a2
0 + 176a0+ 288− 27a0− 88

3
3
√

2

− 2
3
√

2

3
3

√

3
√

3

√

27a2
0 + 176a0+ 288− 27a0− 88

,

and the other two roots are conjugate complex with absolute value greater than 1. For

such a value z1, which is a decreasing function with respect to a0, we have z1(−3)= 1

and z1(11) = −1 (of course, z1(0) = 0), that is, |z1| ≤ 1 if −3 ≤ a0 ≤ 11 (for θ = 0

we must have r ≤ 11/4, and for θ = π , r ≤ 3/4).

For complex a0 = 4reiθ , the behaviour of the absolute value of the root z1 is

shown in the picture for 0 ≤ θ < 2π , and for some characteristic values of r (=
1/4,1/2,3/4), as well as for r > 3/4, where we see that root is out of the unit circle

(Figure 1).

π

2
π

3 π

2
2 π

θ

0.2

0.4

0.6

0.8

1.0

1.2

z1 rⅇⅈ θ

� = ����

� = ���
� = ����

� = ���

Fig. 1 Behaviour of the absolute value of the root z1

Hence, if we search the ball in the λ -plane with center in 1 and where one root of

the polynomial has absolute value less then 1, then it is a ball |λ −1| ≤ 3/4 (only for

the value λ = 1− 3/4= 1/4 of the root z1 = z1(4× 3/4eiπ) = z1(−3) = 1).

But, the domain of the values of λ for which the root z1 has absolute value < 1 is

the interior of the curve coloured in red in Figure 2 (left). For any complex number

λ on the boundary, the absolute values of roots are equal to 1. The red circle line
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corresponds to the equality |z1(−4(1−λ ))|= 1. The green circle in the same figure

was earlier identified with its center in (1,0): |λ − 1| ≤ 3/4. The largest circle line

with |z1|< 1 is the blue circle line |λ −2| ≤ 7/4 in the same figure. There are two real

points on the circle line where |z1| = 1 with λ = 1/4 and λ = 15/4 corresponding

to the free terms a0 = −3 and a0 = 11, that is, when (r,θ ) = (3/4,π) and (r,θ ) =
(11/4,0), respectively.

� � � �

-�

-�

�

�

-� -� � � � �

-�

-�

-�

�

�

�

Fig. 2 λ–plane

We know from Theorem 3 that the inclusion in (2.8) holds, that is,

σ(∆ 3
i ,h)⊂

{

λ ∈ C : |1−λ | ≤ 11

4

}

.

Hence, we consider the interior of the blue circle and the exterior of the red curve

which is similar to a cardioide in Figure 2 (right). Let us denote this region by D and

let λ = x+ iy. By the symmetry of our problem it is enough to consider, for instance,

only the upper part, where Im(λ ) = y > 0, which we denote by D+.

On the real line, one root is real

z1(x) =
1

3

(

4+
3
√

2
3

√

3
√

3
√

27x2 − 10x+ 1− 27x+ 5

− 22/3

3
√

3
√

3
√

27x2 − 10x+ 1− 27x+ 5

)

,

and the other two roots are conjugate complex with equal absolute values. The graphs

x 7→ z1(x) (red) and x 7→ |z2(x)| = |z̄2(x)| (green) are given in Figure 3. We see that

for x ∈ [1/4,15/4], we have |z1(x)| ≤ 1.The abolute value of the other two conjugate

complex roots is greater than 1. What is the intersection of the red and green lines,
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that is, the solution of the equation z1(x) = |z2(x)|? We obtain by direct computation

x = 5/32. Then

z1(5/32) =
3

2
, z2,3(5/32) =

5± i
√

11

4
,

with absolute value 3/2.

Clearly, if x < 5/32, then the zero z1(x) is greater than the absolute value of

the other two roots. For x = 5/32, all three roots have the same absolute value. The

problem is in the interval x ∈ (5/32,1/4], where two of the conjuate complex roots

have the same absolute value which is strictly greater than z1(x).

-� -� � � � �

-�

�

�

�

Fig. 3 Graphs of x 7→ z1(x) (red) and x 7→ |z2(x)|= |z̄2(x)| (green)

We have to complete our study with the case of y > 0, that is, when λ ∈ D+. In

this case, all three zeros are complex and the absolute value of one of them is always

greater than that of the others. For fixed x ∈ (−7/4,15/4), we can see the behaviour

of the absolute values of the roots (in three different colours) in the interval

y ∈
(

0,
1

4

√

−16x2 + 32x+ 105
)

.

The graphs of the absolute values of the roots for different y for some typical values

of x are represented in the next figures. Perhaps this could be proved in a simpler way

without those graphs? Of course, in research, we can only make a conclusion that

follows from numerical calculations, which is legitimate!

��� ��� ��� ���

���

���

���

���

���

���

���

��� ��� ��� ��� ���

���

���

���

���

���

���

���

Fig. 4 Graphs for x =−1 (left) and x =−0.5 (right)
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��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

Fig. 5 Graphs for x =−0.25 (left) and x =−0.1 (right)

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

Fig. 6 Graphs for x =−0.01 (left) and x = 0 (right)

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

Fig. 7 Graphs for x = 0.125 (left) and x = 0.25 (right)

4 Some more results concerning the spectra

Let G denote the set bounded by the red curve in Figure 2 including the boundary.

Theorem 5 The point spectrum of the (∆ 3
i )

∗ operator on h∗ is

G = σp((∆
3
i )

∗,h∗). (4.1)

Proof We assume that λ is an eigenvalue of the operator (∆ 3
i )

∗, then there exist

a non–zero eigenvector x ∈ σ∞ such that (∆ 3
i )

∗x = (∆ 3
i )

T x = λ x, where (∆ 3
i )

∗ is
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��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

Fig. 8 Graphs for x = 5/32 (left) and x = 13/64 (right). We remark that here the “blue root” greater than

the “green one” for small values of y, and this happens in a “hole” for x ∈ (5/32,1/4] (see the earlier

situation on the real line)

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

Fig. 9 Graphs for x = 0.5 (left) and x = 1 (right)

��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

��� ��� ��� ���

���

���

���

���

���

���

���

Fig. 10 Graphs for x = 2 (left) and x = 3 (right)

represented by the matrix























1 − 3
2

1 − 1
4

0 0 · · ·
0 1 − 3

2
1 − 1

4
0 · · ·

0 0 1 − 3
2

1 − 1
4
· · ·

0 0 0 1 − 3
2

1 · · ·
0 0 0 0 1 − 3

2
· · ·

0 0 0 0 0 1 · · ·
...

...
...

. . .
. . .

. . .
. . .















































x1

x2

x3

...

xn

...

























= λ

























x1

x2

x3

...

xn

...

























. (4.2)
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Then we have the following system of equations

x1 −
3

2
x2 + x3 −

1

4
x4 = λ x1,

x2 −
3

2
x3 + x4 −

1

4
x5 = λ x2,

x3 −
3

2
x4 + x5 −

1

4
x6 = λ x3,

...

xn −
3

2
xn+1 + xn+2−

1

4
xn+3 = λ xn,

...

We have to solve the following difference equation

xn+3 − 4xn+2+ 6xn+1− 4(1−λ )xn, n ≥ 1. (4.3)

For this we consider the roots of the polynomial in (3.2).

If λ ∈ G, then we obtain from Section 3 that the polynomial in (3.2) has a root z1

with |z1| ≤ 1. Now we put xn = zn
1 for each n. Then xn satisfies the recursion formula

(4.3) and it follows that

1

n

∣

∣

∣

∣

∣

n

∑
k=1

xk

∣

∣

∣

∣

∣

≤ 1,

that is, x = (xn) ∈ σ∞. This shows

G ⊂ σp((∆
3
i )

∗,h∗). (4.4)

To show the ocnverse inclusion of (4.4), we assume λ 6∈ G. The the absolute values

of the roots z1, z2 and z3 of our polynomial (3.2) are greater than 1. The general form

of xn in the recursion formula (4.3) is given by

xn = c1zn
1 + c2zn

2 + c3zn
3,

where c1, c2 and c3 are complex constants. We write zk = ρ exp(iΘk) for k = 1,2,3
and obtain

n

∑
k=1

xk =
3

∑
j=1

c j

n

∑
k=1

zk
j =

3

∑
j=1

c j

z j(1− zn
j)

1− z j

.

Now we write ξ = max{|z1|, |z2|, |z3|}. We note

lim
n→∞

ξ n

n
= ∞,

thus

sup
n

∣

∣

∣

∣

∣

1

n

n

∑
k=1

xk

∣

∣

∣

∣

∣

= sup
n

ξ n

n

∣

∣

∣

∣

∣

n

∑
k=1

xk

ξ n

∣

∣

∣

∣

∣

= sup
n

ξ n

n

∣

∣

∣

∣

∣

1

ξ n

3

∑
j=1

c j

z j(1− zn
j)

1− z j

∣

∣

∣

∣

∣

= ∞.

Consequently we have x 6∈ σ∞.
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We know from Theorems 3 and 5 that

G ⊂ σ(∆ 3
i ,h)⊂

{

λ ∈ C : |1−λ | ≤ 11

4

}

.

Now we establish the converse inclusion and obtain altogether the following result.

Theorem 6 We have

G = σ(∆ 3
i ,h). (4.5)

Proof We assume λ 6∈ G. Then we have the recursion formula

bnk =
1

1−λ

(

1

3
bn−1,k − bn−2,k+

1

4
bn−3,k

)

for k ≤ n− 1. (4.6)

To solve this, we set αn = bn,1 and consider its characteristic equation

µ3 =
1

1−λ

(

3

2
µ2 − µ +

1

4

)

. (4.7)

If all the roots µ1,µ2,µ3 are distinct, then the solution of the homogeneous linear

difference equation (4.7) is

αn =C1µn
1 +C2µn

2 +C3µn
3 . (4.8)

If µ1 = µ2 6= µ2, then we obtain

αn =C1µn
1 +C2nµn

1 +C3µn
3 , (4.9)

and trivially, if µ1 = µ2 = µ3, then

αn =C1µn
1 +C2nµn

1 +C3n2µn
1 . (4.10)

We note that µi is a root of (4.7) if and only if µi = 1/zi for sme root zi of (3.1). Since

λ 6∈ G, it follows that |µi|= 1/|zi|< 1.

Now it is obvious that B ∈ (h,h) in any of the cases (4.8), (4.9) and (4.10), and so

λ 6∈ σ(∆ 3
i ).
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sequence spaces. Monatsh. Math., 192:185–224, 2020.

19. A. E. Taylor and D. C. Lay. Introduction to Functional Analysis. Robert E. Krieger Publishing

Company, reprint edition edition, 1986.
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