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Abstract

Our aim in this paper is to obtain an expansion for the error in the
Gauss-Turán quadrature formula for approximating

∫ 1
−1 w(t)f(t) dt in

the case when the function f is analytic in some region of the complex
plane containing the interval [−1, 1] in its interior, and the remainder
term is presented in the form of a contour integral over the confocal
ellipses. In the case w(t) = 1/

√
1 − t2 we used such expansion to

obtain very exact estimations of the error. Some numerical results
and illustrations are included.

1 Introduction

Suppose a weight function w is positive and continuous in the open interval
(−1, 1) and is integrable over (−1, 1). Our object is to obtain an expansion
for the error

Rn,s(f) = I(f) − Qn,s(f) (1.1)
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in the Gauss-Turán quadrature formula with multiple nodes

Qn,s(f) =
n∑

ν=1

2s∑

i=0

Ai,νf
(i)(τν) (n ∈ N; s ∈ N0), (1.2)

where Ai,ν = A(n,s)
i,ν , τν = τ (n,s)

ν (i = 0, 1, . . . , 2s; ν = 1, . . . , n) for approxi-
mating

I(f) =
∫ 1

−1
f(t)w(t) dt (1.3)

in the case when the function f is analytic in some region of the complex
plane containing the interval [−1, 1] in its interior. The quadrature formula
(1.2) is exact for all algebraic polynomials of degree at most 2(s + 1)n− 1.

The nodes τν in (1.2) are the zeros of a (monic) polynomial πn(t) which
minimizes the integral

∫ 1
−1 πn(t)2s+2 dλ(t). This gives

∫ 1

−1
πn(t)2s+1tk dλ(t) = 0, k = 0, 1, . . . , n − 1. (1.4)

The polynomials πn(t) = πn,s(t), which satisfy this type of orthogonality
(1.4) are known as s-orthogonal polynomials with respect to the weight
w(t). For details and references about several classes of s-orthogonal poly-
nomials, as well as their generalizations known as σ-orthogonal polynomials,
and corresponding quadrature formulas with multiple nodes, see the survey
paper [12], and some very recent papers [13], [14], [16], [17], [20], [21].

2 The Remainder Term for Analytic Functions

In this paper let πn,s(z) be the s-orthogonal polynomial of degree n with
respect to the weight function w(t) over (−1, 1), scaled so that the coefficient
of zn in the expansion of πn,s(z) in powers of z is positive.

Let Γ be a simple closed cuvre in the complex surrounding the inter-
val [−1, 1] and D be its interior. If the integrand f is analytic in D and
continuous on D, then we take as our starting point the known expression
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(cf. [19], [18], [15]) of the remainder term (1.1) in the form of the contour
integral

Rn,s(f) =
1

2πi

∮

Γ
Kn,s(z)f(z) dz. (2.1)

The kernel is given by

Kn,s(z) =
&n,s(z)

[πn,s(z)]2s+1
, z /∈ [−1, 1], (2.2)

where

&n,s(z) =
∫ 1

−1

[πn,s(z)]2s+1

z − t
w(t) dt, n ∈ N, . (2.3)

For s = 0 (2.1) and (2.2) reduce to the corresponding formulas for Gaussian
quadratures.

Integral representation (2.1) leads to the error estimate

|Rn,s(f)| ≤ l(Γ)
2π

(
max
z∈Γ

|Kn,s(z)|
) (

max
z∈Γ

|f(z)|
)

, (2.4)

where l(Γ) is the length of the contour Γ. It means that is necessary to
study the magnitude of |Kn,s(z)| on Γ (cf. [15]).

Two choices of the contour Γ have been widely used: a circle with center
0 and radius & (> 0), and an ellipse with foci at ±1. In this paper we take
the contour Γ as an ellipse with foci at the points ±1 and sum of semiaxes
& > 1

E" =
{

z ∈ C : z =
1
2
(&eiθ + &−1e−iθ), 0 ≤ θ < 2π

}
. (2.5)

In Section 3 we adapt Hunter’s approach [11] for Gaussian quadratures and
obtain error expansions for Gauss-Turán quadrature formulae (1.2) based
on elliptical contours.

We consider the following four weight functions w(t):
(a) w1(t) = (1 − t2)−1/2, (b) w2(t) = (1 − t2)1/2+s,
(c) w3(t) = (1− t)−1/2(1+ t)1/2+s, (d) w4(t) = (1− t)1/2+s(1+ t)−1/2.
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S. Bernstein [1] shoved that the monic Chebyshev polynomial (with re-
spect to the weight function (a)) T̂n(t) = Tn(t)/2n−1 minimizes all integrals
of the form ∫ 1

−1

|πn(t)|k+1

√
1 − t2

dt, k ≥ 0.

Thus, the Chebyshev polynomials Tn are s-orthogonal on [−1, 1] for each
s ≥ 0. Ossicini and Rosatti [19] found three other weights ((b), (c), (d)) for
which the s-orthogonal polynomials can be identified as Chebyshev poly-
nomials of the second, third, and fourth kind: Un, Vn, and Wn, which are
defined by

Un(t) =
sin(n + 1)θ

sin θ
, Vn(t) =

cos(n + 1/2)θ
cos θ/2

, Wn(t) =
sin(n + 1/2)θ

sin θ/2
,

respectively (cf. [5]), where t = cos θ. However, such weights depend
on s (see (b), (c), (d)). Notice that the weight function in (d) can be
obtained by substitution t := −t in the weight function in (c), and that
Wn(−t) = (−1)nVn(t). Because of that, the weights w3(t), w4(t) can be
treated in similar way.

Recently, Gori and Micchelli [9] have introduced for each n a class of
weight functions defined on [−1, 1] for which explicit Gauss-Turán quadra-
ture formulas of all orders can be found. In the other words, these classes of
weight functions have the peculiarity that the corresponding s-orthogonal
polynomials, of the same degree, are independent of s. This class includes
certain generalized Jacobi weight functions

wn,µ(t) = |Un−1(t)/n|2µ+1(1 − t2)µ ,

where Un−1(cos θ) = sinnθ/ sin θ (Chebyshev polynomial of the second
kind) and µ > −1. In this case, the Chebyshev polynomials Tn appear
to be s-orthogonal polynomials.

In [15], following [6] (see also [7]) for s = 0, we studied the magnitude of
|Kn,s(z)| on the contour E". Precisely, for the weight functions wk(t) (k =
1, 2, 3) we investigated the locations on the confocall ellipses (2.5) where the
modulus of the corresponding kernels attain their maximum values. Basing
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on the calculation we conjectured in [15] for w(t) = w1(t) (also for w(t) =
w3(t)) that for each fixed & > 1 and s ∈ N0 there exists n0 = n0(&, s) ∈ N
such that the maximum of the kernel is attained at θ = 0 for each n ≥ n0.

In Section 4, following [11], we obtain a few new estimates of the remain-
der term (2.1). In particular, we concentrate our attention on the weight
function w1(t) and obtain some very exact estimates of the remainder term.
Some of them are the smallest, including and ones from [15].

3 An Error Expansion for Gauss–Turán
Quadrature Formulae

If f is analytic in the interior of E", then it has the expansion

f(z) =
+∞∑

k=0

′αkTk(z), (3.1)

where

αk =
1
π

∫ 1

−1
(1 − t2)−1/2f(t)Tk(t) dt, (3.2)

which converges for all z in the interior of E". In terms of ξ = &eiθ (& > 1),
Tk(z) is given by the equation

Tk(z) =
1
2

(
ξk + ξ−k

)
. (3.3)

We shall require the following two results (see [11]).

Lemma 3.1 If z /∈ [−1, 1], 1/πn,s(z) can be expanded in the form

1/πn,s(z) =
+∞∑

k=0

β(s)
n,kξ

−n−k.

Furthermore, if w is an even function then βn,2j+1 = 0 (j = 0, 1, 2, . . . ).
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Proof. The zeros of πn,s(z) are real, different, and all contained in the
open interval (−1, 1) (cf. [8]). Then, the proof is the same as the proof of
Lemma 3 in [11].

Now, it is not difficult to see that (cf. [10, Eq. 0.314])

1
[πn,s(z)]2s+1 =

+∞∑

k=0

β
(s)
n,k ξ−n(2s+1)−k; ξ = &eiθ, & > 1, (3.4)

where

β
(s)
n,0 =

(
β(s)

n,0

)2s+1
, β

(s)
n,m =

1

mβ(s)
n,0

m∑

k=1

(2k(s+1)−m)β(s)
n,k β

(s)
n,m−k, m ≥ 1.

In particular, if w(−t) = w(t) then

1
[πn,s(z)]2s+1 =

+∞∑

k=0

β
(s)
n,2k ξ−n(2s+1)−2k; ξ = &eiθ, & > 1. (3.5)

Lemma 3.2 If z /∈ [−1, 1], &n,s(z) can be expanded as

&n,s(z) =
+∞∑

k=0

γ(s)
n,k ξ−n−k−1. (3.6)

Furthermore, if w is an even function, then γ(s)
n,2j+1 = 0 (j = 0, 1, . . . ).

Proof. It is well-known that if w(t) is a weight function, then Wn,s(t) =
[πn,s(t)]2s w(t) is also a weight function (see [4, pp. 214–226]). Now, the
proof can be given in an analogous way as one of Lemma 4 in [11].

From (2.3) we have

&n,s(z) =
∫ 1

−1
Wn,s(z)

πn,s(t)
z − t

dt =
+∞∑

k=0

γ(s)
n,k ξ−n−k−1,

where

γ(s)
n,k = 2

∫ 1

−1
w(t)[πn,s(t)]2s+1 Un+k(t) dt (k = 0, 1, . . . ). (3.7)
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If w(−t) = w(t), then for k odd the integrand in (3.7) is odd, so γ(s)
n,k = 0.

Therefore, by the substitution (3.4), (3.6) in (2.2) we obtain

Kn,s(z) =
+∞∑

k=0

ω(s)
n,k ξ−2n(s+1)−k−1, (3.8)

where

ω(s)
n,k =

k∑

j=0

β
(s)
n,j γ(s)

n,k−j . (3.9)

Theorem 3.3 The remainder term Rn,s(f) can be represented in the form

Rn,s(f) =
+∞∑

k=0

α2n(s+1)+k ε(s)
n,k, (3.10)

where the coefficients ε(s)
n,k are independent of f . Furthermore, if f is an

even function then ε(s)
n,2j+1 = 0 (j = 0, 1, . . . ).

Proof. By substitution (3.1), (3.8) in (2.1) we obtain

Rn,s(f) =
1

2πi

∫

E!




+∞∑

j=0

′αjTj(z)
+∞∑

k=0

ω(s)
n,k ξ−2n(s+1)−k−1



 dz

=
+∞∑

k=0



 1
2πi

+∞∑

j=0

′αj

∫

E!

Tj(z) ξ−2n(s+1)−k−1 dz



 ω(s)
n,k.

On applying Lemma 5 from [11], this reduces to (3.10), with

ε(s)
n,0 =

1
4

ω(s)
n,0 ,

ε(s)
n,1 =

1
4

ω(s)
n,1 ,

ε(s)
n,k =

1
4

(
ω(s)

n,k − ω(s)
n,k−2

)
(k = 2, 3, 4, . . . ).

(3.11)
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If w(−t) = w(t) and k is odd it follows from (3.9) and Lemmas 3.1 and 3.2
that ω(s)

n,k = 0 and hence ε(s)
n,k = 0.

Remark 3.1 One follows from (3.10) on setting f(z) = T2n(s+1)+k(z) that

ε(s)
n,k = σ2n(s+1)+k −

n∑

ν=1

2s∑

i=0

Ai,νT
(i)
2n(s+1)+k(τν) (k = 0, 1, 2, . . . ),

where

σk =
∫ 1

−1
w(t)Tk(t) dt (k = 0, 1, 2, . . . ).

Therefore, we conclude that

∣∣∣ε(s)
n,k

∣∣∣ ≤
∫ 1

−1
w(t) dt +

n∑

ν=1

2s∑

i=0

|Ai,ν |
∣∣∣T (i)

2n(s+1)+k(τν)
∣∣∣ (k = 0, 1, 2, . . . ).

If s = 0 then
∣∣∣ε(0)

n,k

∣∣∣ ≤ 2
∫ 1
−1 w(t) dt, and this fact can be used to ob-

tain some global upper bounds of the remainder term (see Hunter [11]).
Unfortunately, for now, such conclusion cannot be made in the general
case for s > 0, because of the difficulties with finding upper bounds in∣∣∣T (i)

2n(s+1)+k(τν)
∣∣∣.

4 Error Estimates for Gauss–Turán Quadratures
with Chebyshev Weight Function of First Kind

If u ∈ C, |u| < 1, then by differentiating the well-known identity

1
1 − u

=
+∞∑

k=0

uk

we obtain
1

(1 − u)l+1
=

+∞∑

k=l

(
k

l

)
uk−l (l = 0, 1, 2, . . . ). (4.1)
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In this section we consider the weight function w(t) = w1(t). Then πn,s(t) =
Tn(t). By using (4.1), and by the representation u = 1/ξ (ξ = &eiθ, & > 1),
we obtain

1
[Tn(z)]2s+1

=
1

[
1
2(ξn + ξ−n)

]2s+1 = 22s+1 ξ−n(2s+1)

(
1

1 + ξ−2n

)2s+1

= 22s+1 ξ−n(2s+1)
+∞∑

k=2s

(
k

2s

) (
−ξ−2n

)k−2s
.

Therefore,

1
[Tn(z)]2s+1

= 22s+1
+∞∑

j=0

(−1)j

(
j + 2s

2s

)
ξ−n(2s+1)−2nj . (4.2)

On the other hand, one holds (3.4) with πn,s(t) = Tn(t). By comparing the
right sides of these equalities we obtain

β
(s)
n,k =





22s+1(−1)j

(
j + 2s

2s

)
; k = 2jn (j = 0, 1, 2, . . . ),

0; otherwise.
(4.3)

By using (3.7) and the substitution t = cos θ, we obtain

γ(s)
n,k = 2

∫ 1

−1
(1 − t2)−1/2 [Tn(t)]2s+1 Un+k(t) dt

= 2
∫ π

0

1
sin θ

[cos nθ]2s+1 sin (n + k + 1)θ dθ.

(4.4)

If k is odd, then γ(s)
n,k = 0. For [cos nθ]2s+1 in the last integral we use the

known representation

[cos nθ]2s+1 =
2s+1∑

m=0

a(s)
m cos mnθ,
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with a(s)
m = a(s)

m
/∫ π

0 cos2 mnθ dθ, where

a(s)
m =

∫ π

0
[cos nθ]2s+1 cos mnθ dθ. (4.5)

Because of a(s)
m = 0 if m is even (cf. [10, Eq. 3.631.17]), and

∫ π
0 cos2 mnθ dθ =

π/2, (4.4) becomes

γ(s)
n,k =

4
π

2s+1∑

m=0
(m is odd)

a(s)
m I(s)

n,k,m, (4.6)

where k is even, and the integrals

I(s)
n,k,m =

∫ π

0

sin (n + k + 1)θ cos mnθ

sin θ
dθ

can be found by [10, Eq. 3.612.1]. Therefore, (4.6) reduces to

γ(s)
n,k =






4
j∑

l=0

a(s)
2l+1; k = 2nj, 2nj + 2, . . . , 2n(j + 1) − 2

(j = 0, 1, . . . , s − 1),

2π; k = 2sn, 2sn + 2, . . . ,

0; otherwise.

(4.7)

Now, consider the integrals in (4.5). By substitution nθ = t we obtain

a(s)
m =

1
n

∫ nπ

0
cos2s+1 t cos mt dt.

If m is odd (by substitution t := t − π) one holds
∫ π

0
cos2s+1 t cos mt dt =

∫ 2π

π
cos2s+1 t cos mt dt, (4.7.1)

then (cf. [10, Eq. 3.631.17])

a(s)
m =

∫ π

0
cos2s+1 t cos mt dt =

π

22s+1

(
2s + 1

(2s + 1 − m)/2

)
(> 0). (4.8)

10



Now, (4.7) can be expressed in an explicit form

γ(s)
n,k =






π

22s−1

j∑

l=0

(
2s + 1
s − l

)
; k = 2nj, 2nj + 2, . . . , 2n(j + 1) − 2

(j = 0, 1, . . . , s − 1),

2π; k = 2sn, 2sn + 2, . . . ,

0; otherwise.
(4.9)

Remark 4.1 From (4.9) we conclude that γ(s)
n,k > 0 for each even k, and,

since
∑s

l=0

(2s+1
s−l

)
= 22s (cf. [15]), then

π

22s−1

(
2s + 1

s

)
≤ γ(s)

n,k ≤ 2π.

4.1 First type of error estimates

In general, the Chebyshev coefficients αk in (3.1) are unknown. However,
Elliot [3] describes a number of ways of estimating or bounding them. In
particular, under our assumptions,

|αk| ≤
2

(
maxz∈E! |f(z)|

)

&k
. (4.10)

Let

hk(t) :=
+∞∑

n=1

nktn−1 (|t| < 1).

To derive its recurrence relation we have

hk(t) − thk(t) =
+∞∑

n=0

(n + 1)ktn −
+∞∑

n=1

nktn

= 1 +
+∞∑

n=1

[(n + 1)k − nk]tn = 1 +
+∞∑

n=1

[
k−1∑

i=0

(
k

i

)
ni

]
tn

= 1 + t
k−1∑

i=0

(
k

i

)
hi(t).
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Hence

hk(t) =
1

1 − t

[
1 + t

k−1∑

i=0

(
k

i

)
hi(t)

]
, k ≥ 1.

Here, we consider the case s = 1.
By using (4.3), we find

β
(1)
n,k =





8(−1)j

(
j + 2

2

)
; k = 2jn (j = 0, 1, 2, . . . ),

0; otherwise.

From (4.9) we obtain

γ(1)
n,k =






3π

2
; k = 0, 2, . . . , 2n − 2,

2π; k = 2n, 2n + 2, . . . ,
0; otherwise.

(4.11)

Using (3.9) and (3.11) we get

ε(1)
n,k =

1
4




3π

2
β

(1)
n,2jn + 2π

∑

l=2ln
l<j

β
(1)

n,l
−




3π

2
β

(1)
n,2(j−1)n + 2π

∑

l=2ln
l<j−1

β
(1)

n,l









= (−1)jπ
(
j2 + 4j + 3

)
,

for k = 2jn (j = 0, 1, 2, . . . ) and ε(1)
n,k = 0, otherwise. Now, by using just

obtained results and (3.10), (4.10), we have

|Rn,1(f)| =

∣∣∣∣∣

+∞∑

k=0

α4n+k ε(1)
n,k

∣∣∣∣∣ =

∣∣∣∣∣∣

+∞∑

j=0

α4n+2jn ε(1)
n,2jn

∣∣∣∣∣∣

≤
2π

(
maxz∈E! |f(z)|

)

&4n

+∞∑

j=0

j2 + 4j + 3
&2jn

.
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The sums
+∞∑
j=0

jl

&2jn
(l = 0, 1, 2) can be calculated by using the method for

hl(t) and putting t = 1/&2n.
Therefore, we obtain the error estimate

|Rn,1(f)| ≤ 2π

(
max
z∈E!

|f(z)|
)

3&2n − 1
(&2n − 1)3

. (4.12)

For s = 0 the error estimate has been obtained by Hunter [11] (see also
Chawla and Jain [2]).

4.2 Second type of error estimates

In this subsection, we use (2.1) in order to derive some error estimates,
which are different from the previous, as well as ones derived in [15]. It
follows immediately from (2.1) that

|Rn,s(f)| ≤ Kn,s(E")
(

max
z∈E!

|f(z)|
)

, (4.14)

what is, in fact, (2.4) with Γ ≡ E" and

Kn,s(E") =
l(E")
2π

(
max
z∈E!

|Kn,s(z)|
)

. (4.15)

It is known that the ellipse has length l(E") = 4ε−1E(ε), where ε is the
eccentricity of E", i. e., ε = 2/(& + &−1), and

E(ε) =
∫ π/2

0

√
1 − ε2 sin2 θ dθ

is the complete elliptic integral of the second kind. This approach is used
by, e. g., Gautschi and Varga [6] (see also [7]) in the case s = 0, and recently
extended to the case s ∈ N0 by the authors of this paper (cf. [15]).
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Here, we follow a different approach (cf. [11]). Directly from (2.1)
(Γ ≡ E") we obtain the error estimate

|Rn,s(f)| ≤ Ln,s(E")
(

max
z∈E!

|f(z)|
)

, (4.16)

where
Ln,s(E") =

1
2π

∮

E!

|Kn,s(z)| |dz| , (4.17)

and Kn,s(z) is given by (2.2). Obviously,

Ln,s(E") ≤ Kn,s(E").

For z = 1
2(&eiθ + &−1e−iθ) (4.17) can be represented in the form

Ln,s(E") =
1
4π

∫ 2π

0

|&n,s(z)|
(
&2 + &−2 − 2 cos 2θ

)1/2

|πn,s(z)|2s+1 dθ . (4.18)

Here, we concentrate to the error estimates based on (4.18). This inte-
gral can be evaluated numerically by using a quadrature formula. However
if w(t) = w1(t) we can obtain explicit expressions for Ln,s(E") or for their
bounds. In this case (4.18) becomes

Ln,s(E") =
22s−1

π

∫ 2π

0

|&n,s(z)|
(
&2 + &−2 − 2 cos 2θ

)1/2

[
(&n + &−n)2 − 4 sin2 nθ

](2s+1)/2
dθ. (4.19)
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By using (3.6) and (4.9) we obtain

&n,s(z) =
π

22s−1

1
ξn+1

[(
2s + 1

s

) (
1 +

1
ξ2

+ · · · + 1
ξ2sn−2

)

+
(

2s + 1
s − 1

) (
1

ξ2n
+

1
ξ2n+2

+ · · · + 1
ξ2sn−2

)

+ · · ·

+
(

2s + 1
1

) (
1

ξ2(s−1)n
+

1
ξ2(s−1)n+2

+ · · · + 1
ξ2sn−2

)]

+
2π

ξn+1

(
1

ξ2sn
+

1
ξ2sn+2

+ . . .

)
.

After a little computation we obtain (cf. [15, p. 6])

&n,s(z) =
π

22s−1

1
ξn (ξ − ξ−1)

s∑

l=0

(
2s + 1
s − l

)
1

ξ2ln
. (4.20)

Now, let s = 1. From (4.20) we obtain

&n,1(z) =
π

2ξ2n(ξ − ξ−1)
(
3ξn + ξ−n

)
.

This gives

|&n,1(z)| =
π

(
9&2n + &−2n + 6 cos 2nθ

)1/2

2&2n (&2 + &−2 − 2 cos 2θ)1/2
.

By substitution |&n,1(z)| in (4.19) we get

Ln,1(E") = &−2n
∫ 2π

0

[
(3&n + &−n)2 − 12 sin2 nθ

]1/2

[
(&n + &−n)2 − 4 sin2 nθ

]3/2
dθ ,

i.e.,

Ln,1(E") =
4 (3&n + &−n)

&2n (&n + &−n)3

∫ π/2

0

[
1 −

(√
12/(3&n + &−n)

)2 sin2 θ
]1/2

[
1 − (2/(&n + &−n))2 sin2 θ

]3/2
dθ .
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The last expression enables us to obtain the following upper bound of
Ln,1(E")

Ln,1(E") ≤
4 (3&n + &−n)

&2n (&n − &−n)3

∫ π/2

0



1 −
( √

12
3&n + &−n

)2

sin2 θ




1/2

dθ ,

i.e.,

Ln,1(E") ≤
4 (3&n + &−n)

&2n (&n − &−n)3
E

( √
12

3&n + &−n

)
.

In a similar way we can obtain the error estimates for s > 1, but they
are very heavy.
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