An Error Expansion for Gauss-Turán Quadrature with Chebyshev Weight Function

G. V. Milovanovićc ${ }^{a}$ and M. M. Spalević ${ }^{b}$
${ }^{a}$ University of Niš, Faculty of Electronic Engineering, P. O. Box 73
18000 Niš, Serbia, Yugoslavia
${ }^{b}$ University of Kragujevac, Faculty of Science, P. O. Box 60
34000 Kragujevac, Serbia, Yugoslavia

September 16, 2002

Abstract

Our aim in this paper is to obtain an expansion for the error in the Gauss-Turán quadrature formula for approximating $\int_{-1}^{1} w(t) f(t) d t$ in the case when the function f is analytic in some region of the complex plane containing the interval $[-1,1]$ in its interior, and the remainder term is presented in the form of a contour integral over the confocal ellipses. In the case $w(t)=1 / \sqrt{1-t^{2}}$ we used such expansion to obtain very exact estimations of the error. Some numerical results and illustrations are included.

1 Introduction

Suppose a weight function w is positive and continuous in the open interval $(-1,1)$ and is integrable over $(-1,1)$. Our object is to obtain an expansion for the error

$$
\begin{equation*}
R_{n, s}(f)=I(f)-Q_{n, s}(f) \tag{1.1}
\end{equation*}
$$

in the Gauss-Turán quadrature formula with multiple nodes

$$
\begin{equation*}
Q_{n, s}(f)=\sum_{\nu=1}^{n} \sum_{i=0}^{2 s} A_{i, \nu} f^{(i)}\left(\tau_{\nu}\right) \quad\left(n \in \mathbb{N} ; s \in \mathbb{N}_{0}\right) \tag{1.2}
\end{equation*}
$$

where $A_{i, \nu}=A_{i, \nu}^{(n, s)}, \tau_{\nu}=\tau_{\nu}^{(n, s)}(i=0,1, \ldots, 2 s ; \nu=1, \ldots, n)$ for approximating

$$
\begin{equation*}
I(f)=\int_{-1}^{1} f(t) w(t) d t \tag{1.3}
\end{equation*}
$$

in the case when the function f is analytic in some region of the complex plane containing the interval $[-1,1]$ in its interior. The quadrature formula (1.2) is exact for all algebraic polynomials of degree at most $2(s+1) n-1$.

The nodes τ_{ν} in (1.2) are the zeros of a (monic) polynomial $\pi_{n}(t)$ which minimizes the integral $\int_{-1}^{1} \pi_{n}(t)^{2 s+2} d \lambda(t)$. This gives

$$
\begin{equation*}
\int_{-1}^{1} \pi_{n}(t)^{2 s+1} t^{k} d \lambda(t)=0, \quad k=0,1, \ldots, n-1 \tag{1.4}
\end{equation*}
$$

The polynomials $\pi_{n}(t)=\pi_{n, s}(t)$, which satisfy this type of orthogonality (1.4) are known as s-orthogonal polynomials with respect to the weight $w(t)$. For details and references about several classes of s-orthogonal polynomials, as well as their generalizations known as σ-orthogonal polynomials, and corresponding quadrature formulas with multiple nodes, see the survey paper [12], and some very recent papers [13], [14], [16], [17], [20], [21].

2 The Remainder Term for Analytic Functions

In this paper let $\pi_{n, s}(z)$ be the s-orthogonal polynomial of degree n with respect to the weight function $w(t)$ over $(-1,1)$, scaled so that the coefficient of z^{n} in the expansion of $\pi_{n, s}(z)$ in powers of z is positive.

Let Γ be a simple closed cuvre in the complex surrounding the interval $[-1,1]$ and D be its interior. If the integrand f is analytic in D and continuous on \bar{D}, then we take as our starting point the known expression
(cf. [19], [18], [15]) of the remainder term (1.1) in the form of the contour integral

$$
\begin{equation*}
R_{n, s}(f)=\frac{1}{2 \pi i} \oint_{\Gamma} K_{n, s}(z) f(z) d z . \tag{2.1}
\end{equation*}
$$

The kernel is given by

$$
\begin{equation*}
K_{n, s}(z)=\frac{\varrho_{n, s}(z)}{\left[\pi_{n, s}(z)\right]^{2 s+1}}, \quad z \notin[-1,1] \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\varrho_{n, s}(z)=\int_{-1}^{1} \frac{\left[\pi_{n, s}(z)\right]^{2 s+1}}{z-t} w(t) d t, \quad n \in \mathbb{N}, . \tag{2.3}
\end{equation*}
$$

For $s=0$ (2.1) and (2.2) reduce to the corresponding formulas for Gaussian quadratures.

Integral representation (2.1) leads to the error estimate

$$
\begin{equation*}
\left|R_{n, s}(f)\right| \leq \frac{l(\Gamma)}{2 \pi}\left(\max _{z \in \Gamma}\left|K_{n, s}(z)\right|\right)\left(\max _{z \in \Gamma}|f(z)|\right), \tag{2.4}
\end{equation*}
$$

where $l(\Gamma)$ is the length of the contour Γ. It means that is necessary to study the magnitude of $\left|K_{n, s}(z)\right|$ on Γ (cf. [15]).

Two choices of the contour Γ have been widely used: a circle with center 0 and radius $\varrho(>0)$, and an ellipse with foci at ± 1. In this paper we take the contour Γ as an ellipse with foci at the points ± 1 and sum of semiaxes $\varrho>1$

$$
\begin{equation*}
E_{\varrho}=\left\{z \in \mathbb{C}: z=\frac{1}{2}\left(\varrho e^{i \theta}+\varrho^{-1} e^{-i \theta}\right), 0 \leq \theta<2 \pi\right\} . \tag{2.5}
\end{equation*}
$$

In Section 3 we adapt Hunter's approach [11] for Gaussian quadratures and obtain error expansions for Gauss-Turán quadrature formulae (1.2) based on elliptical contours.

We consider the following four weight functions $w(t)$:
(a) $w_{1}(t)=\left(1-t^{2}\right)^{-1 / 2}$,
(b) $w_{2}(t)=\left(1-t^{2}\right)^{1 / 2+s}$,
(c) $w_{3}(t)=(1-t)^{-1 / 2}(1+t)^{1 / 2+s}$,
(d) $w_{4}(t)=(1-t)^{1 / 2+s}(1+t)^{-1 / 2}$.
S. Bernstein [1] shoved that the monic Chebyshev polynomial (with respect to the weight function (a)) $\hat{T}_{n}(t)=T_{n}(t) / 2^{n-1}$ minimizes all integrals of the form

$$
\int_{-1}^{1} \frac{\left|\pi_{n}(t)\right|^{k+1}}{\sqrt{1-t^{2}}} d t, \quad k \geq 0
$$

Thus, the Chebyshev polynomials T_{n} are s-orthogonal on $[-1,1]$ for each $s \geq 0$. Ossicini and Rosatti [19] found three other weights ((b), (c), (d)) for which the s-orthogonal polynomials can be identified as Chebyshev polynomials of the second, third, and fourth kind: U_{n}, V_{n}, and W_{n}, which are defined by

$$
U_{n}(t)=\frac{\sin (n+1) \theta}{\sin \theta}, V_{n}(t)=\frac{\cos (n+1 / 2) \theta}{\cos \theta / 2}, W_{n}(t)=\frac{\sin (n+1 / 2) \theta}{\sin \theta / 2}
$$

respectively (cf. [5]), where $t=\cos \theta$. However, such weights depend on s (see (b), (c), (d)). Notice that the weight function in (d) can be obtained by substitution $t:=-t$ in the weight function in (c), and that $W_{n}(-t)=(-1)^{n} V_{n}(t)$. Because of that, the weights $w_{3}(t), w_{4}(t)$ can be treated in similar way.

Recently, Gori and Micchelli [9] have introduced for each n a class of weight functions defined on $[-1,1]$ for which explicit Gauss-Turán quadrature formulas of all orders can be found. In the other words, these classes of weight functions have the peculiarity that the corresponding s-orthogonal polynomials, of the same degree, are independent of s. This class includes certain generalized Jacobi weight functions

$$
w_{n, \mu}(t)=\left|U_{n-1}(t) / n\right|^{2 \mu+1}\left(1-t^{2}\right)^{\mu}
$$

where $U_{n-1}(\cos \theta)=\sin n \theta / \sin \theta$ (Chebyshev polynomial of the second kind) and $\mu>-1$. In this case, the Chebyshev polynomials T_{n} appear to be s-orthogonal polynomials.

In [15], following [6] (see also [7]) for $s=0$, we studied the magnitude of $\left|K_{n, s}(z)\right|$ on the contour E_{ϱ}. Precisely, for the weight functions $w_{k}(t)(k=$ $1,2,3)$ we investigated the locations on the confocall ellipses (2.5) where the modulus of the corresponding kernels attain their maximum values. Basing
on the calculation we conjectured in [15] for $w(t)=w_{1}(t)$ (also for $w(t)=$ $\left.w_{3}(t)\right)$ that for each fixed $\varrho>1$ and $s \in \mathbb{N}_{0}$ there exists $n_{0}=n_{0}(\varrho, s) \in \mathbb{N}$ such that the maximum of the kernel is attained at $\theta=0$ for each $n \geq n_{0}$.

In Section 4, following [11], we obtain a few new estimates of the remainder term (2.1). In particular, we concentrate our attention on the weight function $w_{1}(t)$ and obtain some very exact estimates of the remainder term. Some of them are the smallest, including and ones from [15].

3 An Error Expansion for Gauss-Turán Quadrature Formulae

If f is analytic in the interior of E_{ϱ}, then it has the expansion

$$
\begin{equation*}
f(z)=\sum_{k=0}^{+\infty} \alpha_{k} T_{k}(z), \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{k}=\frac{1}{\pi} \int_{-1}^{1}\left(1-t^{2}\right)^{-1 / 2} f(t) T_{k}(t) d t \tag{3.2}
\end{equation*}
$$

which converges for all z in the interior of E_{ϱ}. In terms of $\xi=\varrho e^{i \theta}(\varrho>1)$, $T_{k}(z)$ is given by the equation

$$
\begin{equation*}
T_{k}(z)=\frac{1}{2}\left(\xi^{k}+\xi^{-k}\right) . \tag{3.3}
\end{equation*}
$$

We shall require the following two results (see [11]).
Lemma 3.1 If $z \notin[-1,1], 1 / \pi_{n, s}(z)$ can be expanded in the form

$$
1 / \pi_{n, s}(z)=\sum_{k=0}^{+\infty} \beta_{n, k}^{(s)} \xi^{-n-k} .
$$

Furthermore, if w is an even function then $\beta_{n, 2 j+1}=0(j=0,1,2, \ldots)$.

Proof. The zeros of $\pi_{n, s}(z)$ are real, different, and all contained in the open interval $(-1,1)$ (cf. [8]). Then, the proof is the same as the proof of Lemma 3 in [11].

Now, it is not difficult to see that (cf. [10, Eq. 0.314])

$$
\begin{equation*}
\frac{1}{\left[\pi_{n, s}(z)\right]^{2 s+1}}=\sum_{k=0}^{+\infty} \bar{\beta}_{n, k}^{(s)} \xi^{-n(2 s+1)-k} ; \quad \xi=\varrho e^{i \theta}, \varrho>1 \tag{3.4}
\end{equation*}
$$

where
$\bar{\beta}_{n, 0}^{(s)}=\left(\beta_{n, 0}^{(s)}\right)^{2 s+1}, \quad \bar{\beta}_{n, m}^{(s)}=\frac{1}{m \beta_{n, 0}^{(s)}} \sum_{k=1}^{m}(2 k(s+1)-m) \beta_{n, k}^{(s)} \bar{\beta}_{n, m-k}^{(s)}, \quad m \geq 1$.
In particular, if $w(-t)=w(t)$ then

$$
\begin{equation*}
\frac{1}{\left[\pi_{n, s}(z)\right]^{2 s+1}}=\sum_{k=0}^{+\infty} \bar{\beta}_{n, 2 k}^{(s)} \xi^{-n(2 s+1)-2 k} ; \quad \xi=\varrho e^{i \theta}, \varrho>1 \tag{3.5}
\end{equation*}
$$

Lemma 3.2 If $z \notin[-1,1], \varrho_{n, s}(z)$ can be expanded as

$$
\begin{equation*}
\varrho_{n, s}(z)=\sum_{k=0}^{+\infty} \bar{\gamma}_{n, k}^{(s)} \xi^{-n-k-1} \tag{3.6}
\end{equation*}
$$

Furthermore, if w is an even function, then $\bar{\gamma}_{n, 2 j+1}^{(s)}=0(j=0,1, \ldots)$.
Proof. It is well-known that if $w(t)$ is a weight function, then $W_{n, s}(t)=$ $\left[\pi_{n, s}(t)\right]^{2 s} w(t)$ is also a weight function (see [4, pp. 214-226]). Now, the proof can be given in an analogous way as one of Lemma 4 in [11].

From (2.3) we have

$$
\varrho_{n, s}(z)=\int_{-1}^{1} W_{n, s}(z) \frac{\pi_{n, s}(t)}{z-t} d t=\sum_{k=0}^{+\infty} \bar{\gamma}_{n, k}^{(s)} \xi^{-n-k-1}
$$

where

$$
\begin{equation*}
\bar{\gamma}_{n, k}^{(s)}=2 \int_{-1}^{1} w(t)\left[\pi_{n, s}(t)\right]^{2 s+1} U_{n+k}(t) d t \quad(k=0,1, \ldots) \tag{3.7}
\end{equation*}
$$

If $w(-t)=w(t)$, then for k odd the integrand in (3.7) is odd, so $\bar{\gamma}_{n, k}^{(s)}=0$.
Therefore, by the substitution (3.4), (3.6) in (2.2) we obtain

$$
\begin{equation*}
K_{n, s}(z)=\sum_{k=0}^{+\infty} \omega_{n, k}^{(s)} \xi^{-2 n(s+1)-k-1} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{n, k}^{(s)}=\sum_{j=0}^{k} \bar{\beta}_{n, j}^{(s)} \bar{\gamma}_{n, k-j}^{(s)} \tag{3.9}
\end{equation*}
$$

Theorem 3.3 The remainder term $R_{n, s}(f)$ can be represented in the form

$$
\begin{equation*}
R_{n, s}(f)=\sum_{k=0}^{+\infty} \alpha_{2 n(s+1)+k} \varepsilon_{n, k}^{(s)} \tag{3.10}
\end{equation*}
$$

where the coefficients $\varepsilon_{n, k}^{(s)}$ are independent of f. Furthermore, if f is an even function then $\varepsilon_{n, 2 j+1}^{(s)}=0(j=0,1, \ldots)$.

Proof. By substitution (3.1), (3.8) in (2.1) we obtain

$$
\begin{aligned}
R_{n, s}(f) & =\frac{1}{2 \pi i} \int_{E_{\varrho}}\left(\sum_{j=0}^{+\infty} \alpha_{j} T_{j}(z) \sum_{k=0}^{+\infty} \omega_{n, k}^{(s)} \xi^{-2 n(s+1)-k-1}\right) d z \\
& =\sum_{k=0}^{+\infty}\left[\frac{1}{2 \pi i} \sum_{j=0}^{+\infty} \alpha_{j} \int_{E_{\varrho}} T_{j}(z) \xi^{-2 n(s+1)-k-1} d z\right] \omega_{n, k}^{(s)}
\end{aligned}
$$

On applying Lemma 5 from [11], this reduces to (3.10), with

$$
\begin{align*}
\varepsilon_{n, 0}^{(s)} & =\frac{1}{4} \omega_{n, 0}^{(s)} \\
\varepsilon_{n, 1}^{(s)} & =\frac{1}{4} \omega_{n, 1}^{(s)} \tag{3.11}\\
\varepsilon_{n, k}^{(s)} & =\frac{1}{4}\left(\omega_{n, k}^{(s)}-\omega_{n, k-2}^{(s)}\right) \quad(k=2,3,4, \ldots)
\end{align*}
$$

If $w(-t)=w(t)$ and k is odd it follows from (3.9) and Lemmas 3.1 and 3.2 that $\omega_{n, k}^{(s)}=0$ and hence $\varepsilon_{n, k}^{(s)}=0$.

Remark 3.1 One follows from (3.10) on setting $f(z)=T_{2 n(s+1)+k}(z)$ that

$$
\varepsilon_{n, k}^{(s)}=\sigma_{2 n(s+1)+k}-\sum_{\nu=1}^{n} \sum_{i=0}^{2 s} A_{i, \nu} T_{2 n(s+1)+k}^{(i)}\left(\tau_{\nu}\right) \quad(k=0,1,2, \ldots)
$$

where

$$
\sigma_{k}=\int_{-1}^{1} w(t) T_{k}(t) d t \quad(k=0,1,2, \ldots)
$$

Therefore, we conclude that

$$
\left|\varepsilon_{n, k}^{(s)}\right| \leq \int_{-1}^{1} w(t) d t+\sum_{\nu=1}^{n} \sum_{i=0}^{2 s}\left|A_{i, \nu}\right|\left|T_{2 n(s+1)+k}^{(i)}\left(\tau_{\nu}\right)\right| \quad(k=0,1,2, \ldots)
$$

If $s=0$ then $\left|\varepsilon_{n, k}^{(0)}\right| \leq 2 \int_{-1}^{1} w(t) d t$, and this fact can be used to obtain some global upper bounds of the remainder term (see Hunter [11]). Unfortunately, for now, such conclusion cannot be made in the general case for $s>0$, because of the difficulties with finding upper bounds in $\left|T_{2 n(s+1)+k}^{(i)}\left(\tau_{\nu}\right)\right|$.

4 Error Estimates for Gauss-Turán Quadratures with Chebyshev Weight Function of First Kind

If $u \in \mathbb{C},|u|<1$, then by differentiating the well-known identity

$$
\frac{1}{1-u}=\sum_{k=0}^{+\infty} u^{k}
$$

we obtain

$$
\begin{equation*}
\frac{1}{(1-u)^{l+1}}=\sum_{k=l}^{+\infty}\binom{k}{l} u^{k-l} \quad(l=0,1,2, \ldots) \tag{4.1}
\end{equation*}
$$

In this section we consider the weight function $w(t)=w_{1}(t)$. Then $\pi_{n, s}(t)=$ $T_{n}(t)$. By using (4.1), and by the representation $u=1 / \xi\left(\xi=\varrho e^{i \theta}, \varrho>1\right)$, we obtain

$$
\begin{aligned}
\frac{1}{\left[T_{n}(z)\right]^{2 s+1}} & =\frac{1}{\left[\frac{1}{2}\left(\xi^{n}+\xi^{-n}\right)\right]^{2 s+1}}=2^{2 s+1} \xi^{-n(2 s+1)}\left(\frac{1}{1+\xi^{-2 n}}\right)^{2 s+1} \\
& =2^{2 s+1} \xi^{-n(2 s+1)} \sum_{k=2 s}^{+\infty}\binom{k}{2 s}\left(-\xi^{-2 n}\right)^{k-2 s} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\frac{1}{\left[T_{n}(z)\right]^{2 s+1}}=2^{2 s+1} \sum_{j=0}^{+\infty}(-1)^{j}\binom{j+2 s}{2 s} \xi^{-n(2 s+1)-2 n j} . \tag{4.2}
\end{equation*}
$$

On the other hand, one holds (3.4) with $\pi_{n, s}(t)=T_{n}(t)$. By comparing the right sides of these equalities we obtain

$$
\bar{\beta}_{n, k}^{(s)}= \begin{cases}2^{2 s+1}(-1)^{j}\binom{j+2 s}{2 s} ; & k=2 j n(j=0,1,2, \ldots), \tag{4.3}\\ 0 ; & \text { otherwise } .\end{cases}
$$

By using (3.7) and the substitution $t=\cos \theta$, we obtain

$$
\begin{align*}
\bar{\gamma}_{n, k}^{(s)} & =2 \int_{-1}^{1}\left(1-t^{2}\right)^{-1 / 2}\left[T_{n}(t)\right]^{2 s+1} U_{n+k}(t) d t \\
& =2 \int_{0}^{\pi} \frac{1}{\sin \theta}[\cos n \theta]^{2 s+1} \sin (n+k+1) \theta d \theta \tag{4.4}
\end{align*}
$$

If k is odd, then $\bar{\gamma}_{n, k}^{(s)}=0$. For $[\cos n \theta]^{2 s+1}$ in the last integral we use the known representation

$$
[\cos n \theta]^{2 s+1}=\sum_{m=0}^{2 s+1} a_{m}^{(s)} \cos m n \theta,
$$

with $a_{m}^{(s)}=\bar{a}_{m}^{(s)} / \int_{0}^{\pi} \cos ^{2} m n \theta d \theta$, where

$$
\begin{equation*}
\bar{a}_{m}^{(s)}=\int_{0}^{\pi}[\cos n \theta]^{2 s+1} \cos m n \theta d \theta . \tag{4.5}
\end{equation*}
$$

Because of $\bar{a}_{m}^{(s)}=0$ if m is even (cf. [10, Eq. 3.631.17]), and $\int_{0}^{\pi} \cos ^{2} m n \theta d \theta=$ $\pi / 2$, (4.4) becomes

$$
\begin{equation*}
\bar{\gamma}_{n, k}^{(s)}=\frac{4}{\pi} \sum_{\substack{m=0 \\(m \text { is odd })}}^{2 s+1} \bar{a}_{m}^{(s)} I_{n, k, m}^{(s)}, \tag{4.6}
\end{equation*}
$$

where k is even, and the integrals

$$
I_{n, k, m}^{(s)}=\int_{0}^{\pi} \frac{\sin (n+k+1) \theta \cos m n \theta}{\sin \theta} d \theta
$$

can be found by [10, Eq. 3.612.1]. Therefore, (4.6) reduces to

$$
\bar{\gamma}_{n, k}^{(s)}= \begin{cases}4 \sum_{l=0}^{j} \bar{a}_{2 l+1}^{(s)} ; & \begin{array}{l}
k=2 n j, 2 n j+2, \ldots, 2 n(j+1)-2 \\
(j=0,1, \ldots, s-1), \\
2 \pi ;
\end{array} \tag{4.7}\\
0=2 s n, 2 s n+2, \ldots, \\
0 ; & \text { otherwise. }\end{cases}
$$

Now, consider the integrals in (4.5). By substitution $n \theta=t$ we obtain

$$
\bar{a}_{m}^{(s)}=\frac{1}{n} \int_{0}^{n \pi} \cos ^{2 s+1} t \cos m t d t .
$$

If m is odd (by substitution $t:=t-\pi$) one holds

$$
\begin{equation*}
\int_{0}^{\pi} \cos ^{2 s+1} t \cos m t d t=\int_{\pi}^{2 \pi} \cos ^{2 s+1} t \cos m t d t \tag{4.7.1}
\end{equation*}
$$

then (cf. [10, Eq. 3.631.17])

$$
\begin{equation*}
\bar{a}_{m}^{(s)}=\int_{0}^{\pi} \cos ^{2 s+1} t \cos m t d t=\frac{\pi}{2^{2 s+1}}\binom{2 s+1}{(2 s+1-m) / 2}(>0) . \tag{4.8}
\end{equation*}
$$

Now, (4.7) can be expressed in an explicit form

$$
\bar{\gamma}_{n, k}^{(s)}= \begin{cases}\frac{\pi}{2^{2 s-1}} \sum_{l=0}^{j}\binom{2 s+1}{s-l} ; & \begin{array}{l}
k=2 n j, 2 n j+2, \ldots, 2 n(j+1)-2 \\
\\
2 \pi ;
\end{array} \tag{4.9}\\
& k=0,1, \ldots, s-1), \\
0 ; & \text { otherwise. }\end{cases}
$$

Remark 4.1 From (4.9) we conclude that $\bar{\gamma}_{n, k}^{(s)}>0$ for each even k, and, since $\sum_{l=0}^{s}\binom{2 s+1}{s-l}=2^{2 s}$ (cf. [15]), then

$$
\frac{\pi}{2^{2 s-1}}\binom{2 s+1}{s} \leq \bar{\gamma}_{n, k}^{(s)} \leq 2 \pi
$$

4.1 First type of error estimates

In general, the Chebyshev coefficients α_{k} in (3.1) are unknown. However, Elliot [3] describes a number of ways of estimating or bounding them. In particular, under our assumptions,

$$
\begin{equation*}
\left|\alpha_{k}\right| \leq \frac{2\left(\max _{z \in E_{\varrho}}|f(z)|\right)}{\varrho^{k}} \tag{4.10}
\end{equation*}
$$

Let

$$
h_{k}(t):=\sum_{n=1}^{+\infty} n^{k} t^{n-1} \quad(|t|<1)
$$

To derive its recurrence relation we have

$$
\begin{aligned}
h_{k}(t)-t h_{k}(t) & =\sum_{n=0}^{+\infty}(n+1)^{k} t^{n}-\sum_{n=1}^{+\infty} n^{k} t^{n} \\
& =1+\sum_{n=1}^{+\infty}\left[(n+1)^{k}-n^{k}\right] t^{n}=1+\sum_{n=1}^{+\infty}\left[\sum_{i=0}^{k-1}\binom{k}{i} n^{i}\right] t^{n} \\
& =1+t \sum_{i=0}^{k-1}\binom{k}{i} h_{i}(t)
\end{aligned}
$$

Hence

$$
h_{k}(t)=\frac{1}{1-t}\left[1+t \sum_{i=0}^{k-1}\binom{k}{i} h_{i}(t)\right], \quad k \geq 1
$$

Here, we consider the case $s=1$.
By using (4.3), we find

$$
\bar{\beta}_{n, k}^{(1)}= \begin{cases}8(-1)^{j}\binom{j+2}{2} ; & k=2 j n(j=0,1,2, \ldots) \\ 0 ; & \text { otherwise }\end{cases}
$$

From (4.9) we obtain

$$
\bar{\gamma}_{n, k}^{(1)}= \begin{cases}\frac{3 \pi}{2} ; & k=0,2, \ldots, 2 n-2 \tag{4.11}\\ 2 \pi ; & k=2 n, 2 n+2, \ldots \\ 0 ; & \text { otherwise }\end{cases}
$$

Using (3.9) and (3.11) we get

$$
\begin{aligned}
\varepsilon_{n, k}^{(1)} & =\frac{1}{4}\left[\frac{3 \pi}{2} \bar{\beta}_{n, 2 j n}^{(1)}+2 \pi \sum_{\overline{\bar{l}=2 l n}} \bar{\beta}_{n, \bar{l}}^{(1)}-\left(\frac{3 \pi}{2} \bar{\beta}_{n, 2(j-1) n}^{(1)}+2 \pi \sum_{\substack{\bar{l}=2 l n \\
l<j-1}} \bar{\beta}_{n, \bar{l}}^{(1)}\right)\right] \\
& =(-1)^{j} \pi\left(j^{2}+4 j+3\right)
\end{aligned}
$$

for $k=2 j n(j=0,1,2, \ldots)$ and $\varepsilon_{n, k}^{(1)}=0$, otherwise. Now, by using just obtained results and (3.10), (4.10), we have

$$
\begin{aligned}
\left|R_{n, 1}(f)\right| & =\left|\sum_{k=0}^{+\infty} \alpha_{4 n+k} \varepsilon_{n, k}^{(1)}\right|=\left|\sum_{j=0}^{+\infty} \alpha_{4 n+2 j n} \varepsilon_{n, 2 j n}^{(1)}\right| \\
& \leq \frac{2 \pi\left(\max _{z \in E_{\varrho}}|f(z)|\right)}{\varrho^{4 n}} \sum_{j=0}^{+\infty} \frac{j^{2}+4 j+3}{\varrho^{2 j n}}
\end{aligned}
$$

The sums $\sum_{j=0}^{+\infty} \frac{j^{l}}{\varrho^{2 j n}} \quad(l=0,1,2)$ can be calculated by using the method for $h_{l}(t)$ and putting $t=1 / \varrho^{2 n}$.

Therefore, we obtain the error estimate

$$
\begin{equation*}
\left|R_{n, 1}(f)\right| \leq 2 \pi\left(\max _{z \in E_{\varrho}}|f(z)|\right) \frac{3 \varrho^{2 n}-1}{\left(\varrho^{2 n}-1\right)^{3}} . \tag{4.12}
\end{equation*}
$$

For $s=0$ the error estimate has been obtained by Hunter [11] (see also Chawla and Jain [2]).

4.2 Second type of error estimates

In this subsection, we use (2.1) in order to derive some error estimates, which are different from the previous, as well as ones derived in [15]. It follows immediately from (2.1) that

$$
\begin{equation*}
\left|R_{n, s}(f)\right| \leq \bar{K}_{n, s}\left(E_{\varrho}\right)\left(\max _{z \in E_{\varrho}}|f(z)|\right) \tag{4.14}
\end{equation*}
$$

what is, in fact, (2.4) with $\Gamma \equiv E_{\varrho}$ and

$$
\begin{equation*}
\bar{K}_{n, s}\left(E_{\varrho}\right)=\frac{l\left(E_{\varrho}\right)}{2 \pi}\left(\max _{z \in E_{\varrho}}\left|K_{n, s}(z)\right|\right) . \tag{4.15}
\end{equation*}
$$

It is known that the ellipse has length $l\left(E_{\varrho}\right)=4 \varepsilon^{-1} E(\varepsilon)$, where ε is the eccentricity of E_{ϱ}, i. e., $\varepsilon=2 /\left(\varrho+\varrho^{-1}\right)$, and

$$
E(\varepsilon)=\int_{0}^{\pi / 2} \sqrt{1-\varepsilon^{2} \sin ^{2} \theta} d \theta
$$

is the complete elliptic integral of the second kind. This approach is used by, e. g., Gautschi and Varga [6] (see also [7]) in the case $s=0$, and recently extended to the case $s \in \mathbb{N}_{0}$ by the authors of this paper (cf. [15]).

Here, we follow a different approach (cf. [11]). Directly from (2.1) $\left(\Gamma \equiv E_{\varrho}\right)$ we obtain the error estimate

$$
\begin{equation*}
\left|R_{n, s}(f)\right| \leq L_{n, s}\left(E_{\varrho}\right)\left(\max _{z \in E_{\varrho}}|f(z)|\right) \tag{4.16}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{n, s}\left(E_{\varrho}\right)=\frac{1}{2 \pi} \oint_{E_{\varrho}}\left|K_{n, s}(z)\right||d z| \tag{4.17}
\end{equation*}
$$

and $K_{n, s}(z)$ is given by (2.2). Obviously,

$$
L_{n, s}\left(E_{\varrho}\right) \leq \bar{K}_{n, s}\left(E_{\varrho}\right)
$$

For $z=\frac{1}{2}\left(\varrho e^{i \theta}+\varrho^{-1} e^{-i \theta}\right)(4.17)$ can be represented in the form

$$
\begin{equation*}
L_{n, s}\left(E_{\varrho}\right)=\frac{1}{4 \pi} \int_{0}^{2 \pi} \frac{\left|\varrho_{n, s}(z)\right|\left(\varrho^{2}+\varrho^{-2}-2 \cos 2 \theta\right)^{1 / 2}}{\left|\pi_{n, s}(z)\right|^{2 s+1}} d \theta \tag{4.18}
\end{equation*}
$$

Here, we concentrate to the error estimates based on (4.18). This integral can be evaluated numerically by using a quadrature formula. However if $w(t)=w_{1}(t)$ we can obtain explicit expressions for $L_{n, s}\left(E_{\varrho}\right)$ or for their bounds. In this case (4.18) becomes

$$
\begin{equation*}
L_{n, s}\left(E_{\varrho}\right)=\frac{2^{2 s-1}}{\pi} \int_{0}^{2 \pi} \frac{\left|\varrho_{n, s}(z)\right|\left(\varrho^{2}+\varrho^{-2}-2 \cos 2 \theta\right)^{1 / 2}}{\left[\left(\varrho^{n}+\varrho^{-n}\right)^{2}-4 \sin ^{2} n \theta\right]^{(2 s+1) / 2}} d \theta \tag{4.19}
\end{equation*}
$$

By using (3.6) and (4.9) we obtain

$$
\begin{aligned}
\varrho_{n, s}(z)= & \frac{\pi}{2^{2 s-1}} \frac{1}{\xi^{n+1}}\left[\binom{2 s+1}{s}\left(1+\frac{1}{\xi^{2}}+\cdots+\frac{1}{\xi^{2 s n-2}}\right)\right. \\
& +\binom{2 s+1}{s-1}\left(\frac{1}{\xi^{2 n}}+\frac{1}{\xi^{2 n+2}}+\cdots+\frac{1}{\xi^{2 s n-2}}\right) \\
& +\cdots \\
& \left.+\binom{2 s+1}{1}\left(\frac{1}{\xi^{2(s-1) n}}+\frac{1}{\xi^{2(s-1) n+2}}+\cdots+\frac{1}{\xi^{2 s n-2}}\right)\right] \\
& +\frac{2 \pi}{\xi^{n+1}}\left(\frac{1}{\xi^{2 s n}}+\frac{1}{\xi^{2 s n+2}}+\cdots\right) .
\end{aligned}
$$

After a little computation we obtain (cf. [15, p. 6])

$$
\begin{equation*}
\varrho_{n, s}(z)=\frac{\pi}{2^{2 s-1}} \frac{1}{\xi^{n}\left(\xi-\xi^{-1}\right)} \sum_{l=0}^{s}\binom{2 s+1}{s-l} \frac{1}{\xi^{2 l n}} . \tag{4.20}
\end{equation*}
$$

Now, let $s=1$. From (4.20) we obtain

$$
\varrho_{n, 1}(z)=\frac{\pi}{2 \xi^{2 n}\left(\xi-\xi^{-1}\right)}\left(3 \xi^{n}+\xi^{-n}\right) .
$$

This gives

$$
\left|\varrho_{n, 1}(z)\right|=\frac{\pi\left(9 \varrho^{2 n}+\varrho^{-2 n}+6 \cos 2 n \theta\right)^{1 / 2}}{2 \varrho^{2 n}\left(\varrho^{2}+\varrho^{-2}-2 \cos 2 \theta\right)^{1 / 2}}
$$

By substitution $\left|\varrho_{n, 1}(z)\right|$ in (4.19) we get

$$
L_{n, 1}\left(E_{\varrho}\right)=\varrho^{-2 n} \int_{0}^{2 \pi} \frac{\left[\left(3 \varrho^{n}+\varrho^{-n}\right)^{2}-12 \sin ^{2} n \theta\right]^{1 / 2}}{\left[\left(\varrho^{n}+\varrho^{-n}\right)^{2}-4 \sin ^{2} n \theta\right]^{3 / 2}} d \theta
$$

i.e.,

$$
L_{n, 1}\left(E_{\varrho}\right)=\frac{4\left(3 \varrho^{n}+\varrho^{-n}\right)}{\varrho^{2 n}\left(\varrho^{n}+\varrho^{-n}\right)^{3}} \int_{0}^{\pi / 2} \frac{\left[1-\left(\sqrt{12} /\left(3 \varrho^{n}+\varrho^{-n}\right)\right)^{2} \sin ^{2} \theta\right]^{1 / 2}}{\left[1-\left(2 /\left(\varrho^{n}+\varrho^{-n}\right)\right)^{2} \sin ^{2} \theta\right]^{3 / 2}} d \theta
$$

The last expression enables us to obtain the following upper bound of $L_{n, 1}\left(E_{\varrho}\right)$

$$
L_{n, 1}\left(E_{\varrho}\right) \leq \frac{4\left(3 \varrho^{n}+\varrho^{-n}\right)}{\varrho^{2 n}\left(\varrho^{n}-\varrho^{-n}\right)^{3}} \int_{0}^{\pi / 2}\left[1-\left(\frac{\sqrt{12}}{3 \varrho^{n}+\varrho^{-n}}\right)^{2} \sin ^{2} \theta\right]^{1 / 2} d \theta
$$

i.e.,

$$
L_{n, 1}\left(E_{\varrho}\right) \leq \frac{4\left(3 \varrho^{n}+\varrho^{-n}\right)}{\varrho^{2 n}\left(\varrho^{n}-\varrho^{-n}\right)^{3}} E\left(\frac{\sqrt{12}}{3 \varrho^{n}+\varrho^{-n}}\right) .
$$

In a similar way we can obtain the error estimates for $s>1$, but they are very heavy.

References

[1] S. Bernstein - Sur les polynomes orthogonaux relatifs à un segment fini, J. Math. Pures Appl., vol. 9, 1930, pp. 127-177.
[2] M. M. Chawla and M. K. Jain - Error estimates for Gauss quadrature formulas for analytic functions, Math. Comp., vol. 22, 1968, pp. 82-90.
[3] D. Elliot - The evaluation and estimation of the coefficients in the Chebyshev series expansion of a function, Math. Comp., vol. 18, 1964, pp. 274-284.
[4] H. Engels - Numerical Quadrature and Cubature, Academic Press, London, 1980.
[5] W. Gautschi - On the remainder term for analytic functions of GaussLobatto and Gauss-Radau quadratures, Rocky Mountain J. Math., vol. 21, 1991, pp. 209-226.
[6] W. Gautschi, R. S. Varga - Error bounds for Gaussian quadrature of analytic functions, SIAM J. Numer. Anal., vol. 20, 1983, pp. 11701186.
[7] W. Gautschi, E. Tychopoulos, R. S. Varga - A note of the contour integral representation of the remainder term for a Gauss-Chebyshev quadrature rule, SIAM J. Numer. Anal., vol. 27, 1990, pp. 219-224.
[8] A. Ghizzetti, A. Ossicini - Quadrature Formulae, Akademie Verlag, Berlin, 1970.
[9] L. Gori, C. A. Micchelli - On weight functions which admit explicit Gauss-Turán quadrature formulas, Math. Comp., vol. 69, 1996, pp. 269-282.
[10] I. S. Gradshteyn, I. M. Ryzhik - Tables of Integrals, Series, and Products, Sixth Edition (A. Jeffrey and D. Zwillinger, eds.), Academic Press, San Diego, 2000.
[11] D. B. Hunter - Some error expansions for Gaussian quadrature, BIT, vol. 35, 1995, pp. 64-82.
[12] G. V. Milovanović - Quadratures with multiple nodes, power orthogonality, and moment-preserving spline approximation, in: W. Gautschi, F. Marcellan, L. Reichel (Eds.), Numerical analysis 2000, Vol. V, Quadrature and orthogonal polynomials. J. Comput. Appl. Math., vol. 127, 2001, pp. 267-286.
[13] G. V. Milovanović and M. M. Spalević - Quadrature formulae connected to σ-orthogonal polynomials, J. Comput. Appl. Math., vol. 140, 2002, pp. 619-637.
[14] G. V. Milovanović, M. M. Spalević - A note on density of the zeros of σ-orthogonal polynomials, Kragujevac J. Math., vol. 23, 2001, pp. 37-43.
[15] G. V. Milovanović, M. M. Spalević - Error bounds for Gauss-Turán quadrature formulae of analytic functions, Math. Comp. (to appear).
[16] Y.G. Shi - A kind of extremal problem of integration on an arbitrary measure, Acta Sci. Math. (Szeged), vol. 65, 1999, pp. 567-575.
[17] Y.G. Shi - Convergence of Gaussian quadrature formulas, J. Approx. Theory, vol. 105, 2000, pp. 279-291.
[18] A. Ossicini, M. R. Martinelli and F. Rosati - Funzioni caratteristiche e polinomi s-ortogonali, Rend. Mat., vol. 14, 1994, pp. 355-366.
[19] A. Ossicini and F. Rosati - Funzioni caratteristiche nelle formule di quadratura gaussiane con nodi multipli, Boll. Un. Mat. Ital., vol. 11, no.4, 1975, pp. 224-237.
[20] M. M. Spalević - Product of Turán quadratures for cube, simplex, surface of the sphere, $\bar{E}_{n}^{r}, E_{n}^{r^{2}}$, J. Comput. Appl. Math., vol. 106, 1999, pp. 99-115.
[21] M. M. Spalević - Calculation of Chakalov-Popoviciu quadratures of Radau and Lobatto type, ANZIAM J., vol. 43, no.3, 2002, pp. 429447.

