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Abstract In this paper a brief survey of multiple orthogonal polynomials defined
using orthogonality conditions spread out overr different measures are given. We
consider multiple orthogonal polynomials on the real line,as well as on the unit
semicircle in the complex plane. Such polynomials satisfy alinear recurrence rela-
tion of orderr +1, which is a generalization of the well known three-term recurrence
relation for ordinary orthogonal polynomials (the caser = 1). Method for the nu-
merical construction of multiple orthogonal polynomials by using the discretized
Stieltjes-Gautschi procedure are presented. Also, some applications of such orthog-
onal systems to numerical integration are given. A numerical example is included.

1 Introduction

Multiple orthogonal polynomials arise naturally in the theory of simultaneous ra-
tional approximation, in particular in Hermite-Padé approximation of a system ofr
(Markov) functions. A good source for information on Hermite-Padé approximation
is the book by Nikishin and Sorokin [23, Chapter 4], where themultiple orthogonal
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polynomials are called polyorthogonal polynomials. Othergood sources of infor-
mation are the surveys by Aptekarev [1] and de Bruin [5], as well as the papers by
Piñeiro [24], Sorokin [26–28] and Van Assche [30].

Historically, Hermite-Padé approximation was introduced by Hermite to prove
the transcendence of e. Multiple orthogonal polynomials can be used to give a con-
structive proof of irrationality and transcendence of certain real numbers (see [30]).

Multiple orthogonal polynomials are a generalization of orthogonal polynomials
in the sense that they satisfyr ∈ N orthogonality conditions. Letr ≥ 1 be an integer
and letw1,w2, . . . ,wr be r weight functions on the real line such that the support
of eachwi is a subset of an intervalEi . Let n = (n1,n2, . . . ,nr) be a vector ofr
nonnegative integers, which is called amulti-indexwith length

|n| = n1 +n2+ · · ·+nr .

There are two types of multiple orthogonal polynomials (see[32]).
1◦ Type I multiple orthogonal polynomials.
Here we want to find a vector of polynomials(An,1,An,2, . . . ,An,r) such that each

An,i is polynomial of degreeni −1 and the following orthogonality conditions hold:

r

∑
j=1

∫

E j

An, j x
kwj(x)dx = 0, k = 0,1,2, . . . , |n|−2.

2◦ Type II multiple orthogonal polynomials.
Type II multiple orthogonal polynomial is a monic polynomial Pn of degree|n|

which satisfies the following orthogonality conditions:
∫

E1

Pn(x)xkw1(x)dx = 0, k = 0,1, . . . ,n1−1, (1)
∫

E2

Pn(x)xkw2(x)dx = 0, k = 0,1, . . . ,n2−1, (2)

...∫

Er

Pn(x)xkwr(x)dx = 0, k = 0,1, . . . ,nr −1. (3)

The conditions (1)–(3) give|n| linear equations for the|n| unknown coefficients

ak,n of the polynomialPn (x) =
|n|
∑

k=0
ak,n xk, wherea|n|,n = 1. Since the matrix of co-

efficients of this system can be singular, we need some additional conditions on the
r weight functions to provide the uniqueness of the multiple orthogonal polynomial.

If the polynomialPn(x) is unique, thenn is normal index. If all indices are nor-
mal, then we have acomplete system.

For r = 1 in the both cases we have the ordinary orthogonal polynomials. In the
sequel we consider only the type II multiple orthogonal polynomials.

There are two distinct cases for which the type II multiple orthogonal polynomi-
als are given (see [32]).
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1. Angelesco systems– For this systems the intervalsEi , on which the weight
functions are supported, are disjoint, i.e.,Ei ∩E j = /0 for 1≤ i 6= j ≤ r.

2. AT systems– AT systems are such that all weight functions are supportedon the
same intervalE and the following|n| functions:w1(x),xw1(x), . . . ,xn1−1w1(x),w2(x),
xw2(x), . . . ,xn2−1w2(x), . . . ,wr(x),xwr (x), . . . ,xnr−1wr(x) form a Chebyshev system
onE for each multi-indexn.

The following two theorems have been proved in [32].

Theorem 1. In an Angelesco system the type II multiple orthogonal polynomial
Pn (x) factors into r polynomials∏r

j=1qn j (x), where each qn j has exactly nj zeros
on Ej .

Theorem 2. In an AT system the type II multiple orthogonal polynomial Pn(x) has
exactly|n| zeros on E. For the type I vector of multiple orthogonal polynomials, the
linear combination∑r

j=1An, j(x)wj (x) has exactly|n|−1 zeros on E.

For each of the weight functionswj , j = 1,2, . . . , r,

( f ,g) j =

∫

E j

f (x)g(x)wj (x)dx (4)

denotes the corresponding inner product off andg.

In the sequel byPn we denote the set of algebraic polynomials of degree at most
n, and byP the set of all algebraic polynomials.

The paper is organized as follows. Section 2 is devoted to recurrence relations
for some cases of type II multiple orthogonal polynomials. In Section 3 a numer-
ical procedure for construction of type II multiple orthogonal polynomials based
on the discretized Stieltjes-Gautschi procedure [8] are presented. In Section 4 we
transfer the concept of multiple orthogonality to the unit semicircle in the complex
plane. Special attention is devoted to the caser = 2, for which the coefficients of
the recurrence relation for multiple orthogonal polynomials on the semicircle are
expressed in terms of the coefficients of recurrence relation for the corresponding
type II multiple orthogonal (real) polynomials. Applications of multiple orthogonal-
ity to numerical integration are given in Section 5. Finally, in Section 6 a numerical
example is included.

2 Recurrence Relations

It is well known that orthogonal algebraic polynomials satisfy the three-term re-
currence relation (see [6], [9], [12]). Such a recurrence relation is one of the most
important piece of information for the constructive and computational use of or-
thogonal polynomials. Knowledge of the recursion coefficients allows the zeros of
orthogonal polynomials to be computed as eigenvalues of a symmetric tridiagonal
matrix, and with them the Gaussian quadrature rule, and alsoallows an efficient
evaluation of expansions in orthogonal polynomials.
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The type II multiple orthogonal polynomials with nearly diagonal multi-index
satisfy recurrence relation of orderr +1. Letn∈ N and write it asn = ℓr + j, with
ℓ = [n/r] and 0≤ j < r. Thenearly diagonal multi-indexs(n) corresponding ton is
given by

s(n) = (ℓ+1, ℓ+1, . . ., ℓ+1︸ ︷︷ ︸
j times

, ℓ,ℓ, . . . , ℓ︸ ︷︷ ︸
r− j times

).

Let us denote the corresponding type II multiple (monic) orthogonal polynomials
by Pn(x) = Ps(n)(x). Then, the following recurrence relation

xPm(x) = Pm+1(x)+
r

∑
i=0

am,r−iPm−i(x) , m≥ 0, (5)

holds, with initial conditionsP0(x) = 1 andPi(x) = 0 for i = −1,−2, . . . ,−r (see
[31]).

Settingm= 0,1, . . . ,n−1 in (5), we get

x




P0(x)
P1(x)

...
Pn−1(x)


= Hn




P0(x)
P1(x)

...
Pn−1(x)


+Pn(x)




0
...
0
1


 ,

i.e.,
HnPn(x) = xPn(x)−Pn(x)en, (6)

wherePn(x) =
[
P0(x) P1(x) . . . Pn−1(x)

]T
, en = [0 0 . . . 0 1]T , andHn is the

following lower (banded) Hessenberg matrix of ordern

Hn =




a0,r 1

a1,r−1 a1,r 1
...

...
.. .

. . .

ar,0 · · · ar,r−1 ar,r 1

ar+1,0 · · · ar+1,r−1 ar+1,r 1

...
...

.. .
. . .

an−2,0 · · · an−2,r−1 an−2,r 1

an−1,0 · · · an−1,r−1 an−1,r




.

This kind of matrix has been obtained also in construction oforthogonal polynomi-
als on the radial rays in the complex plane (see [15]).

Letxν ≡ x(n)
ν , ν = 1, . . . ,n, be the zeros ofPn(x). Then (6) reduces to the following

eigenvalue problem:
xνPn(xν) = HnPn(xν ).
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Thus,xν are eigenvalues of the matrixHn andPn(xν ) are the corresponding eigen-
vectors. According to (6) it is easy to obtain the determinant representationPn(x) =
det(xIn−Hn), whereIn is the identity matrix of the ordern.

For computing zeros ofPn(x) as the eigenvalues of the matrixHn we use the
EISPACK routine COMQR [25, pp. 277–284]. Notice that this routine needs an
upper Hessenberg matrix, i.e., the matrixHT

n . Also, the MATLAB or MATHEMATICA

could be used.
Therefore, the main problem in the construction of the type II multiple orthog-

onal polynomials in this way is computation of the recurrence coefficients in (5),
i.e., computation of entries of the Hessenberg matrixHn. For the simplest case of
multiple orthogonality, whenr = 2, for some classical weight functions (Jacobi,
Laguerre, Hermite) one can find explicit formulas for the recurrence coefficients
(see [30], [32], [3]). An effective numerical method for constructing the Hessenberg
matrixHn was given in [18].

3 Numerical Construction of Multiple Orthogonal Polynomials

In this section we describe the method for constructing the Hessenberg matrixHn,
presented in [18].

For the calculation of the recurrence coefficient we use somekind of the Stieltjes
procedure (cf. [8]), called thediscretized Stieltjes-Gautschi procedure. At first, we
express the elements ofHn in terms of the inner products1 (4), and then we use
the corresponding Gaussian rules to discretize these innerproducts. Of course, we
suppose that the type II multiple orthogonal polynomials with respect to the inner
products( · , ·)k, k = 1,2, . . . , r, given by (4), exist.

Taking ( · , ·) j+ℓr = ( · , ·) j , ℓ ∈ Z, for the inner products, the following result
holds (see [18, Theorem 4.2]).

Theorem 3.The type II multiple monic orthogonal polynomials{Pn}, with nearly
diagonal multi-index, satisfy the recurrence relation

Pn+1(x) = (x−an,r)Pn(x)−
r−1

∑
k=0

an,kPn−r+k(x), n≥ 0, (7)

where P0(x) = 1, Pi(x) = 0 for i = −1,−2, . . . ,−r,

an,0 =

(
xPn,P[(n−r)/r]

)
ν+1(

Pn−r ,P[(n−r)/r]

)
ν+1

and

1 Such formulas for coefficients of the three-term recurrencerelation for standard orthogonal poly-
nomials on the real line are known as Darboux formulas.
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an,k =

(
xPn−

k−1
∑

i=0
an,iPn−r+i,P[(n−r+k)/r]

)

ν+k+1(
Pn−r+k,P[(n−r+k)/r]

)
ν+k+1

, k = 1,2, . . . , r.

Here, we put n= ℓr + ν, whereℓ = [n/r] andν ∈ {0,1, . . . , r −1} ([t] denotes the
integer part of t).

We use alternatively recurrence relation (7) and given formulas for coefficients.
KnowingP0 we computea0,r , then knowinga0,r we computeP1, and then againa1,r

anda1,r−1, etc. Continuing in this manner, we can generate as many polynomials,
and therefore as many of the recurrence coefficients, as are desired.

All of the necessary inner products in the previous formulascan be computed
exactly, except for rounding errors, by using the Gauss-Christoffel quadrature rule
with respect to the corresponding weight function

∫

E j

g(t)wj(t)dt =
N

∑
ν=1

A(N)
j ,ν g
(
τ(N)

j ,ν
)
+Rj ,N(g), j = 1,2, . . . , r. (8)

Thus, for all calculations we use only the recurrence relation (7) for the type II
multiple orthogonal polynomials and the Gauss-Christoffel quadrature rules (8).

4 Multiple Orthogonal Polynomials on the Semicircle

Polynomials orthogonal on the semicircle have been introduced by Gautschi and
Milovanović in [11]. Multiple orthogonal polynomials on the semicircle, investi-
gated by Milovanović and Stanić in [19], are a generalization of orthogonal polyno-
mials on the semicircle in the sense that they satisfyr ∈ N orthogonality conditions.

We repeat some basic facts about polynomials orthogonal on the semicircle, and
then transfer the concept of multiple orthogonality to the semicircle.

Let w be a weight function, which is positive and integrable on theopen interval
(−1,1), though possibly singular at the endpoints, and which can beextended to
a functionw(z) holomorphic in the half discD+ = {z∈ C : |z| < 1, Im z > 0}.
Consider the following two inner products,

( f ,g) =

∫ 1

−1
f (x)g(x)w(x)dx, (9)

[ f ,g] =

∫

Γ
f (z)g(z)w(z)(iz)−1 dz=

∫ π

0
f
(
eiθ)g

(
eiθ)w

(
eiθ )dθ , (10)

whereΓ is the circular part of∂D+ and all integrals are assumed to exist, possibly
as appropriately defined improper integrals.

The inner product (9) is positive definite and therefore generates a unique set of
real orthogonal polynomials{pk} (pk is monic polynomial of degreek). The inner
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product (10) is not Hermitian and the existence of the corresponding orthogonal
polynomials, therefore, is not guaranteed.

A system of complex polynomials{πk} (πk is monic of degreek) is called
orthogonal on the semicircleif [πk,πℓ] = 0 for k 6= ℓ and [πk,πℓ] 6= 0 for k = ℓ,
k, ℓ = 0,1,2, . . ..

Gautschi, Landau and Milovanović in [10] have establishedthe existence of or-
thogonal polynomials{πk} assuming only that

Re [1,1] = Re
∫ π

0
w
(
eiθ)dθ 6= 0.

They have representedπn as a linear (complex) combination ofpn andpn−1, where
{pk} is the sequence of the corresponding ordinary orthogonal (real) polynomials
with respect to the inner product (9):

πn(z) = pn(z)− iθn−1pn−1(z), n≥ 0; p−1(x) = 0, p0(x) = 1.

Under certain conditions zeros of polynomials orthogonal on the semicircle lie in
D+ (see [10,11,13,14]).

Let Cε , ε > 0, denotes the boundary ofD+ with small circular parts of radiusε
and centers at±1 spared out. Letcε,±1 are the circular parts ofCε with centers at
±1 and radiiε. We assume thatw is such that

lim
ε↓0

∫

cε,±1

g(z)w(z)dz= 0, for all g∈ P,

the following equation holds

0 =

∫

Γ
g(z)w(z)dz+

∫ 1

−1
g(x)w(x)dx, g∈ P.

It is well known that the real (monic) polynomials{pk(z)}, orthogonal with re-
spect to the inner product (9), as well as the associated polynomials of the second
kind,

qk(z) =

∫ 1

−1

pk(z)− pk(x)
z−x

w(x)dx, k = 0,1,2, . . . ,

satisfy a three-term recurrence relation of the form

yk+1 = (z−ak)yk−bkyk−1, k = 0,1,2, . . . ,

whit initial conditionsy−1 = 0, y0 = 1 for {pk}, andy−1 = −1, y0 = 0 for {qk}.

Definition 1. For a positive integerr, a setW = {w1, . . . ,wr} is an admissible set
of weight functionsif for the setW there exist a unique system of the (real) type II
multiple orthogonal polynomials and for eachwj , j = 1, . . . , r, there exists a unique
system of (monic, complex) orthogonal polynomials relative to the inner product
(10).
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Let r ≥ 1 be an integer and letW = {w1,w2, . . . ,wr} be an admissible set of
weight functions. Letn = (n1,n2, . . . ,nr) be the multi-index with length|n| =
n1 + n2 + · · ·+ nr . Multiple orthogonal polynomial on the semicircle is the monic
polynomialΠn(z) of degree|n| such that it satisfies the following orthogonality
conditions:

∫

Γ
Πn(z)zk wj(z)(iz)−1dz= 0, k = 0,1, . . . ,n j −1, j = 1,2, . . . , r. (11)

For r = 1 we have the ordinary orthogonal polynomials on the semicircle.
Let use denote by

[ f ,g] j =
∫

Γ
f (z)g(z)wj (z)(iz)−1 dz=

∫ π

0
f
(
eiθ)g

(
eiθ )wj

(
eiθ)dθ , j = 1,2, . . . , r,

(12)
the corresponding complex inner products.

The equations

0 =

∫

Γ
g(z)wj(z)dz+

∫ 1

−1
g(x)wj(x)dx (13)

and ∫

Γ

g(z)wj (z)

iz
dz= πg(0)wj(0)+ i

∫
−

1

−1

g(x)wj (x)

x
dx (14)

hold for any polynomialg for all j = 1,2, . . . , r.
We consider only the nearly diagonal multi-indicess(n) and denote the corre-

sponding multiple orthogonal polynomial on the semicircleby Πn(z) = Πs(n)(z).
The corresponding type II multiple orthogonal polynomials(real){Pn} satisfy re-
currence relation (7). Also, it is easy to see that forj = 1,2, . . . , r associated poly-
nomials of the second kind

Q( j)
n (z) =

∫ 1

−1

Pn(z)−Pn(x)
z−x

wj(x)dx, n = 0,1, . . . ,

satisfy the same recurrence relation (but with different initial conditions).

Let us denote byµ ( j)
k , k∈ N0, j = 1,2, . . . , r, the moments for the inner products

(12) , i.e.,

µ ( j)
k = [zk,1] j =

∫

Γ
zkwj(z)(iz)−1 dz, j = 1,2, . . . , r, k∈ N0.

For zero moments we have

µ ( j)
0 =

∫

Γ

wj(z)
iz

dz= πwj(0)+ i
∫
−

1

−1

wj (x)
x

dx, j = 1,2, . . . , r . (15)

Let us also denote
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Dn =




Q(1)
n−1(0)− iµ (1)

0 Pn−1(0) · · · Q(1)
n−r(0)− iµ (1)

0 Pn−r(0)

Q(2)
n−1(0)− iµ (2)

0 Pn−1(0) · · · Q(2)
n−r(0)− iµ (2)

0 Pn−r(0)
...

...

Q(r)
n−1(0)− iµ (r)

0 Pn−1(0) · · · Q(r)
n−r(0)− iµ (r)

0 Pn−r(0)




. (16)

By using equations (13)–(14) for appropriately chosen polynomialsg and or-
thogonality conditions (11), one can prove existence and uniqueness of multiple or-
thogonal polynomials on the semicircle with additional conditions that all matrices
Dn are regular. The following theorem was proved in [21].

Theorem 4.Let r be a positive integer andW= {w1, . . . ,wr} be an admissible set of
weight functions. Assume in addition that all matrices Dn, given by(16), are regular.
Denoting by{Pk} the (real) type II multiple orthogonal polynomials, relative to the
set W, we have the following representation

Πk(z) = Pk(z)+ θk,1Pk−1(z)+ θk,2Pk−2(z)+ · · ·+ θk,rPk−r(z).

The coefficientsθk, j , j = 1,2, . . . , r, are the solution of the following system of linear
equations

r

∑
j=1

θk, j
(
Q(m)

k− j(0)− iµ (m)
0 Pk− j(0)

)
= iµ (m)

0 Pk(0)−Q(m)
k (0), m= 1,2, . . . , r.

The multiple orthogonal polynomials on the semicircle withnearly diagonal
multi-index satisfy the recurrence relation of orderr + 1, too. In a similar way as
in the real case, the recurrence coefficients and the multiple orthogonal polynomials
on the semicircle could be obtained by using some kind of the discretized Stieltjes-
Gautschi procedure. Taking[ f ,g] j+ℓr = [ f ,g] j for eachℓ∈Z, the following theorem
could be proved (see [19]).

Theorem 5.The multiple orthogonal polynomials on the semicircle{Πn}, with
nearly diagonal multi-index, satisfy the recurrence relation

Πn+1(z) = (z−αn,r)Πn(z)−
r−1

∑
k=0

αn,kΠn−r+k(x), n≥ 0,

whereΠ0(z) = 1, Π−1(z) = Π−2(z) = · · · = Π−r(z) = 0,

αn,0 =

[
zΠn,Π[(n−r)/r]

]
ν+1[

Πn−r ,Π[(n−r)/r]

]
ν+1

(17)

and
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αn,k =

[
zΠn−

k−1
∑

i=0
αn,iΠn−r+i ,Π[(n−r+k)/r]

]

ν+k+1[
Πn−r+k,Π[(n−r+k)/r]

]
ν+k+1

, k = 1,2, . . . , r. (18)

Here, we put n= ℓr + ν, whereℓ = [n/r] andν ∈ {0,1, . . . , r −1} ([t] denotes the
integer part of t).

In order to apply the previous theorem, one has to calculate all of the inner prod-
ucts (17)–(18), i.e., the integrals of the following type

∫
Γ zjΠl (z)wk(z)(iz)−1dz. For

j ≥ 1, because of (13), these integrals could be calculated exactly, except for round-
ing errors, by using the corresponding Gaussian quadratures. For j = 0 one has

∫

Γ

Πl (z)wk(z)dz
iz

= µ (k)
0 Πl (0)+ i

∫ 1

−1

Πl (x)−Πl (0)

x
wk(x)dx,

and the corresponding Gaussian quadratures and (15) could be used.
Knowing the recurrence coefficients we form a complex lower banded Hessen-

berg matrixHn as in the real case. The zeros of the multiple orthogonal polynomials
on the semicircle are the eigenvalues of the complex Hessenberg matrixHn.

4.1 Case r = 2

Let W = {w1,w2} be an admissible set of weight functions. The type II (real) mul-
tiple orthogonal polynomials satisfy the following recurrence relation

Pk+1(x) = (x−bk)Pk(x)−ckPk−1(x)−dkPk−2(x), k≥ 0, (19)

with initial conditionsP0(x) = 1, P−1(x) = P−2 = 0. The multiple orthogonal poly-
nomials on the semicircle satisfy the following recurrencerelation

Πk+1(z) = (z−βk)Πk(z)− γkΠk−1(z)− δkΠk−2(z), k≥ 0, (20)

with initial conditionsΠ0(z) = 1, Π−1(z) = Π−2(z) = 0.
Using Theorem 4 fork≥ 2 we have the following equation

Πk(z) = Pk(z)+ θk,1Pk−1(z)+ θk,2Pk−2(z), (21)

whereθk,1 andθk,2 are solution of the following system of linear equations

θk,1
(
Q(1)

k−1(0)− iµ (1)
0 Pk−1(0)

)
+ θk,2

(
Q(1)

k−2(0)− iµ (1)
0 Pk−2(0)

)

= iµ (1)
0 Pk(0)−Q(1)

k (0),

θk,1
(
Q(2)

k−1(0)− iµ (2)
0 Pk−1(0)

)
+ θk,2

(
Q(2)

k−2(0)− iµ (2)
0 Pk−2(0)

)

= iµ (2)
0 Pk(0)−Q(2)

k (0).
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Relations betweenθk,1, θk,2 and recurrence coefficientsbk, ck, dk were derived in
[21]:

θ1,1 = b0−
µ (1)

1

µ (1)
0

, θ2,1 = b0 +b1−
µ (1)

0 µ (2)
2 − µ (1)

2 µ (2)
0

µ (1)
0 µ (2)

1 − µ (1)
1 µ (2)

0

,

θk,1 = bk−1−
dk−1

θk−1,2
, k≥ 3,

θ2,2 = c1 +b2
0−b0

µ (1)
0 µ (2)

2 − µ (1)
2 µ (2)

0

µ (1)
0 µ (2)

1 − µ (1)
1 µ (2)

0

+
µ (1)

1 µ (2)
2 − µ (1)

2 µ (2)
1

µ (1)
0 µ (2)

1 − µ (1)
1 µ (2)

0

,

θk,2 = ck−1−dk−1
θk−1,1

θk−1,2
, k≥ 3.

Also, in [21], the recurrence coefficientsβk, γk andδk were given as functions ofbk,
ck, dk, θk,1 andθk,2:

β0 = b0−θ1,1,

β1 = b1+ θ1,1−θ2,1, γ1 = c1 + θ1,1b0−θ2,2−β1θ1,1,

γ2 = θ2,2 + θ2,1(b1−θ2,1), δ2 = d2− γ2θ1,1−β2θ2,2 +c1θ2,1 +b0θ2,2,

δ3 = θ3,2(b1−θ2,1),

βk = θk,1 +
dk

θk,2
, γk = θk,2 +dk−1

θk,1

θk−1,2
, δk = dk−2

θk,2

θk−2,2
, k≥ 4.

5 Applications of Multiple Orthogonality to Numerical
Integration

5.1 An Optimal Set of Quadrature Rules

Starting with a problem that arise in the evaluation of computer graphics illumina-
tion models, Borges [4] has examined the problem of numerically evaluating a set
of r definite integrals taken with respect to distinct weight functions, but related to a
common integrand and interval of integration. For such a problem it is not efficient
to use a set ofr Gauss-Christoffel quadrature rules, because valuable information is
wasted.

Borges has introduced a performance ratio, defined as:

R=
Overall degree of precision+1
Number of integrand evaluation

.

Taking the set ofr Gauss-Christoffel quadrature rules, one hasR= 2/r and, hence,
R< 1 for all r > 2.
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If we select a set ofn distinct nodes, common for all quadrature rules, weight
coefficients for each ofr quadrature rules can be chosen in such a way thatR= 1.
Since the selection of nodes is arbitrary, the quadrature rules may not be the best
possible. The aim is to find an optimal set of nodes, by simulating the development
of the Gauss-Christoffel quadrature rules.

Let us denote byW = {w1,w2, . . . ,wr} an AT system. Following [4, Definition 3],
we introduce the following definition.

Definition 2. Let W be an AT system (the weight functionswj , j = 1,2, . . . , r, are
supported on the intervalE), n = (n1,n2, . . . ,nr) be a multi-index, andn= |n|. A set
of quadrature rules of the form

∫

E
f (x)wj (x)dx ≈

n

∑
ν=1

A j ,ν f (xν ), j = 1,2, . . . , r, (22)

is an optimal set with respect to(W,n) if and only if the weight coefficients,A j ,ν ,
and the nodes,xν , satisfy the following equations:

n

∑
ν=1

A j ,ν x
m+n j−1
ν =

∫

E
xm+n j−1wj (x)dx, m= 0,1, . . . ,n; j = 1,2, . . . , r.

The next generalization of fundamental theorem of Gauss-Christoffel quadrature
rules holds (see [18] for the proof).

Theorem 6.Let W be an AT system,n = (n1,n2, . . . ,nr), n = |n|. The quadrature
rules(22) form an optimal set with respect to(W,n) if and only if

1◦ they are exact for all polynomials of degree less than or equal to n−1;
2◦ the polynomial q(x) = ∏n

ν=1(x− xν) is the type II multiple orthogonal poly-
nomial Pn with respect to W.

Remark 1.All zeros of the type II multiple orthogonal polynomialPn are distinct
and located in the intervalE (Theorem 2).

For r = 1 in Definition 2 we have the Gauss-Christoffel quadrature rule.

According to Theorem 6, the nodes of the optimal set of quadrature rules (of
Gaussian type) with respect to(W,n) are the zeros of the type II multiple orthogonal
polynomialPn with respect to the given AT systemW. When the nodes are known,
the weight coefficientsA j ,ν , j = 1,2, . . . , r, ν = 1,2, . . . ,n, can be obtained as the
solutions of the following Vandermonde systems of equations

V(x1,x2, . . . ,xn)




A j ,1

A j ,2
...

A j ,n


=




µ ( j)
0

µ ( j)
1
...

µ ( j)
n−1




, j = 1,2, . . . , r,

where
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µ ( j)
ν =

∫

E
xν wj(x)dx, j = 1,2, . . . , r, ν = 0,1, . . . ,n−1.

Each of these Vandermonde systems always has the unique solution, because the
zeros of the type II multiple orthogonal polynomialPn are distinct.

For the case of the nearly diagonal multi-indicess(n) we can compute the nodes
xν , ν = 1,2, . . . ,n, of the Gaussian type quadrature rules as eigenvalues of thecorre-
sponding banded Hessenberg matrixHn. Then, from the corresponding recurrence
relation, it follows that the eigenvector associated withxν is given byPn(xν ). We
can use this fact to compute the weight coefficientsA j ,ν by requiring that each rule
correctly generate the firstn modified moments.

Let us denote by
Vn =

[
Pn(x1) Pn(x2) . . . Pn(xn)

]

the matrix of the eigenvectors ofHn, each normalized so that the first component is
equal to 1. Then, the weight coefficientsA j ,ν can be obtained by solving systems of
linear equations

Vn




A j ,1

A j ,2
...

A j ,n


=




µ∗( j)
0

µ∗( j)
1
...

µ∗( j)
n−1




, j = 1,2, . . . , r,

where

µ∗( j)
ν =

∫

E
Pν(x)wj (x)dx, j = 1,2, . . . , r; ν = 0,1, . . . ,n−1,

are modified moments,Pν = Ps(ν). All modified moments can be computed exactly,
except for rounding errors, by using the Gauss-Christoffelquadrature rules with
respect to the corresponding weight functionwj , j = 1,2, . . . r.

In the same way as in the real case, we can generate the optimalset of quadrature
rules ∫ π

0
f
(
eiθ)wj

(
eiθ)dθ ≈

n

∑
ν=1

σ j ,ν f (ζν ), j = 1,2, . . . , r,

where for eachwj , j = 1,2, . . . , r, the corresponding quadrature is exact for all poly-
nomials of degree less than or equal ton+ n j −1. The nodes of such optimal set
of quadratures are zeros of the multiple orthogonal polynomial on the semicircle
Πn(z), i.e., in the case of the nearly diagonal multi-index, nodesare the eigenvalues
of the Hessenberg matrixHn. Using the corresponding eigenvectors we obtain the
weight coefficients in a similar way as in the real case.
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5.2 An Optimal Set of Quadrature Rules with Preassigned Nodes

Let W = {w1,w2, . . . ,wr} be an AT system. Following Definition 2 and ordinary
quadrature rules of Gaussian type with preassigned abscissas (see, e.g., [7, Subsec-
tion 2.2.1]) we introduce the following definition (see [20]).

Definition 3. Let W be an AT system (the weight functionswj , j = 1,2, . . . , r, are
supported on the intervalE), n = (n1,n2, . . . ,nr) be a multi-index,n = |n|. A set of
quadrature rules of the form:

∫

E
f (x)wj (x)dx ≈

k

∑
i=1

a j ,i f (yi)+
n

∑
ν=1

A j ,ν f (xν ), j = 1,2, . . . , r, (23)

where the nodesyi ∈ E, i = 1,2, . . . ,k, are fixed and prescribed in advance, is called
an optimal set of quadrature rules with preassigned nodes{yi}k

i=1 with respect to
(W,n) if and only if the weight coefficients,a j ,i,A j ,ν , and the nodes,xν , satisfy the
following equations:

k

∑
i=1

a j ,i y
m+n j+k−1
i +

n

∑
ν=1

A j ,ν x
m+n j +k−1
ν =

∫

E
xm+n j +k−1wj (x)dx, m= 0,1, . . . ,n;

for j = 1,2, . . . , r.

For the set of preassigned nodes{yi}k
i=1 we introduces(x) as a polynomial of

degreek, with zeros atyi , i = 1,2, . . . ,k. Let us denote

W̃ = {w̃1,w̃2, . . . ,w̃r}, w̃j(x) = s(x)wj (x), j = 1,2, . . . , r.

Theorem 7.Let W be an AT system,n = (n1,n2, . . . ,nr), n = |n|. Suppose that for
preassigned nodes,{yi}k

i=1, W̃ is also AT system. The set of quadrature rules(23)
form the optimal set with preassigned nodes{yi}k

i=1 with respect to(W,n) if and
only if:

1◦ they are exact for all polynomials of degree less than or equal to n+k−1;
2◦ the polynomial q(x)= ∏n

ν=1(x−xν) is the type II multiple orthogonal polynomial
Pn with respect toW̃ .

Proof. Let us suppose first that the quadrature rules (23) form the optimal set with
preassigned nodes{yi}k

i=1 with respect to(W,n). In order to prove 1◦ we note that
for eachj = 1,2, . . . , r, the corresponding quadrature rule (23) is exact for all poly-
nomials fromPn+n j+k−1 and then it is exact for those fromPn+k−1. To prove 2◦,
for j = 1,2, . . . r, we assume thatp j(x) ∈ Pn j−1. Then,q(x)p j(x)s(x) ∈ Pn+n j+k−1.
Since the corresponding quadrature rule is exact for all such polynomials, it follows
that

∫

E
q(x)p j(x)s(x)wj (x)dx =

k

∑
i=1

a j ,iq(yi)p j(yi)s(yi)+
n

∑
ν=1

A j ,νq(xν)p j(xν )s(xν).
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Sinces(yi) = 0 for i = 1,2, . . . ,k andq(xν) = 0 for ν = 1,2, . . . ,n, the both sums on
the right hand side in the previous equation are identicallyzero. Thus, we have

∫

E
q(x)p j(x)s(x)wj (x)dx = 0, j = 0,1, . . . , r,

and 2◦ follows.

Let us now suppose that for quadrature rules (23) 1◦ and 2◦ hold.
For j = 1,2, . . . , r, let t j(x) be a polynomial fromPn+n j+k−1. We can writet j(x) =

u j(x) ·q(x)s(x)+v(x), whereu j(x) ∈ Pn j−1 andv(x) ∈ Pn+k−1. It is easy to see that

t j(yi) = v(yi), i = 1,2, . . . ,k, t j(xν) = v(xν), ν = 1,2, . . . ,n. (24)

Then, we obtain
∫

E
t j(x)wj (x)dx =

∫

E
[u j(x)q(x)s(x)+v(x)]wj (x)dx

=

∫

E
q(x)u j(x)s(x)wj (x)dx+

∫

E
v(x)wj (x)dx.

According to 2◦ we have
∫

E q(x)u j(x)s(x)wj (x)dx = 0 and, therefore,

∫

E
t j(x)wj (x)dx =

∫

E
v(x)wj (x)dx.

Sincev(x) ∈ Pn+k−1, it follows from 1◦ that

∫

E
v(x)wj (x)dx =

k

∑
i=1

a j ,iv(yi)+
n

∑
ν=1

A j ,νv(xν)

and hence, using (24), we obtain

∫

E
t j(x)wj (x)dx =

k

∑
i=1

a j ,iv(yi)+
n

∑
ν=1

A j ,νv(xν)

=
k

∑
i=1

a j ,it j(yi)+
n

∑
ν=1

A j ,ν t j(xν).

This proves that for eachj = 1,2, . . . , r, the corresponding quadrature rule is exact
for all polynomials of degree≤ n+n j +k−1. ⊓⊔

According to Theorem 7, the nodesxν , ν = 1,2, . . . ,n, of the optimal set of
quadrature rules with preassigned nodes (23) are the zeros of the type II multiple
orthogonal polynomialPn with respect to the AT system̃W. In the case of nearly di-
agonal multi-index we use the discretized Stieltjes–Gautschi procedure to compute
those zeros. When the nodes are known, then forj = 1,2, . . . , r we can choose the
weight coefficientsa j ,i , i = 1,2, . . . ,k andA j ,ν , ν = 1,2, . . . ,n, such that they satisfy
the following Vandermonde system of equations
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V(y1, . . . ,yk,x1, . . . ,xn)




a j ,1
...

a j ,k

A j ,1
...

A j ,n




=




µ ( j)
0

µ ( j)
1
...

µ ( j)
n+k−1




, j = 1,2, . . . , r, (25)

where

µ ( j)
i =

∫

E
xi wj (x)dx, j = 1,2, . . . , r; i = 0,1, . . . ,n+k−1,

are moments which can be computed exactly, except for rounding errors, by using
the Gauss–Christoffel quadrature rules with respect to thecorresponding weight
functionwj , j = 1,2, . . . r.

Each of Vandermonde systems (25) has a unique solution if allof the preassigned
nodes are distinct from the zeros of type II multiple orthogonal polynomialPn with
respect tõW. This is always satisfied in cases when the preassigned nodesare at the
end points of the intervalE, i.e., in the case of quadrature rules of Gauss-Radau or
Gauss-Lobatto type.

5.3 Connections with Generalized Birkhoff-Young Quadrature
Rules

In 1950 Birkhoff and Young [2] proposed a quadrature formulaof the form

∫ z0+h

z0−h
f (z)dz≈ h

15

{
24f (z0)+4

[
f (z0+h)+ f (z0−h)

]
−
[
f (z0+ ih)+ f (z0− ih)

]}

for numerical integration over a line segment in the complexplane, wheref (z)
is a complex analytic function in

{
z : |z− z0| ≤ r

}
and |h| ≤ r. This five point

quadrature formula is exact for all algebraic polynomials of degree at most five and
for its errorRBY

5 ( f ) can be proved the following estimate [33] (see also Davis and
Rabinowitz [7, p. 136])

|RBY
5 ( f )| ≤ |h|7

1890
max
z∈S

| f (6)(z)|,

whereSdenotes the square with verticesz0 + ikh, k = 0,1,2,3.
Without loss of generality the previous quadrature rule canbe considered over

[−1,1] for analytic functions in the unit disk
{

z : |z| ≤ 1
}

, so that it becomes

∫ 1

−1
f (z)dz=

16
15

f (0)+
4
15

[
f (1)+ f (−1)

]
− 1

15

[
f (i)+ f (−i)

]
+R5( f ). (26)
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In 1978 Tošić [29] obtained a significant improvement of (26) in the form

∫ 1

−1
f (z)dz = A f(0)+

1
6

(
7
5

+

√
7
3

)
[
f (r)+ f (−r)

]

+
1
6

(
7
5
−
√

7
3

)
[

f (ir)+ f (−ir)
]
+RT

5 ( f ),

wherer = 4
√

3/7 and

RT
5 ( f ) =

1
793800

f (8)(0)+
1

61122600
f (10)(0)+ · · · .

This formula was extended by Milovanović and D- ord-ević [17] to the following
quadrature formula of interpolatory type

∫ 1

−1
f (z)dz = A f(0)+C11

[
f (r1)+ f (−r1)

]
+C12

[
f (ir1)+ f (−ir1)

]

+ C21
[
f (r2)+ f (−r2)

]
+C22

[
f (ir2)+ f (−ir2)

]
+R9( f ; r1, r2),

where 0< r1 < r2 < 1. They proved that for

r1 = r∗1 =
4

√
63−4

√
114

143
and r2 = r∗2 =

4

√
63+4

√
114

143
,

this formula has the algebraic degree of precisionp = 13, with the error-term

R9( f ; r∗1, r
∗
2) =

1
28122661066500

f (14)(0)+ · · · ≈ 3.56·10−14f (14)(0).

In this subsection we consider a kind of generalized Birkhoff-Young quadrature
formulas and give a connection with multiple orthogonal polynomials (cf. [16]). We
introduceN-point quadrature formula for weighted integrals of analytic functions in
the unit disc

{
z : |z| ≤ 1

}
,

I( f ) :=
∫ 1

−1
f (z)w(z)dz= QN( f )+RN( f ),

wherew : (−1,1)→ R+ is an even positive weight function, for which all moments
µk =

∫ 1
−1zkw(z)dz, k = 0,1, . . ., exist. For a given fixed integerm≥ 1 and for each

N ∈ N, we putN = 2mn+ ν and define the node polynomial

ΩN(z) = zνωn,ν(z2m) = zν
n

∏
k=1

(z2m− rk), 0 < r1 < · · · < rn < 1, (27)

wheren = [N/2m] andν ∈ {0,1, . . . ,2m−1}.
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Now we consider the interpolatory quadrature ruleQN of the form

QN( f ) =
ν−1

∑
j=0

Cj f ( j)(0)+
n

∑
k=1

m

∑
j=1

Ak, j
[

f
(
xke

iθ j
)
+ f
(
−xke

iθ j
)]

,

where

xk = 2m
√

rk, k = 1, . . . ,n; θ j =
( j −1)π

m
, j = 1, . . . ,m.

If ν = 0, the first sum inQN( f ) is empty.
Following [16] we can prove the next result:

Theorem 8.Let m be a fixed positive integer and w be an even positive weight
function w on(−1,1), for which all momentsµk =

∫ 1
−1zkw(z)dz, k≥ 0, exist. For

any N∈N there exists a unique interpolatory quadrature rule QN( f ) with a maximal
degree of exactness dmax = 2(m+1)n+s, where

n =

[
N
2m

]
, ν = N−2mn, s=

{
ν −1, ν even,

ν, ν odd.
(28)

The node polynomial(27) is characterized by the following orthogonality relations

∫ 1

−1
z2k+s+1ωn,ν(z2m)w(z)dz= 0, k = 0,1, . . . ,n−1. (29)

The conditions (29) can be expressed in the form

∫ 1

−1
p2k(z)z

s+1ωn,ν(z2m)w(z)dz= 0, k = 0,1, . . . ,n−1,

where{pk}k∈N0 is a system of polynomials orthogonal with respect to the weightw
on (−1,1).

The case with the Chebyshev weight of the first kindw(z) = 1/
√

1−z2 andm= 2
was recently considered by Milovanović, Cvetković and Stanić [22]. In that case the
previous conditions reduce to

(
T2k,z

s+1pn,ν(z4)
)

=

∫ 1

−1

T2k(z)zs+1pn,ν(z4)√
1−z2

dz= 0, k = 0,1. . . ,n−1,

whereTk is the Chebyshev polynomial of the first kind of degreek. The correspond-
ing quadrature rules are

Q4n+ν( f ) =
ν−1

∑
j=0

Cj f ( j)(0)+
n

∑
k=1

{
Ak
[

f (xk)+ f (−xk)
]
+Bk

[
f (ixk)+ f (−ixk)

]}
,

whereν = 0,1,2,3. Forν = 0, the first sum on the right-hand side is empty. Also,
in order to haveQ4n+ν( f ) = I( f ) = 0 for f (z) = z, it must beC1 = 0, so that
Q4n+1( f ) ≡ Q4n+2( f ).



Multiple Orthogonality and Applications in Numerical Integration 19

The parameters of the quadrature formulaQ4n+ν( f ) as well as the corresponding
maximal degree of exactnessd = 6n+ s, wheres is defined by (28), are presented
in Table 1 forn = 1 andν = 0,1,2,3.

Table 1 Parameters and the maximal degree of exactness of the generalized Birkhoff-Young-
Chebyshev quadrature formulaQ4+ν( f ) for ν = 0,1,2,3

ν x1 A1 B1 C0 C2 d

0 4

√
3
8

π
2

(
1
2

+
1√
6

)
π
2

(
1
2
− 1√

6

)
5

1,2 4

√
5
8

3+
√

10
20

π
3−

√
10

20
π

2π
5

7

3
1
2

4

√
35
3

3(21+2
√

105)
490

π
3(21−2

√
105)

490
π

17π
35

π
28

9

By substitutionz2 = t, the orthogonality conditions (29) can be expressed in the
form ∫ 1

0
tkωn,ν(tm)ts/2w(

√
t)dt = 0, k = 0,1. . . ,n−1.

This means that the polynomialt 7→ ωn,ν(tm) of degreemn is orthogonal toPn−1

with respect to the weight functionts/2w(
√

t) on (0,1), and it can be interpreted
in terms of multiple orthogonal polynomials (see Milovanović [16]). Namely, these
conditions are equivalent to

∫ 1

0
tk/mpn,ν(t)t(s+2)/(2m)−1w(t1/(2m))dt = 0, k = 0,1, . . . ,n−1.

Puttingk = mℓ+ j −1, ℓ = [k/m], we get for eachj = 1, . . . ,m,

∫ 1

0
tℓpn,ν(t)wj(t)dt = 0, ℓ = 0,1. . . ,n j −1,

where

wj (t) = t(s+2 j)/(2m)−1w(t1/(2m)) and n j = 1+

[
n− j

m

]
.

Notice that these weight functions, defined on the same interval E1 = E2 = · · · =
Em = E = (0,1), can be expressed in the formwj(t) = t( j−1)/mw1(t), j = 1, . . . ,m,
wherew1(t) = t(s+2)/(2m)−1w(t1/(2m)). Since the Müntz system

{
tk+( j−1)/m}, k = 0,1, . . . ,n j −1; j = 1, . . . ,m,

is a Chebyshev system on[0,∞), and also onE = (0,1), andw1(t) > 0 on E, we
conclude that{wj , j = 1, . . . ,m} is an AT system onE.
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Therefore, according to Theorem 2, the unique type II multiple orthogonal poly-
nomialωn,ν(t) = Pn(t) has exactly

|n| :=
m

∑
j=1

n j =
m

∑
j=1

(
1+

[
n− j

m

])
= n

zeros in(0,1). Thus, we have the following result [16]:

Theorem 9.Under conditions of Theorem8, for any N∈ N there exists a unique
interpolatory quadrature rule QN( f ), with a maximal degree of exactness

dmax = 2(m+1)n+s,

if and only if the polynomialωn,ν(t) is the type II multiple orthogonal polynomial
Pn(t), with respect to the weights wj(t) = t(s+2 j)/(2m)−1w(t1/(2m)), with

n j = 1+

[
n− j

m

]
, j = 1, . . . ,m.

6 Numerical Example

As an example we consider the type II multiple orthogonal Jacobi polynomials, i.e.,
the type II multiple orthogonal polynomials with respect toan AT system consisting
of Jacobi weight functions on[−1,1] with different singularities at−1 and the same
singularity at 1. Weight functions are

wj(x) = (1−x)α(1+x)β j , j = 1,2, . . . , r,

whereα,β j > −1, j = 1,2, . . . , r, andβi −βl /∈ Z wheneveri 6= l .
In Table 2 the coefficients of recurrence relation (7) for multiple orthogonal Ja-

cobi polynomials in the caser = 3, α = 1/2, β1 = −1/4, β2 = 1/4, β3 = 1 for
n≤ 16 are given (numbers in parentheses denote decimal exponents). The nodesxν
and the weightsA j ,ν , ν = 1, . . . ,16, j = 1,2,3, of the corresponding optimal set of
quadrature rules (22) are given in Table 3.
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Table 2 Recursion coefficientsan,k, k= 0,1, . . . , r, for the type II multiple orthogonal Jacobi poly-
nomials withr = 3, α = 1/2, β1 = −1/4, β2 = 1/4, β3 = 1; n≤ 16

n an,3 an,2

0 −3.333333333333333(−1)
1 −1.282051282051282(−1) 2.735042735042735(−1)
2 −8.082010868388577(−2) 2.661439536886072(−1)
3 −1.797818980050774(−1) 2.623762626705582(−1)
4 −1.559462948426531(−1) 2.653111297708491(−1)
5 −1.239638179278716(−1) 2.659979011724685(−1)
6 −1.709146651380284(−1) 2.654960405557197(−1)
7 −1.579012355168128(−1) 2.662346749483896(−1)
8 −1.359869263770880(−1) 2.664756863684053(−1)
9 −1.669363956328833(−1) 2.662496940945655(−1)
10 −1.580814662624477(−1) 2.665641681228860(−1)
11 −1.415386037831715(−1) 2.666771188543775(−1)
12 −1.646602203100053(−1) 2.665436153306013(−1)
13 −1.579776557002493(−1) 2.667136879056348(−1)
14 −1.447181043954951(−1) 2.667770009974078(−1)
15 −1.631843805063865(−1) 2.666880187224645(−1)
16 −1.578284743344368(−1) 2.667934513861474(−1)

n an,1 an,0

2 2.970182155702518(−2)
3 1.746702080553980(−2) −1.086753955083950(−3)
4 4.394216071462117(−2) 7.836954608420134(−4)
5 3.763075042610465(−2) 3.283125040895112(−3)
6 2.909135291014223(−2) 9.936110019727833(−4)
7 4.156697542465302(−2) 1.563768261907128(−3)
8 3.808465719477277(−2) 2.779000545083734(−3)
9 3.222685629651563(−2) 1.386312233788444(−3)
10 4.046385429052276(−2) 1.739912682414390(−3)
11 3.809384444106908(−2) 2.551616250383902(−3)
12 3.367302798492897(−2) 1.555345369944956(−3)
13 3.983305940039197(−2) 1.813811205210830(−3)
14 3.804538508869144(−2) 2.424240420958617(−3)
15 3.450289136608302(−2) 1.649497148723416(−3)
16 3.942565410008006(−2) 1.853693596062819(−3)
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Table 3 The parameters of the optimal set of quadrature rules in the case of AT system of Jacobi
weights forr = 3, α = 1/2, β1 = −1/4, β2 = 1/4, β3 = 1; n = 16

ν xν A1,ν

1 −9.991207278514688(−1) 2.593845860971087(−2)
2 −9.903618344136677(−1) 7.241932746868121(−2)
3 −9.638312475017886(−1) 1.232021800649184(−1)
4 −9.114418918738332(−1) 1.705746075613651(−1)
5 −8.280210844814640(−1) 2.096867833494312(−1)
6 −7.115498578342734(−1) 2.372180134962362(−1)
7 −5.631228057882331(−1) 2.511227240543505(−1)
8 −3.867448648543452(−1) 2.506499390258389(−1)
9 −1.889812469123731(−1) 2.363793559115719(−1)
10 2.346960814946570(−1) 1.750234363552845(−1)
11 2.153170148057211(−2) 2.101750909061207(−1)
12 4.396510791687633(−1) 1.347552229954631(−1)
13 6.255191622587539(−1) 9.367498172796770(−2)
14 7.821521528902294(−1) 5.613339333990859(−2)
15 9.008275402581413(−1) 2.608777198579168(−2)
16 9.748476093398128(−1) 6.697740217113879(−3)

ν A2,ν A3,ν

1 7.595267817320088(−4) 3.896535630665977(−6)
2 7.109430002756949(−3) 2.187023588317833(−4)
3 2.343071830873815(−2) 1.943281045595175(−3)
4 5.076081012916438(−2) 8.240428332930785(−3)
5 8.695782331878246(−2) 2.322282583304115(−2)
6 1.274039941410160(−1) 5.014597864881742(−2)
7 1.659837991885244(−1) 8.919391597730677(−2)
8 1.962854916209727(−1) 1.360251129413198(−1)
9 2.128751628357952(−1) 1.819274220554127(−1)
10 1.944805801244912(−1) 2.277961048571476(−1)
11 2.124257539351905(−1) 2.158470188824615(−1)
12 1.616866751974687(−1) 2.125040277473365(−1)
13 1.194317136600792(−1) 1.719347786751889(−1)
14 7.493654857422641(−2) 1.155852112758036(−1)
15 3.596734227391774(−2) 5.822578930636818(−2)
16 9.412285520984374(−3) 1.567997205810892(−2)
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5. De Bruin, M.G.: Simultaneous Padé approximation and orthogonality. In C. Brezinski, A.

Draux, A.P. Magnus, P. Maroni, and A. Ronveaux, editors, Proc. Polynômes Orthogoneaux et
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16. Milovanović, G.V.: Numerical quadratures and orthogonal polynomials. Stud. Univ. Babeş-
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28. Sorokin, V.N.: Hermite-Padé approximations for Nikishin systems and the irrationality of
ζ (3). Uspekhi Mat. Nauk49(2), 167–168 (1994) [English translation in Russian Math. Sur-
veys49(2), 176–177 (1994)]
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