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Abstract In this paper a brief survey of multiple orthogonal polynatsidefined
using orthogonality conditions spread out ovetifferent measures are given. We
consider multiple orthogonal polynomials on the real liag,well as on the unit
semicircle in the complex plane. Such polynomials satidfpear recurrence rela-
tion of orderr + 1, which is a generalization of the well known three-termureence
relation for ordinary orthogonal polynomials (the case 1). Method for the nu-
merical construction of multiple orthogonal polynomialg sing the discretized
Stieltjes-Gautschi procedure are presented. Also, sopieapions of such orthog-
onal systems to numerical integration are given. A numeexample is included.

1 Introduction

Multiple orthogonal polynomials arise naturally in the dng of simultaneous ra-
tional approximation, in particular in Hermite-Padé appmation of a system af
(Markov) functions. A good source for information on HereaRadé approximation
is the book by Nikishin and Sorokin [23, Chapter 4], whererthdtiple orthogonal
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polynomials are called polyorthogonal polynomials. Otheod sources of infor-
mation are the surveys by Aptekarev [1] and de Bruin [5], alt agethe papers by
Pifeiro [24], Sorokin [26—28] and Van Assche [30].

Historically, Hermite-Padé approximation was introddit® Hermite to prove
the transcendence of e. Multiple orthogonal polynomiafstmaused to give a con-
structive proof of irrationality and transcendence of aerteal numbers (see [30]).

Multiple orthogonal polynomials are a generalization dhogonal polynomials
in the sense that they satisfye N orthogonality conditions. Let> 1 be an integer
and letwy, Wy, ..., W, ber weight functions on the real line such that the support
of eachw; is a subset of an intervdl;. Let n = (ng,ny,...,n,) be a vector ofr
nonnegative integers, which is callednailti-indexwith length

Inf=nyg+ny+---+n.

There are two types of multiple orthogonal polynomials (823).

1° Type | multiple orthogonal polynomials.

Here we want to find a vector of polynomidls, 1,An 2, ..., An ) such that each
Ani is polynomial of degree; — 1 and the following orthogonality conditions hold:

)
Z/ AnjXwj(x)dx =0, k=0,1,2,....|n|-2.
=1 Ej

2° Type Il multiple orthogonal polynomials.
Type Il multiple orthogonal polynomial is a monic polynorig of degreen|
which satisfies the following orthogonality conditions:

Pr(X)Xwy(x)dx =0, k=0,1,...,n3 —1, (1)
E1

Pa(X)XwWo(x)dx =0, k=0,1,...,np—1, (2)
E>

Ph(X)Xw (x)dx = 0, k=0,1,....n —1. (3)
Er

The conditions (1)—(3) given| linear equations for thg| unknown coefficients
n

ay n of the polynomial, (x) = kzoak’nXk’ whereay, , = 1. Since the matrix of co-
efficients of this system can be singular, we need some additconditions on the
r weight functions to provide the uniqueness of the multipta@gonal polynomial.

If the polynomialP,(x) is unique, them is normal index If all indices are nor-
mal, then we have eomplete system

Forr = 1 in the both cases we have the ordinary orthogonal polyrisniiathe
sequel we consider only the type Il multiple orthogonal polyials.

There are two distinct cases for which the type Il multiplénogonal polynomi-
als are given (see [32]).
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1. Angelesco systemsFor this systems the intervas, on which the weight
functions are supported, are disjoint, iE.NE; =0 for 1<i# j <r.

2. AT systems AT systems are such that all weight functions are supporigde
same intervaE and the followingn| functionswy (x), xwy (X), . ..., X"~ 2wy (X), wa(X),
XWo(X), ..., X2 wn (X)), ... W (X), XWk (X), . ..., X" 1w, (x) form a Chebyshev system
on E for each multi-index.

The following two theorems have been proved in [32].

Theorem 1.In an Angelesco system the type Il multiple orthogonal pmiyial
P (x) factors into r polynomial§T;_, g, (x), where each g has exactly pzeros
on gj.

Theorem 2.1n an AT system the type Il multiple orthogonal polynomjdkiP has
exactly|n| zeros on E. For the type | vector of multiple orthogonal polyrals, the
linear combinatioryj_; An j(X)wj(x) has exactlyin| — 1 zeros on E.

For each of the weight functions;, j =1,2,...,r,
(1.9 = [ 109909w; (x ax @
J

denotes the corresponding inner product @indg.

In the sequel byP,, we denote the set of algebraic polynomials of degree at most
n, and by?P the set of all algebraic polynomials.

The paper is organized as follows. Section 2 is devoted torrecce relations
for some cases of type Il multiple orthogonal polynomiafsSkection 3 a numer-
ical procedure for construction of type Il multiple orthagd polynomials based
on the discretized Stieltjes-Gautschi procedure [8] aesgmted. In Section 4 we
transfer the concept of multiple orthogonality to the ueitnicircle in the complex
plane. Special attention is devoted to the case2, for which the coefficients of
the recurrence relation for multiple orthogonal polyndsiian the semicircle are
expressed in terms of the coefficients of recurrence reldtothe corresponding
type Il multiple orthogonal (real) polynomials. Applicatis of multiple orthogonal-
ity to numerical integration are given in Section 5. FinaillySection 6 a numerical
example is included.

2 Recurrence Relations

It is well known that orthogonal algebraic polynomials sBtithe three-term re-
currence relation (see [6], [9], [12]). Such a recurrendatien is one of the most
important piece of information for the constructive and panational use of or-
thogonal polynomials. Knowledge of the recursion coeffitseallows the zeros of
orthogonal polynomials to be computed as eigenvalues ofrarmtric tridiagonal
matrix, and with them the Gaussian quadrature rule, andalews an efficient
evaluation of expansions in orthogonal polynomials.
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The type Il multiple orthogonal polynomials with nearly danal multi-index
satisfy recurrence relation of ordes 1. Letn € N and write it asn = 4r + j, with
¢=In/r] and 0< j < r. Thenearly diagonal multi-indes(n) corresponding to is
given by

snN)=+10+41,....0+10.¢,....0).
N——

j times r—j times

Let us denote the corresponding type Il multiple (monichogonal polynomials
by Pa(X) = Py (). Then, the following recurrence relation

;
XPn(X) = Pmi1(X) + %am,rfipmfi(xﬂ m=0, (5)
i=
holds, with initial conditiond(x) =1 andR(x) =0 fori = —-1,—-2,...,—r (see
[31]).
Settingm=0,1,...,n—1in (5), we get
Po(%) Po(X) 0
P1(X) P1(X) :
X . = Hn : + Pn(X) O )
Pn,l(x) Pn,l(x) 1
ie.,
HnPn(X) = XPn(X) — Pa(X)€n, (6)

wherePy(x) = [Po(X) Pyi(X) ... Pn,l(x)]T, en=[0 0...0 1T, andH, is the
following lower (banded) Hessenberg matrix of order

f a1 _
a1 a1
&0 0 Ar-1  arr 1
Hn:
&410 0 @rair-1 g1y 1

20 ** @ 2r-1 @2r 1
L an-10 - @n-1r-1an-1r |

This kind of matrix has been obtained also in constructioartifogonal polynomi-
als on the radial rays in the complex plane (see [15]).
Letx, = x\(,”), v=1,...,n, bethe zeros d®(x). Then (6) reduces to the following
eigenvalue problem:
XyPn(xy) = HnPn(Xy).
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Thus,x, are eigenvalues of the matiik, andP,(x,) are the corresponding eigen-
vectors. According to (6) it is easy to obtain the determimapresentatio,(x) =
det(xl, — Hyn), wherel, is the identity matrix of the orden.

For computing zeros of,(x) as the eigenvalues of the matti, we use the
EISPACK routine COMQR [25, pp. 277-284]. Notice that thisitine needs an
upper Hessenberg matrix, i.e., the makijk. Also, the MATLAB or MATHEMATICA
could be used.

Therefore, the main problem in the construction of the typadltiple orthog-
onal polynomials in this way is computation of the recureecoefficients in (5),
i.e., computation of entries of the Hessenberg matkix For the simplest case of
multiple orthogonality, whem = 2, for some classical weight functions (Jacobi,
Laguerre, Hermite) one can find explicit formulas for theureence coefficients
(see [30], [32], [3])- An effective numerical method for bructing the Hessenberg
matrix H, was given in [18].

3 Numerical Construction of Multiple Orthogonal Polynomials

In this section we describe the method for constructing thesdnberg matrikd,,,
presented in [18].

For the calculation of the recurrence coefficient we use danteof the Stieltjes
procedure (cf. [8]), called thdiscretized Stieltjes-Gautschi procedufd first, we
express the elements &f, in terms of the inner productg4), and then we use
the corresponding Gaussian rules to discretize these products. Of course, we
suppose that the type Il multiple orthogonal polynomialthwespect to the inner
products(-, - )k, k=1,2,...,r, given by (4), exist.

Taking (-, - )j4a = (-, -)j, £ € Z, for the inner products, the following result
holds (see [18, Theorem 4.2]).

Theorem 3.The type Il multiple monic orthogonal polynomidlg,}, with nearly
diagonal multi-index, satisfy the recurrence relation

r—1
Prra(X) = (X—anr)Pa(X) — Z ankPh-rik(X), n>0, (7)
o

where B(x) =1, R(x) =0fori=-1,-2,...,—r,

~ (%RPinorn) g
ano =
(Pn—rv P[(n—r)/r])v+l

and

1 Such formulas for coefficients of the three-term recurrestagion for standard orthogonal poly-
nomials on the real line are known as Darboux formulas.
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k-1
<XPn - _ZO aniPn—r+i, P[(nr+k)/r]>
i=

(Pn7r+k, P[(nfr+k)/r]) vk+1

Here, we put n=¢r + v, where/ = [n/r] andv € {0,1,...,r — 1} ([t] denotes the
integer part of 9.

v+k+1
, k=1,2,....1.

ank =

We use alternatively recurrence relation (7) and given fdas for coefficients.
Knowing Py we computeg,, then knowingag , we computeP;, and then agaigy
anday ,_1, etc. Continuing in this manner, we can generate as manypoiials,
and therefore as many of the recurrence coefficients, asaned.

All of the necessary inner products in the previous formalas be computed
exactly, except for rounding errors, by using the Gausds@iiffel quadrature rule
with respect to the corresponding weight function

N

atwitd= 3 AVY(TY) +RinG). (=12 @)
] v=1

Thus, for all calculations we use only the recurrence re@hafi7) for the type Il
multiple orthogonal polynomials and the Gauss-Christaftedrature rules (8).

4 Multiple Orthogonal Polynomials on the Semicircle

Polynomials orthogonal on the semicircle have been inttedby Gautschi and
Milovanovi€ in [11]. Multiple orthogonal polynomials omé¢ semicircle, investi-
gated by Milovanovit and Stani€ in [19], are a generaiorabf orthogonal polyno-
mials on the semicircle in the sense that they satigfyN orthogonality conditions.

We repeat some basic facts about polynomials orthogon&lesdmicircle, and
then transfer the concept of multiple orthogonality to tamgircle.

Letw be a weight function, which is positive and integrable ondpen interval
(—1,1), though possibly singular at the endpoints, and which caaxbended to
a functionw(z) holomorphic in the half dis®; = {z€ C: |7 < 1,Imz > 0}.
Consider the following two inner products,

T
(1.9) = [, 1(0gBw0x) o ©
[f,] :/I_f(z)g(z)w(z)(iz)’ldz:/0 f(€9)g(e®)w(e)do,  (10)

whererl is the circular part 08D and all integrals are assumed to exist, possibly
as appropriately defined improper integrals.

The inner product (9) is positive definite and therefore gates a unique set of
real orthogonal polynomialspk} (p« is monic polynomial of degrek). The inner
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product (10) is not Hermitian and the existence of the cpoading orthogonal
polynomials, therefore, is not guaranteed.

A system of complex polynomialéri} (7% is monic of degree) is called
orthogonal on the semicirclé [r, 5] = O for k # ¢ and [rx, 17] # O for k = ¢,
k,t=0,1,2,....

Gautschi, Landau and Milovanovi€ in [10] have establistiedexistence of or-
thogonal polynomialg ri.} assuming only that

Re[1,1]=Re /Onw(e“’) de # 0.

They have representag as a linear (complex) combination pf andp,_1, where
{p«} is the sequence of the corresponding ordinary orthogogal)(polynomials
with respect to the inner product (9):

™h(2) = pn(2) —i6h-1Pn-1(2), N>0; p_1(x) =0, po(x) = 1.

Under certain conditions zeros of polynomials orthogomattee semicircle lie in
D. (see[10,11,13,14]).

LetCg, € > 0, denotes the boundary &f, with small circular parts of radius
and centers at-1 spared out. Let; 11 are the circular parts @@, with centers at
+1 and radiie. We assume that is such that

im [ g@wzdz=0, forall ge P,

€10 Jee g

the following equation holds

0:/I_g(z)w(z)dz+ /flg(x)w(x)dx, ge .

It is well known that the real (monic) polynomia{$x(z)}, orthogonal with re-
spect to the inner product (9), as well as the associatechpoiials of the second
kind,

1 _
k(2 :/ Mw(x)dx, k=0,1,2,...,
J-1 Z—X
satisfy a three-term recurrence relation of the form
Yk+1 = (Ziak)ykfbkykfla k:07 1727"'7
whit initial conditionsy_1 = 0, yp = 1 for { px}, andy_1 = —1, yo = 0 for {gk}.

Definition 1. For a positive integer, a setW = {w,...,w;} is an admissible set
of weight functionsf for the setW there exist a unique system of the (real) type Il
multiple orthogonal polynomials and for eaeh, j = 1,...,r, there exists a unique
system of (monic, complex) orthogonal polynomials relatig the inner product
(10).
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Letr > 1 be an integer and l&/ = {wy,w,,...,w; } be an admissible set of
weight functions. Letn = (ng,ny,...,n;) be the multi-index with lengthn| =
Ny + N2+ ---+ n;. Multiple orthogonal polynomial on the semicircle is the mo
polynomial I, (z) of degree|n| such that it satisfies the following orthogonality
conditions:

/I'In(z)zkwj(z)(iz)’ldz:o, k=01...n-1j=12..r (11
A

Forr = 1 we have the ordinary orthogonal polynomials on the sepieir
Let use denote by

[f,9]j :/r f(29(2wj(2)(iz) tdz= ./O‘nf(eie)g(eie)wj (€9)do, j=1,2...r,

(12)
the corresponding complex inner products.
The equations
1
O:/I_g(z)wj (z)dz+/lg(x)wj (x)dx (13)
and 1
r -1

hold for any polynomiag forall j =1,2,....r.

We consider only the nearly diagonal multi-indicg€s) and denote the corre-
sponding multiple orthogonal polynomial on the semicirale/Tn(2) = gy, (2).
The corresponding type Il multiple orthogonal polynomig@ksal) {P,} satisfy re-
currence relation (7). Also, it is easy to see thatjfer 1,2,...,r associated poly-
nomials of the second kind

:/'lw

ix)d =0,1,...
= 7 X WJ(X) X, n ) )

satisfy the same recurrence relation (but with differeitizthconditions).
Let us denote bylli”, keNg, j=1,2,...,r, the moments for the inner products
12),i.e.,
ulh) = .1, = / 2w;(2)(i2)tdz, j=1.2,....r, keNo.
r
For zero moments we have

. . 1 .
ué'>=/w‘.—(z)dz=mmj(0)+i][ Wil g j—12..r.  (5)
r 1z -1 X

Let us also denote
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Q1 (0) —ipf P 1(0) - QWY (0) — i P r(0)
D, = QE,Z(O)—i_uéaPnfl(m Q&22r<0>—iy52>Pnfr<0> T

QY 1(0) — ik Pr1(0) - QY (0) —ip Por(0)

By using equations (13)—(14) for appropriately chosen poigialsg and or-
thogonality conditions (11), one can prove existence angugmess of multiple or-
thogonal polynomials on the semicircle with additional ditions that all matrices
Dy, are regular. The following theorem was proved in [21].

Theorem 4.Letr be a positive integer and W {ws, ..., w; } be an admissible set of
weight functions. Assume in addition that all matrices §iven by(16), are regular.
Denoting by{R} the (real) type Il multiple orthogonal polynomials, relatito the
set W, we have the following representation

Mk(2) = R(2) + B 1F-1(2) + B 2P—2(2) + - - + O B (2).

The coefficient§ j, j = 1,2,...,r, are the solution of the following system of linear
equations

Y 6 (A7 (0) =iy R (0) = i "R(0) — QM (0), m=1,2,....r.
=1

The multiple orthogonal polynomials on the semicircle witearly diagonal
multi-index satisfy the recurrence relation of order 1, too. In a similar way as
in the real case, the recurrence coefficients and the mauttiphogonal polynomials
on the semicircle could be obtained by using some kind of theretized Stieltjes-
Gautschi procedure. Takind, g« = [f,g]j for eachl € Z, the following theorem
could be proved (see [19]).

Theorem 5.The multiple orthogonal polynomials on the semicir¢ld,}, with
nearly diagonal multi-index, satisfy the recurrence radat
r—1
Mi1(z) = (z— an,r)nn(z) — Zoan,knn—wk(X), n>0,
k=

wherellp(z) =1, M_1(z2) = M_2(2) =--- =M_(2) =0,

(2T, My ] s
Mo, M)/ 4

Qno = [ (17)

and
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k-1
2y — _ZO AnilMn—r+i, Min—r1x) /1]
= ikl g =12...r (18)

Onk =
M-k Mnr0/61 ]y e

Here, we put n=¢r + v, where/ = [n/r] andv € {0,1,...,r — 1} ([t] denotes the
integer part of 9.

In order to apply the previous theorem, one has to calculbeté the inner prod-
ucts (17)—(18), i.e., the integrals of the following tyﬁ;ezj M (2w (2)(iz) 1 dz For
j > 1, because of (13), these integrals could be calculatedlgxaxcept for round-
ing errors, by using the corresponding Gaussian quadsattogj = 0 one has

[ OB _ o ) [ TOTHOy

and the corresponding Gaussian quadratures and (15) ceuisiul.

Knowing the recurrence coefficients we form a complex lowaanded Hessen-
berg matrixH, as in the real case. The zeros of the multiple orthogonahauiials
on the semicircle are the eigenvalues of the complex HessgmhatrixH,.

4.1 Caser =2

LetW = {wy,w,} be an admissible set of weight functions. The type Il (real}-m
tiple orthogonal polynomials satisfy the following recemce relation

Pr1(X) = (X— b F(X) — P 1(X) — dP—2(x), k>0, (19)

with initial conditionsPy(x) = 1, P_1(x) = P_» = 0. The multiple orthogonal poly-
nomials on the semicircle satisfy the following recurreradation

Me1(2) = (2— B) Mk(2) — Wlk-1(2) — &[Mk—2(2), k>0, (20)

with initial conditionslTy(z) = 1, M_1(z) = M_»(z) = 0.
Using Theorem 4 fok > 2 we have the following equation

Mk(2) = R(2) + 6 1P-1(2) + 6 2Pk2(2), (21)
where6 1 andy » are solution of the following system of linear equations
81 (Q1(0) — s P 1(0)) + Be2(QY(0) — iR 2(0))
=1y R(0) - Q(0).

6.1(Q1?,(0) — PR _1(0)) + 62(QZ,(0) — P R_»(0))
=iu?R0) - Q2 (0).
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Relations betwee#f 1, 62 and recurrence coefficientg, cy, dx were derived in
[21]:

o B us g? — s g
91,1*b07W; 92,1*b0+bl* e 1. 2
Ho Ho "Hi " —Hi Ho
dk—1
=b1— , k>3
Bc1 =1 B 12
1 2 1 2 1 2 1 2
6y et b2 L TS Ul
2= D, 2 O, O, _, 0,02’
Ho "Hi " —Hq Ho Ho "Hi " —Hq Ho
B2 =Cr_1— k1 Zkkil’l, k>3.
12

Also, in [21], the recurrence coefficients, y anddc were given as functions di;,
Ck, d, 61 andbko:

Bo=bo— 611,

Br=b1+611—-61, yi=C1+611b0— 62— 1611,
Yo=02+61(b1—621), H=0d2— 1011 L2622+ C1621+ b2,
0= 0632(b1—61),

d
Bo=Bat gt Wbt fa 5—d

6k 2
, 2 k>4
B—12

k-2 >
O22

5 Applications of Multiple Orthogonality to Numerical
Integration

5.1 An Optimal Set of Quadrature Rules

Starting with a problem that arise in the evaluation of cotapgraphics illumina-
tion models, Borges [4] has examined the problem of numiyiesaluating a set
of r definite integrals taken with respect to distinct weightdtimns, but related to a
common integrand and interval of integration. For such dler it is not efficient
to use a set of Gauss-Christoffel quadrature rules, because valualdenrtion is
wasted.

Borges has introduced a performance ratio, defined as:

_ Overall degree of precision 1
~ Number of integrand evaluation

Taking the set of Gauss-Christoffel quadrature rules, one Ras 2/r and, hence,
R< 1forallr > 2.
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If we select a set of distinct nodes, common for all quadrature rules, weight
coefficients for each af quadrature rules can be chosen in such a wayRhkatl.
Since the selection of nodes is arbitrary, the quadratues nmay not be the best
possible. The aim is to find an optimal set of nodes, by sirmdahe development
of the Gauss-Christoffel quadrature rules.

Let us denote bW = {wy,ws,...,w; } an AT system. Following [4, Definition 3],
we introduce the following definition.

Definition 2. Let W be an AT system (the weight functiomg, j =1,2,...,r, are
supported on the interval), n = (ny,ny,...,N;) be a multi-index, and = |n|. A set
of quadrature rules of the form

n
/f(x)wj(x)dxz ZAJ’Vf(Xv), i=12,...r, (22)
E v=1

is an optimal set with respect @V, n) if and only if the weight coefficientsy; v,
and the nodes,, satisfy the following equations:

n .
zAj’erJHnrl:/x”””l'*le(x)dx, m=0,1,....,n; j=12,....r
v=1 JE

The next generalization of fundamental theorem of Gaugsstoffel quadrature
rules holds (see [18] for the proof).

Theorem 6.Let W be an AT system,= (ng,ny,...,n;), n=|n|. The quadrature
rules(22)form an optimal set with respect foV, n) if and only if

1° they are exact for all polynomials of degree less than or étpua— 1;

2° the polynomial ¢x) = [1)_;(x—Xy) is the type Il multiple orthogonal poly-
nomial B, with respect to W.

Remark 1 All zeros of the type Il multiple orthogonal polynomiB} are distinct
and located in the interv@é (Theorem 2).

Forr =1 in Definition 2 we have the Gauss-Christoffel quadratute.ru

According to Theorem 6, the nodes of the optimal set of quadeaules (of
Gaussian type) with respect@®/,n) are the zeros of the type Il multiple orthogonal
polynomialP, with respect to the given AT systeWl. When the nodes are known,
the weight coefficient®\; ,, j =1,2,...,r, v=12,...,n, can be obtained as the
solutions of the following Vandermonde systems of equation

Ajd “(éj.;
A"g J

V(Xl,XZ,...,Xn) J - IJl ) J:1727" NG
Ain ur(ljf)l

where
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[.l\(,j) = / x'wj(x)dx, j=1,2,....,r, v=0,1,...,n-1
E

Each of these Vandermonde systems always has the unigu®sphecause the
zeros of the type Il multiple orthogonal polynomRglare distinct.

For the case of the nearly diagonal multi-indisgs) we can compute the nodes
xv, V=1,2,...,n, of the Gaussian type quadrature rules as eigenvalues obthe
sponding banded Hessenberg maHix Then, from the corresponding recurrence
relation, it follows that the eigenvector associated withs given byPn(x,). We
can use this fact to compute the weight coefficieits by requiring that each rule
correctly generate the firastmodified moments.

Let us denote by

Vi = [Pn(X1) Pn(X2) ... Pn(%n)]

the matrix of the eigenvectors &f,,, each normalized so that the first component is
equal to 1. Then, the weight coefficier{s, can be obtained by solving systems of
linear equations

Aj1 HSEJ;
A A

n J = ul. ) 1:1727" 7ra
Al L)

where
“;(j):/pv(x)wj(x)dx7 j=12...r; v=01,..,n—1,
E

are modified moment®, = Py ). All modified moments can be computed exactly,
except for rounding errors, by using the Gauss-Christafteldrature rules with
respect to the corresponding weight functwep j = 1,2,...r.

In the same way as in the real case, we can generate the opétdiquadrature
rules

s X X n
/f(e'e)wj(e'e)dezZaj’vf(Zv), j=12...r1
0 v=1

where for eaclw;j, j =1,2,...,r, the corresponding quadrature is exact for all poly-
nomials of degree less than or equahte nj — 1. The nodes of such optimal set
of quadratures are zeros of the multiple orthogonal polyiabon the semicircle

M (2), i.e., in the case of the nearly diagonal multi-index, naatesthe eigenvalues
of the Hessenberg matrid,. Using the corresponding eigenvectors we obtain the
weight coefficients in a similar way as in the real case.
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5.2 An Optimal Set of Quadrature Ruleswith Preassigned Nodes

Let W = {wi,W»,...,w; } be an AT system. Following Definition 2 and ordinary
quadrature rules of Gaussian type with preassigned absqisse, e.g., [7, Subsec-
tion 2.2.1]) we introduce the following definition (see [20]

Definition 3. Let W be an AT system (the weight functioms, j =1,2,...,r, are
supported on the interva), n = (ny,ny,...,n;) be a multi-indexn = |n|. A set of
quadrature rules of the form:

k n
/Ef(x)wj(x)dxzi;aj,if(yi)—f—VZlAj’Vf(x\,), i=12..r (23

where the nodeg € E,i =1,2,...,k, are fixed and prescribed in advance, is called
an optimal set of quadrature rules with preassigned no@@ﬁ;l with respect to
(W, n) if and only if the weight coefficients; ;, A; v, and the nodes, satisfy the
following equations:

k n

mnj+k—1 mn;+k-1 kel _
Z\aj,iYi TS Axy :/Ex""“r iT-lwj(x)dx, m=0,1,....n;
i= v=1

forj=12,2,....r.

For the set of preassigned nodgg}k ; we introduces(x) as a polynomial of
degreek, with zeros ai, i = 1,2,...,k. Let us denote

W= W, W, W}, W00 = SOOW (%), ] =120,

Theorem 7.Let W be an AT system,= (ng,ny,...,Nnr), n= |n|. Suppose that for
preassigned node$yi}}‘:1, W is also AT system. The set of quadrature r§3)
form the optimal set with preassigned nodgs}X_; with respect taW,n) if and
only if:

1° they are exact for all polynomials of degree less than or étua+k — 1;
2° the polynomial ¢x) = [y _; (X—Xv) is the type Il multiple orthogonal polynomial
P, with respect tdV .

Proof. Let us suppose first that the quadrature rules (23) form thienapset with
preassigned noddy; }¥_; with respect tqW,n). In order to prove 1we note that
foreachj =1,2,...r, the corresponding quadrature rule (23) is exact for alypol
nomials from?n+nj+k,1 and then it is exact for those frofy,, k1. To prove 2,
for j=1,2,...r, we assume thaij(x) € Pn;—1. Then,q(X)pj(X)s(X) € Pnin; k-1
Since the corresponding quadrature rule is exact for ali patynomials, it follows
that

k n

/E a(x) pj (X) s(x)w; (x) dx = i;aj,iquj (vi)s(yi) + V;Aj,vqm) Pj (Xv)S(Xv)-
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Sinces(yi) =0fori=1,2,...,kandq(xy,) =0forv=1,2,...,n, the both sums on
the right hand side in the previous equation are identicadhp. Thus, we have

/Eq(x)pj(x)s(x)wj(x)dx:o, j=0,1,....r,

and 2 follows.

Let us now suppose that for quadrature rules (23rid 2 hold.
Forj=1,2,....r, lettj(x) be a polynomial fronPpn; ;x—1. We can write;(x) =
uj (X) - d(x)s(x) + v(x), whereuj(x) € Pn;—1 andv(x) € Pnik-1. Itis easy to see that

ti(yi) =v(iyi), i=1,2,....k tj(xv) =v(xv), v=12,...,n. (24)

Then, we obtain
/Etj (X)wj(x)dx = /E[uj(x)q(x)s(x)+v(x)]wj (x) dx
— /E q()U; () SOOW; (x) dx + /E V(X)W (X) dx

According to 2 we have/g q(x)u;j(x) s(x)w;j (x) dx = 0 and, therefore,

/Etj (X)w;j (x)dx:/Ev(x)Wj (X) dx.

Sincev(x) € Pnik_1, it follows from 1° that

n

. k
/E V(X) w; (X)dx = _Zaj’iv(yi) + VZ AjvV(Xy)

1

and hence, using (24), we obtain

k

_/étj (X)wj(x)dx = i;aj’i\/(yi) + \ZlAj’VV(XV)

K n
— .;aj,itj (yi)+ ZlAj,vtj (Xv).

This proves that for each=1,2,....r, the corresponding quadrature rule is exact
for all polynomials of degree n+n;+k—1. O

According to Theorem 7, the nodes, v = 1,2,....n, of the optimal set of
quadrature rules with preassigned nodes (23) are the zéthe type Il multiple
orthogonal polynomia®, with respect to the AT systeW. In the case of nearly di-
agonal multi-index we use the discretized Stieltjies—Gdnisrocedure to compute
those zeros. When the nodes are known, therj ferl,2,...,r we can choose the
weight coefficients;j,i =1,2,... ,kandAjy, v=1,2,...,n, such that they satisfy
the following Vandermonde system of equations
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aj1 .
. uéJ.)
a; Iiij)
V(Y13 Yio X1 - - > %n) AJJE — : . j=12...r, (25
: “n+kfl
LAjn
where
;.li(j):/Exiwj(x)dx, j=12....r; i=01,....,n+k—1,

are moments which can be computed exactly, except for rogrefirors, by using
the Gauss—Christoffel quadrature rules with respect toctreesponding weight
functionwj, j =1,2,...r.

Each of Vandermonde systems (25) has a unique solutiondf ik preassigned
nodes are distinct from the zeros of type Il multiple orthoaigolynomialP, with
respect taV. This is always satisfied in cases when the preassigned aoelesthe
end points of the intervat, i.e., in the case of quadrature rules of Gauss-Radau or
Gauss-Lobatto type.

5.3 Connections with Generalized Birkhoff-Young Quadrature
Rules

In 1950 Birkhoff and Young [2] proposed a quadrature formaflthe form

Zo+h h
/ () dz~ {241 (20) +4[ 1 20+ )+ (20— )] = [f (+ih) + (20— )] |
2-h 15

for numerical integration over a line segment in the comg@ne, wheref (2)

is a complex analytic function iz : |[z—z| <r} and |h| < r. This five point
quadrature formula is exact for all algebraic polynomidldegree at most five and
for its errorR?Y(f) can be proved the following estimate [33] (see also Davis and
Rabinowitz [7, p. 136])

| 7

RE(F)| < 1gsemaxf©(2),

whereSdenotes the square with verticgst ikh, k= 0,1,2, 3.
Without loss of generality the previous quadrature rule lsarconsidered over
[—1,1] for analytic functions in the unit diskz : |z < 1}, so that it becomes

1 16 4 1
./7lf(z)dz:Ef(o)—kﬁ[f(lﬂ—f(— D)2 [F0)+ F(=)]+Rs(f).  (26)
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In 1978 ToSi€ [29] obtained a significant improvement @)(ih the form
1 1(7 7
/lf(z)dzAf(0)+6<§+ §> [f(r)+f(—1)]

+% <g_ ;) [f(ir)+f(—if)]+Rg(f),

wherer = y/3/7 and

1 1
ey ® .t a0 ...
Rs (1) = 7538000 (O 1122600 O+

This formula was extended by Milovanovit anaidevic [17] to the following
quadrature formula of interpolatory type

/;];Lf(Z) dz = Af(O) —I—C]_l[f(r]_) + f(—rl)} —I—C]_z[f(irl) + f(—irl)}
+ C21[f(l'2) + f(frz)} +sz[f(ir2) + f(*irz)}Jng(f;rl,rz),

where 0< r1 < rp < 1. They proved that for

o 63— 4114 and 1_ri_ @ 63+ 4114
1= = 143 2= 27 143

this formula has the algebraic degree of precigiea 13, with the error-term

1
e N T ¢ L A 10145 (14)
Ro(f;ri,r3) 28122661066505 (0) + 3.56-10 *f'*7(0).

In this subsection we consider a kind of generalized BirkiYoluing quadrature
formulas and give a connection with multiple orthogonalpoimials (cf. [16]). We
introduceN-point quadrature formula for weighted integrals of analfinctions in
the unitdisc{z : |7 <1},

1
1(f) ::/ f(2W(2)dz = Qu(f) +Ru(f),

-1
wherew: (—1,1) — R is an even positive weight function, for which all moments
Uk = ffl zkw(z) dz, k=0,1,..., exist. For a given fixed integen > 1 and for each
N € N, we putN = 2mn+ v and define the node polynomial
n
ONZ) =2 ony (M) =2 rll(zsz ), 0<ri<---<rm<1, (27)
k=

wheren= [N/2m] andv € {0,1,...,2m—1}.
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Now we consider the interpolatory quadrature 1Q}gof the form

v—1 ) n m . .
Qn(f) = Zocjf(J)(OH— > S A Fue€®) + f(—xe®)],
j= k=1]=1
where .
Xk = A, k=1....n, 6= , J=1....m

If v =0, the first sum iQy(f) is empty.

Following [16] we can prove the next result:
Theorem 8.Let m be a fixed positive integer and w be an even positive weigh
function w on(—1,1), for which all momentgy = _Lllzkw(z) dz, k> 0, exist. For
any Ne N there exists a unique interpolatory quadrature rulg(@) with a maximal
degree of exactnessgk= 2(m+ 1)n+ s, where

N v—1 v even
n [Zm] Y mn-s { v, v odd (28)

The node polynomigR7) is characterized by the following orthogonality relations
/7 11 A4Sty (ZMw(z)dz=0, k=0,1,...,n— L (29)
The conditions (29) can be expressed in the form
/711 Pk (22 tawny (ZMW(2)dz=0, k=0,1,...,n—1,
where{ pi}ken, is a system of polynomials orthogonal with respect to thegiviais
On'(l';é,cla)l.se with the Chebyshev weight of the first kirfd) = 1//1 — 22 andm=2

was recently considered by Milovanovi¢, Cvetkovi¢ andrist [22]. In that case the
previous conditions reduce to

_ [P Tx(@Z Py (2
(T2, 2 P (7)) */71 N

whereTy is the Chebyshev polynomial of the first kind of degke@he correspond-
ing quadrature rules are

dz=0, k=0,1

sy

n-1

3

v—1 n
Quaniv(f) = JZOC" 0 (0)+ k;{Ak[f(ka f(—x0] + B[ F (%) + F(=ixg)] },

wherev = 0,1,2,3. Forv = 0, the first sum on the right-hand side is empty. Also,
in order to haveQun.v(f) = I(f) = 0 for f(z) = z it must beC; = 0, so that
Qan+1(f) = Quany2(f).



Multiple Orthogonality and Applications in Numerical ligt@tion 19

The parameters of the quadrature form@Qla., (f) as well as the corresponding
maximal degree of exactneds= 6n+ s, wheres is defined by (28), are presented
in Table 1 forn=1andv =0,1,2,3.

Table 1 Parameters and the maximal degree of exactness of the Gee@rBirkhoff-Young-
Chebyshev quadrature formula, (f) for v=0,1,2,3

v X1 Aq B1 Co Cy d
af3 (1 o1 (1 o1

0 8 22" /6 2\2" 6 °
4[5 34410 3-+10 2

12 8 20 ' 2