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ABSTRACT. Quadrature formulas of Birkhoff type ((0,3) and (0,4) cases) which are exact for
all algebraic polynomials of degree at most 2n — 1 is developed. The nodes of such quadrature
are taken in the zeros of the polynomial (1 —z2)Pl(z), where P, is the Legendre polynomial
of degree n. The corresponding quadrature formulas based on the zeros of (1.2) still remain
open.

1. Introduction. Let €, be the class of algebraic polynomials of degree at most n. The

following problem was raised by P. Turdn [6]. Let @q, 25 ... ¥, satisfying
(1.1) “l=u, <y 1< <ay<ay =1

be the zeros of the polynomial

(1.2) Ma(z) = (1= )P, _,(2)

where Py is the Legendre polynomial of degree k. For what choice of Ay, e (k=1,2,....n)

do we have
1 n n
(1.3) / f(a)de = Z Acflae) + Z s f ()
=1 k=1 k=1

for every f € Qy,, 17
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Using Balézs and Turén [1] fundamental polynomials of (0.2) interpolation based on
the nodes of (1.1) one of us [8] solved this problem. Later he [8] gave a simple method
for finding the weights Ay, itk (k =1,2,...,n). A natural extension of Turdns problem
is to obtain quadrature formulas in the case when function values and mt* derivative are
prescribed at the zeros of mu(x) defined by (1.2). This problem appears to be difficult.
Recently, only some modification of (0,3) and (0,4) Birkhoff quadrature formulas were
considered by Varma and Saxena [9]. The method used in [9] does not provide the solution
of the problem in the case when only function values and third derivative are prescribed
at the zeros of (1.1). At the Banach center conference on Approximation theory held in
1992 one of us raised whether it is possible to choose the nodes 1, —1 and different x‘s,

L=22. . .n—1for which (rn being positive nteger)

1 n n
(1.4) / RIEEDSCHEDY £

is valid for f € Q2n-1-

In this paper an affirmative answer to this problem is obtained for the case m = 3,
m — 4. Theorem 1 will reveal that by choosing a special choice of nodes we are able to
construet such a quadrature formula. For other related results we refer to the work of
Nevai and Varma [4] and Dimitrov [2]). Concerning Birkhoff interpolation and quadrature

we refer to the book [3].

2. Main Results. Let {P,E“’ﬂ )(;L')}k be the set of Jacobi polynomials orthogonal on
=0
the interval (—1,1) with respect to the weight w(x) = (1 —2)*(1+ z)#, o, > —1. Let us

fix the nodes «;’s as the zeros of the polynomial

(2.1) ra(e) = (1— )P/ (x) = %(n +1)(n +2)(1 - 2*)P23(a).

Theorem 1. Let n > 3 and let xy be the zeros of the polynomial (2.1). Then there exists

a unique quadrature formula
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! n
[ Hote = s [0+ f-1)
o5 flar) A - -1
©22) =D 5 1 a (Pa) 07 DO

2n — zr f"(xk)
(2 —1)(n? — 4) Z ]

()

which is exact for every polynomial f € Qap—1.

Theorem 2. Let n > 4 and let x}’s be the zeros of the polynomial P,(li?(z) Then there
exists a unique quadrature formula

1
£\dr —
-1 fle)de (n* +2n% —n? — 2n — 24)

2n 1 (-Ek)
e Z(l— 22)(PY (2k) )2

[16<n+3>< 9)(7(1) + (=1))

_ 8n O (1= 2] ()
("+2W—1>Z TP,

valid for f € Qn—1.

Remark 1. The quadrature formula of Theorem 2 is exact for f € @2,,—1 but it requires

only 2n — 2 information. The coefficients of f(**)(£1) are indeed zero.

Remark 2. Following quadrature formula

/ o) = T e - 7112 2n — 24) [16 n+3)n =)+ 1)

n—1
flxx)
+8n?
kzz 22)(PLY ()2

= Rn(f)
is exact only for f € m3, but it is easy to see that if f € C[~1,1] then

lim Ra(f) = [ f(a)da

n—00

Thus in view of Theorem 15.4 [Szego [6]] such quadrature formula is interesting and

useful.

3. Preliminary. In order to prove theorem 1 we shall need two lemmas.
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Lemma 1. For n > 2 we have

22)( V24 471(11 ~1)(n?*+n+3)
(31) / Pn 2 ( ) 3(71 _:, 1)(71 + 2)
and
! . 2.9 . 8n(n—1)
9 2 (22 Welp = —— " 7
(3.2) /_1(1 2} (P, () da + D(n+2)

Proof of Lemma 1. Since [see Szegd [6] formula (4.21.7)]

(2.2) 4P, (x)
(33) Pn 2( ) (7l+1)(71+2)

it follows from integration by parts that

32

gy W+ PR

(1 22 (PP (1)) de =

Now, using the known results

(n+2)(n+1)nn -1
8

(3.4) Pi(1) = ) (L1 Pl (=1), Pu(=1) = (=1)" Po(1)

we obtain (3.2). To prove (3.1) we need (3.3), integration by parts, orthogonality of the

Legendre polynomials and we have
(3.9) /1 (P2 (1)) de = 16 [2P(1)P!(1) — 2P}'(1)]
’ -1 n—2 ' (n+1)%(n+2)? " ’

Next, note that

n(n + 1)

n(n+1)

(3.10) Py = ") gy <[22 Py

Now, using (3.4), (3.9) and (3.10) we obtain (3.1). This proves Lemma 1. Next, we state

Lemma 2. Let n > 3 and let xx(k = 2,3,...,n—1) be the zeros of the Jacobi polynomial

P,(l‘z_’i)(.'l;). Then there exist the following quadrature formulae

n—1

3.11 1— a2 h(x)de =Y  Ah(

( ) /;1( €T ) l( T kz_: K .tk
i n—1

(3.12) / (1 —&H)g(x)de = Bo(g(1) + g(—1)) + ZB’”(/ k),
-1

k=2
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/ fl@)dz = A(F(1) + F(=1)) + Ay (£/(1) = F/(~1))
(313) - n-1
+ ZAkf('lk)

k=2

which are exact for every h € Qy,_s, g € an_:; and f € Qa,_1, respectively. Moreover

16 (2n? 4+ 2n — 3)B, 1
(3.14) 0 n(n+2)(n2-1)" °° 6 r 270
. 8n(1 — z2) Ak
(3.15) e = - Yoy ——, A = =y By = (1 —22)As.
(n + 2)("‘ 1)[Pn—l (‘Ek)] k/

Remark. 1t is interesting to remark that the quadrature formulas of Lemma 2 are optimal

and will play an important role in proving theorem 1.

Proof of Lemma 2. At first, we note that (3.11) is a Gauss quadrature formula in n — 2

points with respect to the weight function (1 — x?)2 on [-1,1]. Then z}’s are the zeros of

the polynomial P,Ez_'g) ) and the Christoffel numbers ) are given by [see Szego [6] 15.31
p

and (4.5.7)]

32(n —1)(1 — «%)

Ar = ,
n(n + 1)(n + 2)[P) (24 )2

On using [Szego [6] formula (4.5.1)]

(n—1)(n+ 3)P(2’2)(zk) = —n(n+ l)P(Z’Q)(;rk)

n—1 n-—3

1t follows that

32n(n +1)(1 —z2)
(=Dt 2+ PP a
Next, using [see Szego [6] formula (4.5.1), (4.7.1) and (4.7.29)] we have

Ak

(n +3)P2P (k) = 2(n + P D(ay).

Therefore, we obtain

.2
A = 8n(1 ‘”’“(21) . k=23, . n—1
(n+2)(n2 — 1)[P, ) (x)]?

n—1

as stated in (3.15).
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The existence and uniqueness of quadrature formula (3.12) is guaranteed by integrating
the quasi Hermite interpolation formula based on the end points and the zeros of PT(ll_’j)(.L‘)
This formula is certainly exact for g € Qzn—3. As far as the determination of the coefficients

is concerned, we set g(x) = (1—2?)h(x), where h € Q2n—5. Then the formula (3.12) reduces

to
1 n—1 n—1
/ (1 —2*)*h(z)dz = Z Meh(zi) = Z Bi(1 — zt)h(zk).
-1 k=2 k=2

From this, we conclude that Az = (1 — z%)By, as stated in (3.14). Next, we set in (3.12)
g(x) = [P,(f_’;)(z)]z and use (3.2), we obtain at once By = %% as stated in (3.14).
The existence and uniqueness of (3.13) valid for f € Qan—1is valued by integrating Hermite
interpolation formula based on the zeros of rp(z) [see (2.1)]. The determination of the
coefficients Ag, k=1,2,...,n—1canbe obtained by putting f(z) = (1— z?)g(x) in (3.13)
and comparing it with (3.12). Similarly, putting f(z) = [P,(lz_;)(x)]z in (3.13), using (3.1)

we obtain Ag as desired. Thus, we have proved Lemma 2.

Now, we are ready to give a proof of Theorem 1.

Proof of Theorem 1. From integration by parts it follows that for any f € C?*[—1,1] we

Let f € Qan—1 then zf"(z) € Q2n-3- Applying (3.12) to the integral on the left-hand

side in (4.1), we obtain
[ Steyta = (F0 + F=10) = 1D = £ D)
n—1
s {Bo(f"’(l) NSRS Bkzkf'”m)} .
k=2

Now, eliminating f'(1) — f'(=1) from this equality and (3.12) we find
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! (Ao +34, 1 =, L
[ fopte = (222 (s + -+ > Aef(en)
A1 Bo(f"(1) - f"(=1)) A
+ 201 1 34;) +2(1+3A1)ZIkka (zk)

k=2

On using the known expressions from Lemma 2 of the coefficients A, A1, By, Ag, By the
above formula reduces to (2.2). This proves Theorem 1. Proof of Theorem 2 is similar
to the proof of Theorem 1, so we omit the details. Our method fails in the case of (0,m)

quadrature for m > 5, based on these nodes.
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