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Abstract

In this paper we consider a few methods for summation of slowly
convergent series using quadrature formulas of Gaussian type. Such
summation/integration procedures are based (i) on the Laplace trans-
form method, and (ii) on an integration over some contours in the
complex plane. Especially, we investigate some series with irrational
terms. Numerical results are included to illustrate these methods.

1 Introduction

We consider convergent series of the type

T =
+∞
∑

k=1

ak and S =
+∞
∑

k=1

(−1)kak (1.1)

and introduce the notation: T = T (m−1) + T (∞)
m , S = S(m−1) + S(∞)

m ,

T (n)
m =

n
∑

k=m

ak, S(n)
m =

n
∑

k=m

(−1)kak,

where T (m−1) and S(m−1) are the corresponding partial sums of (1.1).

∗This work was supported in part by the Science Fund of Serbia, grant number 0401F.

1



Some methods of summation these series can be found, for example, in
the books of Henrici [5], Lindelöf [6], and Mitrinović and Kečkić [8].

Recently, a few new summation/integration procedures for slowly conver-
gent series are developed (see [3], [1], [2], [7]). In this paper we will give a
short account of these methods as well as some new approaches to this sub-
ject, including numerical examples in order to illustrate and compare these
methods. Especially, we investigate some series with irrational terms.

2 Laplace Transform Method

Suppose that the general term of T (and S) is expressible in terms of the
derivative of a Laplace transform, or in terms of the Laplace transform itself.
Namely, let ak = F ′(k), where

F (p) =
∫ +∞

0
e−ptf(t) dt, Re p ≥ 1.

Then

+∞
∑

k=1

F ′(k) = −
+∞
∑

k=1

∫ +∞

0
te−ktf(t) dt = −

∫ +∞

0

t

et − 1
f(t) dt.

Similarly, for “alternating” series, one obtains

+∞
∑

k=1

(−1)kF ′(k) =
∫ +∞

0

t

et + 1
f(t) dt

and
+∞
∑

k=1

(−1)kF (k) = −
∫ +∞

0

1

et + 1
f(t) dt.

In a joint paper with Gautschi [3] we considered the construction of Gaus-
sian quadrature formulas on (0,+∞),

∫ +∞

0
g(t)w(t) dt =

n
∑

ν=1

λνg(τν) +Rn(g), (2.1)

with respect to the weight functions

w(t) = ε(t) =
t

et − 1
(Einstein’s function)
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and

w(t) = ϕ(t) =
1

et + 1
(Fermi’s function).

We obtained the first n = 40 coefficients in the three-term recurrence relation
for the corresponding orthogonal polynomials accurately to 25 decimal digits
(see [3, Tables 1 and 3]). If the series T and S are slowly convergent and
the respective function f on the right of the equalities above is smooth, then
low-order Gaussian quadrature (2.1) applied to the integrals on the right,
provides a possible summation procedure. Numerical examples show fast
convergence of this procedure (see [3, §4]). In the sequel we refer to this
procedure as the Laplace transform method. A problem which arises with
this procedure is the determination of the original function f for a given
series. For some other applications see [1] and [2].

3 Contour Integration Over a Rectangle

Suppose that ak = f(k), where z 7→ f(z) is a holomorphic function in the
region

Gm = {z ∈ C | Re z ≥ α, m− 1 < α < m}, m ∈ N.

In [7] we derived an alternative summation/integration method for the series
(1.1) which requires the indefinite integral F of f chosen so as to satisfy the
following decay conditions:

(C1) F is a holomorphic function in the region Gm;

(C2) lim
|t|→+∞

e−c|t|F (x+ it/π) = 0, uniformly for x ≥ α;

(C3) lim
x→+∞

∫+∞
−∞ e−c|t| |F (x+ it/π) | dt = 0,

where c = 2 or c = 1, when we consider T (n)
m or S(n)

m , respectively.

Namely, taking Γ = ∂G and

G =
{

z ∈ C | α ≤ Re z ≤ β, | Im z| ≤ δ

π

}

,

where m− 1 < α < m, n < β < n+ 1 (m,n ∈ Z, m ≤ n), we obtain that

T (n)
m =

1

2πi

∮

Γ
f(z)

π

tan πz
dz and S(n)

m =
1

2πi

∮

Γ
f(z)

π

sin πz
dz.
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After integration by parts, these formulas reduce to

T (n)
m =

1

2πi

∮

Γ

( π

sin πz

)2
F (z) dz (3.1)

and

S(n)
m =

1

2πi

∮

Γ

( π

sin πz

)2
cosπz F (z) dz, (3.2)

where z 7→ F (z) is an integral of z 7→ f(z).

Taking α = αm = m − 1/2, β = βn = n + 1/2, and letting δ → +∞ and
n → +∞, under conditions (C1) – (C3), the integrals in (3.1) and (3.2) over
Γ reduce to integrals along the line z = αm + iy (−∞ < y < +∞).

After some calculations, we reduce T and S to a problem of quadrature
on (0,+∞) with respect to the weight functions

w1(t) =
1

cosh2 t
and w2(t) =

sinh t

cosh2 t
, (3.3)

respectively. Thus,

T = T (m−1) +
∫ +∞

0
Φ (αm, t/π)w1(t) dt

and

S = S(m−1) +
∫ +∞

0
Ψ (αm, t/π)w2(t) dt,

where w1 and w2 are defined in (3.3) and

Φ(x, y) = −1

2
[F (x+ iy) + F (x− iy)] ,

Ψ(x, y) =
(−1)m

2i
[F (x+ iy)− F (x− iy)] .

Numerical quadratures of Gaussian type with respect to the weights w1

and w2 were constructed in [7]. The first n = 40 coefficients in the three-
term recurrence relation for the corresponding orthogonal polynomials were
obtained accurately to 30 decimal digits.

Numerical experiments shows that is enough to use only the quadrature
with respect to the first weight w1(t) = 1/ cosh2 t. Namely, in the series S
we can include the hyperbolic sine as a factor in the corresponding integrand
so that

S = S(m−1) +
∫ +∞

0
Ψ (αm, t/π) sinh(t)w1(t) dt. (3.4)

4



4 Series With Irrational Terms

In this section we consider some series of the form

U±(a, ν) =
+∞
∑

k=1

(±1)k−1

(k2 + a2)ν+1/2
.

In 1916 Kapteyn (see [9, p. 386]) proved the formula

U+(a, ν) =
+∞
∑

k=1

1

(k2 + a2)ν+1/2
=

√
π

(2a)νΓ(ν + 1/2)

∫ +∞

0

tν

et − 1
Jν(at) dt

which is valid when Re ν > 0 and | Im a| < 1. Here, Jν is the Bessel function of
the order ν. Since for F (p) = 1/(p2 + a2)ν+1/2 (Re ν > −1/2, Re p > | Im a|)
the original function is

f(t) =

√
π

(2a)νΓ(ν + 1/2)
tνJν(at),

using the Laplace transform method we find

U−(a, ν) =
+∞
∑

k=1

(−1)k−1

(k2 + a2)ν+1/2
=

√
π

(2a)νΓ(ν + 1/2)

∫ +∞

0

tν

et + 1
Jν(at) dt.

Thus, this method leads to an integration of the Bessel function t 7→ Jν(at)
with Einstein’s weight ε(t) or Fermi’s weight ϕ(t). For some special values
of ν, we can use also quadratures with respect to the weights t±1/2ε(t) and
t±1/2ϕ(t) (see [3] and [1]).

In order to sum the series U−(a, 0), a > 0, we can integrate the function
z 7→ F (z) = g(z)/

√
z2 + a2, with g(z) = π/ sin πz, over the circle

Cn =
{

z ∈ C

∣

∣

∣ |z| = n+
1

2

}

, n > a,

with cuts along the imaginary axis, so that the critical singularities ia and
−ia are eliminated (cf. [8, p. 217]). Precisely, the contour of integration Γ
is given by Γ = C1

n ∪ l1 ∪ γ1∪ l2∪C2
n ∪ l3 ∪ γ2∪ l4, where C

1
n and C2

n are parts
of the circle Cn, γ1 and γ2 are small circular parts of radius ε and centres at
±ia, and lk (k = 1, 2, 3, 4) are the corresponding line segments.
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Let F ∗(z) be the branch of F (z) which corresponds to the value of the
square root which is positive for z = 1. Since

∮

Γ
F ∗(z) dz = 2πi

n
∑

k=−n

(−1)k√
k2 + a2

,

and
∫

γ1
→ 0,

∫

γ2
→ 0, when ε → +0, and

∫

C1
n
∪C2

n

→ 0, when n → +∞, we
obtain

+∞
∑

k=1

(−1)k√
k2 + a2

= − 1

2a
+

∫ +∞

a

du

sinh πu
√
u2 − a2

,

i.e.,
+∞
∑

k=1

(−1)k−1

√
k2 + a2

=
1

2a
− 1

2

∫ +1

−1

(

t sinh
πa

t

)−1 dt√
1− t2

.

Thus, we reduced U−(a, 0) to a problem of Gauss-Chebyshev quadrature.
Since t 7→ (t sinh(πa/t))−1 is an even function we can apply the (2n)-point
Gaussian approximations with only n functional evaluations, so that we have

U−(a, 0) ≈ GC(n) =
1

2a
− π

2n

n
∑

k=1

(

τk sinh
πa

τk

)−1
, (4.1)

where τk = cos((2k − 1)π/(4n)), k = 1, . . . , n.
Remark 4.1. The same method can be applied to the summation of the series

+∞
∑

k=−∞

f(k,
√

k2 + a2) and
+∞
∑

k=−∞

(−1)kf(k,
√

k2 + a2) (a > 0),

where f is a rational function. Then we integrate the function z 7→ F (z) =

f(z,
√
z2 + a2)g(z), with g(z) = π/ tan πz and g(z) = π/ sin πz, respectively, over

the circle Cn with the cuts.

5 Numerical Results

In this section we illustrate the previous methods taking the series U−(a, 0),
with a = 0.25, 0.5, 1, 2, 4. All computations were done in Q-arithmetic on
the MICROVAX 3400 computer (machine precision ≈ 1.93× 10−34).
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Table 5.1 shows the relative errors in Gaussian approximations GC(n)
(cf. (4.1)) and GF (n) (the Laplace transform method with Fermi’s weight),
as well as

Sn,m = S(m−1) +
n
∑

ν=1

λνΨ(αm, τν/π) sinh(τν), m = 1, 2, 3, 4,

(cf. (3.4)) for n = 5(5)40 and a = 0.25. (Numbers in parentheses indicate
decimal exponents.)

Table 5.1

Relative errors in Gaussian approximation of the sum U−(a, 0) for a = 0.25

n GC(n) GF (n) Sn,1 Sn,2 Sn,3 Sn,4

5 1.8(−2) 2.7(−10) 2.4(−4) 1.6(−4) 1.4(−4) 1.2(−4)
10 7.2(−4) 8.8(−19) 9.2(−7) 4.2(−9) 3.9(−9) 3.6(−9)
15 1.9(−4) 1.8(−24) 1.8(−8) 9.2(−14) 8.6(−14) 8.2(−14)
20 2.9(−5) 5.6(−10) 1.3(−16) 1.7(−18) 1.7(−18)
25 1.2(−5) 1.2(−10) 1.5(−18) 2.6(−23) 3.2(−23)
30 9.0(−8) 1.1(−11) 3.0(−20) 8.7(−27) 6.1(−28)
35 1.0(−6) 6.1(−13) 2.5(−23) 3.1(−28) 1.1(−32)
40 3.5(−7) 7.0(−13) 1.8(−23) 2.0(−30) 1.6(−33)

The Bessel function J0 was evaluated by means of the rational approxi-
mations in [4] indexed 5852, 6553 and 6953, with precision 23.22, 23.37 and
23.46, respectively. Because of that, some entries in third column are empty.

Table 5.2

Relative errors in Gaussian approximation of the sum U−(a, 0) for a = 1

n GC(n) GF (n) Sn,1 Sn,2 Sn,3 Sn,4

5 3.1(−5) 2.0(−4) 2.0(−4) 2.4(−4) 2.1(−4) 1.8(−4)
10 5.1(−7) 2.1(−7) 6.2(−6) 6.3(−9) 5.9(−9) 5.4(−9)
15 9.4(−9) 9.0(−12) 2.2(−6) 1.6(−12) 1.3(−13) 1.2(−13)
20 5.0(−10) 2.3(−14) 3.8(−7) 5.9(−15) 2.4(−18) 2.5(−18)
25 4.5(−11) 2.5(−19) 3.9(−8) 2.1(−16) 1.1(−22) 4.9(−23)
30 3.6(−12) 2.3(−21) 1.8(−8) 2.5(−17) 2.0(−24) 1.0(−27)
35 6.6(−14) 7.0(−26) 3.3(−9) 1.4(−18) 4.8(−26) 6.4(−31)
40 4.4(−14) 2.3(−9) 3.4(−20) 3.1(−27) 6.3(−33)
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Table 5.3

Relative errors in Gaussian approximation of the sum U−(a, 0) for a = 4

n GC(n) GF (n) Sn,1 Sn,2 Sn,3 Sn,4

5 8.2(−10) 1.2 9.4(−4) 7.6(−4) 6.3(−4) 5.4(−4)
10 9.0(−14) 6.5(−2) 7.0(−8) 1.3(−8) 2.0(−8) 1.9(−8)
15 4.9(−17) 1.5(−1) 3.6(−8) 1.6(−10) 6.5(−13) 4.3(−13)
20 1.5(−19) 3.3(−3) 2.5(−9) 7.0(−12) 1.5(−15) 8.9(−18)
25 9.2(−22) 1.7(−2) 2.4(−8) 3.1(−13) 2.3(−17) 4.2(−21)
30 1.1(−24) 2.8(−4) 8.6(−9) 6.4(−14) 1.1(−18) 1.4(−24)
35 8.9(−26) 1.9(−3) 4.8(−9) 7.9(−15) 5.0(−20) 1.2(−25)
40 1.4(−27) 1.1(−4) 1.9(−9) 3.4(−17) 2.2(−21) 5.7(−27)

The corresponding relative errors for a = 1 and a = 4 are presented
in Tables 5.2 and 5.3, respectively. Also, we mention here the exact sums
U−(a, 0) (determined as S40,5 to 30 significant digits):

U−(0.25, 0) = 0.666326189064665806052832629421,
U−(0.50, 0) = 0.599262331208773941764013859373,
U−(1.00, 0) = 0.440917473865185397183787033140,
U−(2.00, 0) = 0.248166827542466167909044168541,
U−(4.00, 0) = 0.124997557589011259481281086361,

As we can see, the Laplace transform method (GF (n)) is very efficient
for a small parameter a. However, when a increases, the integrand J0(at)
becomes a highly oscillatory function and the convergence of the process slows
down considerably. On the other hand, the convergence of Gauss-Chebyshev
approximations GC(n) is slightly faster if the parameter a is larger. Also, we
can see a rapidly increasing of convergence of the summation process Sn,m as
m increases.
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[6] E. Lindelöf, Le calcul des résidus, Gauthier–Villars, Paris, 1905.

[7] G.V. Milovanović, Summation of series and Gaussian quadratures, In: Ap-
proximation and Computation (R.V.M. Zahar, ed.), ISNM, Birkhäuser,
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