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HOMENT-PRESERVING SPLINE APPROXIMATION AND TURÄN QUADRATURES 

Gradimir v. and Milan A. 

Abstract". We consider the problem of approximating a function f of 

the radial distance r in on 0 Sr< by a spline function of 

degree m and defect k, with n (variable) knots, matching as many of 

the initial moments of f as possible. We analyse the case when the 

defect k is an odd integer, especially when k - 3. We show that, if 

the approximation exists. it can be represented in terms of genera-

lized Turan quadrature relative to a measure depending on f. The 

knots of the spline are the zeros of the corresponding s-orthogonal 

polynomials (s 1). Numerical example is included. 

1. INTRODUCTION 
, 

In previous papers [3] and [4]. Gautschi and Gautschi and Milovanovic 

have considered the problem of approximating a function f(r) of the radial 

distance r - Ilxll. 0 in IR d , d 1, by a spline function of fixed 

degree (with variable knots). The approximation was to preserve as many 

moments of f as possible. Under suitable assumptions on f. it was shown 

that the problem has a unique solution if and only if certain Gauss-

Christoffel quadratures exist corresponding to a moment functional or weight 

distribution depending on f. Existence, uniqueness and pointwise conver-

gence of such approximation were analyzed. Later Frontini, Gautschi and , 
Milovanovic [1] have considered the analogous problem on an arbitrary finite 

interval. If the exists. they can be represented in terms 

of generalized Gauss-Lobatto and Gauss-Radau quadrature formulas relative to 

appropriate moment functionals or measures depending on f. 
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In this paper we diseuss the problem of approximating a spherieally 

symmetrie funetion f(r). r - Ilxll. 0 r < «>. in IR d • d 1. by a spline 

funetion of degree m 2 and defeet k (1 s k Sm). with n knots. Under 

suitable assumptions on fand k - 2s+l we will show that our problem has a 

unique solution if and only if eertain generalized Turan quadratures exist 

eorresponding to a measure depending of f. Existenee and uniqueness is 

assured if f is eompletely monotonie on [0.«». One simple numerieal example 

is ineluded. 

2. HOKENT-PRESERVING SPLINE APPROXIMATION AND GENERALIZED TURAN 
QUADRATURE FORHULAE 

A spline funetion of degree m 2 and defeet k on the interval 

Os r < «>. vanishing at r - «>. with n 1 positive knots r l • r 2 •...• r n ean 

be written in the form 
n m i 

s (r) - L \ a (r -r) 
n.m v-I i.v v +' 

(2.1) 

where a i are real numbers. The plus sign on the right side of (2.1) is 
.v 

the eutoff symbol. t+ - t if t > 0 and t+ - 0 if t S O. For a given 

funetion r f(r) on [0.«». we wish to determine s (r) sueh that n.m 
«> • «> 

J rJs (r)dV - J rJf(r)dV. J - 0.1 •...• 2(s+1)n-l. (2.2) o n.m 0 

where dV - is the volume element of the spherieal shell 
d in IR if d > 1. and dV - dr if d - 1. In other words. we want s to n.m 

faithfully reproduee the first 2(s+1)n spherieal moments of f. 

In this paper we will reduee our problem to the power-orthogonality 

(s-orthogonality) and generalized Gauss-Turan quadratures ([2).[5).[7-12). 

by restrieting the elass of funetions f. Then we ean use reeently developed 

stable proeedure of eonstrueting s-orthogonal polynomials ([6). 

The generalized Gauss-Turan quadratures with a given nonnegative 

measure on the real line IR (with eompaet or infinite support for whieh 

all moments Pk - IR k - 0.1 •...• exist and are finite. and Po > 0). 

n k-l f - L L Ai v g(i)(r ) + 
IR v-I i-O' v 



is exact for all polynomials of degree at most (k+1)n-1. if k is odd. 

i.e. k - 2s+1. The nodes r v ' v - 1 •...• n. are the zeros of the (monie) 

po1ynomia1 w minimizing 
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f w (r)2s+2 
IR n 

(2.3) 

Such polynomials are known as power-orthogonal (s-orthogona1 or s-se1f 

associated) polynomials with respect to the measure For a given n 

and s. the minimization of the integral (2.3) leads to the "orthogona1ity 

conditions" 

f 2s+1 i w (r)r - O. 
IR n 

i - 0.1 ..... n-I. 

which can be interpreted as (see [6) 

f s n i w • (r)r - O. 
IR v 

i - 0.1 .... • v-1. 

s n where (wv ' ) is a sequence of monic orthogonal polynomials with respect to 
s n s n 2s the new measure - • (r) - (w • (r» As we can see. the 

n 
polynomials ws •n • v - 0.1 •...• are imp1icit1y defined because the measure v 

depends on ws.n(r)(_ w (r». Of course. we are interested on1y in 
n n 

w:·n(r). A stab1e procedure of constructing such polynomials (s-orthogona1) 

is given in [6). 

In order to reduce our problem (2.2) to the power-orthogona1ity. we 

have to put k - 2s+1. i.e. the defect of the sp1ine function (2.1) shou1d be 

odd. 

Using (2.1) and observing that r v > O. we have 

S.. j+d 1 n m Sr '+d 1 . 
r - s (r)dr - L L ai v r J - (r -r)Ldr . 

o n.m v-1 i-m-2s .v 0 v 

Changing variables. r - trv ' in the integral on the right. we obtain the 

we11-known beta integral which can be expressed in terms of factoria1s. So 

we find 

S .. j+d-1 (j+d-1) Im! Ln Lm i! (j+d+m)! j+d+i r s (r)dr - - a r o n.m (j+d+m)! v-1 i-m-2s m!(j+d+i)! i.v v 

Let .. 
IL _ (j+d+m)! S r j +d-1 f(r)dr. j 0 1 2( 1) 1 '"j m! (j+d-1)! 0 - • .... s+ n- • (2.4) 



360 

where the moments of f on the right are assumed to exist. Then, the 

conditions (2.2) can be represented in the form 

f i! a. [Dm-irj+d+ml L L m! r-r - Pj , 
v-l i-m-2s v 

j = O,l, ... ,2(s+l)n-l, 

where D is the standard differentiation operator. 

Changing indices (k - m-i), the second sum on the left becomes 

2s 
\' (m-k)! a [Dk(rd+mrj ) 1 

m! m-k,v r-rv 

or, after the application of Leibnitz formula to k-th derivative, 

2s 
\' A (n) [Dirj 1 

i,v r-rv 
where 

A(n) 
i,v 

2s 
\' (m-k)! (k)[Dk-i d+m . 

i r lr-rvam-k,v i - 0,1, ... ,2s. 

Hence, 

Now, we state the main result 

THEOREM 2.1. Let f E and 

f r 2(s+1)n+d+m If(m+1)(r)ldr 
o 

Then a sp1ine function s of the form n,m 
n m i 

s (r) - L L ai (r -r) , 
n,m v-l i-m-2s ,v v + 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

with positive knots rv ' that satisfies (2.2), exists and is unique if and 

only if the measure 

dA(r) _ (_l)m+l r m+d f(m+l)(r)dr on 
m! 

admits a generalized Gauss-Turan quadrature 

n 2s . f p(r)dA(r) - \' \' A(n) 
o i,v v P E IP 2(s+1)n-1 ' 

(2.9) 

(2.10) 



with distinet positive nodes The knots r v in (2.8) are given by 

r - r(n). and eoeffieients a. by the triangular system (2.5). 
v 11 1,11 

Proof. Let j s 2(s+1)n-l. Beeause of (2.7). the integral 

rj+d+rn+lf(m+l)(r)dr exists and lim rj+d+m+lf(m+l)(r) - O. Then. 
r-7«> 

L'Hospital's rule implies 

lim r j +d+m f(m)(r) _ O. 
r-7«> 

Continuing in this manner. we find that 

lim - O. - m.m-l •...• O. 
r-7«> 

Under these eonditions we ean prove that (see [4]) 

f r j+d-l m+l -1 f f(r)dr - (-1) [(j+d) (j+d+l) ... (j+d+m)] 
o 0 

Therefore. the moments .• defined by (2.4). exist and 
J 

j - 0.1 •...• 2(s+1)n-l. 
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where dA(r) is given by (2.9). Henee. we eonelude that Eqs. (2.2) are 

equivalent to Eqs. (2.6). These are preeisely the eonditions for rv to be 

the nodes of the generalized Gauss-Turan quadrature formula (2.10) and 

determined by (2.6). their eoeffieients. 

The nodes 

(if exists). are 

REMARK. 

r(n). being the zeros of the s-orthogonal polynomial 
v n 

uniquely determined. henee also the eoeffieients . 0 
1.V 

The ease s - 0 of Theorem 2.1 has been obtained in [4]. 

If f is eompletely monotonie on then dA(r) in (2.9) is a 

positive measure for every m. Also. the first 2(s+1)n moments exist by 

virtue of the assumptions in Theorem 2.1. Then. the generalized Gauss-

Turan quadrature formula exists uniquely. with n distinet and positive nodes 
(n) 

r . v 

In the special case when s - 1. the eoefficients of the spline 

function (2.8) are 
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(n) -(d+m) 
a 2 - m(m-1)A2 r v ' m- ,11 ,V 

a - m[A (n) r _ 2 (d+m)A (n)J r - (d+m+1) , 
m-1,v l,v v 2,v v 

a - [(d+m)(d+m+1)A2(n) - (d+m)A1(n) A(n) 2J -(d+m+2) m,v ,v ,v r v + O,v r v r v . 

Simi1ar1y as in (4) we can prove the fo11owing statement : 

THEOREM 2.2. Given f as in Theorem 2.1, assume that the measure dA 

in (2.9) admits a genera1ized Gauss-Turan quadrature formu1a (2.10) with 

distinct positive nodes r - r(n). Define 
v v 

u (t) _ t-(m+d)(t_r)m 
r + 

Then the error of the sp1ine approximation (2.1), (2.2), 

f(r) - s (r) - R (u ;dA), r> 0, n,m n,s r 

where R (g;dA) is the remainder term in the formu1a n,s 

g(r)dA(r) - r A(n) g(i)(r(n» + R (g;dA). 
o i,v v n,s 

Proof. As in (4) we have 

f(r) - f u (t)dA(t). o r 

On the other hand, we consider the sum 

2s () i 
F (r) - r A n [D ur(t»)t_r 

v i,v v 

(2.11) 

(2.12) 

(2.13) 

where Ai(n) are the coefficients of the genera1ized Gauss-Turan quadrature ,v 
(2.12). By (2.5) and Leibnitz formu1a, we obtain 

F () [Diu (t») (m-k)! (k)[Dk-itd+m) a ] 
v r - r t-rv m! i t-rv m-k,v 

2s k 
_ \ a (m-k)! \ (k)[(Dk-itd+m)(Diu (t») 

m-k,v m! i r t-rv 

2s - L a (m-k)! [Dk(td+mu (t») 
k-O m-k,v m! r t-rv 

2s m-k 
- \ a k (rv-r)+ m- ,v 
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Fina11y, changing indices (m-k-i) we find 

m i 
F,,(r) - f a (r -r) , 

v i,lI 11 + 
i.e. 

F (r) - s (r). 
11 n,m (2.14) 

Now, using (2.13) and (2.14), we obtain (2.11). 

The error estimation and convergence of genera1ized Gauss-Turan 

quadrature were given in [8-9]. 

3. NUMERICAL EXAHPLE. 

o 

In this section we give a simple examp1e - the exponentia1 distribu-

tion in Rd . All computations were done on the ZENITH pe/XT in the double 
-16 precision (machine precision 8.88x10 ). 

EXAHPLE 3.1. 

d > I, and cl - 1. 

f(r) - cde- r on where cd - r(d/2)/(2r(d)wd/ 2) if 

This examp1e was considered in [4] for s - O. 

For this exponential distribution the measure (2.9) becomes the 

genera1ized Laguerre measure 

cd d+m -r d 
dA(r) - m! r e r, o Sr< 

First1y, for a given (n,s,m,d), we determine the zeros of the po1ynomial 

ws,n and weight coefficients of the Turan quadrature (2.12). Then, using 
n 

the triangular system of equations (2.5), we find the coefficients of the 

spline function (2.8). For example, for n - m - 3, s - I, and d - 2, the 

parameters of (2.8) are presented in Table 3.1 (to 10 decima1s only, to save 

space). Numbers in parenthesis indicate decimal exponents. 
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Tab1e 3.1 

The coefficients of sp1ine function for n - 3, m - 3, s - 1, d - 2 

1 3.358776981(0) 5.259487383(-3) 

2 9.274670326(0) 4.144453254(-5) 

3 1.948478101(1) 6.273730625(-9) 

-9.525138685(-3) 1.200758965(-2) 

-1.511837278(-4) 1.685532824(-4) 

-3.272516603(-8) 3.550824554(-8) 

Tab1e 3.2 shows approximate va1ues of the resu1ting maximum absolute 

errors e - max Is (r)-f(r)l, for n - 2, 3, 4, 5; m - 2, 3, 4; s - 1; 
n,m n,m 

n 
d - 1, 2, 3. C1ear1y, for r r n , the absolute error is equa1 to f(r). 

Tab1e 3.2 

Accuracy of the sp1ine approximation for s - 1 

d-1 d-2 d-3 
n 

m-2 m-3 m-4 m-2 m-3 m-4 m-2 m-3 m-4 

2 1.2(-1) 2.1(-2) 1.2(-2) 2.2(-2) 1.3(-2) 8.3(-3) 1.1(-2) 7.6(-3) 5.2(-3 

3 8.4(-2) 1.1(-2) 3.3(-3) 1.2(-2) 5.3(-3) 2.8(-3) 6.3(-3) 3.5(-3) 2.1(-3) 

4 5.9(-2) 7.9(-3) 1.3(-3) 9.2(-3) 2.5(-3) 1.2(-3) 3.8(-3) 1. 9( -3) 9.5(-4) 

5 4.1(-2) 5.6(-3) 7.7(-4) 7.1(-3) 1.4(-3) 5.4(-4) 2.5(-3) 1.1(-3) 4.8(-4) 
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