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MOMENT-PRESERVING SPLINE APPROXIMATION AND TURAN QUADRATURES

’ . ’
Gradimir V. Milovanovic and Milan A. Kovacevic

Abstract. We consider the problem of approximating a function f of
the radial distance r in Rd on 0 < r < « by a spline function of
degree m and defect k, with n (variable) knots, matching as many of
the initial moments of f as possible. We analyse the case when the
defect k is an odd integer, especially when k = 3. We show that, if
the approximation exists, it can be represented in terms of genera-
lized Turdn quadrature relative to a measure depending on f. The
knots of the spline are the zeros of the corresponding s-orthogonal

polynomials (s = 1). Numerical example is included.

1. INTRODUCTION

In previous papers [3] and [4], Gautschi and Gautschi and Milovanovi;
have considered the problem of approximating a function f(r) of the radial
distance r = |x||, 0 = r < =, in Rd, d =1, by a spline function of fixed
degree (with variable knots). The approximation was to preserve as many
moments of f as possible. Under suitable assumptions on f, it was shown
that the problem has a unique solution if and only if certain Gauss-
Christoffel quadratures exist corresponding to a moment functional or weight
distribution depending on f. Existence, uniqueness and pointwise conver-
gence of such approximation were analyzed. Later Frontini, Gautschi and
Milovanovié [1] have considered the analogous problem on an arbitrary finite
interval. If the approximationg exists, they can be represented in terms
of generalized Gauss-Lobatto and Gauss-Radau quadrature formulas relative to

appropriate moment functionals or measures depending on f.
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In this paper we discuss the problem of approximating a spherically
symmetric function f(r), r = |x[|, 0 < r < w, in Rd, d > 1, by a spline
function of degree m = 2 and defect k (1 < k < m), with n knots. Under
suitable assumptions on f and k = 2s+1 we will show that our problem has a
unique solution if and only if certain generalized Turdn quadratures exist
corresponding to a measure depending of f. Existence and uniqueness is
assured if f is completely monotonic on [0,»). One simple numerical example

is included.

2. MOMENT-PRESERVING SPLINE APPROXIMATION AND GENERALIZED TURAN
QUADRATURE FORMULAE

A spline function of degree m > 2 and defect k on the interval

0 £ r < », vanishing at r = @, with n = 1 positive knots rl, r2, ey rn can
be written in the form
) ;
s. (r) - Zk a, (r -r)’ , (2.1)
n,m VB fmpbiey DvovOH
where a, are real numbers. The plus sign on the right side of (2.1) is

’

the cutoff symbol, t, =t if £t > 0 and t, - 0 if t < 0. For a given

function r » f£(r) on [0,»), we wish to determine s m(r) such that

) . o0 N
I s (ryav - f f(r)av, j =0,1,...,2(s+l)n-1, (2.2)
n,m
0 0
4a/2 d-1
where dV = (2x/7/I'(d/2))r “dr is the volume element of the spherical shell
in Rd if d > 1, and dV = dr if d = 1. In other words, we want S m to

faithfully reproduce the first 2(s+l)n spherical moments of f.

In this paper we will reduce our problem to the power-orthogonality
(s-orthogonality) and generalized Gauss-Turdn quadratures ([2],[5],[7-12]),
by restricting the class of functions f. Then we can use recently developed

stable procedure of constructing s-orthogonal polynomials ([6]).

The generalized Gauss-Tur4n quadratures with a given nonnegative
measure di(r) on the real line R (with compact or infinite support for which

all moments P = IR rde(r), k=0,1,..., exist and are finite, and Ko > 0),

n k-1 (i)
j& g(r)di(r) = z Z Ai,u g (ry) + Rn(g;dA),
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is exact for all polynomials of degree at most (k+l)n-1, if k is odd,
i.e. k = 2s+]1. The nodes r,vs= l,...,n, are the zeros of the (monic)

polynomial 7 minimizing

f x (£)25*2 ax(ry. (2.3)
R n

Such polynomials are known as power-orthogonal (s-orthogonal or s-self
associated) polynomials with respect to the measure di(r). For a given n
and s, the minimization of the integral (2.3) leads to the "orthogonality

conditions"

J xis+1(r)rl dx(r) =0, i=0,1,...,n-1.
R

which can be interpreted as (see [6])

‘[ ﬂ.s,n(r)rid‘l‘(r) - o) i - 0)1;-"1V_11
R 14

where (nj’n) is a sequence of monic orthogonal polynomials with respect to
the new measure du(r) = dps'n(r) - (n:’n(r))zsdA(r). As we can see, the
polynomials wj'n, v =0,1,..., are implicitly defined because the measure
du(r) depends on wi’n(r)(- wn(r)). Of course, we are interested only in
n:'n(r). A stable procedure of constructing such polynomials (s-orthogonal)

is given in [6].

In order to reduce our problem (2.2) to the power-orthogonality, we
have to put k = 2s+l, i.e. the defect of the spline function (2.1) should be
odd.

Using (2.1) and observing that r, > 0, we have

0 n m r .
J rj+d_ls (r)dr = Z a; ., I v rJ+d'1(rv-r)idr.
0 n.m v=1 i=m-2s 'Y 70

Changing variables, r = try, in the integral on the right, we obtain the

well-known beta integral which can be expressed in terms of factorials. So

we find
® j+d-1 gp - GHd-Dimt @ ? i1(j+dtm)t  jHdl
r Sh,nD Y = “Gram 1 . ml(j+a+iyt 21y '
0 ’ v=1 i=m-2s
Let

(j+d+m)t [ _j+d-1 . )
by = ET%}?ETTTT Io r f(r)dr, j =0,1,...2(s+l)n-1, (2.4)
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where the moments of f on the right are assumed to exist. Then, the
conditions (2.2) can be represented in the form

n m . -
i! m-i_j+d+m
—a, [D r ]
m! i,y r=r

=p., j=0,1,...,2(s+1l)n-1,
v=1 i=m-2s v J

where D is the standard differentiation operator.

Changing indices (k = m-i), the second sum on the left becomes

2s
Z (mAT)! am-k u[Dk(rd+mrj)]r-r ’
k=0 : ! v

or, after the application of Leibnitz formula to k-th derivative,
2s

(n), .1
120 A0 ]r'ru ’
where
2s
(n) _ (m-k)! ky k-1 _d+m L
A= ) e QT e, 1= 0,1, (2.5)
k=i v
Hence,
n 2s (M) i
LA, - By 3= 01, 2(s4Dn-1. (2.6)
v=1 i=0 v

Now, we state the main result :

THEOREM 2.1. Let f € C®'1[0,] and

I“ P2 mbdim D) 2.7y
0 A
Then a spline function sn,m of the form
n m i
Sn,m(r) - ai’u(ry-r)+ , (2.8)

v=1 i=m-2s
with positive knots r,, that satisfies (2.2), exists and is unique if and

only if the measure
m+l

di(r) = (G2 9

m+d
r
m!

£ (ydr on [0,w) (2.9)

admits a generalized Gauss-Turdn quadrature

Iw (r)dA(r) = f is A (1) (n)y cPp (2.10)
o’ L gl Ciwv P v 70 P ETa(s+l)n-1 :
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with distinct positive nodes rin).

- r(n), and coefficients a
v v i,

The knots r, in (2.8) are given by

b y by the triangular system (2.5).

Proof. Let j =< 2(s+l)n-1. Because of (2.7), the integral

Y .
J rJ+d+m+1f(m+1)(r)dr exists and lim rj+d+m+1f(m+1)(r) = 0. Then,
0 -

L’Hospital’s rule implies

j+d+m

lim r £™ y 2 0.

-
Continuing in this manner, we find that

j+d+u

lim r £M(ry =0, u=mm1,...,0.

r->o

Under these conditions we can prove that (see [4])

0 . .
J rJ+d-1 m+1 rJ+d+mf(m+1)

£(r)dr = (-1)™ [ (§4d) (j4d+l). .. (jodem)] L J (r)dr.
0 0

Therefore, the moments pj, defined by (2.4), exist and

g, = f dx(r), j =0,1,...,2(s+l)n-1,
I o

where dA(r) is given by (2.9). Hence, we conclude that Eqs. (2.2) are

equivalent to Eqs. (2.6). These are precisely the conditions for r to be
(n

the nodes of the generalized Gauss-Turdn quadrature formula (2.10) and Ai

)
v’
determined by (2.6), their coefficients.

The nodes rin), being the zeros of the s-orthogonal polynomial wi’n
(if exists), are uniquely determined, hence also the coefficients Agn) . O

REMARK. The case s = 0 of Theorem 2.1 has been obtained in [4].

If f is completely monotonic on [0,x) then dA(r) in (2.9) is a
positive measure for every m. Also, the first 2(s+l)n moments exist by
virtue of the assumptions in Theorem 2.1. Then, the generalized Gauss-

Turdn quadrature formula exists uniquely, with n distinct and positive nodes
e
v

In the special case when s = 1, the coefficients of the spline

function (2.8) are
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a2, " m(m- 1)A(n) u(d+m)r
®m-1, m[A{?i r, - 2(d+m)A§?3]r;(d+m+l)’
" [(d+m)(d+m+1)A(n) - (d+m)A§’-:‘l)l r + A(()n')/ rZ}r;(d+m+2).

Similarly as in [4] we can prove the following statement :

THEOREM 2.2. Given f as in Theorem 2.1, assume that the measure dX
in (2.9) admits a generalized Gauss-Turdn quadrature formula (2.10) with
distinct positive nodes r, = rsn). Define

- (m+d)

o (t) =t (t-r)T

Then the error of the spline approximation (2.1), (2.2),

f(r) - Sn,m(r) - Rn’s(or;dx), r >0, (2.11D)
where Rn,s(g;dx) is the remainder term in the formula
Jm g(r)dr(r) = i is a™ g™y 4y v (gan. (2.12)
0 v=1 i=0 '’ ’
Proof. As in [4] we have
£(r) = I: o _(£)aA(L). (2.13)

On the other hand, we consider the sum

F,(r) - Z al™ plo RO

i=0 v
where Agng are the coefficients of the generalized Gauss-Turdn quadrature
(2.12). By (2.5) and Leibnitz formula, we obtain
2s 2s
- i (m- ) k- i d+m
F (1) 1Zo [D ar<c>1t_ru[kzi b 1t_ruam_k,y]
- is (@) Z DL 0l (6]
am-k,u % t=r
k=0
2s
(m-k)! .k d+m
kZO m-k,r m! [D(t (t))]t-ry
2s
- a (r -0k .

o m-k,v v +
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Finally, changing indices (m-k=i) we find

m .
i
Fy(r) =, Z ai,v(rv-r)+ ’
i=m-2s
i.e
n
Fv(r) - Sn,m(r)' (2.14)
v=1
Now, using (2.13) and (2.14), we obtain (2.11). m)

The error estimation and convergence of generalized Gauss-Turdn

quadrature were given in [8-9].

3. NUMERICAL EXAMPLE.

In this section we give a simple example - the exponential distribu-
tion in Rd. All computations were done on the ZENITH PC/XT in the double

precision (machine precision = 8.88x10'16).

EXAMPLE 3.1. f(r) = cde'r on [0,), where c, = r(d/2)/rd)Y?y if

d>1, and ¢ - 1. This example was considered in [4] for s = 0.

For this exponential distribution the measure (2.9) becomes the

generalized Laguerre measure

Cc
di(r) = Eg rd+m e°r dr, 0<r < w,

Firstly, for a given (n,s,m,d), we determine the zeros of the polynomial
ri’n and weight coefficients of the Turdn quadrature (2.12). Then, using
the triangular system of equations (2.5), we find the coefficients of the
spline function (2.8). For example, for n =m = 3, s =1, and d = 2, the
parameters of (2.8) are presented in Table 3.1 (to 10 decimals only, to save

space). Numbers in parenthesis indicate decimal exponents.
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The coefficients of spline function for n =3, m=3, s =1, d =2

r a

a a
v 1,v

2,v 3,v

3.358776981(0) 5.259487383(-3) -9.525138685(-3) 1.200758965(-2)
9.274670326(0)  4.144453254(-5) -1.511837278(-4) 1.685532824(-4)
1.948478101(1) 6.273730625(-9) -3.272516603(-8) 3.550824554(-8)

Table 3.2 shows approximate values of the resulting maximum absolute

errors e = max |s (r)-f(r)|, forn =2, 3, 4, 5, m =2, 3, 4; s = 1;
n n,m

! Osrsrn !

d=-1, 2, 3. Clearly, for r = ro the absolute error is equal to f(r).

Table 3.2

Accuracy of the spline approximation for s = 1

a=1 d=2 d=3

m=2 m=3 m=4 m=2 m=3 m=4 m=2 m=3 m=4

(S ~ S VO

1.2(-1)
8.4(-2)
5.9(-2)
4.1(-2)

1(-2)|1.2(-2)[2.2¢-2)
.1(-2)(3.3(-3)[1.2(¢-2)
.9(-3)]1.3(-3)[9.2(-3)
6(-3)7.7¢-6)[7.1¢-3)

.3(-2)18.3(-3)(1.1(-2)
.3(-3)[2.8(-3)6.3(-3)
.5(-3)(1.2(-3){3.8(-3)
L4(-3)(5.4(-4)12.5(-3)

.6(-3){5.2(-3
.5(-3)(2.1(-3)
.9(-3)[9.5(-4)
1(-3) |4.8(-4)

nm N = N
=N b =
LB B VS B
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