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ABSTRACT

For the numerical approximation of complex Cauchy prin-
cipal value integral

z°+h f(z)

dz

z°‘h z7g

atong directed Tine segment from zy,-h to zo+h, where [ is an
interior point on the path of integration, some interpolatory -
rules have been constructed. The asymptotic error estimates for
the rules -have been derived and the rules have been numerically
tested.

1. INTRODUCTION

Singular‘integrals of the Cauchy type occur abundantly
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in applied mathematics, particularly in the theory of aerodyna-
mics and in scattering theory. There has been substantial rese-
arch work for the numerical approximation of the real Cauchy
principal value (CPV) integral of the type '
1
I(g,a) = f (x - a) 'gix)dx,
-1
where a € (-1,1) and g is a continuous function on [-1,1]. Some
of the populaf methods for the numerical evaluation of the real
CPV integral I(g,a) are due to Price [12] (see also [4, p. 149]),
Hunter [6], Chawla and Jayarajan [3], Paget and Elliott [11], Io-
akimidis and Theocaris [7], Elliot and Paget [ 5], Theocaris and
Kazantzakis [13]), Monegato [10], etc.
Complex CPV integrals of the type
. 2osh -
(¢ D) J(f,7) = § f£(z2)/(z-g)dz
Zs=h
along the directed line segment L, from the point zg¢-h to zy+h
containing the point z as an interior point, where f is am analy-
tic function in a domain @ containing L, occur very often in
contour integration, which, in turn, - is an essential tool in ap-
plied mathematics. As far as it is known, the numerical evalua-
tion of the complex CPV integral J(f,z) has not received suffici-
ent attention. Only recently, Acharya and Das [1] epmloying the
transformation z + z, + th, t € [-1,1], have developed some
transformed rules analogous to the ones in {12] for the numeri-
cal approximation of the complex CPV integral J(f,z). It may be
pointed out that using this transformation we could have also tran
transformed rules analogous to the rules in [{6] and [3].

The object of this paper is to obtain interpolatory rules
for the numerical approximation of the complex CPV integral
J(f,7) given by (1), so that the points Ts Zg» zo+im-1kh, m =
= 1(1)4, are chosen as the points of interpolation, where k is a
real parameter in (0,1] and i = /=T. It is noteworthy here that
To%ié [14], using the points z,, z°+im_1kh, m = 1(1)4, has for-
mulated a general rule RG given by
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(2) I= [ ¢(z)dz = i¢(¢) = h[2(1 - 1/5k*)¢(z,) +
L
+ (1/6k? + 1/10k2)(¢(z,+kh) + ¢(zo ~ kh)) +

+ (- 1/6k? + 1/10k*)(¢(zy + ikh) + ¢(z, - ikh))]

for the approximation of t?e contour integral I. Giving the va-
lues k =1, v0.6 and (3/7)’1, the Birkhoff-Young rule [2], Gauss-
-Legendre rule [8] and the modified rule due to To%ié [14] for
the approximation of the contour integral I given by (2), are
obtained. 4

2. FORMULATION OF THE RULES

Let the point r be an interior point of L. The following
two cases: (i) ¢ # zg; (ii) = z deserve separate treatment.
(i) Case 7 # zo. Let k be a real parameter such that
k € (0,1] and z4 + kh # ¢. If Ps(z) is the Lagrange polynomial
of degree <5, interpolating to f at g, z,, 2z = 2z, + i
(m = 1{(1)4%), then we have.

bof ¥(z)
IE,5) »Qlf,5) = ] —— f 2.(2)dz + £(g) f dz,
m=0 ™ L L 27t
where
[ fo= £z0), £y = £z 4 P kny, mo= 1(1)u;
5 y y
(3) < Ram(z) = n(z - Zj) Il (zm - zj);
j=0 j3=0
j¥m J#m
T Y
k pz) = n(z - zj) n( - zj).
j=0 3=0
As each of g (z) is analytic in €
) § 2 (2)dz = [ ¢ (z)dz.

L L
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Setting the expressions for lm(z) given in (3) and (4), we eva-
luate each of the integrals. Lastly, using the definition of
CPV integral and setting the expression for y(z) given in (3),
we evaluate f(Y(z)/(z-z))dz. Hence the rule Q(-,z) for approxi-
mating the cgmplex CPV integral J(f,z) is given by

fo
(5) S J(£f,T) ® Q(f,z) = CEf(g) + 2h(1 - 1/5k*) +
29-,
1 1 £, £y 1 1 £, £
+h[( + )( + ) + ( - )( + )].
10k* 6k?® z,-C Z3-C 10k* 6k?  z,-C Zy-C
where

v = (g-29)/h, C = ln{%%i%%} + % + 2(3% ; g)/(v“—k“).

However, if zg + kh = z; = § (or zo - kh = z3 = ) we use
the osculatory interpolation by the Hermite polynomial Hs(x), in-
terpolating to £ at zg, Zis Z15 %25 Zs, Z4 (OP Zg, Z1, Z2, Z3,
Z3, Zu). Then we obtain

(6)  J(£,21) = WE,z1) = higgey + el + 2(5%? - Dfg +
2 11 1-k 14i 1 _
+ G- - o e 0 ¢ G - e

1 1 1
- melsRr ¢ P+ G - g

If we put S(f;k) = Q(f,zo + kh) then for zo - kh = z3 = ¢, we
have J(f,z3) = S(f; =-k).

(ii) Case = z,. Using the osculatory interpolation
by the Hermite polynomial Hs(x), interpolating to f at z,, zZ,,
Z), 225 Zy, 24, We have the following rule:

(1) J(f,20) ~ Qf,ze) = 26501 = gpdh + (rhy + ooy (1= £3)

6k3

i 1

1 W - le)(fz - fu.).

The rule Q(+,24), given by (7), is not derivative free.
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Following To#ié [15] and defining the operator of the finite

central difference,de as
85(z0) = £(z0 + k[n[e*®) - £(z0 - k|n|e*®),

we have the following approximation for the derivative £°(z0)

which utilizes four function evaluations:

" 1 i
where f . m = 1(1)4, are given by (33,
Using the approximation for f3 in formula 17), we have
the following derivative free rule for the numerical approximati-
on for the complex CPV integral

(8) J(£,20) =~ Q(E,20) = 7%{(1 + 3%7)(f1- £5) -

- 10 - m)(E, - £0)].

It may be pointed out that if the point g lies outside
Land g # Z¢ t ikh, then the CPV integral J(f,r) reduces to the
definite integral I given by (2), where ¢(z) = f(z)/(z-¢). In
this case dropping the term Cf(g) in (5) we note .that rule
Q(f,z)boils down to the rule given by To%ié [14] for the numeri-
cal evaluation of the integral f¢(z)dz. Hence, we may regard the
rule Q(-,z), given by (5), as aFmodification of the rule due to
To&ié [1u].

3. ERROR ANALYSIS
Let
(9) E(£,2) = Q(f,z) - J(£,z) and E(f,20) = Q(f,z0) - J(£,2z0)

be the errors associated with the rules Q(f,r) and é(f,zo), res-

pectively.
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To find the expression giving E(f,z), we assume f to be
analytic in the disc

& = {z:|z-¢{ <R},
where R is a number satisfying

R > max {|ze+ h-2|,|20 -~ h = z]}.

' So the points of interbolation, as well as the points z, t h,
are interior to the disc - Using Taylor”s expansion
o N
- n .1 o(n)
f(z) = an(z-c) R a = H!f £,
n=0

in (9) and, simplifying, we obtain
_ 2.9 w_ 3 4
(10) E(f,c) = §h {a7(k - 7) + aah\)(3 - 7k"*) +

+ aghz(gk“ + 28k"*v? - % - 12v2) + ...},

Form (10) we have the following:

THEOREM 1. If k # v and £ is - analytie in a certain do-
1
main DeL, then E(f,z) = O(h”) ezeept for k = (3/7) /% when
E(£,7) = O(h?). ‘

We then derive the expressions for the error E(f,z,)
given in (9). For this, it i. assumed that f is analytic in the
disec

QRJ = {Z: IZ - Zol <R‘},

where R” > |h|. Using the Taylor series expression

(1) £z = [ 3 (z - 2", &, = S £eMzy,

n=0

in (9), and simplifying, we obtain
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3 2.3 ~
E(f,20)= n7(Z&,(x* - ) + 2@k - hanr + L)

From (11) we have the following:
THEOREM 2. If f i8 analytic in the disc
ﬂR’= {Z: lz‘Zal<R’, R") lhl},

~ : 1 : ~
then E(£,2,) = 0(h7) exzcept for k = (3/7) ™ when E(f,2z,) = 0(h?):

We shall finally discuss the error E“(f,z,) given by
(12) E“(f,2,0) = Q°(F,2z,) = J(F,2z4), /
where Q“(+,z,) is the rule given by (7). For this, we also as-

sume f to be analytic in the disc Qp-- Using the Taylor expansi-
on given by (11), expression (12) becomes

(13)  E"(£,24) = h®{28(} - k") + 38,3 - x")h* + ...},
So now we have the following:

. THEOREM 3. If f Z8 analytic zn the dzsc QR , then
E“(f,2z9) = 0(h?) except for k = (1/5) ', when E” (f,z,) = 0Ch7).

L. NUMERICAL RESULTS

For numerical verification of the above obtained rules
we shall consider the following CPV integral
i z
2 e
(1%) Je%,p) = §
-1z =%

dz,
for g = i/4, 0 and 1.1i. The exact value of (14%) is given by

JeeZ,1) = K(v) = Clv) + is(v),

where
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1 1
cv) = f $=L ar S(v) = § 28T at
-1 -1

and f = iv. Using the sine and cosine integréls we obtain

C(v) = - (Si(1+v) + Si(1-v))sinv -
- (Ci(1+v) - Ci(1-v))cosv
and
S(v) = (Si(1+y) + Si(1-v))cosv -

(Ci(1+v) - Ci(1-v))sinv.

So we have

K(1/4) = - 0.7368529056 ... + i1.7453593365...,
K(0) = i1.8921661460...,
K(1.1) = - 2.:3456862027... -~ 11.,1943193677...

Functions Si and Ci were evaluated by means of the Che-
byshev expansion from Luke [9, Ch. 4.7].

All the calculations were performéd in D-arithmetic on
a PDP 11/40 computer.

Table -1 depicts that, as expected, the rule Q(-.,Z)
yields the most accurate value when k = (3/7)L3 (Numbers in
parentheses, in the third column, indicate decimal exponents).
It is evident from (10) that the algebraic precision ?f the rule
Q(+,5) is 6, for all values of k except for E/= (3/7) ™ when it
becomes 8. This is because setting k = (3/7) * in (10), the
first non-vanishing term, is - 16/315 agsh®, and as a result the
rule Q(+,g) becomes exact for all polynomials up to 8. The value
for k = 0,25 was obtained by means of formula (6).

Similarly, the algebraic degree of fhe rule a(-,zo) is
6 for all values of k, except for k = (3/7)‘4, when it is 8. In
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corresponding to the value k

view of this, it is observed from Table 2 that the rule Q(+,zo)

(3/7) * is most accurate. Here

= 0.
Table 1
k Qee?,i/m) |ECe®,i/u)|
0.1 0.73685466 + il1.74541535 5.60(~5)
0.25 0.73685464 + i1.74541485 5.55(-5)
0.50 0.73685480 + i1.74540717 4.79(-5)
(0.6)Y2 0.73685318 + i1.74536818 8.85(=6)
(3/7)M 0.73685290 + i1.74535919 1.43(-7)
1.00 - 0.73685056 + ii.7u528429 7.51(-5)
Table 2
k QCe?,0) |ECe®,0)] Q”(eZ,0) |E“(eZ,0) |
0.1 i1.89222221 | 5.61(~5) | i1.888891 3.28(-3)
0.5 i1.89221402 | 4.79(-5) | i1.889922 2.24(-3)
(175" |i1.89219599 | 2.98(-5) | i1.892196 2.98(=5)
0.6)"* |11.89217500 | 8.85(-6) | i1.89u842 2.68(-3)
(377" |i1.89216600 | 1.uu¢=7) | i1.895376 3.81(-3)
1.0 i1.89209103 | 7.51(-5) | i1.905429 1.33(-2)

However, it is observed from (13) that the algebraic
degree ?f the derivative free rule 6'(-,zc) is 4 (even when k =
= (3/7)’“), except for k = (1/5) A, when it is 6.
that the derivative free rule 6'(-,2,) is most accurate when the
(1/5)5“. This fact is also observed from Table 2.
The definite integral (14), for ¢ =

Thus we notice

parameter k =
1.1%, has been Fva-
luated by rule (5) and by thelmodified formula RG’ giyen by (2),
for k = 0.1, 0.5, /0.6, (3/7) " and 1. The corresponding absolu~-
te errors are displayed in Table 3. It is observed that rule (2)

is unsuitable if the singularity of ¢ (which is z = ¢ in the
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present case). is near the path integration L. It is evident,
from Table 3, that in such cases rule (5) is preferable to ru-
le (2).

Table 3
k Rule (5) Rule (2)
0.1 5.57(-5) 4,47(-1)
0.5 4.75(-5) 4.44(-1)

1 .
(0.6) | 8.79(-6) 2.33(-1)
(/% | 1.38¢-7) | 1.67¢-1)
1.0 7.46(-5) 1.14C 0)
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REZ IME

NEKA INTERPOLACIONA PRAVILA ZA PRIBLIZNO IZRATUNAVANJE
KOMPLEKSNIH KO3I1JEVIH GLAVNIH VREDNOSTI| INTEGRALA

Data su neka interpolaciona pravila za numeridku aproksi-
maciju kompleksne Ko&ijeve glavne vrednosti integrala
Zy,+h
i f(z) dz

Zu-hz -t



100 G.V, Milovanovié&, B.P. Acharya and T.N. Pattnaik

du¥ linijskog segmenta od z¢-h do ze+h, &ija je unutra3nia
tadka § . Izvedena je asimptotska ocena grefke za data
pravila a pravila su numerilki testirana.



