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Abstract. The aim of this paper is to give generating functions and to prove
various properties for some new families of special polynomials and numbers.
Several interesting properties of such families and their connections with other
polynomials and numbers of the Bernoulli, Euler, Apostol-Bernoulli, Apostol-
Euler, Genocchi and Fibonacci type are presented. Furthermore, the Fibonacci
type polynomials of higher order in two variables and a new family of special
polynomials (x,y) 7→ Gd(x,y;k,m,n), including several paricular cases, are in-
troduced and studied. Finally, a class of polynomials and corresponding num-
bers, obtained by a modification of the generating function of Humbert’s poly-
nomials, is also considered.
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1. Introduction and preliminaries
The special polynomials and numbers play an important role in many branches of
mathematics and their development is always actual. Many papers and books were
published in this very wide area. We mention only a few books connected with our
results in this work (cf. [4], [7], [27], [28]).

In this paper we consider some new families of numbers and polynomials,
including their generating functions, several interesting properties, as well as their
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connections with other polynomials and numbers of the Bernoulli, Euler, Apostol-
Bernoulli, Apostol-Euler, Genocchi, Fibonacci and Lucas type. In order to give our
results, we need to mention several special classes of polynomials and numbers with
their generating functions.

1◦ The Bernoulli polynomials of higher order B(h)
d (x) are defined by means of

the following generating function

FBh(x, t;h) =
(

text

et −1

)h

=
∞

∑
d=0

B(h)
d (x)

td

d!
. (1.1)

For h = 1, (1.1) reduces to the generating function of the classical Bernoulli polyno-
mials, B(1)

d (x) = Bd (x). Furthermore, for x = 0, this gives the well known Bernoulli
numbers Bd = Bd(0). For details see [1]–[7], [13]–[22], [29].

2◦ The Apostol-Bernoulli polynomials were introduced in 1951 by Apostol [1]
by means of the following generating function

FAB(x, t;λ ) =
text

λet −1
=

∞

∑
d=0

Bd (x,λ )
td

d!
, (1.2)

where |t + logλ | < 2π (for details see [1]–[7], [13]–[22], [29]). Several their inter-
esting properties, formulas and extensions have been obtained by Srivastava [26]
(see also the recent book [27]). Using the suitable generating functions several au-
thors have obtained different generalizations and unifications of these numbers and
polynomials (cf. [2], [5], [13], [14], [16], [17], [22], [29]).

Substituting x = 0 in (1.2), for λ 6= 1, we get the Apostol-Bernoulli numbers
Bd (λ ),

Bd (λ ) = Bd (0,λ ) , (1.3)

and they can be expressed it terms of Stirling numbers of the second kind [1,
Eq. (3.7)]. Setting λ = 1 in (1.2), we get the classical Bernoulli polynomials Bd(x)=
Bd(x,1).

Alternatively, the Apostol-Bernoulli numbers can be expressed in the form

B0(λ ) = 0, Bd(λ ) = (−1)d−1d
λϕd−2(λ )

(λ −1)d , d ≥ 1, (1.4)

where ϕk(λ ) are monic polynomials in λ and of degree k and ϕk(0) = 1. Using the
generating function (1.2) for x = 0 and (1.4), it is easy to prove that the polynomials
ϕk(λ ) are self-inversive (cf. [20, pp. 16–18]), i.e., λ kϕk(1/λ ) ≡ ϕk(λ ). Also, we
can prove that

ϕk(λ ) = (1−λ )k +λ

k

∑
ν=1

(
k+1

ν

)
(1−λ )ν−1

ϕk−ν(λ ), k ≥ 0, (1.5)
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as well as the following determinant form

ϕk(λ ) = (−1)k
λ

k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1/λ 0 0 · · · 0 1(2
1

)
−1/λ 0 · · · 0 ξ(3

1

)
ξ

(3
2

)
−1/λ · · · 0 ξ 2

...
...

...
. . .

...
...(k

1

)
ξ k−2

(k
2

)
ξ k−3

(k
3

)
ξ k−4 · · · −1/λ ξ k−1(k+1

1

)
ξ k−1

(k+1
2

)
ξ k−2

(k+1
3

)
ξ k−3 · · ·

(k+1
k

)
ξ k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where ξ = 1−λ . For example, we have

ϕ0(λ ) = 1, ϕ1(λ ) = λ +1, ϕ2(λ ) = λ
2 +4λ +1,

ϕ3(λ ) = λ
3 +11λ

2 +11λ +1, ϕ4(λ ) = λ
4 +26λ

3 +66λ
2 +26λ +1,

ϕ5(λ ) = λ
5 +57λ

4 +302λ
3 +302λ

2 +57λ +1,

ϕ6(λ ) = λ
6 +120λ

5 +1191λ
4 +2416λ

3 +1191λ
2 +120λ +1,

etc. Using (1.5) we can conclude that ϕk(1) = (k+1)!.
3◦ The Apostol-Euler polynomials of the first kind Ed (x,λ ) are defined by

means of the generating function

FAE(x, t;λ ) =
2ext

λet +1
=

∞

∑
d=0

Ed (x,λ )
td

d!
, (1.6)

where |2t + logλ | < π (cf. [1]–[7], [22], [29]). For λ 6= 1, substituting x = 1/2 in
(1.6) and making some arrangement, we obtain the Apostol-Euler numbers. Setting
λ = 1 in (1.6), we get the first kind Euler polynomials Ed (x) = Ed (x,1).

4◦ The Apostol-Euler polynomials of the second kind are defined by means of
the generating function

2
λet +λ−1e−t etx =

∞

∑
d=0

E ∗d (x,λ )
td

d!
(1.7)

(cf. [25]). A special kind of these polynomials for λ = 1 are denoted by E ∗d (x) =
E ∗d (x,1), and the corresponding numbers by E ∗d = E ∗d (0). By using (1.6) and (1.7),
for x = 0, we have the following relation

E ∗d (0,λ ) = 2d
λEd

(
1
2
,λ 2
)
.

The second kind Euler numbers E∗d are defined by the special case of the first
kind Euler polynomials, E∗d = 2dEd (1/2).

5◦ The Euler polynomials of higher order E(h)
d (x) are defined by means of the

following generating function

FEh(x, t;h) =
(

2ext

et +1

)h

=
∞

∑
d=0

E(h)
d (x)

td

d!
, (1.8)
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so that, obviously, E(1)
d (x) = Ed(x).

6◦ The Genocchi numbers and polynomials and their generalizations. The
Genocchi numbers Gd are defined by the generating function

Fg (t) =
2t

et +1
=

∞

∑
d=0

Gd
td

d!
, (1.9)

where |t|< π (cf. [13], [16], [22], [29]).
In general, for these numbers we have G0 = 0, G1 = 1, and G2d+1 = 0 for

d ∈N. Some relations between the Genocchi, Bernoulli and Euler numbers are given
by G2d = 2

(
1−22d

)
B2d and G2d = 2dE2d−1. The sequence of Genocchi numbers is

{gd}d≥0 = {0,1,−1,0,1,0,−3,0,17,0,−155,0, . . .}.

The Genocchi polynomials Gd (x) are defined by the following generating
function

Fg (x; t) = Fg (t)ext =
∞

∑
d=0

Gd (x)
td

d!
, (1.10)

where |t|< π . Using (1.10), it is easy to see that

Gd (x) =
d

∑
k=0

(
d
k

)
Gkxd−k

The first seven Genocchi polynomials are

G0(x) = 0, G1(x) = 1, G2(x) = 2x−1, G3(x) = 3x2−3x,

G4(x) = 4x3−6x2 +1, G5(x) = 5x4−10x3 +5x,

G6(x) = 6x5−15x4 +15x2−3.

The Apostol-Genocchi polynomials gd(x,λ ) are defined by the generating
function

2t
λet +1

ext =
∞

∑
d=0

Gd (x,λ )
td

d!
, (1.11)

where |2t + logλ | < π . Setting λ = 1 in (1.11), we get the classical Genocchi
polynomials Gd(x) = Gd(x,1), which reduce to the classical Genocchi numbers
Gd = Gd(0) for x = 0.

Substituting x = 0 in (1.11), for λ 6= 1, we obtain the Apostol-Genocchi num-
bers Gd(λ ) = Gd(0,λ ). For some details, properties and other generalizations see
[11], [13], [16], [22], [26], [27], [29].

7◦ The Stirling numbers of the second kind S2(n,k;λ ) are defined by means of
the following generating function (cf. [3], [24], [26]):

FS(t,k;λ ) =
(λet −1)k

k!
=

∞

∑
n=0

S2(n,k;λ )
tn

n!
, (1.12)

where k ∈ N0 and λ ∈ C.
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The generalized Stirling numbers and polynomials have been defined by means
of the following generating function (cf. [3]):

(et −1)k

k!
etα =

∞

∑
n=0

S(α)(n,k)
tn

n!
. (1.13)

Several combinatorial properties of these polynomials have been proved in [3].
Simsek [24] has modified the generating function (1.13), defining the so-called

λ -array polynomials Sn
k(x;λ ) by means of the following generating function

FA(t,x,k;λ ) =
(λet −1)k

k!
etx =

∞

∑
n=0

Sn
k(x;λ )

tn

n!
, (1.14)

where k ∈N0 and λ ∈C. Substituting λ = 1, the λ -array polynomials reduce to the
array polynomials, S(α)(n,k) = Sn

k(α;1) (cf. [3], [24]).
8◦ The Humbert polynomials

{
Πλ

n,m
}∞

n=0 were defined in 1921 by Humbert
[12]. Their generating function is

(1−mxt + tm)−λ =
∞

∑
n=0

Π
λ
n,m (x) tn. (1.15)

This function satisfies the following recurrence relation (cf. [7], [18], [19] and ref-
erences therein):

(n+1)Π
λ
n+1,m (x)−mx(n+λ )Π

λ
n,m (x)− (n+mλ −m+1)Π

λ
n−m+1,m (x) = 0.

A special case of these polynomials are the Gegenbauer polynomials given as
follows [8]:

Cλ
n (x) = Π

λ
n,2 (x)

and also the Pincherle polynomials given as follows (see [23], [12]):

Pn (x) = Π
−1/2
n,3 (x) .

Later, Gould [9] studied a class of generalized Humbert polynomials, Pn (m,x,y, p,C),
defined by

(C−mxt + ytm)p =
∞

∑
n=0

Pn (m,x,y, p,C) tn,

where m ≥ 1 is an integer and the other parameters are unrestricted in general (cf.
[7], [10]).

Some special cases of the generalized Humbert polynomials, Pn (m,x,y, p,C),
can be given as follows (cf. [12]):

Pn
(
2,x,1,− 1

2 ,1
)

= Pn (x) Legendre (1784),

Pn (2,x,1,−ν ,1) = Cν
n (x) Geganbauer (1874),

Pn
(
3,x,1,− 1

2 ,1
)

= Pn (x) Pincherle (1890),

Pn (m,x,1,−ν ,1) = hν
n,m (x) Humbert (1921).
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9◦ The Fibonacci type polynomials in two variables (x,y) 7→ G j (x,y;k,m,n)
has been recently defined by Ozdemir and Simsek [21] by the following generating
function

H (t;x,y;k,m,n) =
∞

∑
j=0

G j (x,y;k,m,n) t j =
1

1− xkt− ymtm+n , (1.16)

where k,m,n ∈ N0. An explicit formula for the polynomials G j (x,y;k,m,n), j =
0,1, . . ., can be done in the following form [21]

G j (x,y;k,m,n) =

[
j

m+n

]
∑
c=0

(
j− c(m+n−1)

c

)
ymcx jk−mck−nck,

where [a] is the largest integer ≤ a.
In this paper we give some new identities for the previous classes of polyno-

mials and investigate some new properties of these polynomials. Moreover, by using
their generating functions, we give some applications which are associated with the
Fibonacci type polynomials of higher order in two variables.

The paper is organized as follows. Fibonacci type polynomials of higher order
in two variables and a new family of special polynomials (x,y) 7→ Gd (x,y;k,m,n)
are introduced and studied in Sections 2 and 3, respectively. Special cases of poly-
nomials Gd (x,y;k,m,n) are investigated in Section 4. Finally, Section 5 is devoted
to a class of polynomials and corresponding numbers, obtained by a modification of
the generating function of Humbert’s polynomials.

2. Fibonacci type polynomials of higher order in two variables
In this section we give a new generalization of the Fibonacci type polynomials in
two variables.

Definition 2.1. Two variable Fibonacci type polynomials of higher order (x,y) 7→
G

(h)
j (x,y;k,m,n) are defined by the following generating function

∞

∑
j=0

G
(h)
j (x,y;k,m,n) t j =

1

(1− xkt− ymtn+m)
h (2.1)

where h is a positive integer.

Observe that
G

(1)
j (x,y;k,m,n) = G j (x,y;k,m,n) .

We give now a computation formula of two variable Fibonacci type polyno-
mials of higher order h in the following statement.

Theorem 2.2. We have

G
(h1+h2)
j (x,y;k,m,n) =

j

∑
`=0

G
(h1)
` (x,y;k,m,n)G (h2)

j−` (x,y;k,m,n) . (2.2)
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Proof. Setting h = h1 +h2 into (2.1), we start with
∞

∑
j=0

G
(h1+h2)
j (x,y;k,m,n) t j =

1

(1− xkt− ymtn+m)
h1
· 1

(1− xkt− ymtn+m)
h2
,

and then, using again (2.1), we get
∞

∑
j=0

G
(h1+h2)
j (x,y;k,m,n) t j =

∞

∑
j=0

G
(h1)
j (x,y;k,m,n) t j

∞

∑
j=0

G
(h2)
j (x,y;k,m,n) t j.

Now, by using the Cauchy product in the right-hand side of the above equation, we
obtain

∞

∑
j=0

G
(h1+h2)
j (x,y;k,m,n) t j =

∞

∑
j=0

j

∑
`=0

G
(h1)
` (x,y;k,m,n)G (h2)

j−` (x,y;k,m,n) t j.

Finally, comparing the coefficients of t j on both sides in the previous equality, we
arrive at the desired result (2.2). �

Remark 2.3. Setting h1 = h2 = 1 in (2.2), we obtain the following formula for
computing two variable Fibonacci type polynomials of the second order,

G
(2)
j (x,y;k,m,n) =

j

∑
`=0

G` (x,y;k,m,n)G j−` (x,y;k,m,n) .

If we take x := ax, y =−1, k = 1, m = 1, n = a−1, (2.1) reduces to
∞

∑
j=0

G
(h)
j (ax,−1;1,1,a−1) t j =

1

(1−axt + ta)h

=
∞

∑
j=0

Π
h
j,a (x) t j.

Comparing the coefficients of t j on both sides of the above equality, we obtain
the following result:

Corollary 2.4. A relation between two variable Fibonacci type polynomials of
higher order G

(h)
j (x,y;k,m,n) and Humbert polynomials Πh

n,m (x) is given by

G
(h)
j (ax,−1;1,1,a−1) = Π

h
j,a (x) .

3. Special polynomials including two variable Fibonacci type
polynomials and Bernoulli and Euler type polynomials

In this section, in order to introduce a new family of polynomials, we modify and
unify the generating functions of the Fibonacci type polynomials in two variables.
By using these generating functions, we derive some relations and identities includ-
ing the Apostol-Bernoulli numbers, the Bernoulli type polynomials, the Humbert
polynomials and the Genocchi polynomials. These relations and identities also in-
clude the Fibonacci type polynomials in two variables.
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Now, we introduce the generating function for these new special polynomi-
als in two variables (x,y) 7→ Gd (x,y;k,m,n), d ≥ 0, with the three free parameters
k,m,n.

Definition 3.1. The polynomials Gd (x,y;k,m,n) are defined by means of the fol-
lowing generating function

F(z;x,y;k,m,n) =
1− xk− ym

1− xkez− ymez(m+n)

=
∞

∑
d=0

Gd (x,y;k,m,n)
d!

(
z

1− xk− ym

)d

. (3.1)

A recurrence relation for the polynomials Gd(x,y;k,m,n) can be proved.

Theorem 3.2. Let G0 (x,y;k,m,n) = 1 and d be a positive integer. Then we have

Gd (x,y;k,m,n) = xk
d

∑
j=0

(
d
j

)
G j (x,y;k,m,n)

(
1− xk− ym)d− j

+ym
d

∑
j=0

(
d
j

)
G j(x,y;k,m,n)(m+n)d− j(1− xk− ym)d− j

.

Proof. By applying the umbral calculus methods to (3.1), we get

1− xk− ym =
∞

∑
d=0

Gd (x,y;k,m,n)
zd

(1− xk− ym)
d d!

−xk
∞

∑
d=0

(
G(x,y;k,m,n)+1− xk− ym)d zd

(1− xk− ym)
d d!

−ym
∞

∑
d=0

(
G(x,y;k,m,n)+(m+n)

(
1− xk− ym))d zd

(1− xk− ym)
d d!

,

with the usual convention of replacing Gd (x,y;k,m,n) by Gd (x,y;k,m,n). Compar-
ing the coefficients of zd on the both sides of the previous equality, we arrive at the
desired result. �

A few first polynomials are

G0 (x,y;k,m,n) = 1, G1 (x,y;k,m,n) = xk +(m+n)ym,

G2 (x,y;k,m,n) = [xk +(m+n)ym]2− (m+n−1)2xkym + xk +(m+n)2ym,

etc.

3.1. Relations between the polynomials and numbers
Here, we consider some special cases of the polynomials Gd (x,y;k,m,n). By us-
ing the generating function from (3.1), we derive some new identities and rela-
tions, which include the polynomials Gd(x,y;k,m,n), the Apostol-Bernoulli and the
Apostol-Euler polynomials and numbers, as well as the classical Bernoulli, Euler
and Genocchi polynomials and numbers.
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Theorem 3.3. Let d ≥ 1. The polynomials Gd (x,y;k,m,n), d ≥ 1, are connected
with the Apostol-Bernoulli numbers Bd (λ ) in the following way

Gd−1 (x,y;k,1,0) =−
(
1− xk− y

)d

d
Bd
(
xk + y

)
, d ≥ 1. (3.2)

Proof. First, according to (3.1) and (1.2), we have the following relation

F(z;x,y;k,1,0) =−1− xk− y
z

FAB(0,z;xk + y),

i.e.,
∞

∑
d=0

Gd (x,y;k,1,0)

(1− xk− y)d
zd

d!
=−1− xk− y

z

∞

∑
d=0

Bd
(
xk + y

) zd

d!
,

where we also used (1.3). However, since

z
1− xk− y

∞

∑
d=0

Gd (x,y;k,1,0)

(1− xk− y)d ·
zd

d!
=

∞

∑
d=0

(d +1)Gd (x,y;k,1,0)

(1− xk− y)d+1 · zd+1

(d +1)!

=
∞

∑
d=1

dGd−1 (x,y;k,1,0)

(1− xk− y)d · z
d

d!
,

we have
∞

∑
d=1

dGd−1 (x,y;k,1,0)

(1− xk− y)d · z
d

d!
=−

∞

∑
d=1

Bd
(
xk + y

) zd

d!
, (3.3)

because B0(λ ) = 0.
Comparing the coefficients of zd/d! on both sides in (3.3), we obtain (3.2). �

By using the Apostol-Bernoulli numbers and the equality (3.2) we get another
computation formula for the polynomials Gd(x,y;k,m,n). Thus,

G0 (x,y;k,1,0) =−
(
1− xk− y

)
B1
(
xk + y

)
= 1,

G1 (x,y;k,1,0) =−
(
1− xk− y

)2

2
B2
(
xk + y

)
= xk + y,

G2 (x,y;k,1,0) =−
(
1− xk− y

)3

3
B3
(
xk + y

)
= x2k +2xky+ xk + y2 + y,

G3 (x,y;k,1,0) =−
(
1− xk− y

)4

4
B4
(
xk + y

)
=
(
xk + y

)[(
xk + y

)2
+4
(
xk + y

)
+1
]
,

G4 (x,y;k,1,0) =−
(
1− xk− y

)5

5
B5
(
xk + y

)
=
(
xk + y

)[(
xk + y

)3
+11

(
xk + y

)2
+11

(
xk + y

)
+1
]
, etc.

Theorem 3.4. Let d ≥ 0. The relation between the polynomials Gd(x,y;k,m,n) and
the Apostol-Bernoulli polynomials Bd(x,λ ) is given by

Bd
(
x,xk)=−d

d−1

∑
j=0

(
d−1

j

)
xd−1− j

(1− xk)
j+1G j (x,0;k,m,n) . (3.4)



10 G. Ozdemir, Y. Simsek and G. V. Milovanović

Proof. Starting with (1.6) and (3.1) for y = 0 m 6= 0, we conclude that

zexzF(z;x,0;k,m,n) = zexz 1− xk

1− xkez =
(
xk−1

)
FAE(x,z;xk), (3.5)

i.e.,

z
∞

∑
d=0

(xz)d

d!

∞

∑
d=0

Gd (x,0;k,m,n)

(1− xk)
d+1

zd

d!
=−

∞

∑
d=0

Bd
(
x,xk) zd

d!
,

after replacing by the corresponding series representations. Now, using the Cauchy
product on the left-hand side of the above equality, we obtain

∞

∑
d=0

d

∑
j=0

(
d
j

)
xd− j G j (x,0;k,m,n)

(1− xk)
j+1

zd+1

d!
=−

∞

∑
d=0

Bd
(
x,xk) zd

d!
,

i.e., (3.4). �

Remark 3.5. By using (3.5), the equality (3.4) can be also given in the following
form

Bd
(
x,xk)=− d

∑
j=1

(
d
j

)
xd− j jG j−1 (x,0;k,m,n)(

1− xk
) j .

Theorem 3.6. The Euler polynomials Ed(x) can be expressed in terms of the poly-
nomials Gd(x,y;k,m,n) as

Ed (x) =
d

∑
j=0

(
d
j

)
xd− j G j (−1,0;1,m,n)

2 j . (3.6)

Proof. As in the proof of Theorem 3.4, we assume that m 6= 0 and start with a special
case of the generating function in (3.1), with x =−1, y = 0 and k = 1, i.e.,

F(z;−1,0;1,m,n) = FAE(0, t;1),

Then, by the generating function of the Euler polynomials Ed(x) given by (1.8) (for
h = 1), we conclude that

exzF(z;−1,0;1,m,n) = FEh(x,z;1).

i.e.,
∞

∑
d=0

(xz)d

d!

∞

∑
d=0

Gd (−1,0;1,m,n)
2d

zd

d!
=

∞

∑
d=0

Ed (x)
zd

d!
or

∞

∑
d=0

d

∑
j=0

(
d
j

)
xd− j G j (−1,0;1,m,n)

2 j
zd

d!
=

∞

∑
d=0

Ed (x)
zd

d!
,

from which we obtain (3.6). �

Theorem 3.7. The relation between the polynomials Gd(x,y;k,m,n) and the Genoc-
chi polynomials Gd(x) is given by

Gd (x) = d
d−1

∑
j=0

(
d−1

j

)
xd−1− j G j (−1,0;1,m,n)

2 j . (3.7)
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Proof. Assuming that m 6= 0 and using (3.1) and (1.10), we have

zexzF(z;−1,0;1,m,n) = Fg (x; t) ,

i.e.,

z
∞

∑
d=0

(xz)d

d!

∞

∑
d=0

Gd (−1,0;1,m,n)
2d

zd

d!
=

∞

∑
d=0

Gd (x)
zd

d!
.

Since G0(x) = 0, after some standard manipulations, we obtain
∞

∑
d=1

(
d

d−1

∑
j=0

(
d−1

j

)
xd−1− j G j (−1,0;1,m,n)

2 j

)
zd

d!
=

∞

∑
d=1

Gd(x)
zd

d!
,

i.e., (3.7). �

Remark 3.8. The relation (3.7) can be also expressed in the following form

Gd(x) =
d

∑
j=1

(
d
j

)
xd− j jG j−1(−1,0;1,m,n)

2 j−1 .

4. Modified Humbert polynomials
In this section we modify the generating function of the Humbert polynomials in
order to obtain the generating functions for some other families of special polyno-
mials and numbers. We investigate certain properties of these generating functions
and derive a few identities and relations which include the Apostol-Bernoulli and the
Apostol-Euler numbers and polynomials, as well as the Bernoulli numbers of higher
order, the array polynomials, and some other special numbers and polynomials.

First, we introduce a two-parameter family of the numbers {Yn(λ ;a)}n≥0 by
a generating function obtained from one of Humbert polynomials (1.15), by the
substitution (m,x, t,λ )→ (a,λ ,ez,1).

Definition 4.1. A family of the numbers {Yn(λ ;a)}n≥0 is defined by

F (z;λ ,a) =
1

1−aλez + eaz =
∞

∑
n=0

Yn (λ ,a)
zn

n!
. (4.1)

4.1. Computing some special values of the numbers Yn (λ ,a)
Here, we consider two special cases.

CASE a = 2. Substituting λ = 1 and a = 2 into (4.1), after multiplication by
z2, we obtain

∞

∑
n=0

Yn (1,2)
zn+2

n!
=

(
z

ez−1

)2

=
∞

∑
n=0

B(2)
n

zn

n!
,

i.e.,
∞

∑
n=2

Yn−2 (1,2)n(n−1)
zn

n!
=

∞

∑
n=0

B(2)
n

zn

n!
,

after using the series representation (1.1). Therefore, we have

B(2)
n = n(n−1)Yn−2(1,2), n 6= 2,

where B(2)
n denotes the Bernoulli numbers of the second order.
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Now, we are interested for a case when λ =− 1
2

(
β +β−1

)
, where β > 1.

Theorem 4.2. If β > 1 we have

Yn
(
− 1

2

(
β +β

−1) ,2)= 1
4

n

∑
j=0

(
n
j

)
E j (0,β )En− j

(
0,β−1) . (4.2)

Proof. Starting from (4.1), for a = 2, λ =− 1
2

(
β +β−1

)
, and β > 1, i.e.,

F
(

z;−1
2
(
β +β

−1) ,2)= 1
4

FAE(0,z;β )FAE
(
0,z;β

−1) ,
and using the corresponding series representations (4.1) and (1.6), we obtain

∞

∑
n=0

Yn
(
− 1

2

(
β +β

−1),2) zn

n!
=

1
4

(
∞

∑
i=0

Ei (0,β )
zi

i!

)(
∞

∑
j=0

E j
(
0,β−1) zi

j!

)

=
1
4

∞

∑
n=0

(
n

∑
j=0

(
n
j

)
E j (0,β )En− j

(
0,β−1)) zn

n!
,

i.e., (4.2). �

In a particular case for β = 2, the equality (4.2) reduces to the following iden-
tity

Yn
(
− 5

4 ,2
)
=

1
4

n

∑
j=0

(
n
j

)
E j (0,2)En− j

(
0, 1

2 )
)
.

We give the following functional equations related to the numbers Yn (λ ,a):

zF (z;λ ,1) =−FAB(0,z;λ −1)

and
2F (z;λ ,1) = FAE(0,z;1−λ ).

Combining the above equations with (4.1), (1.2) and also (1.6), we get

Yn−1 (λ ,1) =−
1
n
Bn(λ −1) and Yn (λ ,1) =

1
2
En(0,1−λ ).

4.2. A recurrence relation for the numbers Yn(λ ,a)

By applying the Umbral calculus methods to (4.1), we find a recurrence relation for
these numbers.

Theorem 4.3. Let 2 6= aλ and

Y0 (λ ,a) =
1

2−aλ
.

Then, for n≥ 1, we have

Yn(λ ,a) =
n

∑
j=0

(
n
j

)
(aλ −an− j)Yj(λ ,a). (4.3)
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Proof. Starting from (4.1), we get
∞

∑
n=0

Yn (λ ,a)
zn

n!
−aλ

∞

∑
n=0

zn

n!

∞

∑
n=0

Yn (λ ,a)
zn

n!
+

∞

∑
n=0

(az)n

n!

∞

∑
n=0

Yn (λ ,a)
zn

n!
= 1.

Now, using the Cauchy product rule in the left-hand side of this equality, we obtain
∞

∑
n=0

Yn (λ ,a)
zn

n!
−aλ

∞

∑
n=0

n

∑
j=0

(
n
j

)
Yj (λ ,a)

zn

n!
+

∞

∑
n=0

n

∑
j=0

(
n
j

)
an− jYj (λ ,a)

zn

n!
= 1.

Therefore,
∞

∑
n=0

Yn (λ ,a)
zn

n!
= 1+

∞

∑
n=0

(
n

∑
j=0

(
n
j

)(
aλ −an− j)Yj(λ ,a)

)
zn

n!
.

Comparing the coefficients of zn/n! on both sides of the above equality, we arrive at
the desired result. �

According to (4.3), we can recursively compute the values of the numbers
Yn(λ ,a) for aλ 6= 2,

Yn(λ ,a) =
1

2−aλ

n−1

∑
j=0

(
n
j

)
(aλ −an− j)Yj(λ ,a).

This formula gives

Y0 (λ ,a) =
1

2−aλ
,

Y1 (λ ,a) =
aλ −a

(2−aλ )2 ,

Y2 (λ ,a) =
a2λ 2 +(2−4a+a2)aλ

(2−aλ )3 ,

Y3 (λ ,a) =
a3λ 3 +

(
8−12a+6a2−a3

)
a2λ 2 +

(
4−12a+6a2−2a3

)
aλ +2a3

(2−aλ )4 ,

etc.

Remark 4.4. All numbers Yn (λ ,a) are rational functions of real parameters a and
λ , with a pole λ = 2/a of order n+1.

4.3. A new family of polynomials Pn(x;λ ,a)
By (4.1), we can define a new family of polynomials Pn (x;λ ,a) by means of the
following generating function:

G(z;x;λ ,a) = exzF (z;λ ,a) ,

i.e.,

G(z;x;λ ,a) =
∞

∑
n=0

Pn(x;λ ,a)
zn

n!
=

exz

1−aλez + eaz . (4.4)

Using (4.1), (4.4), as well as the numbers Yj(λ ,a), we obtain the following
representation of the polynomials Pn(x;λ ,a).
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Theorem 4.5. For n ∈ N0 we have

Pn (x;λ ,a) =
n

∑
j=0

(
n
j

)
xn− jYj (λ ,a) .

Proof. According to (4.4), we have
∞

∑
n=0

Pn (x;λ ,a)
zn

n!
=

(
∞

∑
n=0

xn zn

n!

)(
∞

∑
n=0

Yn (λ ,a)
zn

n!

)
,

i.e.,
∞

∑
n=0

Pn (x;λ ,a)
zn

n!
=

∞

∑
n=0

(
n

∑
j=0

(
n
j

)
xn− jYj (λ ,a)

)
zn

n!
.

The last equality gives the desired result. �

Theorem 4.6. For n≥ 1 we have
∂

∂x
Pn(x;λ ,a) = nPn−1(x;λ ,a).

Proof. By differentiating the generating function (4.4) with respect to x, we con-
clude that

∂

∂x
G(z;x;λ ,a) = zG(z;x;λ ,a) .

Then, using the corresponding series representation, we obtain
∞

∑
n=0

∂

∂x
Pn(x;λ ,a)

zn

n!
=

∞

∑
n=1

nPn−1(x;λ ,a)
zn

n!
,

from which the desired result directly follows. �

Theorem 4.7. The following identities
[n/2]

∑
k=0

(
n
2k

)
Pn−2k(x;λ ,a) =

1
2

(
Pn(x+1;λ ,a)+Pn(x−1;λ ,a)

)
(4.5)

and
[(n−1)/2]

∑
k=0

(
n

2k+1

)
Pn−2k−1(x;λ ,a) =

1
2

(
Pn(x+1;λ ,a)−Pn(x−1;λ ,a)

)
(4.6)

hold.

Proof. According to (4.4), we find that

G(z;x+ y;λ ,a) = eyzG(z;x;λ ,a),

as well as the following equality
∞

∑
n=0

Pn(x+ y;λ ,a)
zn

n!
=

∞

∑
n=0

(
n

∑
j=0

(
n
j

)
yn− jPj(x;λ ,a)

)
zn

n!
,

i.e.,

Pn(x+ y;λ ,a) =
n

∑
j=0

(
n
j

)
y jPn− j(x;λ ,a).
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Now, substituting y = 1 and y =−1 into this equality, we obtain

Pn(x+1;λ ,a) =
n

∑
j=0

(
n
j

)
Pn− j(x;λ ,a)

and

Pn(x−1;λ ,a) =
n

∑
j=0

(−1) j
(

n
j

)
Pn− j(x;λ ,a),

respectively. Finally, adding and subtracting these equalities we get the identities
(4.5) or (4.6). �
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