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OSTROWSKI TYPE INEQUALITIES AND SOME

SELECTED QUADRATURE FORMULAE

Gradimir V. Milovanović

Dedicated to the Memory of Professor Dragoslav S. Mitrinović (1908–1995)

Some selected Ostrowski type inequalities and a connection with numerical

integration are studied in this survey paper, which is dedicated to the memory

of Professor D. S. Mitrinović, who left us 25 years ago. His significant influ-

ence to the development of the theory of inequalities is briefly given in the

first section of this paper. Beside some basic facts on quadrature formulas and

an approach for estimating the error term using Ostrowski type inequalities

and Peano kernel techniques, we give several examples of selected quadrature

formulas and the corresponding inequalities, including the basic Ostrowski’s

inequality (1938), inequality of Milovanović and Pečarić (1976) and its modi-

fications, inequality of Dragomir, Cerone and Roumeliotis (2000), symmetric

inequality of Guessab and Schmeisser (2002) and asymmetric inequality of

Franjić (2009), as well as four point symmetric inequalites by Alomari (2012)

and a variant with double internal nodes given by Liu and Park (2017).

1. MITRINOVIĆ’S INFLUENCE TO THE THEORY OF
INEQUALITIES

My university and scientific career began in the seventies of the last cen-
tury and is related to Professor Dragoslav S. Mitrinović (1908–1995), who at that
time was the Head of the Department of Mathematics at the Faculty of Electri-
cal Engineering in Belgrade and founder and Editor-in-Chief of the journal Univ.
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Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., started in 1956, that
continue to live through today’s Appl. Anal. Discrete Math. journal (name
was changed in 2007). Although Mitrinović dealt with differential and functional
equations, as a prominent member of the Belgrade School of Mathematics founded
by Mihailo Petrović Alas (1868–1943) [35], as well as other areas of real and com-
plex analysis, special functions, number theory, etc., but the inequalities were his
greatest passion in mathematics. He was involved in all kinds of inequalities. He
often used to say “There are no equalities, even in the human life, the inequalities
are always met.” (for details see [32], as well as the complete book [33]). What
should be emphasized is that Mitrinović was a scientist who always advocated sci-
entific honesty. He always warned his associates that they must correctly cite the
results of other authors, no matter what personal relationship they have with them.

Although I published the first few scientific papers in the field of numerical
analysis (especially in iterative processes) and functional equations, Mitrinović’s
influence prevailed and I began to deal with the theory of inequalities. His fa-
mous monograph “Analytic Inequalities” [40] published in 1970 by Springer was
at that time an extraordinary inspiration not only for me, but also for many in
the world, especially mathematicians of the younger generation, who were able to
find interesting topics and sources for their research there. In their review of this
monograph R. A. Askey and R. P. Boas Jr. in Math. Reviews (MR 274686 (43
#448)), compared it with previous famous monographs on inequalities written by
G. H. Hardy, J. E. Littlewood and G. Pólya [19] and by E. F. Beckenbach and
R. Bellman [6], said that “Anyone interested in the subject will have to have all
three: Hardy-Littlewood-Pólya for its exhaustive treatment of the classical inequal-
ities and for its thorough discussion of advanced topics that do not appear in other
books . . .; Beckenbach-Bellman for its wide range both of methods and of topics; and
Mitrinović for topics that are in neither of the other books; for its thorough bibli-
ographies; and for an extensive collection of special inequalities, many of which are
not otherwise easily accessible, and some of which appear here for the first time. By
searching the literature the author has recovered many interesting inequalities that
would otherwise have been forgotten. Although what appeals to one analyst need not
appeal to another, almost anybody is sure to find interesting things in this book.”
Describing this three-part book by Mitrinović, they emphasize that “The third and
most significant part of the book contains some 450 (by the author’s count) partic-
ular inequalities, loosely arranged according to subject matter. This is a valuable
source of material and many of the inequalities could serve as starting points for
more general theories.”

This is exactly what happened in the following period. These inequalities
have attracted the attention of many authors, leading to rapid progress and the
creation of a theory of inequality based on the linking of many particular inequalities
and their generalizations. My first interest was also related to the third part of
this monograph, precisely to Section 3.7 on the so-called Integral Inequalities [40,
pp. 289–309], as well as to Miscellaneous Inequalities, which are given later in
Section 3.9. I was particularly drawn to those integral inequalities, given with
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appropriate references, as items 3.7.22 (Mackey [25]), 3.7.23 (Ostrowski [43]),
3.7.24 (Iyengar [20]), and 3.7.29 (Zmorovič [53]), and working on them I obtained
several extensions and generalizations [11, 29, 52], which I used in order to estimate
the error terms in some general quadrature formulas, among other things (see also
a later result on Iyengar inequality obtained jointly with Pečarić [38]).

For example, using Ostrowski’s inequality [43]

(1)

∣∣∣∣∣ f(x)− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)2
(b− a)2

]
(b− a) ‖f ′‖∞ , x ∈ [a, b],

which holds for each continuous function f : [a, b]→ R, differentiable on (a, b), with
bounded derivative

‖f ′‖∞ = sup
x∈[a,b]

|f ′(t)| <∞,

for such functions on [0, 1] the following simple estimate [29]∣∣∣∣∣
∫ 1

0

f(x) dx− 1

n

n∑
k=1

λkf(xk)

∣∣∣∣∣ ≤ M

2

n∑
k=1

[
(xk − ak−1)2 + (ak − xk)2

]
was proved, where 0 = a0 < a1 < a2 < · · · < an = 1 and

λk = ak − ak−1, ak−1 ≤ xk ≤ ak (k = 1, . . . , n).

In the same paper [29] we also proved the multidimensional version of (1), including
the weighted case, as well as the corresponding applications in numerical integra-
tion over the domain D =

{
(x1, . . . , xm} : ai < xi < bi (i = 1, . . . ,m)

}
.

Theorem 1. Let f : Rm → R be a differentiable function defined on D and let∣∣∣∣ ∂f∂xi
∣∣∣∣ ≤Mi (Mi > 0; i = 1, . . . ,m) in D. Then, for every (x1, . . . , xm) ∈ D,

∣∣∣∣∣f(x1, . . . , xm)− 1
m∏
i=1

(bi − ai)

∫ b1

a1

· · ·
∫ bm

am

f(y1, . . . , ym) dy1 · · · dym

∣∣∣∣∣(2)

≤
m∑
i=1

1

4
+

(
xi −

ai + bi
2

)2

(bi − ai)2

 (bi − ai)Mi.

It seems that the previous results were the first application of Ostrowski’s
inequality in numerical integration for getting estimates of the remainder term in
composite quadrature formulas. Also, we used 3.9.71, i.e., the Landau inequality
|f ′(x)| ≤ 2 (x ∈ I), which holds for all real functions x 7→ f(x) on an interval I, of
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length not less than 2, for which |f(x)| ≤ 1 and |f ′′(x)| ≤ 1 (see [23]), as well as
its generalization

(3)
∣∣ϕ′(x)− ϕ(1) + ϕ(0

∣∣ ≤ 1

2
− x+ x2, 0 ≤ x ≤ 1,

proved by Avakumović and Aljančić [5], by geometric arguments under the condi-
tion |ϕ′′(x)| ≤ 1 for 0 ≤ x ≤ 1. Here, the polynomial x 7→ 1

2 − x + x2 is the best
possible, as well as the constant 2 in the Landau inequality.

Otherwise, there are several generalizations of the Landau result in many
senses. Our generalization was related to twice Fréchet-differentiable operators
F : X → Y , where X and Y are Banach spaces (see [10, 30]).

The inequality (3) is connected with the Ostrowski inequality (1) and it can
be seen if we take

ϕ(x) =
1

M(b− a)

∫ x

0

f(a+ (b− a)t) dt.

Then (3) reduces to (1).

Several monographs have been also appeared after Mitrinović’s monograph
[40]. We mention here only a few of them: Means and Their Inequalities [7] by
Bullen, Mitrinović and Vasć, Inequalities Involving Functions and Their Integrals
and Derivatives [41] and Classical and New Inequalities in Analysis [42] by Mitri-
nović, Pečarić and Fink, and Topics in Polynomials: Extremal Problems, Inequali-
ties, Zeros [36] by Milovanović, Mitrinović and Rassias.

From today’s point of view, we can notice that after the mentioned period and
[41, Chp. XV], Ostrowski’s inequality (1) became a challenge for many researchers,
so according to Math. Review and to Dragomir’s survey paper [12], there are a
few hundreds of published papers with the phrase “Ostrowski type of inequality”
in the title, and even an edited book by Dragomir and Rassias [13], as well as
a nice monograph by Franjić, Pečarić, Perić and Vukelić [17]. Some double-sided
inequalities of Ostrowski’s type and some applications are also investigated (cf. [26]
and [4]).

In this paper, we present some selected Ostrowski type inequalities, consid-
ered from the point of view of numerical integration, precisely for error estimates
in quadrature formulas. In Section 2 we give some basic facts on quadrature for-
mulas of algebraic degree of exactness and approach for estimating the error term
using Ostrowski type inequalities and Peano kernel techniques. In Section 3 we give
several selected examples of simple quadrature formulas and the corresponding in-
equalities, including the basic Ostrowski’s inequality [43], inequality of Milovanović
and Pečarić [37], Dragomir, Cerone and Roumeliotis [15], symmetric and asym-
metric inequalities of Guessab and Schmeisser [18] and Franjić [16], respectively.
Finally, we analyze the four point symmetric inequality of Alomari [2], as well as
one variant with double internal nodes given by Liu and Park [24].
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2. PRELIMINARIES TO QUADRATURE FORMULAS AND
OSTROWSKI TYPE INEQUALITIES

As we mentioned in Section 1, in 1938 Ostrowski proved the inequality (1)
for differentiable mappings with bounded first derivative. The constant 1/4 in (1)
is sharp in the sense that it can not be replaced by a smaller one.

In 1976, Milovanović and Pečarić [37] presented the following generaliza-
tion of Ostrowski’s inequality with higher derivatives, i.e., when

∣∣f (n) (x)
∣∣ ≤ M

(∀x ∈ (a, b)) and n > 1:

Theorem 2. Let f : R → R be n (> 1) times differentiable function such that∣∣f (n)(x)
∣∣ ≤M (

∀x ∈ (a, b)
)
. Then, for every x ∈ [a, b]∣∣∣∣∣ 1

n

(
f(x) +

n−1∑
k=1

Fk

)
− 1

b− a

∫ b

a

f(t) dt

∣∣∣∣∣ ≤ M

n(n+ 1)!
· (x− a)n+1 + (b− x)n+1

b− a
,

where Fk is defined by

Fk ≡ Fk (f ;n;x; a; b) ≡ n− k
k!
· f

(k−1)(a)(x− a)k − f (k−1)(b)(x− b)k

b− a
.

In a special case for n = 2 and |f ′′(x)| ≤M on (a, b), the previous inequality
reduces to∣∣∣∣∣ 1

2

(
f(x) +

(x− a)f(a) + (b− x)f(b)

b− a

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣(4)

≤ M (b− a)
2

4

[
1

12
+

(
x− a+b

2

)2
(b− a)

2

]
.

At the end of the nineties, there was an increased interest in this type of
inequalities, and this increase has continued up to now. Many such integral in-
equalities for n-times differentiable mappings (n ≥ 1) on the Lebesgue spaces
Lp[a, b], 1 ≤ p ≤ +∞, have been obtained. Without loss of generality, we here
consider some of these inequalities for functions given on [−1, 1], connected them
to quadrature rules. As usual the norm is defined by

‖f‖p =


(∫ 1

−1

|f(t)|p dt

)1/p

, 1 ≤ p < +∞,

sup
t∈[−1,1]

|f(t)|, p = +∞,

In this way, the basic Ostrowski inequality (1) becomes∣∣∣∣f(x)− 1

2

∫ 1

−1

f(t) dt

∣∣∣∣ ≤ 1 + x2

4
· 2 ‖f ′‖∞ , x ∈ [−1, 1],
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i.e.,

(5)

∣∣∣∣∫ 1

−1

f(t) dt− 2f(x)

∣∣∣∣ ≤ (1 + x2) ‖f ′‖∞ , x ∈ [−1, 1].

Similarly, the inequality (4) reduces to

(6)

∣∣∣∣∫ 1

−1

f(t) dt− 1

2
[(1 + x)f(−1) + 2f(x) + (1− x)f(1)]

∣∣∣∣ ≤ 1

6
(1 + 3x2) ‖f ′′‖∞ ,

for x ∈ [−1, 1]. Now, these inequality (5) and (6) can be treated as estimates of
the remainder term of the one-point quadrature formula Q1(f) = 2f(x) and the
three-point quadrature formula

(7) Q3(f) =
1 + x

2
f(−1) + f(x) +

1− x
2

f(1),

respectively. In Q3(f) we have two fixed nodes ±1 and one free x, −1 ≤ x ≤ 1. In
the case x = ±1, Q3(f) reduces to the trapezoidal two-points formula f(−1)+f(1).

In general case we can consider n-point weighted quadrature formulas

(8) I(wf) =

∫ 1

−1

w(t)f(t) dx = Qn(f) +Rn(f),

where Qn(f) is a quadrature sum, Rn(f) is the corresponding remainder term, and
t 7→ w(t) is a given weight function (for details see [28, Sec. 5.1]). Then estimates of
|Rn(f)| lead to different Ostrowski type inequalities in certain classes of functions
(for some collections of such inequalities see [13] and [12]).

Let Pn be the set of all algebraic polynomials of degree at most n. The
quadrature formula (8) has degree of exactness d if for every p ∈ Pd we have
R(p) = 0. In addition, if R(p) 6= 0 for some p ∈ Pd+1, this quadrature formula has
precise degree of exactness d (see Definition 5.1.2 in [28, p. 320]).

More generally, when a quadrature sum contains derivatives of arbitrary or-
der at some points (nodes), such quadrature formulas are known as Birkhoff-type
quadratures (cf. [47]). The most important classes of such quadratures are ones
with multiple nodes (for details see [34, 39] and the references cited therein).

Here we consider only quadrature rules of the form (Birkhoff type)

(9) Qn,m(f) =

n∑
k=1

Akf(xk) +

m∑
k=1

Bkf
′(yk),

for non-weighted integrals (w(t) = 1), with the nodes Xn = {xk}nk=1 and Ym =
{yk}mk=1, such that

−1 ≤ x1 < x2 < · · · < xn ≤ 1 and − 1 ≤ y1 < y2 < · · · < ym ≤ 1.

These sets of nodes can have common points. In a special case it can be n = m
and Xn = Ym, when we have a quadrature rule with multiple nodes. If the set Ym
is empty, we have a standard quadrature formula with simple nodes.
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For a set of differentiable functions F, we define a linear functional L : F→ R
by means

(10) Lf :=

∫ 1

−1

f(t) dt−
n∑
k=1

Akf(xk)−
m∑
k=1

Bkf
′(yk),

and then we use the Peano representation of the functional Lf , as well as a trun-
cated power function t 7→ (x− t)r+, defined by

(x− t)r+ =

{
(x− t)r, −∞ < t ≤ x,

0, t > x,

where x is a fixed real number and r is a nonnegative integer. Regarding (8) and
(9), we see that the remainder, in this case denoted by Rn,m(f), is itself the linear
functional Lf on F.

Suppose now that the quadrature formula (9) has degree of exactness d and
that f : [−1, 1]→ R be a (r + 1)-times differentiable function, where r ≤ d. Then,
according to the Peano kernel theorem [46, Chp. 4], we have

(11) Rn,m(f) =

∫ 1

−1

Kr(t)f
(r+1)(t) dt,

where the rth Peano kernel is given by

(12) Kr(t) =
1

r!
L( · − t)r+.

Applying Hölder’s inequality to

|Rn,m(f)| =
∣∣∣∣∫ 1

−1

Kr(t)f
(r+1)(t) dt

∣∣∣∣ ,
with 1 ≤ p ≤ +∞, 1/p+ 1/q = 1, we obtain∣∣∣∣∫ 1

−1

f(t) dt−Qn,m(f)

∣∣∣∣ ≤ ∥∥Kr

∥∥
p

∥∥f (r+1)
∥∥
q
,

assuming that f (r+1) ∈ Lq[−1, 1], where q = p/(p− 1).

In this paper we consider only the case when p = 1 (q = +∞), and it gives
the following inequalities of Ostrowski type

(13)

∣∣∣∣∣
∫ 1

−1

f(t) dt−
n∑
k=1

Akf(xk)−
m∑
k=1

Bkf
′(yk)

∣∣∣∣∣ ≤
(∫ 1

−1

|Kr(t)| dt

)∥∥f (r+1)
∥∥
∞

for r ≤ d. Here, we need to determine Kr(t) for the functional (10), i.e.,

(14) r!Kr(t) =
(1− t)r+1

r + 1
−
∑
xk>t

Ak(xk − t)r − r
∑
yk>t

Bk(yk − t)r−1,
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as well as the integral of |Kr(t)| over [−1, 1].

In the next section we analyze some typical inequalities of Ostrowski type
(13), starting with the basic inequality (1), i.e., (5). To find the degree of exactness
of a quadrature formula we check the values of the remainder term

(15) Rn,m(f) = I(f)−Qn,m(f),

taking the monomials f(t) = ek(t) = tk, k = 0, 1, . . . .

3. ANALYSIS OF CERTAIN TYPICAL INEQUALITIES OF
OSTROWSKI TYPE

3.1. Inequality of Ostrowski [43]

In this simplest case, for n = 1, m = 0, A1 = 2, and x1 = x, the quadrature
formula (9) reduces to Q1,0(f) = 2f(x) with degree of exactness d = 0, because of
R1,0(e0) = I(e0) −Q1,0(e0) = 0. Therefore, the corresponding error estimate (13)
gives

(16)

∣∣∣∣∫ 1

−1

f(t) dt− 2f(x)

∣∣∣∣ ≤ (1 + x2)‖f ′‖∞ (−1 ≤ x ≤ 1),

which is exactly Ostrowski’s result (5). Here

K0(t) =

{
−1− t, −1 < t ≤ x,

1− t, x < t ≤ 1,
and

∫ 1

−1

|K0(t)| dt = 1 + x2.

For f(t) = e1(t) and f(t) = e2(t) we have R1,0(e1) = I(e1)−Q1,0(e1) = −2x
and R1,0(e2) = I(e2)−Q1,0(e2) = 2

3−2x2, for x = 0 its degree of exactness becomes
d = 1, so that we have the following inequality∣∣∣∣∫ 1

−1

f(t) dt− 2f(0)

∣∣∣∣ ≤ 1

3
‖f ′′‖∞,

because

K1(t) =


1

2
(1 + t)2, −1 < t ≤ 0,

1

2
(1− t)2, 0 < t ≤ 1,

and

∫ 1

−1

|K1(t)| dt =
1

3
.



Ostrowski Type Inequalities and Some Quadrature Formulae 159

-��� -��� ��� ���
�

-���

-���

���

���

�� �)

� = �

� = �

-��� -��� ��� ���
�

-���

���

�� �)

� = �

� = �

Figure 1: The kernels K0(t) (x = 1/4) and K1(t) (x = 0) in Ostrowski’s inequality
(left); K0(t) and K1(t) for x = 1/2 in inequality of Milovanović and Pečarić (right)

In fact, this is an estimate for the one-point Gauss-Legendre formula (cf. [31,
p. 172]).

The kernel t 7→ K0(t), for x = 1/4, is presented in Figure 1 (left), as well as
the kernel t 7→ K1(t).

3.2. Inequality of Milovanović and Pečarić [37]

The corresponding quadrature formula in (6) is given by (7), where n = 3
and m = 0. Its nodes and weight coefficients are −1, x, 1 and (1 + x)/2, 1,
(1 − x)/2, respectively. According to R3,0(er) = I(er) −Q3,0(er) = 0 for r = 0, 1,
and R3,0(e2) = − 1

3 − x
2 6= 0, we see that degree of exactness is d = 1.

Using (12), i.e., (14), we determine the corresponding Peano kernels for r = 0
and r = 1. Thus,

K0(t) =


1

2
(x− 2t− 1), −1 < t ≤ x,

1

2
(x− 2t+ 1), x < t ≤ 1,

and

K1(t) =


1

2
(1 + t)(t− x), −1 < t ≤ x,

1

2
(−1 + t)(t− x), x < t ≤ 1,

as well as∫ 1

−1

|K0(t)| dt =
1

2
(1 + x2) and

∫ 1

−1

|K1(t)| dt =
1

6
(1 + 3x2).

The kernels t 7→ K0(t) and t 7→ K1(t) for x = 1/2 are presented in Figure 1 (right).

For −1 < x < 1 we have the following inequalities of Ostrowski’s type∣∣∣∣∫ 1

−1

f(t) dt− f(x)− 1

2
[(1 + x)f(−1) + (1− x)f(1)]

∣∣∣∣ ≤ 1

2
(1 + x2)‖f ′‖∞



160 Gradimir V. Milovanović

and ∣∣∣∣∫ 1

−1

f(t) dt− f(x)− 1

2
[(1 + x)f(−1) + (1− x)f(1)]

∣∣∣∣ ≤ 1

6
(1 + 3x2)‖f ′′‖∞.

The second one is the original Milovanović-Pečarić inequality (6). For x = 0 the
previous inequalities reduce to

∣∣∣∣∫ 1

−1

f(t) dt− f(0)− 1

2
[f(−1) + f(1)]

∣∣∣∣ ≤


1

2
‖f ′‖∞, when r = 0,

1

6
‖f ′′‖∞, when r = 1.

Otherwise, the last quadrature formula (for x = 0) is a composition of two trape-
zoidal formulas,

Q3,0(f) = f(0)− 1

2
[f(−1) + f(1)] =

1

2
[f(−1) + f(0)] +

1

2
[f(0) + f(1)] .

Some generalizations of this kind of inequalities were given in [8, 9, 45].

3.3. A modification of the inequality (6)

Now, we give a modification of (6) by introducing a parameter λ > 0. Namely,
instead of (7), we consider a three-point quadrature rule of the form

(17) Qλ3,0(f) = [1− λ(1− x)]f(−1) + 2λf(x) + [1− λ(1 + x)]f(1),

with −1 < x < 1, for which we have that{
Rλ3,0(er)

}∞
r=0

=

{
0, 0,−2λ

(
x2 − 1

)
− 4

3
,−2λx

(
x2 − 1

)
,−2λ

(
x4 − 1

)
− 8

5
, . . .

}
.

Note, that for λ = 0, (17) reduces to the well-known two-point trapezoidal rule.

The three-point quadrature rule (17) has degree of exactness d = 1, but for
λ = λx = 2

3 (1− x2)−1 and x 6= 0, the rule (17) reduces to

(18) Qλx
3,0(f) =

1

3

[
1 + 3x

1 + x
f(−1) +

4

1− x2
f(x) +

1− 3x

1− x
f(1)

]
,

with degree of exactness d = 2, because R(er) = 0, r = 0, 1, 2, and R(e3) = 4x/3.
This kind of quadrature rules have been also treated in [17, §6.2]. If we need to
have a quadrature rule with all positive weight coefficients, then the parameter x
must be |x| < 1/3.

The corresponding kernels Kr(t) for r = 0, 1, 2 are given by

K0(t) =


−t− 2

3(1 + x)
, −1 < t ≤ x,

−t+
2

3(1− x)
, x < t ≤ 1,
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Figure 2: The kernels K0(t) and K1(t) for x = 1/2 (left) and K2(t) for x = 0 and
x = 0.125 (right)

K1(t) =


(1 + t)(3tx+ 3t− 3x+ 1)

6(1 + x)
, −1 < t ≤ x,

(1− t)(3tx− 3t+ 3x+ 1)

6(1− x)
, x < t ≤ 1,

K2(t) =


(1 + t)2[2x− t(1 + x)]

6(1 + x)
, −1 < t ≤ x,

(1− t)2[2x− t(1− x)]

6(1− x)
, x < t ≤ 1,

respectively. These kernels are displayed in Fig. 2.

For 0 ≤ x < 1, we have

M0(x) =

∫ 1

−1

|K0(t)| dt =


9x6 + 3x4 − x2 + 5

9 (1− x2)
2 , 0 ≤ x < 1

3
,(

3x2 + 3x+ 2
)2

9(1 + x)2
,

1

3
≤ x < 1,

M1(x) =

∫ 1

−1

|K1(t)| dt =


8
(
1− 3x2

) (
3x2 + 1

)2
81 (1− x2)

3 , 0 ≤ x < 1

3
,

4(3x+ 1)3

81(1 + x)3
,

1

3
≤ x < 1,

M2(x) =

∫ 1

−1

|K2(t)| dt =


8x5 + 49x4 − 60x3 + 22x2 − 4x+ 1

36(1− x)4
, 0 ≤ x < 1

3
,

2x

9
,

1

3
≤ x < 1,
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Figure 3: The bound function x 7→Mr(x) for r = 1 and r = 2

and Mk(−x) = Mk(x). These bounds x 7→Mr(x) for r = 1 and r = 2 are presented
in Fig. 3.

For example, for r = 2 we have the following inequality∣∣∣∣∫ 1

−1

f(t) dt− 1

3

[
1 + 3x

1 + x
f(−1) +

4

1− x2
f(x) +

1− 3x

1− x
f(1)

]∣∣∣∣ ≤M2(x)‖f ′′′‖∞.

In the case x = 0, the quadrature formula (18) becomes the well-known
Simpson rule

(19) Q(f) =
1

3
[f(−1) + 4f(0) + f(1)] ,

with degree of exactness d = 3 and its kernel is

(20) K3(t) =


1

72
(1 + t)3(3t− 1), −1 < t ≤ 0,

− 1

72
(1− t)3(3t+ 1), 0 < t ≤ 1,

with the bound constant

(21) M3 =

∫ 1

−1

|K3(t)| dt =
1

90
.

3.4. Inequality of Dragomir, Cerone and Roumeliotis [15]

A similar formula to (17) was considered by Dragomir, Cerone and Roume-
liotis [15] in the form

(22) Q̃λ3,0(f) = λ[f(−1) + f(1)] + 2(1− λ)f(x),



Ostrowski Type Inequalities and Some Quadrature Formulae 163

for all λ ∈ [0, 1] and −1 + 3λ/2 ≤ x ≤ 1− 3λ/2. According to (15) we have{
R̃λ3,0(er)

}∞
r=0

=

{
0, 2(λ− 1)x, −2λ+ 2(λ− 1)x2 +

2

3
, 2(λ− 1)x3,

−2λ+ 2(λ− 1)x4 +
2

5
, 2(λ− 1)x5, −2λ+ 2(λ− 1)x6 +

2

7
, . . .

}
.

If λ 6= 1 and x 6= 0, we see that the rule (22) has degree of exactness d = 0 and we
have

(23) K0(t) =

{
−1− t+ λ, −1 < t ≤ x,

1− t− λ, x < t ≤ 1,

and

M0(x) =

∫ 1

−1

|K0(t)| dt = λ2 + (1− λ)2 + x2.

Dragomir, Cerone and Roumeliotis [15] obtained the following inequality

(24)

∣∣∣∣∫ 1

−1

f(t) dt− Q̃λ3,0(f)

∣∣∣∣ ≤ [λ2 + (1− λ)2 + x2
]
‖f ′‖∞

for differentiable functions f : [−1, 1]→ R with bounded derivative on (−1, 1).

Some similar inequalities were obtained by Ujević [49].

Evidently, for λ = 0 (one-point rule) the inequality reduces to Ostrowski’s
inequality (16), while for λ = 1 (two-point trapezoidal rule, with d = 1) it gives∣∣∣∣∫ 1

−1

f(t) dt− f(−1)− f(1)

∣∣∣∣ ≤ ‖f ′‖∞.
For λ = 1/3 and x ∈ [−1/4, 1/4], (24) reduces to the generalized Simpson

inequality

(25)

∣∣∣∣∫ 1

−1

f(t) dt− 1

3
[f(−1) + 4f(x) + f(1)]

∣∣∣∣ ≤ (5

9
+ x2

)
‖f ′‖∞.

For λ = 1/3 and x = 0, the quadrature rule (22) becomes the standard
Simpson formula (19), with degree of exactness now d = 3, and we can give the
error estimates for each r ≤ d = 3.

The kernels Kr(t) for r = 1 and r = 2 are

K1(t) =


1

6
(1 + 4t+ 3t2), −1 ≤ t ≤ 0,

1

6
(1− 4t+ 3t2), 0 < t ≤ 1,

K2(t) =


−1

6
t(1 + t)2, −1 ≤ t ≤ 0,

−1

6
t(1− t)2, 0 < t ≤ 1,
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so that the corresponding bounds are

(26) M1 =

∫ 1

−1

|K1(t)| dt =
8

81
and M2 =

∫ 1

−1

|K2(t)| dt =
1

36
.

The kernels K0(t) (given by (23) for λ = 1/2 and x = 0), K1(t), K2(t) and
K3(t) (given earlier by (20)) are displayed in Fig. 4.
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Figure 4: The kernels of the Simpson rule Kr(t): (left) r = 0 and r = 1; (right)
r = 2 and r = 3

.

Thus, for the Simpson formula, according to (25) for x = 0, previous bounds
(26), as well as (21), we have the following estimates

∣∣∣∣∫ 1

−1

f(t) dt− 1

3
[f(−1) + 4f(0) + f(1)]

∣∣∣∣ ≤



5

9
‖f ′‖∞, when r = 0,

8

81
‖f ′′‖∞, when r = 1,

1

36
‖f ′′′‖∞, when r = 2,

1

90
‖f iv‖∞, when r = 3.

3.5. Symmetric inequality of Guessab and Schmeisser [18]

Here we have a symmetric quadrature rule Q2,0(f) = f(−x)+f(x) (see [18]).
Suppose that 0 ≤ x ≤ 1. According to (15) we get{

Rλ2,0(er)
}∞
r=0

=

{
0, 0,

2

3
− 2x2, 0,

2

5
− 2x4, 0, . . .

}
,

from which we conclude that the rule Q2,0(f) has degree of exactness d = 1 for
each x 6= 1/

√
3. For x = 1 this rule reduces to the trapezoidal rule, given also as a

special case of Q̃λ3,0(f) (Eq. (22) in $3.4) for λ = 1.

However, for x = 1/
√

3 this degree of exactness becomes d = 3.
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It is easy to find the kernels for r = 0 and r = 1,

K0(t) =


−1− t, −1 ≤ t ≤ −x,

−t, −x < t ≤ x,

1− t, x < t ≤ 1,

K1(t) =


1
2 (1 + t)2, −1 ≤ t ≤ −x,
1
2 (1 + t2 − 2x), −x < t ≤ x,
1
2 (1− t)2, x < t ≤ 1,

for which the bounds are even functions, given by

M0(x) =

∫ 1

−1

|K0(t)| dt = 1− 2x+ 2x2 (0 ≤ x ≤ 1)

and

M1(x) =

∫ 1

−1

|K1(t)| dt =


1

3
− x2, 0 ≤ x ≤ 1

2
,

1

3

[
4(2x− 1)3/2 + 1− 3x2

]
,

1

2
< x ≤ 1.
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Figure 5: The kernels Kr(t): (left) K0(t) and K1(t), when x = 1/2; (right) K2(t)
and K3(t) for x = 1/

√
3

Thus,∣∣∣∣∫ 1

−1

f(t) dt− [f(−x) + f(x)]

∣∣∣∣ ≤Mr(x)‖f (r+1)‖∞ (r = 0, 1),

where M0(x) and M1(x) are given above. It is interesting to mention that

min
x∈(0,1]

M0(x) = M0

(1

2

)
=

1

2
and min

x∈(0,1]
M1(x) = M1

(
4− 2

√
3
)

= 7− 4
√

3.

The last optimal value was also obtained in [50].

For x = 1/
√

3, quadrature formula Q2,0(f) [18] reduces to the two-point
Gauss-Legendre formula with degree of precision d = 3 (cf. [31, §7.2.9]). In that
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case for the kernels K2(t) and K3(t) we have

K2(t) =



−1

6
(1 + t)3, −1 ≤ t ≤ − 1√

3
,

− t
6

(
3− 2

√
3 + t2

)
, − 1√

3
< t ≤ 1√

3
,

1

6
(1− t)3,

1√
3
< t ≤ 1,

and

K3(t) =



1

24
(1 + t)4 −1 ≤ t ≤ − 1√

3
,

1

216

(
9t4 − 18

(
2
√

3− 3
)
t2 − 4

√
3 + 9

)
, − 1√

3
< t ≤ 1√

3
,

1

24
(1− t)4,

1√
3
< t ≤ 1,

respectively, with the bounds in the corresponding two-point Gauss-Legendre rule
M2‖f ′′′‖∞ and M3‖f iv‖∞, where

M2 =

∫ 1

−1

|K2(t)| dt =
1

108

(
9− 4

√
3
)

and M3 =

∫ 1

−1

|K3(t)| dt =
1

135
.

A general two-point integral quadrature formula, using the concept of har-
monic polynomials, was derived in [22].

3.6. Asymmetric inequality of Franjić [16]

Instead of symmetric rule Q2,0(f) = f(−x) + f(x), Franić [16] considered
asymmetric rules with a fixed node (Radau type), using the extended Euler formula
obtained earlier in [8].

Here we fix the end-point −1 and consider the rule

Qλ2,0(f) = λf(−1) + (2− λ)f(x),

with positive weight coefficients, i.e., when 0 < λ < 2. According to (15) we have

{
Rλ2,0(er)

}∞
r=0

=

{
0, λ+ (λ− 2)x, −λ+ (λ− 2)x2 +

2

3
, λ+ (λ− 2)x3, . . .

}
.

Taking λ = λx = 2x/(1 + x), we have that{
Rλx

2,0(er)
}∞
r=0

=

{
0, 0, 2

(
1

3
− x
)
,−2(x− 1)x, . . .

}
,
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i.e., Qλx
2,0(f) is a rule of degree of the exactness d = 1, except the case x 6= 1/3.

The kernels of this quadrature rule,

(27) Qλx
2,0(f) =

2x

1 + x
f(−1) +

2

1 + x
f (x) ,

are

(28) K0(t) =


1− t− 2

1 + x
, −1 ≤ t ≤ x,

1− t, x < t ≤ 1,

and

(29) K1(t) =


(t+ 1)(tx+ t− 3x+ 1)

2(x+ 1)
, −1 ≤ t ≤ x,

−1

2
t(1− t)2, x < t ≤ 1,

with the bounds Mk(x) =

∫ 1

−1

|Kr(t)|dt, r = 0, 1, given by

M0(x) =


(1− x)2, −1 < x ≤ 0,

(1 + x2)2

(1 + x)2
, 0 < x ≤ 1,

M1(x) =


1

3
(1− 3x), −1 < x ≤ 0,

1− 6x2 + 24x3 − 3x4

3(x+ 1)3
, 0 < x ≤ 1,

and presented in Fig. 6 (left). Their minimal values on (0, 1] are

min
x∈(0,1]

M0(x) = M0

(√
2− 1

)
= 12− 8

√
2 ≈ 0.686292

and

min
x∈(0,1]

M1(x) =M1

(
2
√

2− 1− 2

√
2−
√

2
)

=
4

3

(
5− 3

√
2− 2

√
10− 7

√
2

)
≈ 0.164412

(see also [16, Theorem 3] and [17, pp. 253–254]).

For x = 1/3 this asymmetric rule (27) reduces to the simplest Radau formula

(30) Q
1/2
2,0 (f) =

1

2
f(−1) +

3

2
f

(
1

3

)
,

with degree of exactness d = 2. Its kernels K0(t) and K1(t) are given by (28) and
(29), respectively, for x = 1/3. For the kernel K2(t) we obtain

K2(0) =


1

12
(1− 2t)(1 + t)2, −1 ≤ t ≤ 1

3
,

1

6
(1− t)3,

1

3
< t ≤ 1.
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Figure 6: The bound function x 7→Mr(x) for r = 0 and r = 1 (left) and the kernels
Kr(t), r = 0, 1, 2 for the Radau rule (30)

These kernels are displayed in Fig. 6 (right), and the corresponding inequalities are

∣∣∣∣∫ 1

−1

f(t) dt−
[

1

2
f(−1) +

3

2
f

(
1

3

)]∣∣∣∣ ≤


25

36
‖f ′‖∞, when r = 0,

1

6
‖f ′′‖∞, when r = 1,

2

27
‖f ′′′‖∞, when r = 2.

For some other inequalities of this type see [16, 17].

Now we mention also a general two-point rule

Q̂λ2,0(f) = (1 + λ)f(x) + (1− λ)f(y),

with −1 ≤ x ≤ λ ≤ y ≤ 1, considered by Alomari [3]. Since{
R̂λ2,0(er)

}∞
r=0

=

{
0, (λ− 1)y − (λ+ 1)x, −(λ+ 1)x2 + (λ− 1)y2 +

2

3
,

(λ− 1)y3 − (λ+ 1)x3, −(λ+ 1)x4 + (λ− 1)y4 +
2

5
, . . .

}
,

we conclude that d = 0, except the case when λ = λx,y = (x+ y)/(y − x).

In this general case Alomari [3] obtained the following inequality∣∣∣∣∫ 1

−1

f(t) dt− [(1 + λ)f(x) + (1− λ)f(y)]

∣∣∣∣
≤

{
1

4

[
(1− λ)2 + (1 + λ)2

]
+

(
x+

1− λ
2

)2

+

(
y − 1 + λ

2

)2
}
‖f ′‖∞,

as well as several particular cases of this inequality.
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3.7. Four point symmetric inequality of Alomari [2]

Inspired by (22), Alomari [2] considered the following symmetric rule

(31) Qλ4,0(f) = λ[f(−1) + f(1)] + (1− λ)[f(−x) + f(x)]

in three different classes: (a) functions of bounded variation, (b) absolutely con-
tinuous functions whose first derivative belongs to L∞[−1, 1], and (c) absolutely
continuous functions whose first derivative belongs to Lp[−1, 1] for p > 1. Follow-
ing our previous discussion, we interested only in rules and corresponding Ostrowski
type inequalities for (sufficiently differentiable) functions with f (r+1) ∈ L∞[−1, 1],
where r ≤ d and d is degree of exactness of the rule Qλ4,0(f). We suppose that
λ ∈ (0, 1) in order to have positive weight coefficients, as well as 0 ≤ x ≤ 1. Note
that for λ = 0 and λ = 1 the rule (31) reduces to Q2,0(f) from §3.5.

According to (15) we get{
Rλ4,0(er)

}∞
r=0

=

{
0, 0, −2λ+ 2(λ− 1)x2 +

2

3
, 0, −2λ+ 2(λ− 1)x4 +

2

5
, 0,

−2λ+ 2(λ− 1)x6 +
2

7
, 0, −2λ+ 2(λ− 1)x8 +

2

9
, 0, . . .

}
and conclude that this rule has degree of exactness d = 1, except the cases when
x2 = (1/3− λ)/(1− λ) 6= 1/5, i.e.,

λ = λx =
1− 3x2

3 (1− x2)
6= 1

6
,

when d = 3. Then, we have{
Rλx

4,0(er)
}∞
r=0

=

{
0, 0, 0, 0,

4

15

(
5x2 − 1

)
, 0,

4

21

(
7x4 + 7x2 − 2

)
, 0, . . .

}
.

Finally, for x = ξ = 1/
√

5 and λ = 1/6, it reduces to{
R

1/6
4,0 (er)

}∞
r=0

=

{
0, 0, 0, 0, 0, 0, − 32

525
, 0, . . .

}
and d = 5.

In the case when d = 1, the kernels Kr(t) (r = 0, 1) are given by

(32) K0(t) =


−1− t+ λ, −1 ≤ t ≤ −x,

−t, −x < t ≤ x,

1− t− λ, x < t ≤ 1,

and

(33) K1(t) =



1

2
(1 + t)(1 + t− 2λ), −1 ≤ t ≤ −x,

1

2
(1 + t2 − 2x(1− λ)− 2λ), −x < t ≤ x,

1

2
(1− t)(1− t− 2λ), x < t ≤ 1,
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and presented in Fig. 7 (left). Since
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Figure 7: The kernels Kr(t) for (31): (left) K0(t) and K1(t), when λ = 1/5 and
x = 2/3; (right) The bound M1(x) for different values of λ

(34) M0(x) =

∫ 1

−1

|K0(t)|dt =

{
λ2 + x2 + (1− λ− x)2, 0 ≤ x ≤ 1− λ,

2x(1− λ) + 2λ− 1, 1− λ < x ≤ 1,

the corresponding inequality of Ostrowski type is

(35)

∣∣∣∣∫ 1

−1

f(t) dt−Qλ4,0(f)

∣∣∣∣ ≤M0(x)‖f ′‖∞, 0 ≤ x ≤ 1.

This result for x ∈ [0, 1 − λ] has been obtained by Alomari [2], including several
particular cases.

The optimal estimate (35) is attained when

min
x∈[0,1]

M0(x) = M0

(1− λ
2

)
=

1

2

(
3λ2 − 2λ+ 1

)
.

Moreover, this value becomes the smallest (1/3) for λ = 1/3, when the rule (31)
reduces to

Q
1/3
4,0 (f) =

1

3
[f(−1) + f(1)] +

2

3

[
f
(
−1

3

)
+ f

(1

3

)]
.

As we mentioned before, for λ = 0 and λ = 1 the rule (31) reduces to the
case considered by Guessab and Schmeisser [18]. For x = 0, the rule (31) becomes
a symmetric three-point rule

Qλ3,0(f) = λ[f(−1) + f(1)] + 2(1− λ)f(0),

which is a special case of (22) (for x = 0).

The corresponding result for the bound M1(x), for r = 1 and 1/2 ≤ λ < 1,
can be found in the form M1(x) = (1−λ)x2 +λ− 1

3 . However, for 0 < λ < 1/2, the
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expression for this bound is quite complicated. For example, for λ = 1/5 we have

M1(x) =

∫ 1

−1

|K1(t)|dt =



58

375
− 4x2

5
, 0 < x ≤ 3

8
,

2

375

(
29− 150x2 + 10

√
5(8x− 3)3/2

)
,

3

8
< x <

3

5
,

2

15

(
6x2 − 1

)
,

3

5
≤ x < 1.

The bound M1(x), 0 ≤ x ≤ 1, in the inequality of Ostrowski’s type∣∣∣∣∫ 1

−1

f(t) dt−Qλ4,0(f)

∣∣∣∣ ≤M1(x)‖f ′′‖∞,

for different values of the parameter λ are displayed in Fig. 7 (right).

In the sequel of this subsection we consider the case of (31), when its degree
of precision is d = 5, i.e., when λ = 1/6 and x = ξ = 1/

√
5. In fact, it is a Lobatto

quadrature formula with two internal nodes (cf. [28, pp. 330–332]). In order to get
the following estimates∣∣∣∣∫ 1

−1

f(t) dt− 1

6

[
f(−1) + f(1)

]
− 5

6

[
f

(
− 1√

5

)
+ f

(
1√
5

)]∣∣∣∣ ≤Mr‖f (r+1)‖∞,

for each r = 0, 1, . . . , d (= 5), where Mr =

∫ 1

−1

|Kr(t)|dt, we need the correspond-

ing kernels.

For r = 0 and r = 1, the expressions for Kr(t) are given by (32) and (33) for
arbitrary λ and x, and we must take λ = 1/6 and x = 1/

√
5, while for 2 ≤ r ≤ 5

we have the following expressions
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Figure 8: The kernels K2(t) and K3(t) (left) and K4(t) and K5(t) (right) for the
Lobatto quadrature rule with two internal nodes
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K2(t) =



− 1

12
(1 + t)2(1 + 2t), −1 ≤ t ≤ − 1√

5
,

−1

6
t(2−

√
5 + t2), − 1√

5
< t ≤ 1√

5
,

1

12
(1− t)2(1− 2t),

1√
5
< t ≤ 1,

K3(t) =



1

72
(1 + t)3(1 + 3t), −1 ≤ t ≤ − 1√

5
,

1

360

(
5− 2

√
5 + 30(2−

√
5)t2 + 15t4

)
, − 1√

5
< t ≤ 1√

5
,

1

72
(1− t)3(1− 3t),

1√
5
< t ≤ 1,

K4(t) =



− 1

720
(1 + t)4(1 + 6t), −1 ≤ t ≤ − 1√

5
,

1

360
t
(
2
√

5− 5 + 10(
√

5− 2)t2 − 3t4
)
, − 1√

5
< t ≤ 1√

5
,

1

720
(1− t)4(1− 6t),

1√
5
< t ≤ 1,

K5(t) =



1

720
t(1 + t)5, −1 ≤ t ≤ − 1√

5
,

1

720

[
t6 − 5(

√
5− 2)t4 + (5− 2

√
5)t2 −

√
5

25

]
, − 1√

5
< t ≤ 1√

5
,

− 1

720
t(1− t)5,

1√
5
< t ≤ 1.

Their graphics are presented in Fig. 8.

Finally, we get values for the bounds Mr, 0 ≤ r ≤ 5,

M0 =
1

90

(
101− 30

√
5
)
≈ 0.376866,

M1 =
1

81

(
1 + 12

√
3
(

17
√

5− 38
))
≈ 0.04177718,

M2 =
45− 16

√
5

1440
≈ 6.40480025× 10−3,

M3 =1.132646548× 10−3,

M4 =
1

1800
√

5
≈ 2.48451997× 10−4,

M5 =
2

23625
≈ 8.4656084656× 10−5.
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The same values of these constants can be found in the book [17, §4.2.1].

3.8. Four point inequality with double internal nodes by Liu
and Park [24]

There are many inequalities of Ostrowski’s type, with including derivatives in
quadrature sums. Here, we consider a symmetric four-point quadrature rule with
double internal nodes [24]

(36) Q4,2(f) =
1

2
[f(−1) + f(−x) + f(x) + f(1)]− x

2
[f ′(x)− f ′(−x)] .

Remark. A three-point formula with a double inner node i.e.,

Q3,1(f) =
1

2

[
f(−1) + 2f(x) + f(1)

]
− xf ′(x),

where −1 ≤ x ≤ 1, was considered by Dragomir and Sofo [14].

Without loss of generality we suppose that 0 ≤ x ≤ 1 in the rule (36). This
rule has degree of exactness d = 1, except x = 1/

√
3, because of

(37) {R4,2(er)}∞r=0 =

{
0, 0, x2 − 1

3
, 0, 3x4 − 3

5
, 0, . . .

}
.

Since

K0(t) =


−1

2
(1 + 2t), −1 < t ≤ −x,

−t, −x < t ≤ x,

1

2
(1 + 2t), x < t ≤ 1,

and

K1(t) =



1

2
t(1 + t), −1 < t ≤ −x,

1

2
t2, −x < t ≤ x,

1

2
t(−1 + t), x < t ≤ 1,

with

M0(x) =

∫ 1

−1

|K0(t)|dt =


1

2
− x+ 2x2, 0 < x <

1

2
,

x, x ≥ 1

2
.

and

M1(x) =

∫ 1

−1

|K1(t)|dt =
1

6
(1− 3x2 + 4x3),
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respectively, the corresponding inequalities of Ostrowski’s type are

|I(f)−Q4,2(f)| ≤Mr(x)‖f (r+1)‖∞ (r = 0, 1).

The minimal values of x 7→M0(x) and x 7→M1(x) are

min
x∈[0,1]

M0(x) = M0

(1

4

)
=

3

8
and min

x∈[0,1]
M1(x) = M1

(1

2

)
=

1

8
.

The case r = 1 is considered in [24, Theorem 2.1].

For x = 1/
√

3 the rule (36) reduces to

Q̂4,2(f) =
1

2

[
f(−1) + f

(
− 1√

3

)
+ f

(
1√
3

)
+ f(1)

]
(38)

− 1

2
√

3

[
f ′
( 1√

3

)
− f ′

(
− 1√

3

)]
,

and according to (37), its degree of exactness is d = 3.

-��� -��� ��� ���
�

-����

-����

-����

����

����

����

�� �)

� = �

� = �

Figure 9: The kernels K2(t) and K3(t)

For r = 2 and r = 3 the corresponding Peano kernels are (see Fig. 9)

K2(t) =



1

12
(1 + t)2(1− 2t), −1 < t ≤ − 1√

3
,

−1

6
t3, − 1√

3
< t ≤ 1√

3
,

− 1

12
(1− t)2(1 + 2t),

1√
3
< t ≤ 1,
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and

K3(t) =



1

24
(t− 1)(t+ 1)3, −1 < t ≤ − 1√

3
,

1

216

(
9t4 + 4

√
3− 9

)
, − 1√

3
< t ≤ 1√

3
,

1

24
(t− 1)3(t+ 1),

1√
3
< t ≤ 1.

Since

M2 =

∫ 1

−1

|K2(t)|dt =
9− 4

√
3

108
and M3 =

∫ 1

−1

|K3(t)|dt =
1

90
,

we get the following inequalities of Ostrowski type are∣∣∣I(f)− Q̂4,2(f)
∣∣∣ ≤Mr‖f (r+1)‖∞ (r = 2, 3),

where Q̂4,2(f) is given by (38).

4. CONCLUSION

In this survey paper we considered only selected simple inequalities of Os-
trowski’s type and their estimates for differentiable functions with bounded deriva-
tive. In fact, our examples are special cases of an general four-point quadrature
formula with double nodes

Q4,4(f) =λ[f(1) + f(−1)] + (1− λ)[f(x) + f(−x)]

+ γ[f ′(1)− f ′(−1)] + δ[f ′(x)− f ′(−x)],

where λ, γ, δ are real parameters, 0 < λ < 1 and 0 < x < 1. It could be interesting
to investigate this general case and analyse its particular cases. Finally, we mention
some papers which deal with the weighted inequalities [1, 21, 27, 44, 48, 51], as
well as the book [17].

Acknowledgements. This work was partly supported by the Serbian Academy
of Sciences and Arts (Project Φ-96).
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assujettie à des conditions supplémentaires. Acad. Serbe. Sci. Publ. Inst. Math. 3
(1950), 235–242.

6. E. F. Beckenbach, R. Bellman: Inequalities. Second printing, Ergeb. Math. Gren-
zgeb. (N.F.), Band 30, Springer, New York, 1965.
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(Serbian).
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