
Upgraded Petri Net Model and Analysis of

Adaptive and Static Arithmetic Coding

Perica Štrbac a and Gradimir V. Milovanović a,∗

aFaculty of Computer Sciences, Megatrend University, Bulevar Umetnosti 29,

11070 Novi Beograd, Serbia

Abstract

In this paper, we analyze several adaptive and static data models of arithmetic com-
pression. These models are represented by using Upgraded Petri net as our original
class of the Petri nets. After iterative process of modeling, simulation and analy-
sis, the models are transformed into an application. The models refer to one-pass
and two-pass arithmetic coding where set of symbols is refers to bytes or nibbles.
Frequency of a symbol is represented as unsigned 32-bit integer. Original software
for modeling and simulations of Upgraded Petri net, PeM (Petri Net Manager),
is developed and used for all models described in this paper. All models are ob-
served in the experiments by using created application over standard set of files.
Experimental results are presented and compared.

Key words: Arithmetic coding, Upgraded Petri nets, data compression, source
coding.

1 Introduction

Upgraded Petri nets is a formal mathematical apparatus which enables model-
ing, simulation and process analysis [17] as is Petri net [11]. We were developed
Upgraded Petri nets as new class of Petri nets. These are a graphical and math-
ematical modeling tool applicable to many systems. Upgraded Petri nets used
for describing and studying information processing systems that are charac-
terized as being concurrent, asynchronous, synchronous, distributed, parallel,
deterministic, nondeterministic, and/or stochastic as is Petri net. As a graph-
ical tool, Upgraded Petri nets can be used as a visual-communication aid

∗ Corresponding author.
E-mail addresses: strbac@beotel.rs (P. Štrbac), gvm@megatrend.edu.rs (G.V. Milo-
vanović)

Preprint submitted to Elsevier 16 June 2011

similar to flow charts, block diagrams, and networks. Transition firing level,
tokens and transition functions are used in these nets to simulate the dynamic
and concurrent activities of systems. They enable interactive monitoring of
process operations and its gradual improvement from the initial phase, all the
way to the final version. We use the Upgraded Petri nets (UPN) which we
were developed in order to enable use of Petri nets for hardware modeling, as
well as to provide modeling at register level [17], [2]. All models in the paper
are created by using UPN. The hierarchical structure of an UPN gives wide
possibilities for abstraction. This feature of the UPN provides the model im-
plementation consisting at the same time of elaborate pieces essential for the
analysis at a certain level, and also of some general pieces whose details are
irrelevant for the analysis at the given level of abstraction [17]. We are using
Petri net based simulation via originally developed Petri nets Manager (PeM)
software suite. The PeM supports the formal theory of Petri net and also, the
formal theory of Upgraded Petri net. It is used for modeling, simulation and
analysis of all models shown in the paper. The PeM concurently fires enabled
transitions with respect to the rules of the UPN execution which shown in the
next section.

Arithmetic coding maps an input string of data symbols to a code the string
in such a way that the original data can be recovered from the code string i.e.
it is a form of lossless data compression. Arithmetic coding has been widely
used in data compression [18],[10],[3],[4]. This type of coding can encode a
sequence from the source at a rate very close to the entropy rate. Arithmetic
coding can be easily used in conjunction with sophisticated probability models.
The disadvantage of arithmetic coding is its relatively high computational
complexity.

In this paper, we consider adaptive and static data model of arithmetic coding.
In the work we make Upgraded Petri Nets model, do simulation, and after
software implementation of the model we finally do analysis of several data
model of adaptive and static arithmetic coding over the standard set of files.

2 Upgraded Petri Nets

In this section, we present Upgraded Petri nets [17], [2] that we were developed
in order to enable use of Petri nets for easy modeling of hardware, as well as
to provide suitable modeling at register level. Software suite PeM supports:
graphic modeling of the Upgraded Petri net, execution of the Upgraded Petri
net and reachability tree generation.

2.1 An Upgraded Petri Net Formal Theory

Let N0 be the set of non-negative integers, and P and T be disjoint finite
nonempty sets of places pi, i = 1, . . . , n, and transitions tj , j = 1, . . . , m,

2

respectively, i.e.,

P = {p1, p2, . . . , pn}, T = {t1, t2, . . . , tm}, n, m > 0.

A formal theory of Upgraded Petri nets is based on functions as it was intro-
duced in [17]. A Upgraded Petri net is a 9-tuple

C = (P, T, F, B, µ, θ,TF ,TFL,PAF),

where

F : T × P → N0 – Input Function,

B : T × P → N0 – Output Function,

µ : P → N0 – Marking Function,

θ : T × N0 → [0, 1] – Timing Function,

TF : T → A – Transition Function,

TFL : T → N0 – Transition Firing Level,

PAF : P → (x, y) – Place Attributes Function.

The input function assigns a non-negative number to an ordered pair (ti, pj) ∈
T × P . The assigned non-negative integer defines how many times the place
pj is an input with respect to the transition ti.

The set of places which are input with respect to the transition tj is presented
by ∗tj = {pi ∈ P : F (tj, pi) > 0}. For a presentation of the place pi ∈ ∗tj
which have the standard input with respect to the tj, we use the notation
∗tSj , and F S(tj, pi) we use for such an input function. For places pi ∈

∗tj with
inhibitor input with respect to the tj transition, the notation ∗tIj will be used
and F I(tj , pi) for the input function.

The output function maps an ordered pair (ti, pj) ∈ T × P to the set of non-
negative integers. The assigned non-negative integer shows how many times
the place pi is an output with respect to the ti transition. A set of places which
are output with respect to the tj transition is presented as follows

tj
∗ = {pi ∈ P : B(tj, pi) > 0}.

The marking function assigns a non-negative integer to the pi place. The
marking function can be defined as n-dimensional vector (marking): µ =

3

(µ1, µ2, . . . , µn), where n = |P |. Instead of µi it can be used the notation
µ(pi).

The timing function θ assigns the probability λij ∈ [0, 1] to an ordered pair
(ti, j) ∈ T × N0, i.e., λij = θ(ti, j).

The transition function gives an operation αj ∈ A to the tj transition. Here,
A denotes the set of operations which can be assigned to the transition.

The firing level function of the transition gives a non-negative integer to the
transition tj. If this number not equals zero, it shows the number of pi ∈

∗tj
places takes part in the transition firing, and if this number equals zero, then
all the places pi ∈

∗tj affect the tj transition firing.

Place attributes function assigns an ordered pair (x, y) to the place pi. The x

component is a real number called x attribute, and y is a non-negative integer
called y attribute (i.e., x ∈ R, y ∈ N0). Over the x attribute belonging to
the pi ∈ ∗tj places, the αj operation assigned to the tj transition executes
where the order of operands in the operation αj is defined by the y attributes
which belong to the pi place in accordance to TFL function take part in the
transition firing.

An Operation Assigned to a Transition – the function TF assigns to a tran-
sition tj one operation. This operation can be arithmetical operation, logical
operation or a file operation [17]. Inside the suite PeM a file which is a target
of file operation function has an *.mem extension. This *.mem file is a text
file and it is used for simulation of computer system memory. One line inside
the *.mem file refers to context of one memory location of computer system
that we are modeling.

An arithmetical operation αj ∈ A, which is assigned to the transition tj ∈ T ,
uses attributes x which belong to the places pi ∈ ∗tj as operands of that
operation. A result of an arithmetical operation αj ∈ A will be placed into the
attributes x which belong to the places pi ∈ t∗j . The order of an operand (i.e.
order of attributes x which belong to the places pi ∈

∗tj) in an arithmetical
operation αj ∈ A is defined by attributes y which belong to the places pi ∈

∗tj .

A logical operation αj ∈ A which is assigned to the transition tj ∈ T , uses
attributes x which belong to the places pi ∈

∗tj as operands of that operation.
If a result of the logical operation αj ∈ A is logical false the transition tj ∈ T

is disabled and will stay in that state until the result of this logical operation
αj ∈ A becomes logical true. The order of an operand (i.e., order of attributes
x which belong to the places pi ∈

∗tj) in a logical operation αj ∈ A is defined
by attributes y which belong to the places pi ∈

∗tj.

4

A file operation αj ∈ A which is assigned to the transition tj ∈ T performs
over the context of a file which extension is equal to *.mem . A File Operation
αj ∈ A addresses context of a *.mem by using attribute x which belongs to
the places pi ∈ ∗tj. A result of this operation αj ∈ A changes the value of
attributes x which belong to the places pi ∈ tj

∗. The result also can change
attributes y which belong to the places pi ∈ tj

∗, or can change context of
addressed line into the *.mem file.

According to a UPN Graph representation we can say the following. The
Upgraded Petri Net can be represented via formal mathematical apparatus or
graphically. Namely, an UPN is represented by a bipartite multigraph [17] in
the same way as a Petri net.

2.2 An Upgraded Petri Net Executing

An Upgraded Petri Net executing represents change of system state from the
current state to the next state. This migration from one state to the other one
is triggered by firing of the transitions. By UPN executing: marking vector
can be changed, contents of *.mem file can be changed, and attributes which
belong to the places pi ∈ tj

∗ of enabled transition tj can be changed.

A transition tj ∈ T can be enabled at the moment k ∈ N0 in Upgraded Petri
Net [17]: C = (P, T, F, B, µ, θ,TF ,TFL,PAF) if the next three conditions are
satisfied:

1◦ If the timing function λjk = θ(tj, k) > 0;
2◦ If TFL(tj) > 0 then (#pi(S)) + (#pi(I)) = TFL(tj), and if TFL(tj) = 0

then (#pi(S)) + (#pi(I)) = |∗tj |, where #pi(S) is a number of places
pi ∈

∗tSj such that µ(pi) ≥ F S(tj, pi), and #pi(I) represents a number of
places pi ∈

∗tIj for which µ(pi) = 0;
3◦ If a logical operation αj ∈ A assigned to the transition tj, then the result

of the operation αj must be equal to true.

A marking vector µ will be changed to a new marking vector µ′ by firing of
transitions tj , where

µ′(pi) =

µ(pi) − F (tj , pi) + B(tj, pi), if pi ∈
∗tSj ,

µ(pi) + B(tj, pi), if pi ∈
∗tIj .

By firing of the transition tj an arithmetic operation is executed or a file
operation is executed with respect to the operation that is assigned to tj by
function TF (tj).

5

A logical operation which assigned to the transition tj by function TF (tj) will
be executed if the conditions 1◦ and 2◦ related to tj are equal to true.

A conflict in Upgraded Petri Net influences UPN executing. A conflict in UPN
is the same as the conflict in Petri-net.

An UPN reachability tree graphically represents all possible marking vectors
which can occurs during an UPN execution for given initial marking. Reach-
ability tree shows all states which model can reach from the initial state. The
UPN reachability tree is the same as the Petri Net reachability tree.

An UPN executing refers to a concurrent firing of the enabled transitions. An
UPN execution generates an UPN flammability tree. This tree is such tree
where a node of the tree is a set of the transitions which are enabled at the
same time. If there is the same node as the current node in the flammability
tree then generating of the flammability tree will be stopped. There are four
types of nodes in a flammability tree: root node, double node, dead node, and
inner node.

3 Arithmetic Coding

In this section we show some definitions of the basic terms used in the paper
and explain how arithmetic coding based on fixed arithmetic works by using
integer numbers [9], [6], [16], [8]. We use arithmetic coder in which the range
allocated to each symbol is single contiguous interval and no permutations of
ranges are applied [16], [7]. There are several approach to the symbol sets and
multiple tables in arithmetic coding [19], [1] so we use one symbol set and one
coding table.

3.1 Definitions of the some basic terms

The alphabet AL is a finite, nonempty ordered set. We use mark AL because
of mark A denotes a set of operations which can be assigned to the transition
in Upgraded Petri nets. The elements {a1, . . . , an} of an alphabet are called
symbols. These elements are distinct ordered. The cardinality of an alphabet
AL will be referred to as |AL|.

We consider a sequence S = s1, s2, . . . of symbols si from the alphabet AL,
where |S| < ∞.

Let S = (s1, . . . , sm) a finite-length sequence with |S| = m over AL =
{a1, . . . , an}.

Let |S(ai)| refers to the frequency of ai in S.

6

Probability of ai in S is

P (ai) =
|S(ai)|

m
.

The lower bound Low is the sum of frequencies of all lower symbols than the
current symbol. The lower symbols are the symbols which have an index less
than the current symbol.

Low =
s−1
∑

i=1

Fci.

The mark s denotes an index of the current symbol while the mark Fci is the
frequency count of the symbol indexed by i.

The upper bound High is a sum of the lower bound and the frequency of the
current symbol,

High =
s
∑

i=1

Fci = Low +Fcs.

Total frequencies

Tf =
m
∑

i=1

Fci

is a sum of all frequencies of the symbols in S.

3.2 Arithmetic coding algorithm

We introduce some basic terms used in arithmetic coding data compression
and decompression that will be used in the paper. In this paper we treat this
data as binary input stream. A group of such input bits refer to as a symbol.
There are two types of symbol that we consider in this work: byte (8 bits) and
nibble (4 bits).

The arithmetic coding algorithm works sequentially over the input data stream.
We use fixed precision arithmetic, interval expansion and bit-stuffing [18], [12],
[13], [15], [14], [5]. Main idea is to output each leading bit as soon as it is
known, and then to double the length of the current interval so that it reflects
only the unknown part of the final interval. Witten, Neal, and Cleary [18]
add a mechanism for preventing the current interval from shrinking too much

7

when the endpoints are close to the half of the start interval but straddle this
half. In that case we do not yet know the next output bit, but we do know
that whatever it is, the following bit will have the opposite value; we merely
keep track of that fact, and expand the current interval symmetrically about
the half of the start interval. This procedure may be repeated any number of
times, so the current interval size is always longer than the quarter of the start
interval.

In this paper start interval, i.e., [Low ,High) is initialized to [0, 231 − 1). For
each symbol from the input stream two steps will be performed. The first one
is subdividing of the current interval into subintervals, one for each symbol
from the alphabet. These subintervals are proportional to the frequency of the
symbol. The second step is selecting the subinterval regarding to the current
symbol from the input stream and setting this interval as the new current
interval. At last, we will save leading bits to distinguish the new current inter-
val from further intervals which will be result of interval expansion. The new
subinterval is calculated as follows

raster =
High −Low +1

Tf

, (3.1)

High = Low + raster ·

(

s
∑

i=1

Fci

)

− 1, (3.2)

Low = Low + raster ·
s−1
∑

i=1

Fci, (3.3)

where raster is a step size of the old subinterval [Low ,High) divided by total
count of frequencies Tf .

When we encode more and more symbols the Low and the High converge more
and more and in one moment these two values coincide and further encoding
will be impossible. To avoid this problem an interval expansion is used. This
expansion takes place after the selection of the subinterval. There are four
cases of interval expansion process.

The first case is where the subinterval lies entirely within the first half of the
start interval. In this case we save a zero bit and any 1s left over from previous
symbol to the output stream then we will doubled subinterval [Low ,High)
toward the right. This is e1 scaling.

The second case is where the subinterval lies entirely within the second half
of the start interval. In this case we save 1 and any 0s left over from previous
symbol to the output stream then we will doubled subinterval [Low ,High)
toward the left. This is e2 scaling.

8

The third case is where the subinterval lies entirely within the first quarter
and the third quarter of the start interval. In this case we keep track of this
fact for future output then we will expand subinterval [Low ,High) in both
directions away from the midpoint of the start interval. This is e3 scaling.

The fourth case including all other situations and no expansion will be hap-
pened. The expansion process repeats until the fourth case is happened.

In this paper we use that all symbols from S have the initial frequency setup
to 1. Also we use an ESC symbol to represent end of coding, so at start of
coding |S| = 256 + 1 if a type of symbol is byte or |S| = 16 + 1 if a type of
symbol is nibble.

When we decode an input stream main goal is to determine the symbol and
update the bounds accordingly. The first task is to determine the interval that
contains the symbol then to calculate the code value of the symbol. We use a
mark B to denote a buffer which contains encoded stream. The procedure of
decoding is to calculate formula (3.1), then to calculate

value =
B − Low

raster
,

then an encoded symbol will be determined by comparing the value to the
cumulative frequency count intervals. When the proper interval is found the
boundaries will be updated according to the formulas (3.2) and (3.3).

4 Upgraded Petri Net Arithmetic Coding Models

In this section we explain Upgrade Petri Net arithmetic coding models which
we developed and used in this paper. The data model used in arithmetic coding
can be adaptive or static. In this paper we use both adaptive and static data
model.

In this section we will use some abbreviations in our UPN models as follows:
B refers to a buffer where input data stream will be loaded, Hf refers to a
half of the start interval, FQ refers to a first quarter of the start interval, SC
refers to an e3 scaling counter, L refers to Low, H refers to High, ESC refers
to the symbol which ends arithmetic coding, and LB refers to bit which is
loaded from the input stream.

9

Fig. 1. An UPN model of arithmetic coding compression and decompression (left);
An UPN model of adaptive arithmetic coding compression of input stream of sym-
bols (right)

4.1 Adaptive Data Model

Adaptive arithmetic coding is a one-pass procedure where the coder builds up
the statistical model while coding the input data.

Fig. 1 (left) shows an UPN model of arithmetic coding compression and de-
compression at high representation level. Initial marking µ(p1) = µ(p2) = 1
determines a source file which will be compressed or decompressed and com-
pression or decompression mode.

The model refers to two modes of compression and decompression: adaptive
and static one. Fig. 1 (left) shows that an adaptive encode is selected, i.e.,
the transition t1 is enabled. This UPN model has four possible sequences of
transition firing. The first sequence of transition firing is {t1} − {t5} − {t7}
and refers to an adaptive encode. The second sequence is {t2} − {t6} − {t7}
and refers to a static encode. Transition t7 refers to final encode for both

10

adaptive and static encode. An event final encode will be explained later. The
third sequence is {t3} − {t8} − {t9} and refers to an adaptive decode, while
the fourth sequence {t4}− {t8}− {t10} refers to a static decode. Transition t8
refers to fill buffer before decode process started.

Fig. 1 (right) shows an UPN model of adaptive arithmetic coding compression
at an input stream encode level of representation. Initial marking µ(p1) = 1
and two enabled transitions t1 and t6 refers to two possible cases.

The first case is that there is a symbol in the input stream which we want
to encode. A sequence of firing transitions {t1} − {t2} − {t3} − {t4} occurs.
This sequence refers to symbol loaded, then, update table of frequencies, then
encode the symbol, then increment a total of encoded symbols and finally
check again is there another symbol in input steam.

The second case is that there are no more symbols in input stream. Sequence
of firing transitions {t6} − {t5} encodes ESC symbol and checks Low value.

If this value is less than the first quarter of the start interval a sequence
{t7} − {t11} − {t9} − {t12} occurs. This sequence saves bit 0, then saves bit
1 SC +1 times, then saves bit 0 and finally by firing of the transition t12 the
output stream is populated by zeros up to the next byte.

On the other side, if the Low value is greater than or equal to the first quarter
of the coding interval a sequence {t8}−{t10} occurs. This sequence saves bit 1.
At last, transition t12 is enabled. By firing of this transition the output stream
is populated by zeros up to the next byte.

All savings we were mentioned in the sections refers to the output stream.

Fig. 2 (left) shows an UPN model of adaptive arithmetic coding compression at
a symbol encode level of representation. Initial marking µ(p1) = 1 determines
that an sequence of transition firing {t1} − {t2} − {t3} occurs. This sequence
calculated Low value (denoted as L mark on the figure), then calculated High
value (denoted as H mark on the figure) and checks conditions for: e1 scaling,
e2 scaling and for e3 scaling update.

Condition for e1 scaling is that High less than half of the coding interval value.
Condition for e2 scaling is that Low is greater than or equal to a half of the
coding interval. Condition for e3 scaling update is that Low is greater than or
equal to the first quarter of the coding interval and that High is less than the
third quarter of the interval value.

A sequence {t4} − {t7} − {t9} − {t11} does e1 scaling: saves bit 0, then recal-

11

culated values:

Low = 2 · Low , High = 2 · High +1, (4.4)

and then saves bit 1 e3 scaling counter (SC) times.

A sequence {t5} − {t8} − {t10} − {t12} does e2 scaling: saves bit 1, then con-
currently recalculated values:

Low = 2 · (Low −Hf), High = 2 · (High −Hf) + 1, (4.5)

than saves bit 0 e3 scaling counter (SC) times.

After anyone of the last two sequences a set of transitions {t13, t18} is enabled.
At this moment only one of these transitions will be activated because of
µ(p11) = 1 and according to the conditions 1◦, 2◦ and 3◦.

Firing of transition t13 changes marking µ(p12) = 1 which represents end of a
symbol encoding. Firing of the transition t18 starts an new iteration of checking
conditions for e1, e2 or e3 scaling. Firing of the transition t4 refers that e1
scaling condition is true and e1 scaling starts again, while firing of transition
t5 refers that e2 scaling condition is true and e2 scaling starts again. Firing of
transition t6 means that e3 scaling update condition is true and activates e3
scaling update. This model shows that after e1 scaling loop or e2 scaling loop
follows checking of e3 scaling update condition.

The update e3 scaling sequence is {t6} − {t14, t15, t16}. This sequence can do
three parallel things: increments e3 scaling counter (SC), and calculates

Low = 2 · (Low −FQ) and High = 2 · (High −FQ) + 1. (4.6)

After this sequence of transition firing two transitions {t17, t19} are enabled.
At this moment only one of these transitions will be activated because of
µ(p14) = 3 and according to the conditions 1◦, 2◦ and 3◦. By firing of the
transition t19 the state of the net goes to the new iteration of e3 scaling update.

The second case is that transition t17 will be activated and this means the end
of the symbol encoding.

Fig. 2 (right) shows an UPN model of adaptive arithmetic coding decompres-
sion at an input stream level of representation.

Initial marking µ(p1) = 1 determines that an sequence of transition firing
{t1}−{t2}−{t3}−{t4} occurs. This sequence fill coding buffer from the input
stream and calculates raster (we split number space into single step), after that

12

Fig. 2. An UPN model of adaptive arithmetic coding compression which refers to a
symbol encode (left); An UPN model of adaptive arithmetic coding decompression
of a input stream (right)

current value will be calculated and finally the symbol will be determined. At
this moment µ(p1) = 1 and two transitions t5 and t8 are enabled. Only one
of these transitions will be activated according to conditions 1◦, 2◦ and 3◦.
Now we have two cases.

13

Fig. 3. An UPN model of adaptive arithmetic coding decompression which refers to
an update of the decoder (left); An UPN model of two-pass static arithmetic coding
compression (right)

The first case is a sequence of transitions firing {t5} − {t6} − {t7} − {t9}
which saves the symbol, than adapt decoder, then update frequencies, then
increment total of saved symbols and finally goes to calculates raster again.
Now the sequence {t2} − {t3} − {t4} occurs as mentioned earlier, i.e., a new
iteration of encoding symbol starts again.

The second case is a firing of transition t8 which represents and of a decoding
of the input stream. This means that the ESC symbol is decoded from the
input stream.

Fig. 3 (left) shows an UPN model of adaptive arithmetic coding decompression
which refers to an update of the decoder. Initial marking µ(p1) = 1 determines
that an sequence of transition firing {t1}−{t2} occurs. This sequence calculates
values in order High then Low according to formulas (3.2), (3.3).

At this moment µ(p3) = 1 and this state of model checks conditions for: e1

14

scaling, e2 scaling and for e3 scaling. Condition for e1 scaling is that High less
than half of the coding interval value. Condition for e2 scaling is that Low is
greater than or equal to a half of the coding interval. Condition for e3 scaling
update is that Low is greater than or equal to the first quarter of the coding
interval and that High is less than the third quarter of the interval value.

The first case is a sequence of transition firing {t3} − {t6} − {t7}. This se-
quence refers to e1 scaling, and it calculates concurrently values Low and
High according to formulas (4.4), then update buffer B :

B = 2 · B + LB ,

then set e3 scaling counter (SC) to zero, and finally goes into the new iteration
cycle by setting µ(p3) = 1.

The second case is a sequence of transition firing {t4}−{t8, t9, t10}−{t11}−{t7}.
This sequence concurrently calculates three values: Low and High according
to formulas 4.5 and buffer

B = 2 · (B − Hf) + LB .

Before firing of the transition t11 marking µ(p7) = 3 and µ(p5) = 0 while the
marking after firing of the transition t11 will become µ(p7) = 0 and µ(p5) = 1.
It saves number of tokens in the net. At last, the sequence set e3 scaling
counter (SC) to zero. After this by setting µ(p3) = 1 the new iteration cycle
of conditions checking starts.

The third case is a sequence of transition firing {t5} − {t12} − {t13, t14, t15} −
{t16}. The sequence increments counter of e3 scaling (SC) then concurrently
calculates values Low and High according to the formulas (4.6) and buffer

B = 2 · (B − FQ) + LB .

After this firing of the transition t16 saves number of tokens in this net as in
the previous case and set new state of the model which means the end of the
update decoder.

4.2 Static Data Model

Static arithmetic coding uses two passes or use fixed statistical models and
perform only one-pass over the data. In two-pass case the first pass makes
statistical model. The second pass compresses the data. This reduces the total

15

Fig. 4. An UPN model of arithmetic coding decompression of static encoded input
stream

compression coding efficiency because this statistical model has to be trans-
mitted to the decoder.

Fig. 3 (right) shows an UPN model of two-pass static arithmetic compression
at an input stream level of representation. Initial marking µ(p1) = 1 deter-
mines that transition t1 is enabled and will be fired. This firing calculates
frequencies of the symbol over the input stream. The state of the UPN model
is µ(p2) = 1 and there are two enabled transitions t2 and t6. Only one of these
transitions will be fired according to the conditions 1◦, 2◦ and 3◦.

The first case is that the transition t2 will be fired. This means that UPN
model rescales the frequencies. After this transition t3 is enabled and will be
fired and now is µ(p4) = 1.

The second case is that transition t6 will be fired, and this firing also sets
µ(p4) = 1. The second case avoids frequency rescaling.

After both of these cases a sequence of transition firing {t7} − {t4} − {t5} oc-
curs. This sequence saves frequency table to the output stream, then prepares
second pass of encoding (update pointers to the input steam), then decode
input stream by using the frequency table.

Fig. 4 shows an UPN model of arithmetic coding decompression of static
encoded input stream. This very simple model represents an initial marking
µ(p1) = 1 which makes a sequence of transition firing {t1}−{t2}. This sequence
loads frequency table from begin of the input stream by using data and then
decode rest of data which represent encoded symbols.

16

4.3 An UPN model execution

By executing the UPN model for given initial marking shown in Fig. 1 (left)
the next sequence of transitions firing will happen {t1} − {t5} − {t7} and
appropriate sequence of marking vectors is:

(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),

(1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) = (dead node).

A dead node presents a state when there are no enabled transitions in the net.

Other possible cases are determined by value of p2.x (means attribute x of the
place p2) as follows:

p2.x = 2 determines the sequences {t2} − {t6} − {t7} and

(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),

(1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) = (dead node).

p2.x = 3 determines the sequences {t3} − {t8} − {t9} and

((1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),

(1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) = (dead node).

p2.x = 4 determines the sequences {t4} − {t8} − {t10} and

((1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),

(1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) = (dead node).

By executing the UPN model for given initial marking shown in Fig. 1 (right)
the next sequences of transitions firing will happen:

Sequence 2.1: {t1} − {t2} − {t3} − {t4} and appropriate sequence of marking
vectors is as follows:

17

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),

(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0),

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (double node, init. marking).

Sequence 2.2: {t6}−{t5}−{t7}−{t11}−{t9}−{t12} and appropriate sequence
of marking vectors is as follows:

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),

(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1),

(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0) = (dead node).

Sequence 2.3: {t6} − {t5} − {t8} − {t10} − {t12} and appropriate sequence of
marking vectors is as follows:

((1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),

(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0),

(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0) = (dead node).

By executing the UPN model for a given initial marking shown in Fig. 2
(left), the next sequences (mark this as 3.1) of transitions firing will happen
{t1} − {t2} − {t3} and appropriate sequence of marking vectors is:

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),

(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

There are several sequences that will be possible from this net state as follows
(mark them as 3.2.1, 3.2.2 and 3.2.3, respectively):

Sequence 3.2.1: {t4}−{t7}−{t9}−{t11} and appropriate sequence of marking
vectors is as follows:

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (will be double node),

(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),

18

(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) = (double node).

Sequence 3.2.2: {t5}−{t8}−{t10}−{t12} and appropriate sequence of marking
vectors is as follows:

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (will be double node),

(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) = (double node).

From this double node which appears also at the end of the sequence 3.2.1
there are two possible sequences.

The first one is {t18} with its appropriate sequence of marking vectors is as
follows:

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) = (double node),

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (double node).

The second one is {t13} and appropriate sequence of marking vectors is as
follows:

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) = (double node),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0) = (dead node).

Sequence 3.2.3 includes two cases. The first one is a sequence {t6}−{t16}−{t19}
and appropriate sequence of marking vectors is as follows:

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (double node),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0) = (will be double node),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0) = (double node).

These marking vectors include the cyclic sequence {t16} − {t19}.

The second sequence is a sequence {t6}−{t16}−{t17} and appropriate sequence
of marking vectors is as follows:

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (double node),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0) = (double node),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) = (double node),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0) = (dead node).

19

By executing the UPN model for given initial marking shown in Fig. 2 (right)
the two sequences of transitions firing will happen.

The first one {t1} − {t2} − {t3} − {t4} − {t8} and appropriate sequence of
marking vectors is:

(1, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),

(0, 1, 0, 0, 0, 0, 0, 0, 0) = (will be double node),

(0, 0, 1, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 1, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 1, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 1, 0) = (dead node).

The second one {t1} − {t2} − {t3} − {t4} − {t5} − {t6} − {t7} − {t9} and
appropriate sequence of marking vectors is:

(1, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),

(0, 1, 0, 0, 0, 0, 0, 0, 0) = (will be double node),

(0, 0, 1, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 1, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 1, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 1, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 1, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 1),

(0, 1, 0, 0, 0, 0, 0, 0, 0) = (double node).

By executing the UPN model for given initial marking shown in Fig. 3 (left)
the sequence of transitions firing {t1} − {t2} will happen and appropriate
sequence of marking vectors is:

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),

(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) = (will be double node).

There are three sequences possible from this state. The first one is {t3} −
{t6} − {t7} and appropriate sequence of marking vectors is:

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) = (will be double node),

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) = (will be double node),

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) = (double node).

The second sequence is {t4}− {t8, t9, t10}− {t11} and appropriate sequence of
marking vectors is:

20

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) = (double node),

(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),

(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) = (double node).

The third sequence is {t5} − {t12} − {t13, t14, t15} − {t16} and appropriate
sequence of marking vectors is:

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) = (double node),

(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) = (dead node).

By executing the UPN model for given initial marking shown Fig. 3 (right)
the two sequences of transitions firing will happen. The first sequence is {t1}−
{t2} − {t3} − {t7} − {t4} − {t5} and appropriate sequence of marking vectors
is:

(1, 0, 0, 0, 0, 0, 0) = (initial marking),

(0, 1, 0, 0, 0, 0, 0),

(0, 0, 1, 0, 0, 0, 0),

(0, 0, 0, 1, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 1),

(0, 0, 0, 0, 1, 0, 0),

(0, 0, 0, 0, 0, 1, 0) = (dead node).

The second sequence is {t1}−{t6}−{t7}−{t4}−{t5} and appropriate sequence
of marking vectors is:

(1, 0, 0, 0, 0, 0, 0) = (initial marking),

(0, 1, 0, 0, 0, 0, 0),

(0, 0, 0, 1, 0, 0, 0),

(0, 0, 0, 0, 0, 0, 1),

(0, 0, 0, 0, 1, 0, 0),

(0, 0, 0, 0, 0, 1, 0) = (dead node).

By executing the UPN model for given initial marking shown in Fig. 4 a trivial
sequence of transitions firing will happen: {t1}−{t2} and appropriate sequence
of marking vectors is: (1, 0, 0, 0, 0, 0, 0) = (initial marking); (0, 1, 0, 0, 0, 0, 0);
(0, 0, 1, 0, 0, 0, 0) = (dead node).

21

5 Experimental Results

According to all UPN models shown in this paper an application is created.
The application compresses and decompresses several set of test files [20] by
using arithmetic coding with respect to the input parameters. These input
parameters are: symbol type (byte or nibble), adaptive or static data model
and frequency scaling (scaled or non-scaled). If we use frequency scaled op-
tion there are two cases: frequency table divide by 2 and proportional scaling
frequency table from min frequency equals 1 to max frequency equals 255. In
all possible cases of our arithmetic coding initial (minimum) frequency for all
symbols is 1.

In this section we use some abbreviations for various types of arithmetic coding
which depend on these input parameters. These abbreviations are as follows:

• Type 10 represents that an input symbol is a byte, we use adaptive arith-
metic coding with non-scaled frequency table;

• Type 11 represents that an input symbol is a byte, we use adaptive arith-
metic coding with divby2-scaled frequency table;

• Type 12 represents that an input symbol is a byte, we use adaptive arith-
metic coding with max255-scaled frequency table;

• Type 20 represents that an input symbol is a byte, we use static arithmetic
coding with non-scaled frequency table;

• Type 21 represents that an input symbol is a byte, we use static arithmetic
coding with divby2-scaled frequency table;

• Type 22 represents that an input symbol is a byte, we use static arithmetic
coding with max255-scaled frequency table;

• Type 30 represents that an input symbol is a nibble, we use adaptive arith-
metic coding with non-scaled frequency table;

• Type 31 represents that an input symbol is a nibble, we use adaptive arith-
metic coding with divby2-scaled frequency table;

• Type 32 represents that an input symbol is a nibble, we use adaptive arith-
metic coding with max255-scaled frequency table;

• Type 40 represents that an input symbol is a nibble, we use static arithmetic
coding with non-scaled frequency table;

• Type 41 represents that an input symbol is a nibble, we use static arithmetic
coding with divby2-scaled frequency table;

• Type 42 represents that an input symbol is a nibble, we use static arithmetic
coding with max255-scaled frequency table;

The main goal in this experiment is to verify UPN models transformed into the
real application and to explore our 12 types of arithmetic coding compression
over the used test files [20].

22

Table 5.1
File sizes (bytes) in arithmetic coding compression Type 10, Type 11, Type 12;
Type 20, Type 21, Type 22 over texture files

Name of tiff file & its size Type 10 Type 11 Type 12 Type 20 Type 21 Type 22
texmos1.p512 262,278 259,557 259,591 259,597 260,418 260,415 260,414
texmos2.p512 262,278 254,538 254,584 254,589 255,394 255,392 255,404
texmos2.s512 262,278 98,886 99,177 105,951 99,602 99,641 105,227
texmos3.p512 262,278 255,917 255,952 255,950 256,775 256,772 256,777
texmos3.s512 262,278 98,358 98,644 108,202 99,073 99,113 105,874
texmos3b.p512 262,278 255,924 255,960 255,958 256,782 256,779 256,784
1.3.01 1,048,710 975,783 975,809 975,924 976,626 976,582 976,810
1.3.02 1,048,710 965,618 965,666 965,958 966,459 966,416 966,699
1.3.03 1,048,710 956,633 956,712 957,079 957,466 957,425 957,751
1.3.04 1,048,710 953,032 953,057 953,285 953,882 953,836 953,935
1.3.05 1,048,710 999,535 999,545 999,533 1,000,392 1,000,346 1,000,354

Table 5.2
File sizes (bytes) in arithmetic coding compression Type 30, Type 31, Type 32;
Type 40, Type 41, Type 42 over texture files

Name of tiff file & its size Type 30 Type 31 Type 32 Type 40 Type 41 Type 42
texmos1.p512 262,278 262,259 262,254 262,272 262,318 262,307 262,319
texmos2.p512 262,278 262,144 262,139 262,158 262,203 262,192 262,205
texmos2.s512 262,278 173,773 173,787 175,391 173,827 173,815 175,059
texmos3.p512 262,278 262,153 262,150 262,169 262,213 262,202 262,214
texmos3.s512 262,278 98,358 98,644 108,202 172,782 172,771 174,038
texmos3b.p512 262,278 262,156 262,152 262,171 262,215 262,203 262,216
1.3.01 1,048,710 1,020,475 1,020,385 1,020,425 1,020,705 1,020,520 1,020,485
1.3.02 1,048,710 1,014,635 1,014,546 1,014,652 1,014,869 1,014,682 1,014,667
1.3.03 1,048,710 1,012,663 1,012,572 1,012,669 1,012,891 1,012,708 1,012,684
1.3.04 1,048,710 1,007,214 1,007,125 1,007,247 1,007,445 1,007,260 1,007,259
1.3.05 1,048,710 1,030,220 1,030,130 1,030,163 1,030,443 1,030,263 1,030,209

The first two tables (Tables 5.1 and 5.2) show experimental results which re-
fer to arithmetic coding compression of some test texture files [20]. The com-
pressed files shown in Table 5.1 (second part) include appropriate frequency
table which is 1024 bytes long because of byte input symbol. The compressed
files shown on Table 5.2 (second part) include appropriate frequency table
which is 64 bytes long because of nibble input symbol.

The next two tables (Tables 5.3 and 5.4) show experimental results refer to
arithmetic coding compression of some test aerial files [20]. The compressed
files shown on Table 5.3 (second part) include appropriate frequency table
which is 1024 bytes long (byte input symbol). The compressed files shown on
Table 5.4 (second part) include appropriate frequency table which is 64 bytes
long (nibble input symbol).

Finally, the last two tables (Table 5.5 and 5.6) show experimental results
which refer to arithmetic coding compression of some test misc files [20]. The
compressed files shown on Table 5.5(second part) include appropriate fre-

23

Table 5.3
File sizes (bytes) in arithmetic coding compression Type 10, Type 11, Type 12;
Type 20, Type 21, Type 22 over aerial files

Name of file & its size Type 10 Type 11 Type 12 Type 20 Type 21 Type 22
2.1.02.tiff 786,572 721,177 721,273 721,515 722,008 721,986 722,113
2.1.08.tiff 786,572 628,095 628,248 629,552 628,878 628,866 630,392
2.1.12.tiff 786,572 646,185 646,309 646,309 646,972 646,960 648,214
2.2.03.tiff 3,145,868 2,490,157 2,490,183 2,499,028 2,491,287 2,490,883 2,497,750
2.2.13.tiff 3,145,868 2,892,415 2,892,309 2,892,888 2,893,595 2,893,186 2,893,682
2.2.17.tiff 3,145,868 2,799,801 2,799,744 2,801,846 2,800,959 2,800,548 2,802,071
2.2.24.tiff 3,145,868 2,884,736 2,884,641 2,885,452 2,885,915 2,885,502 2,886,077
3.2.25.tiff 1,048,710 883,060 883,204 884,926 883,866 883,830 885,451

Table 5.4
File sizes (bytes) in arithmetic coding compression Type 30, Type 31, Type 32;
Type 40, Type 41, Type 42 over aerial files

Name of file & its size Type 30 Type 31 Type 32 Type 40 Type 41 Type 42
2.1.02.tiff 786,572 759,655 759,606 759,707 759,805 759,701 759,716
2.1.08.tiff 786,572 714,532 714,482 714,672 714,681 714,578 714,730
2.1.12.tiff 786,572 725,919 725,870 726,020 726,071 725,965 726,084
2.2.03.tiff 3,145,868 2,860,031 2,859,201 2,859,593 2,861,763 2,860,071 2,859,441
2.2.13.tiff 3,145,868 3,047,532 3,046,704 3,046,353 3,049,369 3,047,596 3,046,421
2.2.17.tiff 3,145,868 3,009,587 3,008,758 3,008,537 3,011,281 3,009,626 3,008,494
2.2.24.tiff 3,145,868 3,046,918 3,046,087 3,045,762 3,048,612 3,046,962 3,045,805
3.2.25.tiff 1,048,710 979,211 979,121 979,305 979,442 979,256 979,329

Table 5.5
File sizes (bytes) in arithmetic coding compression Type 10, Type 11, Type 12;
Type 20, Type 21, Type 22 over misc files

Name of file & its size Type 10 Type 11 Type 12 Type 20 Type 21 Type 22
4.2.03.tiff 786,572 763,514 763,561 763,584 764,368 764,342 764,323
5.1.09.tiff 65,670 55,305 55,383 55,335 56,165 56,166 56,175
5.1.14.tiff 65,670 60,504 60,563 60,524 61,377 61,378 61,379
5.3.02.tiff 1,048,710 895,816 895,895 896,269 896,646 896,603 897,291
7.1.07.tiff 262,278 196,833 197,042 197,536 197,615 197,632 198,282
boat.512.tiff 262,278 236,053 236,191 236,425 236,898 236,895 236,936

Table 5.6
File sizes (bytes) in arithmetic coding compression Type 30, Type 31, Type 32;
Type 40, Type 41, Type 42 over misc files

Name of file & its size Type 30 Type 31 Type 32 Type 40 Type 41 Type 42
4.2.03.tiff 786,572 777,736 777,686 777,740 777,886 777,783 777,770
5.1.09.tiff 65,670 60,748 60,750 60,772 60,799 60,799 60,813
5.1.14.tiff 65,670 63,514 63,515 63,525 63,565 63,564 63,572
5.3.02.tiff 1,048,710 980,077 979,98 980,122 980,309 980,122 980,218
7.1.07.tiff 262,278 239,514 239,511 239,593 239,573 239,562 239,615
boat.512.tiff 262,278 248,767 248,764 248,879 248,827 248,815 248,867

quency table which is 1024 bytes long (byte input symbol). The compressed
files shown on Table 5.6 (second part) include appropriate frequency table
which is 64 bytes long (nibble input symbol).

24

Accordingly to the results of arithmetic compression shown in the tables for
our set of test files we can choose Type 10 (an input symbol is a byte, we use
adaptive model with non-scaled frequency table) as suitable method in our
set of 12 types of arithmetic compression.

At last we decompressed all our compressed files to test our application and
the UPN models which refer to arithmetic decompression.

6 Conclusion

An Upgraded Petri nets are suitable for modeling various types of arithmetic
coding at any level. Original software for modeling and simulations of Up-
graded Petri net, PeM (Petri Net Manager), is developed and used for all
models described in this paper. Several UPN models are shown. These models
represent arithmetic coding from general level of representation up to register
level of representation. By executing of given UPN models of an arithmetic
coding the models pass through many states which are the states of arithmetic
coding algorithm. After careful analysis of the models we transform these mod-
els into the real application. By using this application and PeM we do several
cycles modeling-simulation-analysis and finally check suitability of given UPN
models. After that we use our twelve types of arithmetic coding over the set
of test images. These types are determined by input parameters: symbol type,
adaptive or static data set and scale frequency table type. Finally, we repre-
sent results of all of these types of arithmetic coding over the sets of some test
images (textures, aerial, misc). All models are observed in the experiments by
using created application over standard set of files. Experimental results are
presented and compared.

Acknowledgements

This research was in part supported by the Serbian Ministry of Education and
Science.

References

[1] Rung-Ching Chen, Pei-Yan Pai, Yung-Kuan Chan, Chin-Chen Chang, Lossless

image compression based on multiple-tables arithmetic coding, Mathematical
Problems in Engineering, Vol. 2009, Article ID 128317, (2009), 13 pages,
doi:10.1155/2009/128317.

[2] D. Gašević, V. Devedžić,Teaching Petri Nets Using P3, IEEE Educational
Technology & Society, Vol. 7, No. 4 (2004), pp. 153–166.

25

[3] M. Grangetto, E. Magli, G. Olmo, Distributed arithmetic coding, IEEE
Commun. Lett., Vol. 11, no. 11 (2007), pp. 883–885.

[4] M. Grangetto, E. Magli, G. Olmo, Rate-compatible distributed arithmetic coding,
IEEE Commun. Lett., Vol. 12, no. 8 (2008), pp. 575–577.

[5] M. Guazzo, A general minimum-redundancy source-coding algorithm, IEEE
Trans. Information Theory, IT-26 (1) (1980), pp. 15–25.

[6] P.G. Howard, J.S. Witter, Arithmetic coding for data compression, Proceedings
of IEEE, Vol. 82, No. 6 (1994), pp. 857–865.

[7] H. Kim, J. Wen, J.D. Villasenor, Secure arithmetic coding, IEEE Trans. Signal
Processing, Vol. 55, No. 5 (2007), pp. 2263–2272.

[8] G.G. Langdon, Jr., An introduction to arithmetic coding, IBM J. Res. Develop.,
Vol. 28, No. 2 (1984), pp. 135–149.

[9] D.J.C. MacKay, Information Theory, Inference, and Learning Algorithms,
Cambridge University Press, 2003.

[10] A. Moffat, R.M. Neal, I.H. Witten, Arithmetic coding revisited, ACM
Transactions on Information Systems, Vol. 16 (1998), pp. 256–294.

[11] T. Murata, Petri Nets: Properties, Analysis and Applications, Proceedings of
the IEEE, Vol. 77, No. 4 (1989), pp. 541–580.

[12] R. Pasco, Source Coding Algorithms for Fast Data Compression, Stanford
University, Ph.D. Thesis, 1976.

[13] J.J. Rissanen, Generalized kraft inequality and arithmetic coding, IBM J. Res.
Develop. (1976), pp. 198–203.

[14] J.J. Rissanen & G. G. Langdon, Arithmetic coding, IBM J. Res. Develop. (1979),
pp. 146–162.

[15] F. Rubin, Arithmetic stream coding using fixed precision registers, IEEE Trans.
Information Theory, IT-25 (6) (1979), pp. 672–675.

[16] A. Said, Introduction to Arithmetic Coding – Theory and Practice, Imaging
Systems Laboratory HP Laboratories Palo Alto HPL-2004-76, 2004.

[17] P. S. Štrbac, An Approach to Modeling Communication Pprotocol by Using

Upgraded Petri Nets, PhD Dissertation, Military Academy, Belgrade, Serbia,
2002.

[18] I.H. Witten, R.M. Neal, J.G. Cleary, Arithmetic coding for data compression,
Communications of the ACM, Vol. 30 (1987), pp. 520–540.

[19] B. Zhu, E. Yang, A.H. Tewfik, Arithmetic coding with dual symbol sets and its

performance analysis, IEEE Transactions on Image Processiong, Vol. 8, No. 12
(1999), pp. 1667–1676.

[20] The USC-SIPI Image Database, University of Southern California:
http://sipi.usc.edu/database/

26

