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Abstract The main objective of this paper is to present a new extension of the familiar Mathieu
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1 Introduction and preliminaries

During the study of elasticity of solid bodies, Émile Leonard Mathieu (1835–1890) introduced
and investigated the famous infinite functional series so-called Mathieu series of the form [20]

S(r) =
∑

n≥1

2n

(n2 + r2)2
, r > 0.

The alternating version of Mathieu series is introduced and investigated by Pogány et al. [27, p.
72, Eq. (2.7)]

S̃(r) =
∑

n≥1

(−1)n−1 2n

(n2 + r2)2
, r > 0.

Elegant integral forms of Mathieu series S(r) and alternating Mathieu series S̃(r) was estab-
lished by Emersleben [13]

S(r) =
1

r

ˆ ∞

0

x sin(rx)

ex − 1
dx. (1)

and Pogány et al. [27, p. 72, Eq. (2.8)]

S̃(r) =
1

r

ˆ ∞

0

x sin(rx)

ex + 1
dx. (2)

Milovanović and Pogány [22] discovered other integral forms for Mathieu and alternating Math-
ieu series; Tomovski and Pogány [29] deduced Cauchy principal value integrals for these series;
moreover see [7, 9, 12] in this integral form, and [8, 25, 26] for another similarly focused study.
The present authors studied and investigated a multi–parameter extension of the well–known
Mathieu series and the alternating Mathieu series in a recent paper [24].

We emphasize the integral representations [22, p. 185-186, Corollary 2.2]

S(r) = π

ˆ ∞

0

r2 − x2 + 1
4(

x2 − r2 + 1
4

)2
+ r2

dx

cosh2(πx)
, (3)

S̃(r) = π

ˆ ∞

0

x
(
x2 − r2 + 1

4

)2
+ r2

sinh(πx) dx

cosh2(πx)
, (4)

which will have a special treatment below.
Let N,Z, and C be the sets of positive integers, integers, and complex numbers, respectively.

The Bessel function of the first kind of the order ν is defined by

Jν(z) =
∑

k≥0

(−1)k
(
z
2

)ν+2k

k! Γ (ν + k + 1)
, −z 6∈ N; ν ∈ C, (5)

where the principal branch of Jν(z) should be considered (it corresponds to the principal value
of zν) and Jν(z) is analytic in the z–plane cut along the interval (−∞, 0]. Moreover, for ν ∈ Z,
the Bessel function of the first kind is entire in z, the whole complex plane, see [15, p. 5].
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The Bessel function of the second kind (Neumann function or Weber–Bessel function) of
order ν is expressible in terms of the Bessel function of the first kind defined as [30, p. 64)]:

Yν(z) =
cos(νπ)Jν(z)− J−ν(z)

sin(νπ)
= cot(νπ)Jν(z)− csc(νπ)J−ν(z), ν 6∈ Z. (6)

Also Bessel functions of half–integer order have connection or recurrence formula [17, p. 925,
Eq.(8.465)]

Yn+ 1
2
(z) = (−1)n−1 J−n− 1

2
(z) .

On the other hand [23, pp. 228, Eq. (10.16.1)]

J 1
2
(z) = Y− 1

2
(z) =

√
2

πz
sin(z) .

The extension of Mathieu series we can realize considering the related integral representation
extending the integrand by a weight function. Namely, re–write (1) into the form

S(r) =

√
π

2r

ˆ ∞

0

x3/2

ex − 1

√
2

πrx
sin(rx) dx =

√
π

2r

ˆ ∞

0

x3/2

ex − 1
Y− 1

2
(rx) dx . (7)

The same can be done for the alternating Mathieu series, thus

S̃(r) =

√
π

2r

ˆ ∞

0

x3/2

ex + 1
Y− 1

2
(rx) dx .

2 Polylogarithmic approach to Mathieu and alternating Mathieu series

In the exposition we use the series definition of the Riemann Zeta function [28, p. 164, Eq. (1)]

ζ(s) =
∑

n≥1

n−s, ℜ(s) > 1 ,

and its integral representation

ζ(s) =
1

Γ (s)

ˆ ∞

0

xs−1

ex − 1
dx, ℜ(s) > 1. (8)

The close relative of the Riemann Zeta function known as Dirichlet Eta function (or the alter-
nating Riemann Zeta function) η(s) and its integral representation are given by [28, p. 384, Eq.
(35)]

η(s) =
(
1− 21−s

)
ζ(s) =

∑

n≥1

(−1)n−1n−s, ℜ(s) > 0 ,

that is,

η(s) =
1

Γ (s)

ˆ ∞

0

xs−1

ex + 1
dx, ℜ(s) > 0, (9)

respectively.
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The polylogarithm (de Jonquière’s function) is the Dirichlet type power series in complex
argument z, viz.

Lis(z) =
∑

n≥1

zn

ns
;

here the defining series converges for the complex order s ∈ C for all |z| < 1, while by analytic
continuation it can be extended to |z| ≥ 1. There is much coverage literature available for the
polylogarithm and related topic, consult the standard references [1, 14, 19, 23, 31]. Obviously
Lis(1) = ζ(s), ℜ(s) > 1.

Our interest in polylogarithm is drawn by the integral representation

Lis(z) =
z

Γ (s)

ˆ ∞

0

ts−1

et − z
dt, ℜ(s) > 0, z ∈ C \ [1,∞) . (10)

This integral is closely connected with the Bose–Einstein distribution’s integral [10]

Gk(x) =
1

Γ (k + 1)

ˆ ∞

0

tk

et−x − 1
dt, k > −1 .

Here x ≤ 0, in turn for x > 0 the Cauchy principal value integral should be used, [10]. Obviously,

Gk(x) =
ex

Γ (k + 1)

ˆ ∞

0

tk

et − ex
dt = Lik+1

(
ex
)
. (11)

The Fermi–Dirac distribution integral (see also Clunie’s note [10])

Fk(x) =
1

Γ (k + 1)

ˆ ∞

0

tk

et−x + 1
dt, k > 0 .

We point out that [31]

Fk(x) = −Lik+1

(
− ex

)
. (12)

The similarity to the Emersleben’s integral expressions for the Mathieu series and alternating
Mathieu series S̃(r) is obvious, compare (1) and (2) respectively. Motivated by these ‘similarities’
our next goal is to establish inter–connection formulae between polylogarithm, the series built
from Riemann Zeta function, Fermi–Dirac and Bose–Einstein integrals from one, and Mathieu
series and alternating Mathieu series from the other side.

Theorem 1 For all |r| < 1 we have

S(r) = 2
∑

n≥0

(−1)n (2)n r
2n

n!
ζ(2n+ 3), (13)

S̃(r) = 2
∑

n≥0

(−1)n (2)n r
2n

n!
η(2n+ 3) . (14)
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Proof Consider the integral representation (1). By the Taylor expansion of the sine function in
the integrand we conclude

S(r) =
1

r

ˆ ∞

0

x

ex − 1

∑

n≥0

(−1)n(rx)2n+1

(2n+ 1)!
dx =

∑

n≥0

(−1)nr2n

(2n+ 1)!

ˆ ∞

0

x2n+2

ex − 1
dx .

In turn, by (10) and (11) we confirm that

ˆ ∞

0

x2n+2

ex − 1
dx = Γ (2n+ 3)G2n+2(0) = Γ (2n+ 3)Li2n+3(1) = (2n+ 2)! ζ(2n+ 3) , (15)

which results in
S(r) = 2

∑

n≥0

(−1)nr2n(n+ 1) ζ(2n+ 3) ,

getting (13). Next, starting now from (2) we infer by similar proving procedure the second

asserted formula which holds for the alternating Mathieu series S̃(r). Indeed, applying (12), we
conclude

S̃(r) =
1

r

ˆ ∞

0

x

ex + 1

∑

n≥0

(−1)n(rx)2n+1

(2n+ 1)!
dx = 2

∑

n≥0

(−1)nr2n(n+ 1)

ˆ ∞

0

x2n+2

ex + 1
dx

= 2
∑

n≥0

(−1)nr2n(n+ 1)F2n+2(0) = −2
∑

n≥0

(−1)nr2n(n+ 1)Li2n+3(−1)

= 2
∑

n≥0

(−1)nr2n(n+ 1) η(2n+ 3) ,

which completes the proof. �

Remark 1 We point out that (13) and (14) are not new; in fact these relations coincide with
the series representations [24, Eqs. (1.7-8)], also see [27, p. 72, Proposition 1.] for (14). We also

point out that there are no reasons to consider the series S(r) and S̃(r) exclusively for r > 0; the
exception can be Mathieu’s original mathematical model in which he described the vibration
of clamped rectangular plates and membranes, see the discussion in the memoir [24, §8.3]. So
the importance of the previously presented results.

3 Series expansions of integrals (3) and (4)

The derivation of integral expressions (3) and (4) associated to S(r) and S̃(r) is realized by
complex analytical and integral transformation methods, see [22]. Then, since their integrands
include reciprocals of hyperbolic functions, we explore other series expansions of these integrals.

First, we introduce the exponential integral of the first order [1, p. 228, Eq. 5.1.1]

E1(z) = −
ˆ ∞

z

x−1e−x dx , | arg(z)| < π,

which mirror symmetry property reads E1(z) = E1(z), see [1, p. 229, Eq. 5.1.13]. Obivously,
we consider here the principal value of the integral when z 6= 0, consult [23, p. 150, Eq. 6.2.1].
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Moreover in the Mathematica package the exponential integral is defined also as the principal
value of the integral [23, p. 150, Eq. 6.2.5]

Ei(x) = −−
ˆ ∞

−x

t−1 e−t dt , x > 0.

However, the inter–connection E1(x) = −Ei(−x) holds true, see [23, p. 150, Eq. 6.2.6].

Theorem 2 For all r > 0 we have the following series expansions

S(r) =
1

r

∑

n≥0

s
{
e−rsℜ

[
E1

(
(−r + i

2 )s
)]

− ersℜ
[
E1

(
(r + i

2 )s
)]}∣∣∣

s=2π(n+1)
, (16)

S̃(r) =
1

r

∑

n≥0

s
{
ersℜ

[
E1

(
(r + i

2 )s
)]

− e−rsℜ
[
E1

(
(−r + i

2 )s
)]}∣∣∣

s=π(2n+1)
, (17)

where ℜ[z] denotes the real part of z ∈ C.

Proof Expanding the secant hyperbolic kernel in the integrand of (3), for all x > 0 we have

1

cosh2(πx)
=

4 e−2πx

(
1 + e−2πx

)2 = 4
∑

n≥0

(−1)n(n+ 1) e−2π(n+1)x = 4 e−2πx
1F0

[
2;−;−e−2πx

]
. (18)

Let us denote Lx[f ](s) the Laplace transform of a suitable function f with respect to the input
variable x of the output variable s. By the expansion (18), the integral (3) becomes a series of
Laplace transforms which reads

S(r) = 4π
∑

n≥0

(−1)n(2)n
n!

Lx

[ r2 − x2 + 1
4(

x2 − r2 + 1
4

)2
+ r2

](
2π(n+ 1)

)
. (19)

Next, we need the related Laplace integral property [1, p. 230, Eq. 5.1.28]
ˆ ∞

0

e−sx

x+ a
dx = Lx[(x + a)−1](s) = eas E1(as) , s > 0, a > 0 .

The partial fraction decomposition of the integrand is

r2 − x2 + 1
4(

x2 − r2 + 1
4

)2
+ r2

=
1

4r

{
1

x+ r + i
2

+
1

x+ r − i
2

− 1

x− r + i
2

− 1

x− r − i
2

}
.

Hence, applying the previously listed results, we have

Lx

[
r2 − x2 + 1

4(
x2 − r2 + 1

4

)2
+ r2

]
(s) =

1

4r

[
e(r+

i
2
)sE1

(
(r + i

2 )s
)
+ e(r−

i
2
)sE1

(
(r − i

2 )s
)

− e−(r− i
2
)s E1

(
− (r − i

2 )s
)
− e−(r+ i

2
)s E1

(
(−(r + i

2 )s
)]
.

By the mirror symmetry of the exponential integral we readily conclude

Lx

[
r2 − x2 + 1

4(
x2 − r2 + 1

4

)2
+ r2

]
(s) =

1

2r

{
ers ℜ

[
e

i
2
sE1

(
(r + i

2 )s
)]

− e−rsℜ
[
e

i
2
sE1

(
(−r + i

2 )s
)]}

,
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which right hand side for s = 2π(n+ 1) reduces to

(−1)n+1

2r

{
e2rπ(n+1)ℜ

[
E1

(
2π(r + i

2 )(n+ 1)
)]

− e−2rπ(n+1)ℜ
[
E1

(
2π(−r + i

2 )(n+ 1)
)]}

.

Inserting the last expression into (19) we arrive at the asserted series expansion (16).
Next, as to (17), since

sinh(πx)

cosh2(πx)
= − 1

π

d

dx

( 1

cosh(πx)

)
= 2

∑

n≥0

(−1)n(2n+ 1)e−(2n+1)πx

= 2e−πx
∑

n≥0

(1)n(
3
2 )n

(12 )n n!

(
− e−2πx

)n
= 2e−πx

2F1

[
1, 3

2
1
2

∣∣∣− e−2πx
]
,

the integral expression (4) becomes the following series of Laplace transforms

S̃(r) = 2π
∑

n≥0

(−1)n
(1)n(

3
2 )n

(12 )n n!
Lx

[
x

(x2 − r2 + 1
4 )

2 + r2

](
(2n+ 1)π

)
.

The partial fraction decomposition of the Laplace transform input function reads

x

(x2 − r2 + 1
4 )

2 + r2
= − i

4r

{
1

x+ r + i
2

− 1

x+ r − i
2

− 1

x− r + i
2

+
1

x− r − i
2

}
,

therefore

Lx

[
x

(x2 − r2 + 1
4 )

2 + r2

]
(s) = − i

4r

[
e(r+

i
2
)s E1

(
(r + i

2 )s
)
− e(r−

i
2
)sE1

(
(r − i

2 )s
)

− e−(r− i
2
)sE1

(
− (r − i

2 )s
)
+ e−(r+ i

2
)sE1

(
(−(r + i

2 )s
)]
.

Again by the mirror symmetry of the exponential integral E1(z), inserting s = π(2n + 1), we
conclude that

Lx

[
x

(x2 − r2 + 1
4 )

2 + r2

](
π(2n+ 1)

)
=

(−1)n

2r

{
erπ(2n+1)ℜ

[
E1

(
π(r + i

2 )(2n+ 1)
)]

− e−rπ(2n+1)ℜ
[
E1

(
π(−r + i

2 )(2n+ 1)
)]}

.

The rest is obvious. �

Unfortunately, the series (16) for the sum S(r) is slowly convergent. Denote its general term
by un(r), i.e.,

un(r) =
s

r

{
e−rsℜ

[
E1

(
(−r + i

2 )s
)]

− ersℜ
[
E1

(
(r + i

2 )s
)]}∣∣∣

s=2π(n+1)
,

and consider another auxiliary series

T (r) =
1

2
u0(r) +

1

2

∑

n≥0

(
un(r) + un+1(r)

)
, (20)
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where in both n ≥ 0 and r > 0. Let Sn(r) and Tn(r) be nth partial sums of the series S(r)
and T (r), respectively. Since the series (16) is convergent, it must be limn→+∞ un(r) = 0, and
according to Tn(r)− Sn(r) =

1
2un+1(r), we conclude that T (r) is also a convergent series, with

the same sum S(r).

Remark 2 Numerical calculations show that for fixed values of r, un(r) > 0 for even n, and
negative for odd n, so that the transformation of the series (16), given by (20), is, in fact,
the well-known Euler–Abel transformation. The series (16) is extremely slowly convergent and
practically is not usable for numerical calculations. On the other hand, the transformed series
(20) shows a relatively fast convergence, so that a reasonable number of initial terms is enough
to approximate the sum S(r) with the required accuracy. The following examples illustrate
these properties.

Example 1 In Figure 1 (left) we present the errors

ES,n(r) := Tn(r) − S(r) =
1

2
u0(r) +

1

2

n∑

k=0

(
uk(r) + uk+1(r)

)
, (21)

with only n = 0, 1, 2, and 5. As the exact value S(r) we take a very precise approximation
obtained by using the Gaussian quadrature formula with respect to the hyperbolic weight
function (see [21, 22]), applied directly to the integral (3). As we can see, only for small values
of r the errors ES,n(r) are significant if n ≤ 5. In the same figure (right) we present the
corresponding relative errors RS,n(r) = |ES,n(r)/S(r)|, taking the partial sums in (21) for
n = 5, 10, 50 and 100 terms. For example, with n = 100, the relative error for r ∈ [0, 1] is less
than 10−6, and for larger r > 1 this error is less than 10−8, which means that we obtain the
values of S(r) with at least 6 and 8 exact decimal digits, respectively.

0.2 0.4 0.6 0.8 1.0
r

-0.15

-0.10

-0.05

0.05

0.10

�S,n(r)

n = 0

n = 1

n = 2

n = 5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
r

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

RS,n(r)

n = 5

n = 10

n = 50

n = 100

Fig. 1 Errors ES,n(r) for n = 0, 1, 2 and 5, when r runs over [0, 1] (left); relative errors RS,n(r) for 0 ≤ r ≤ 3,
for n = 5, 10, 50, and 100 (right)

A series with more faster convergence can be obtained by repeating the previous transfor-
mation to the series (20). Then we get

1

4

(
3u0(r) + u1(r) +

∑

n≥0

(un(r) + 2un+1(r) + un+2(r))
)
. (22)
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The corresponding errors in the partial sums are denoted by ES,n(r) and presented in Figure 2
(left), as well as the relative errors RS,n(r) in the same figure (right).

0.2 0.4 0.6 0.8 1.0
r

-0.04

-0.02

0.02

ℰS,n(r)

n = 0

n = 1

n = 2

n = 5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
r

10-11

10-9

10-7

10-5

10-3

ℛS,n(r)

n = 5

n = 10

n = 50

n = 100

Fig. 2 Errors ES,n(r) for n = 0, 1, 2 and 5, when r runs over [0, 1] (left); relative errors RS,n(r) for 0 ≤ r ≤ 3,
for n = 5, 10, 50, and 100 (right)

Example 2 In the case of the alternating Mathieu series S̃(r) we study the auxiliary series

T̃ (r) =
1

2
v0(r) +

1

2

∑

n≥0

(
vn(r) + vn+1(r)

)
, (23)

with the general term

vn(r) =
s

r

{
ersℜ

[
E1

(
(r + i

2 )s
)]

− e−rsℜ
[
E1

(
(−r + i

2 )s
)]}∣∣∣

s=π(2n+1)
.

0.2 0.4 0.6 0.8 1.0
r

-0.1

0.1

0.2

Ε
S

,n
(r)

n = 0

n = 1

n = 2

n = 5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
r

10-5

10-4

10-3

10-2

R
S

,n
(r)

n = 5

n = 10

n = 50

n = 100

Fig. 3 Errors E
S̃,n

(r) for n = 0, 1, 2 and 5, when r runs over [0, 1] (left); relative errors R
S̃,n

(r) for 0 ≤ r ≤ 3,

for n = 5, 10, 50, and 100 (right)
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The repeated Euler–Abel transformation, in this case, gives the accelerated series in the
following form:

1

4

(
3v0(r) + v1(r) +

∑

n≥0

(vn(r) + 2vn+1(r) + vn+2(r))
)
. (24)

The corresponding diagrams are presented in Figures 3 and 4, with the same notations as ones
in the previous case for the sum S(r) (Example 1).

0.2 0.4 0.6 0.8 1.0
r

-0.02

0.02

0.04

ℰ
S
�

,n
(r)

n = 0

n = 1

n = 2

n = 5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
r

10-7

10-6

10-5

10-4

10-3

ℛ
S
�

,n
(r)

n = 5

n = 10

n = 50

n = 100

Fig. 4 Errors E
S̃,n

(r) for n = 0, 1, 2 and 5, when r runs over [0, 1] (left); relative errors R
S̃,n

(r) for 0 ≤ r ≤ 3,

for n = 5, 10, 50, and 100 (right)

Remark 3 As we can see there exist certain oscillations in graphics for the relative errorsRS,n(r)
(Figure 2 (right)) and RS̃,n(r) (Figure 4 (right)) for larger r and sufficiently large n (n = 100),

because of unstable calculations in such cases. Namely, the values S(r) and S̃(r), as well as
their approximations, i.e., the partial sums of series (22) and (24), respectively, are close to zero
in such cases.

4 Extended Mathieu series Sµ,ν(r) and S̃µ,ν(r)

Motivated by (7), replacing there the kernel function Y− 1
2
with the general Bessel function of

the second kind of order ν, we introduce the extended Mathieu series S(r) and its alternating

variant S̃(r) in the following forms:

Sµ,ν(r) =

√
π

2r

ˆ ∞

0

xµ−1

ex − 1
Yν(rx) dx, µ+ ν ≥ 1, (25)

S̃µ,ν(r) =

√
π

2r

ˆ ∞

0

xµ−1

ex + 1
Yν(rx) dx, µ+ ν ≥ 0, (26)

where in both cases r > 0, µ > 0. Clearly S 5
2
,− 1

2
(r) = S(r) and S̃ 5

2
,− 1

2
(r) = S̃(r).

Using the recurrence formula [30, p. 66, Eq. (1)]

Yν−1(z)− Yν+1(z) =
2 ν

z
Yν(z),
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we obtain the following recurrence formulae

2 ν

r
Sµ,ν(r) = Sµ+1,ν−1(r) + Sµ+1,ν+1(r),

2 ν

r
S̃µ,ν(r) = S̃µ+1,ν−1(r) + S̃µ+1,ν+1(r) .

Theorem 3 For all µ, ν + 1 > 0, n ∈ N and µ > |ν| > 0, we have

Sµ,ν(r) = κ1(µ, ν)
∑

n≥1

1

(n2 + r2)
µ+ν

2

2F1

[ 1
2 (µ+ ν), 12 (1− µ+ ν)

ν + 1

∣∣∣
r2

n2 + r2

]

− κ2(µ, ν)
∑

n≥1

1

(n2 + r2)
µ−ν

2

2F1

[ 1
2 (µ− ν), 12 (1 − µ− ν)

1− ν

∣∣∣
r2

n2 + r2

]
.

Moreover, when |ν| < 1 and µ+ ν + 1 > 0 there holds

S̃µ,ν(r) = κ1(µ, ν)
∑

n≥1

(−1)n−1

(n2 + r2)
µ+ν

2

2F1

[ 1
2 (µ+ ν), 12 (1− µ+ ν)

ν + 1

∣∣∣
r2

n2 + r2

]

− κ2(µ, ν)
∑

n≥1

(−1)n−1

(n2 + r2)
µ−ν

2

2F1

[ 1
2 (µ− ν), 12 (1 − µ− ν)

1− ν

∣∣∣
r2

n2 + r2

]
,

where

κ1(µ, ν) = cot(νπ)

√
π rν−

1
2 Γ (µ+ ν)

2ν+
1
2 Γ (ν + 1)

; κ2(µ, ν) = csc(νπ)

√
π r−ν− 1

2 Γ (µ− ν)

2
1
2
−ν Γ (1− ν)

.

Proof Insert the binomial series expansion (ex − 1)−1 =
∑

n≥1 e
−nx, x > 0 into (25). The

legitimate integral–sum interchange, which can be proved e.g. by the dominated convergence
theorem, results in

Sµ,ν(r) =

√
π

2r

∑

n≥1

ˆ ∞

0

xµ−1 e−nx Yν(r x) dx .

Making use of the integral representation [30, p. 385, Eq. (4)] or, in other words, the Laplace-
Mellin transform of the Bessel function Yν , i.e., La[x

µ−1 Yν(bx)] and Mµ[e
−ax Yν(bx)], respec-

tively, we infer that

ˆ ∞

0

xµ−1e−axYν(bx) dx =
cot(νπ) ·

(
b
2

)ν
Γ (µ+ ν)

(a2 + b2)
1
2
(µ+ν) Γ (ν + 1)

2F1

[ 1
2 (µ+ ν), 12 (1− µ+ ν)

ν + 1

∣∣∣
b2

a2 + b2

]

− csc(νπ) ·
(
b
2

)−ν
Γ (µ− ν)

(a2 + b2)
1
2
(µ−ν) Γ (1− ν)

2F1

[ 1
2 (µ− ν), 12 (1− µ− ν)

1− ν

∣∣∣
b2

a2 + b2

]
,

which parameter space consists from ℜ(µ) > |ℜ(ν)| and ℜ(a± ib) > 0, specifying above a = n
and b = r, we conclude the first asserted formula. �



12 R. K. Parmar et al.

In the sequel we need the associated Legendre function of second kind of a real argument [23,
Eq. 14.3.7]

Qp
q(x) = eπip

√
π Γ (p+ q + 1) (x2 − 1)

q

2

2p+1 Γ (p+ 3
2 )x

p+q+1 2F1

[ 1
2 (p+ q) + 1, 1

2 (p+ q + 1)
p+ 3

2

∣∣∣
1

x2

]
, x > 1 ,

provided the parameter range consists of p, q ∈ C and −(p+ q) 6∈ N.

Theorem 4 For all µ, ν + 1 > 0, n ∈ N, and µ > |ν| > 0, we have

Sµ,ν(r) = −
√

2

πr
Γ (µ+ ν)

∑

n≥1

1

(n2 + r2)
1
2
µ
Q−ν

µ−1

[ n√
n2 + r2

]
,

S̃µ,ν(r) =

√
2

πr
Γ (µ+ ν)

∑

n≥1

(−1)n

(n2 + r2)
1
2
µ
Q−ν

µ−1

[ n√
n2 + r2

]
.

Proof The same binomial expansion as in the previous proof and a change of the order of
integration and summation gives

Sµ,ν(r) =

√
π

2r

∑

n≥1

ˆ ∞

0

xµ−1 e−nx Yν(r x) dx .

By virtue of the integral [17, p. 700, Eq. 6.621. 2]

ˆ ∞

0

xµ−1e−ax Yν(bx) dx = − 2

π

Γ (µ+ ν)

(a2 + b2)
1
2
µ
Q−ν

µ−1

[ a√
a2 + b2

]
,

which parameter space consists from a > 0, b > 0, ℜ(µ) > |ℜ(ν)|, for a = n and b = r we
conclude the first asserted formula.

The derivation of the series expansion for S̃µ,ν(r) applies

(1 + ex)−1 =
∑

n≥1

(−1)n−1e−nx, x > 0.

Now, the path to the final formula is obvious. �

5 Functional bounding inequalities

Recall the Gubler-Weber formula [30, p. 165, Eq. (5)]

Yν(z) =
2
(
z
2

)ν
√
π Γ (ν + 1

2 )

{
ˆ 1

0

(1 − t2)ν−
1
2 sin(zt) dt−

ˆ ∞

0

(1 + t2)ν−
1
2 e−zt dt

}
,

which holds for ℜ(z) > 0 and ν > −1/2. Splitting the ν-domain into three disjoint intervals

(−1/2, ∞) = (−1/2, 1/2] ∪ (1/2, 3/2) ∪ (3/2, ∞) = U1 ∪ U2 ∪ U3 ,
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Baricz et al. [3, pp. 957–958] obtained the functional bounding inequality for the real argument
Neumann function Yν(x) (see also [18, pp. 7–8], [11, p. 76]):

∣∣Yν(x)
∣∣+ xν

2ν Γ (ν + 1)
≤






(
x
2

)ν−1

√
π Γ (ν + 1

2 )
, − 1

2 < ν ≤ 1
2 ,

(
x
2

)ν−1

√
π Γ (ν + 1

2 )
+

2ν Γ (ν)

πxν
, 1

2 < ν < 3
2 ,

xν−1

√
2π Γ (ν + 1

2 )
+

22ν−
3
2 Γ (ν)

πxν
, ν > 3

2 .

(27)

Theorem 5 For all µ, ν + 1
2 > 0, n ∈ N, and µ > |ν| > 0, we have

∣∣Sµ,ν(r)
∣∣ ≤





c1(µ, ν) ζ(µ + ν) + c2(µ, ν) ζ(µ + ν − 1), − 1
2 < ν ≤ 1

2 ,

c1(µ, ν) ζ(µ + ν) + c2(µ, ν) ζ(µ + ν − 1) + c3(µ, ν) ζ(µ − ν), 1
2 < ν < 3

2 ,

c1(µ, ν) ζ(µ + ν) + c4(µ, ν) ζ(µ + ν − 1) + c5(µ, ν) ζ(µ − ν), ν > 3
2 .

Moreover, when µ+ ν + 1 > 0 there holds

∣∣S̃µ,ν(r)
∣∣ ≤





c1(µ, ν) η(µ + ν) + c2(µ, ν) η(µ + ν − 1), − 1
2 < ν ≤ 1

2 ,

c1(µ, ν) η(µ + ν) + c2(µ, ν) η(µ + ν − 1) + c3(µ, ν) η(µ − ν), 1
2 < ν < 3

2 ,

c1(µ, ν) η(µ + ν) + c4(µ, ν) η(µ + ν − 1) + c5(µ, ν) η(µ − ν), ν > 3
2 ,

where

c1(µ, ν) =

√
π rν−

1
2 Γ (µ+ ν)

2ν+
1
2 Γ (ν + 1)

, c2(µ, ν) =

√
π rν−

3
2 Γ (µ+ ν − 1)

2ν+
1
2 Γ (ν + 1

2 )
, c3(µ, ν) =

2ν−
1
2 Γ (ν)Γ (µ− ν)

√
π rν+

1
2 Γ (ν + 1)

,

c4(µ, ν) =

√
π rν−

3
2 Γ (µ+ ν − 1)

2Γ (ν + 1
2 )

, c5(µ, ν) =
22ν−2 Γ (ν)Γ (µ− ν)

√
π rν+

1
2

.

Proof Starting with (25) and splitting the range of ν into three disjoint intervals

(−1/2, ∞) = (−1/2, 1/2] ∪ (1/2, 3/2) ∪ (3/2, ∞) = U1 ∪ U2 ∪ U3,

and using the estimates (27), we conclude

|Sµ,ν(r)| ≤
√
π

2r

ˆ ∞

0

xµ−1

ex − 1
|Yν(rx)| dx ≤





Sµ,U1
(r), − 1

2 < ν ≤ 1
2 ,

Sµ,U2
(r), 1

2 < ν < 3
2 ,

Sµ,U3
(r), ν > 3

2 ,
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where

Sµ,U1
(r) ≤

√
π

2r

{ (
r
2

)ν

Γ (ν + 1)

ˆ ∞

0

xµ+ν−1

ex − 1
dx+

(
r
2

)ν−1

√
π Γ (ν + 1

2 )

ˆ ∞

0

xµ+ν−2

ex − 1
dx

}
,

Sµ,U2
(r) ≤

√
π

2r

{ (
r
2

)ν

Γ (ν + 1)

ˆ ∞

0

xµ+ν−1

ex − 1
dx+

(
r
2

)ν−1

√
π Γ (ν + 1

2 )

ˆ ∞

0

xµ+ν−2

ex − 1
dx

+
2ν Γ (ν)

π rν Γ (ν + 1)

ˆ ∞

0

xµ+ν−1

ex − 1
dx

}

and

Sµ,U3
(r) ≤

√
π

2r

{ (
r
2

)ν

Γ (ν + 1)

ˆ ∞

0

xµ+ν−1

ex − 1
dx+

rν−1

√
2 π Γ (ν + 1

2 )

ˆ ∞

0

xµ+ν−2

ex − 1
dx

+
22ν−

3
2 Γ (ν)

π rν Γ (ν + 1)

ˆ ∞

0

xµ+ν−1

ex − 1
dx

}
,

which is equivalent to the first statement of this theorem. In the derivation procedure we apply
the integral representation (8) of the Riemann Zeta function.

Similarly, if we start with the expression (26) we obtain the second formula with the aid of
Dirichlet Eta function’s integral form (9). In both cases the parameter constraints are controlled
by the convergence conditions (8) and (9), respectively. �

6 Extended Mathieu series in terms of Riemann Zeta and Dirichlet Eta

The Bessel function of the second kind Yν has two fashion power series expansions depending
on the nature of the order parameter. Firstly, when ν = n ∈ Z, we have [1, p. 360, Eq. 9.1.11]

Yn(z) =
2

π
Jn(z) log

z

2
− 1

π

(2
z

)n n−1∑

k=0

(n− k − 1)!

k!

(z2
4

)k

− 1

π

(z
2

)n ∑

k≥0

ψ(k + 1) + ψ(n+ k + 1)

(n+ k)!k!

(
− z2

4

)k

, (28)

which immediately follows from (5) and (6). Here ψ is the digamma function defined by

ψ(x) = (logΓ (x))′ =
Γ ′(x)

Γ (x)
.

For a non-integer order ν 6∈ Z there exist several equivalent series representations; we work with
the re-formulated (6), viz.

Yν(z) = cot(νπ)
∑

n≥0

(−1)n( z2 )
2n+ν

Γ (n+ ν + 1)n!
− csc(νπ)

∑

n≥0

(−1)n( z2 )
2n−ν

Γ (n− ν + 1)n!
. (29)
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Theorem 6 Assume that µ, r > 0 and n ∈ N. Then

Sµ,n(r) =

√
2

πr
Γ (µ+ n)

∑

k≥0

(−1)k(µ+ n)2k
(k + n)! k!

[
log

r

2
+ ψ(µ+ 2k + n)

](r
2

)2k+n

ζ(µ + 2k + n)

+

√
2

πr
Γ (µ+ n)

∑

k≥0

(−1)k(µ+ n)2k
(k + n)! k!

(r
2

)2k+n

ζ′(µ+ 2k + n)

− Γ (µ− n)√
2πr

n−1∑

k=0

(n− k − 1)!(µ− n)2k
k!

( r
2

)2k−n

ζ(µ+ 2k − n)

− Γ (µ+ n)√
2πr

∑

k≥0

(−1)k
ψ(k + 1) + ψ(n+ k + 1)

(n+ k)!k!
(µ+ n)2k

( r
2

)2k+n

ζ(µ+ 2k + n) .

Proof Consider (25) for ν = n ∈ N. By the series (28) and by legitimate transformations we get

Sµ,n(r) =

√
2

πr
log

r

2

∑

k≥0

(−1)k

Γ (k + n+ 1) k!

(r
2

)2k+n
ˆ ∞

0

xµ+2k+n−1

ex − 1
dx

+

√
2

πr

∑

k≥0

(−1)k

Γ (k + n+ 1) k!

( r
2

)2k+n
ˆ ∞

0

xµ+2k+n−1 log x

ex − 1
dx

− 1√
2πr

n−1∑

k=0

(n− k − 1)!

k!

(r
2

)2k−n
ˆ ∞

0

xµ+2k−n−1

ex − 1
dx

− 1√
2πr

∑

k≥0

(−1)k
ψ(k + 1) + ψ(n+ k + 1)

(n+ k)!k!

( r
2

)2k+n
ˆ ∞

0

xµ+2k+n−1

ex − 1
dx . (30)

The first, third and fourth integrals are already known by virtue of (15), however, the second
one is more challenging. Since

Ip =

ˆ ∞

0

xp−1 log x

ex − 1
dx =

∑

m≥0

ˆ ∞

0

xp−1e−(m+1)x log xdx =:
∑

m≥0

Im ,

by the Mellin transform [16, p. 315, Eq. (9)]
ˆ ∞

0

xp−1e−qx log xdx =
Γ (p)

qp
[
ψ(p)− log q

]
, ℜ(q) > 0, ℜ(p) > 0 ,

and having in mind that ∑

n≥1

logn

np
= −ζ′(p), ℜ(p) > 1,

setting p = µ+ 2k + n and q = m+ 1, we conclude that

Iµ+2k+n = Γ (µ+ 2k + n)ψ(µ+ 2k + n) ζ(µ+ 2k + n)− Γ (µ+ 2k + n)
∑

m≥0

log(m+ 1)

(m+ 1)µ+2k+n

= Γ (µ+ 2k + n)
[
ψ(µ+ 2k + n) ζ(µ+ 2k + n) + ζ′(µ+ 2k + n)

]
. (31)
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Finally, applying (15) and (31) to the expression (30), after certain transformations and reduc-
tion, we arrive at the statement. �

Theorem 7 Assume that µ, r > 0 and n ∈ N0. Then

S̃µ,n(r) =

√
2

πr
Γ (µ+ n)

∑

k≥0

(−1)k(µ+ n)2k
(k + n)! k!

[
log

r

2
+ ψ(µ+ 2k + n)

](r
2

)2k+n

η(µ+ 2k + n)

+

√
2

πr
Γ (µ+ n)

∑

k≥0

(−1)k(µ+ n)2k
(k + n)! k!

(r
2

)2k+n

η′(µ+ 2k + n)

− Γ (µ− n)√
2πr

n−1∑

k=0

(n− k − 1)!(µ− n)2k
k!

( r
2

)2k−n

η(µ+ 2k − n)

− Γ (µ+ n)√
2πr

∑

k≥0

(−1)k
ψ(k + 1) + ψ(n+ k + 1)

(n+ k)!k!
(µ+ n)2k

( r
2

)2k+n

η(µ+ 2k + n) .

Proof Applying the Mellin–transform
ˆ ∞

0

xp−1

ex + 1
dx = Γ (p) η(p), ℜ(p) > 0,

for all integrals which we derive by the lines of the previous proving procedure, we clearly
deduce the claimed result. �

Now, we precise the Riemann Zeta building blocks series presentation of the extended Math-
ieu Sµ,ν(r) and Dirichlet Eta function terms for extended alternating Mathieu series S̃µ,ν(r) by
using the non–integer ν parameter case.

Theorem 8 For all µ, r > 0 and for |ν| < 1, when µ± ν > 1, we have

Sµ,n(r) = cot(νπ)Γ (µ+ ν)

√
π

2r

∑

k≥0

(−1)k(µ+ ν)2k
Γ (k + ν + 1) k!

(r
2

)2k+ν

ζ(µ+ 2k + ν)

− csc(νπ)Γ (µ− ν)

√
π

2r

∑

k≥0

(−1)k(µ− ν)2k
Γ (k − ν + 1) k!

(r
2

)2k−ν

ζ(µ+ 2k − ν) .

Moreover, for µ, r > 0 and for |ν| < 1, when µ± ν > 0 there holds

S̃µ,n(r) = cot(νπ)Γ (µ+ ν)

√
π

2r

∑

k≥0

(−1)k(µ+ ν)2k
Γ (k + ν + 1) k!

(r
2

)2k+ν

η(µ+ 2k + ν)

− csc(νπ)Γ (µ − ν)

√
π

2r

∑

k≥0

(−1)k(µ− ν)2k
Γ (k − ν + 1) k!

( r
2

)2k−ν

η(µ+ 2k − ν) . (32)

Proof We start again with the integral (25) when ν ∈ (−1, 1). The series representation (29)
implies

Sµ,n(r) =

√
π

2r

ˆ ∞

0

xµ−1

ex − 1

{
cot(νπ)

∑

k≥0

(−1)k( rx2 )2k+ν

Γ (k + ν + 1) k!
− csc(νπ)

∑

k≥0

(−1)k( rx2 )2k−ν

Γ (k − ν + 1) k!

}
dx
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= cot(νπ)

√
π

2r

∑

k≥0

(−1)k

Γ (k + ν + 1) k!

( r
2

)2k+ν
ˆ ∞

0

xµ+2k+ν−1

ex − 1
dx

− csc(νπ)

√
π

2r

∑

k≥0

(−1)k

Γ (k − ν + 1) k!

(r
2

)2k−ν
ˆ ∞

0

xµ+2k−ν−1

ex − 1
dx

= cot(νπ)

√
π

2r

∑

k≥0

(−1)k

Γ (k + ν + 1) k!

( r
2

)2k+ν

Γ (µ+ 2k + ν) ζ(µ + 2k + ν)

− csc(νπ)

√
π

2r

∑

k≥0

(−1)k

Γ (k − ν + 1) k!

(r
2

)2k−ν

Γ (µ+ 2k − ν) ζ(µ+ 2k − ν) ,

which is equivalent to the stated formula. The proof of (32) is now straightforward. �

7 Extending Butzer–Flocke–Hauss (complete) Omega function
Ω(z) via Neumann functions

The notation Ω(z), z ∈ C, stands for the so–called complete Butzer–Flocke–Hauss (BHF)
Omega function introduced in [4, Definition 7.1], [5] in the form

Ω(z) := 2

ˆ

1
2

0+

sinh(zu) cot(πu) du, z ∈ C .

It is the Hilbert transform H1[e
−zx](0) at zero of the 1–periodic function

(
e−zx

)
1
, defined by

the periodic extension of the exponential function e−zx, |x| < 1
2 , z ∈ C, thus

Ω(z) = H1

[
e−zx

]
(0) = −

ˆ

1
2

− 1
2

ezu cot(πu) du .

Another expressions for the complete BHF Omega function Ω(x) are given by Butzer et al. [6]:

Ω(x) =
2

π
sinh

(x
2

) ˆ ∞

0

1

et + 1
cos

(
xt

2π

)
dt , x ∈ R , (33)

while the real argument complete BHF Ω function’s integral form by Tomovski and Pogány
reads [29, p. 10, Theorem 3.3]

Ω(x) = 2

√
2

π
sinh

(x
2

)
−
ˆ ∞

0

sinh
(xt
π

)
tan t dt .

By extensions in the integrand of the Butzer–Flocke–Hauss Omega function which is intimately
connected to the generalized Mathieu series (consult the extensive study by Butzer and Pogány
[5]) we are faced with a new territory of ideas and series/integral conclusion upon the structure
of these kind generalizations.

Inspired by (33), we can write

Ω(x) = −
√
x

π
sinh

(x
2

) ˆ ∞

0

√
t

et + 1
Y 1

2

( xt
2π

)
dt
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having in mind that cos(z) = −
√
πz/2Y 1

2
(z) implementing the Neumann function of the general

order ν instead of Y− 1
2
in the kernel in the following way

Ωµ,ν(x) = −
√
x

π
sinh

(x
2

) ˆ ∞

0

tµ−1

et + 1
Yν

( xt
2π

)
dt . (34)

The parameter range derivation will be our first goal. In turn, recognizing that the same integral
consist both Ωµ,ν(x) and Sµ,ν(r) in (34) and (26), respectively, we deduce the relation

Ωµ,ν(x) = − x

π2
sinh

(x
2

)
S̃µ,ν

( x

2π

)
. (35)

Therefore the parameter spaces coincide for any x > 0.
Next, the power series form of the complete BHF Ω function whose coefficients are built by

finite sums containing Dirichlet Eta function terms is reported in [5, p. 901, Theorem 5.4. (ii)]

Ω(z) =
z

π

∑

n≥0

n∑

k=0

(−1)k η(2k + 1)

π2k(2(n− k) + 1)!

(z
2

)2n

, |z| < 2π ,

which shows that Ω is intimately connected with the Eta function. In [5] the authors discussed
the relations of the Mathieu-, and the alternating Mathieu series and its generalized variants
from one, and the Ω(z) function from other side by the Taylor expansion of the Hilbert–
Eisenstein series h1(z) of the first order and the polygamma function ψ(r) of order r (see
also [2]).

However, our recent considerations are developed in another direction, according to the series
representation of the expanded complete BHF Ωµ,ν(x) in terms of the Dirichlet Eta function.
In turn, bearing in mind (35), the counterpart results valid for Ωµ,ν(x) exposed in Eq. (14) of
Theorem 1, Theorem 7 and finally in Eq. (32) of Theorem 8 turn out to be their immediate
consequences. So, we leave the formulation of these functional bound results to the interested
reader.
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22. G. V. Milovanović, T. K. Pogány, New integral forms of generalized Mathieu series and related applications.

Appl. Anal. Discrete Math. 7, 180–192 (2013)
23. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark (Eds.), NIST Handbook of Mathematical Functions.

(Cambridge University Press, Cambridge, 2010)
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