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Abstract--Applying Newton's and Halley's corrections, some modified methods of higher order 
for the simultaneous approximation of multiple zeros of a polynomial are derived. Further 
acceleration of convergence of these methods is performed by approximating all zeros in a serial 
fashion using the new approximations as they become available. Faster convergence is attained 
without additional calculations. Lower bounds of the R-order of convergence for the serial 
(single-step) methods are given. 

1. I N T R O D U C T I O N  

Iterative methods for the simultaneous determination of multiple zeros of a polynomial, 
most frequently developed as modifications of the known methods for simple zeros, have 
been investigated rarely in the literature. A classical Weierstrass result [1] was applied in 
Refs [2, 3] for determining multiple polynomial zeros r~ . . . . .  r,, when the order of 
multiplicity of these zeros gl . . . . .  #, is known. The corresponding methods have quadratic 
convergence, but their efficiency is low because besides the evaluation of the values of 
polynomial P, they require additional evaluation of the values of the derivatives 
p,,  . . . .  po,-J), where 

# --max #i. 
i 

The iterative formulas of Weierstrass' type have been also studied in Refs [4-6]. These 
formulas are considerably simpler than the previously mentioned ones, but a requirement 
for the extraction of the gith root of a complex number in determining an approximation 
to the zero r~ of the multiplicity #i leads to the problem of choice of the appropriate value 
of a root (among #~ values). 

The iterative methods developed using the logarithmic derivatives of a polynomial [7-9], 
are more suitable for the simultaneous determination of multiple zeros of a polynomial. 
Some of them have been considered in Refs [4, 6, 9]. 

Over the last decade, a lot of attention has been paid to formulating the iterative 
methods for the simultaneous inclusion of complex zeros of a polynomial using circular 
arithmetic. Some results, presented in Refs [9--12], related to multiple polynomial zeros, 
have been used for deriving the simultaneous methods for multiple zeros in ordinary 
('point') arithmetic. 

In this paper some modifications of the known simultaneous methods of high order, 
which provide the acceleration of convergence of the basic methods using Newton's and 
Halley's corrections and the Gauss-Seidel approach, are presented. The new formulas are 
analyzed using the results given in Refs [13-15]. 

2. B A S I C  M E T H O D S  

C o n s i d e r  a m o n i c  p o l y n o m i a l  P o f  degree  n >I 3, 
v 

P ( z )  = z " +  a ,_ j z ' -~  + .. .  + a ,  z +ao = 1-[(z - r j ) " ,  (a~ ~ C) 

951 
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with real or complex zeros r~ . . . . .  rv having the order of multiplicity #~ . . . . .  #, respectively, 
where #t + • - • + #, = n (v > 1). Let z~ . . . . .  : ,  be distinct reasonably good approximations 
to these zeros, and ~i be the next approximation to r, obtained by using some iterative 
scheme. Let us define the rational function z ~--~fk(:) by 

( -  1) k - I  d~-I 
( ~ ' ( : ) ~  ( k = 1 , 2  . . . .  ). 

fk(z) = -(k--~i dz k-' \ P(z) / 

It is easy to show that 

f,(z) = ~ #:(z -Q)-k. (1) 

For : = z, in equation (1), we find 

(~')"~ (2) 

The symbol • in equation (2) denotes that the 'appropriate '  (among k-values) kth root 
of  a complex number has to be chosen. Setting ri: = z~ and rj: = zj ( j  ~ i) in equation (2), 
we obtain the total-step iterative processes (TS) of  root type for the simultaneous 
determination of  multiple polynomial zeros [9]: 

£~ = z~ ( i  = 1 . . . . .  v ) .  ( 3 )  

[fk(z,)-- ~ #j(Z,-- Z:)-k]i 'k 
j ~ i  

From a practical point of  view, the iterative formulas 

and 

i, = z~ U, (i = I . . . . .  v), (4) 

A (z,) - ~ ~ij(z,- zj)-' 
j--I 
]@i 

2 i) I/2 
z7 = z , - -  (i = 1 . . . . .  v), (5) 

f2 71'z (:')- j-t ~ .j(z,- zj)-2J. 

obtained from equation (3) for k = I and k = 2, have the greatest importance. The 
functions ft and f2 in the above formulas are given by 

P'(z)  /" (z) 2 - / '  (z) / '"(z)  
f ) ( z ) = ~  and f 2 ( z ) =  

P (z) P (z) 2 

Iterative method (4) has a convergence order equal to 3 and can be obtained from the 
iterative interval method introduced by Gargantini [10] (see also Ref. [4]). Let us note that, 
if all zeros are simple, then formula (4) defines the iterative method which is often called 
Ehrlich's method [16], although this formula appeared earlier in papers by Maehly [8] and 
B6rsch-Supan [17] (see also Refs [7, 18]). 

Iterative method (5) can be obtained from the interval method for multiple zeros, 
presented in Ref. [I I]. The convergence order of  this method is 4. The symbol • in formula 
(5) denotes that one of  two values of  the square root has to be chosen. A criterion for 
the choice of appropriate values of  the square root can be established following Gargantini 
Ill]. 
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3. SELECTION 

Introducing the notations 

¢i = Izi - ril, 

OF THE VALUES OF THE ROOT 

¢ = m a x  ¢i, 

d = m i n  ( I z , -  zjl - Ej) 
id 

i # j  

and 

Qi = uiLf2(z,) - £ ~j(z,-  rj) -2] (i = 1 . . . . .  v), 
j -  I 
j # i  

and considering the identity (2) for k = 2, we observe that, if all roots but r, are known, 
then the unknown zero r~ is equal to one of  two values of  

z , -  liilQ~ a. (6) 

A criterion for the selection of  the appropriate value of  the square root is given in the 
following lemma. 

Lemma 1 

If d > (n - l) ¢, then the value of  the square root to be chosen in expression (6) is that 
which satisfies 

IA(z,)  - Ql/21 ~< n - ~, 
d 

Proof We first prove that P'(z,) # 0 for i = 1 . . . . .  v. Using equation (1) for k = 1 and 
the inequalities d > (n - 1) ¢ and ] z , -  rjl/> d, we obtain 

(z,)[ tiP'(Z,)p (z3 -- j~ ~Az'-rJ)-'l >~ "lz ' -  r'l-' - ~ "/lz'- 
j # i  

t > ~  n - ~ ,  d ~ , - ( n - ~ , ) E  
= > O, 

¢ d ed 

wherefrom it follows that P'(z~) ~ 0 for i = I . . . . .  v. 
Denoting the value of  Q]n equal to/a,(z~- r~) -~ with {q~X~}u2; the other value of  Q~/2 is, 

obviously, {q~)}l/2 = _{qli)}u2. Since P'(zi) # 0 and ] z , -  ri] >f d, we find 

[]](z,)-(qI"}'/2l=l~,=,/zj(z, - rj)- ' ~< ~'-,£/z/lz,- rj]- '  ~<n -/~_......~,d 

j ~ i  j # i  

For the other value, {q~2)}tn= _{q~l)},a, we have 

~(z , )  -- ( -- {q~U},/:)] = 2p , (z , -  r,)-' + ~ ~j(z ,-  rj)-' [ 
j - I  I 

>~2#ilzi_ril_a £1~jlz i_rf l_l~2~i  n - g i = 2 1 a d - ( n - g , ) ¢  
j.i  E d ed 
j,/,i 

To prove Lemma 1, it is sufficient to show that the inequality 

2/z; n - # ,  n - / ~ ,  
¢ d d 
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holds. Using the inequality d > In - 1)e, we find 

2 # , ( n - l )  n - 1  ( n - l )  n - ~ ,  2#, n - / ~ , >  - - - ( 2 . u , - l )  ~ > - -  
E ~ -  d d - - - 2 - -  d 

Let wl ~1 and wl -'1 be the values of the square root of Q, in the (practical) case when the 
zeros rj on the r.h.s, of equation (2) are substituted by their approximations. According 
to Lemma 1, the selection of the "proper' value of the square root, wl n or wl -'*, is reduced 
to the choice of the value which minimizes the expression 

I f , ( : , ) -  w'?"l (;. ~ {1.2}). 

Note that, if all zeros of polynomial P are real, then the criterion established by Lemma 
l gives the choice of sign of (real value) P (: ,)P'  (:~). 

Finally, we note that the iterative method (5) is a modification of the square root method 

1 

.~, = .~, [f.(:~)],: 

with cubic convergence. This method was analyzed in detail by Ostrowski [19], and is often 
called Ostrowski's method. Accordingly, the function f_,(z) will be called Ostrowski's 
function in the following. 

4. MODIFIED METHODS 

Let/~ be the multiplicity of the zero r of P. By means of 

P'(z) P"(z) 
f l ( - ) = - -  and g ( : ) -  P(z) P'(z) 

we define 

and 

f.,(z) = f l ( z ) ~  (=) - g (z)] (Ostrowski's function), 

N(z) = - ~  (Newton's correction) (7) 
f,(z) 

1 - !  
H ( z ) = 2 I g ( z ) - ( l  + ~ ) f ~ ( z ) l  (Halley's correction). (8) 

We recall that the correction terms (7) and (8) appear in the iterative formulas 
= z~ + N (z3 (Schr6ders [20] modifications of Newton's method for multiple 

zeros) (9) 
and 

.'2 = zi + H(zi) (modification of Halley's method, introduced by Hansen and 
Patrick [21] for multiple zeros), (10) 

with the convergence orders 2 and 3, respectively. We note that the order of multiplicity 
in the iterative formulas (9) and (10) takes the values #t . . . . .  /av. 

Setting ri: = ~ in equation (2) and taking some approximations of rj on the r.h.s, of the 
identity (2) (for k = 1 and k = 2), some modified iterative methods for the simultaneous 
determination of multiple complex zeros of a polynomial can be obtained. The con- 
vergence order of these methods is higher compared to that of the basic methods and is 
attained without additional calculations. 

(1) Taking r / =  ~j(j < i) and r / =  z~(j > i) in equation (2) (for k = 1 and 
k = 2), we get the single-step method (SS): 

(#~)i k 
= i = : / - -  Ik ( i =  l . . . . .  v ; k = l , 2 ) .  

J<' J>' " (1l) 
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(2) Putting rs:= zs+ N ( z j )  (i ~ j )  in equation (2), where N ( z j )  is Newton's 
correction given by equation (7), we obtain the total-step method with 
Newton's correction (TSN): 

(#.li) Ilk 
Zi = Zi -- . . 

~k(Zi)--~lJS[Zi--zY--N(zJ)]-k} • ( i = l ,  . , v ; k = l , 2 ) .  

(3) The iterative process (12) can be accelerated by approximating all zeros in 
a serial fashion, i.e. using new approximations as soon as they become 
available (the so-called Gauss-Seidel approach). In this way, substituting 
rj: = £j(j  < i), rj: = zj + N (zj) ( j  > i) in equation (2), we derive the single- 
step method with Newton's correction (SSN): 

(12) 

Zi=Zi 
(#.lD l"< 

fk (z;) - Z I z j ( z , -  ~j)-k _ ~ I~j[z,- zj -- N (zj)]-~} '/k 
j<i j>i * 

(i = 1 . . . . .  v ; k  = 1,2). (13) 

(4) As for the TSN method, we can apply Halley's correction (8) for multiple 
zeros. Taking rj: = zj + H(z j )  ( j  ~ i) in equation (2) for k = 2, we obtain 
the total-step method with Halley's correction (TSH): 

z.i = z i -  v). (14) 
{f2(zi)--2"J[Zi--zJ--n(zJ)]-2} l / 2 j • i  , ( / = 1  . . . . .  

(5) Finally, setting rj:= .;j(j < i), rj:= z j + H ( z j )  ( j  > i) in equation (2) for 
k = 2, we obtain the single-step method with Halley's correction (SSH): 

z.i = zi - c ~ (i = 1, . .  V). 
f 2 ( z / )  - -  2 / 2 J ( Z i - -  ~ j ) - 2  __ 2 / ' l J [ Z i - -  Zj-- H (zj)]-2~ 1/2 

t . . . .  ) * 
J<, 1>, (15 )  

Note that an application of  Halley's correction in the basic methods (4) decreases the 
efficiency of  the modified method. Namely, to evaluate H(z j )  it is necessary to evaluate 
the second derivative of  the polynomial, which is not required for the basic method (8). 
Therefore, Halley's correction has been used only in the case of  the square root method 
(5), where the functions f2(z) and the correction H ( z )  are evaluated using the same 
functions f~ (z) and g (z). 

5. C O N V E R G E N C E  ANALYSIS  OF M O D I F I E D  M E T H O D S  

In this section we will consider the convergence order of  the modified iterative schemes, 
formulated in Section 4. For the single-step methods, where new approximations are used 
immediately they become available, the definition of  the R-order of  convergence [22] is 
applied. The R-order of  convergence of  the iterative process IP with the limit point 
r = [rt • .. r,] T, where r~ . . . . .  r, are the zeros of  a polynomial, will be denoted by OR(IP, r). 

Let ul ") be a multiple of  I.-I ") - r;I (i = 1 . . . . .  v), where m -- 0, 1 . . . .  is the iteration 
index. The following relations can be derived for a class of  iterativ¢ simultaneous methods 
which includes the algorithms (11)-(15): 

u~,,+,,< 1 ~,,~,( ~,,+,, ~ ,,r~) . ~N) .  (16) , n _ l U i  ~ u j  + uJ ( i = l , . .  , v ; p , q  
\ j<i )>t I 

For brevity, we introduce the ordered triplet 

U ( I P ) = ( p , ~ t , q )  (p,  q e N ; ~ t E { O , l } )  
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as a characterist ics o f  the relat ions (16) for the i terative process IP. The  componen t s  p and 
q of  U ( I P )  are equal  to the exponents  ofu~ "J and ,,j' ~"~, respectively. We observe that  z~ = 0 
in the case of  a TS me thod  and • = 1 for  an SS method.  

T h e o r e m  ! 

Assume that  the s tar t ing app rox ima t ions  z~ °~, . . . ,  z~ {°~ are chosen sufficiently close to the 

zeros rl ,  • • •, r~ so that  

u~ °~ ~< u = max  ul °) < 1. (17) 

Then,  for  the iterative process  IP with U ( I P ) =  (p ,  ~, q) we have 

OR(IP, r) = p  + q if ~ = 0 ( total-s tep methods) ,  

OR(IP, r) >~p + tv if ~ = 1 (single-step methods) ,  

where  tv is the unique posit ive roo t  o f  the equat ion  

t" - tq ~-' _ p q ~ - t  = O. (18) 

Proof .  Tak ing  into considera t ion  the condi t ion (17), f rom the inequalities (16) we find 
tha t  the sequences {u~ ")} (i = 1 . . . . .  v) converge  to 0 when m --* + oo. Hence,  z~ ") --, r~ 
when m --* + ~ ,  which means  that  the iterative processes, character ized by relat ions (16) 
and (17), are convergent .  

Fo r  the total-s tep me thods  (~ = 0), f rom relations (16) we obta in  

1 
u~" + t) <~ ul m~' ~.. u~ ")~ (i = 1 . . . . .  v). (19) 

n -- 1 /,*i 

e. u!") where c U is a post ive cons tan t  independent  on the i terat ion index Let u) ") = cJ? ) ul ") ~< v,- ' ,  , 
m. F r o m  inequalities (19) it fol lows tha t  

u(m+l) ~ A ,J(m~+q 

where 

1 
= _ _  (cj3q.  

di n _ l j~,i 

Thus,  the order  o f  convergence  o f  the total -s tep me thods  IP, with U ( I P ) =  (p,  0, q), is 
p + q .  

Fol lowing Alefeled and  Herezberger  [23, 24], it can be shown f rom relations (16) and 
(17) tha t  

u~"+')~<u ~,('+ll ( i = l  . . . . .  v ; m = O , l  . . . .  ). 

The  vectors  s (") = [s~ ") (,,) r . . .  S, ] are successively c o m p u t e d  by 

s (re+l) = A , ( p ,  q ) s  (~) (m = 0, 1 . . . .  ) (20) 

s tar t ing with s(°)= [1 . . .  1] r. The  matr ix  A , ( p ,  q) in equat ion  (20) is given by 

P q 

P 

A ~ ( p , q ) =  

P q 

P q 

P q 

q 0 0 . . .  0 p 

(p,  q ~ N).  
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The characteristic polynomial of the matrix A~(p, q) is 

v (~) = (A - p ) '  - (). - p )  q ' - '  _ p q V - , .  

Substituting t = ), - p ,  we obtain 

y ( t )  = v ( t  + p )  = t V -  tq v - ' - p q ~ - ' .  

It is easy to see that the graph of the function y ~ ( t ) =  = t" and the straight line 
y 2 ( t ) = t q ' - ~ + p q  "-I intersect only at one point for t >0 .  Since y ( q ) =  _pqV- ,  <0,  
y (p  + q) = (p  + q),  _ 2pq~-~ _ qV > 0, we conclude that the intersecting point belongs to 
the interval (q ,p  + q). Therefore, the equation 

t" - tq ~-1 - p q V - '  = 0 

has the unique positive root t, > q. The corresponding (positive) eigenvalue of the matrix 
Av(p, q) is p + &. The matrix A,(p, q) is nonnegative and its directed graph is strongly 
connected [25, p. 20], i.e. A,(p, q) is irreducible. By the Perron-Frobenius theorem [25, p. 
30] it follows that A,(p, q) has a positive eigenvalue equal to its spectral radius p [A,(p, q)]. 
According to the analysis presented in Ref. [23, pp. 240-241] it can be shown that the lower 
bound of the R-order of convergence of the SS method IP, for which the inequalities (16) 
and (17) are valid, is given by the spectral radius p [A,(p, q)]. Therefore, for the SS 
methods IP with U ( p ,  1, q), we have 

OR(IP, r) I> p [Av(p, q)] = p  + t~, 

where & is the unique positive root of the equation 

t" - t q ' - '  - p q ~ - '  = O. 

The following theorem gives a narrower interval of the lower bound of the R-order of 
convergence compared to (q, p + q) and the dependence of this bound on the number of 
different zeros v. 

Theorem 2 

The lower bound of the R-order of convergence of the iterative method IP with 
U ( p ,  1, q) is higher as the number of different zeros of a polynomial v becomes smaller, 
and is bounded by 

p + q = p [ A ® ( p , q ) ] < p [ A v ( p , q ) ] < ~ p [ A 2 ( p , q ) ] = p + q +  2p . (21) 

I + ~ / l + 4 p q  

Proof. Since p [A,(p, q)] --p + tv, where t~ is the unique positive zero oftbe polynomial 

y (t) = t ~ - tq ~-1 _ pqV-1, (22) 

it is sufficient to prove that the sequence { t , } ( v  = 2 ,  3, . . .  ) of the zeros of polynomial (22) 
is monotonically decreasing and that 

2p 
q<tv<<, 4 

1 + X/1 +4P q 

holds for each v I> 2. 
Equation (18) can be rearranged in the form 

x-<x +P)'/' = O, (23) 

where x = t/q. Let 
p\l/v 

a ( v , x ) = x -  x +qj  
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Denote by x, the zero of the function a(v,x)  in the case when v is fixed. Since 
q < t , < p  +q and t ,=qx, ,  it follows 1 < x ~ <  1 +p/q. For fixed v, we have 

d 1 x,--, (vx÷  y>0 
which means that x ~ a (v, x), for fixed v, is a monotonically increasing function for x > I. 
Further, since 

d ' ( P ' ~ ' / e l n ( _  P )  d y a ( y , x ) = - ~  X + q )  x +  > 0  (for fixed x >  1), 

we conclude that 

a ( v + l , x ) > a ( v , x )  for a l l x > l  and v = 2 , 3  . . . . .  (24) 

According to the monotonicity of  the function x ~ a (v, x) (v is fixed) and inequality 
(24), it follows that 

x ,+i<x,  (v = 2 , 3  . . . .  ), 

wherefrom 
t ,+l<t, (v = 2 , 3  . . . .  ). 

Thus, the sequence {t,} is monotonically decreasing. The upper bound of this sequence is 
the positive solution of equation t" - tq - p q  = 0, i.e. 

q + ~  2p 
t2= = q  n t 

1+  1+  4p 
q 

From equation (23) we have 

l n x , = - l n  xv+ 
V 

--* 0 when v --, + cz, 

which means that x, --* 1 and t, = qxv --* q when v ---, + m.. Taking into consideration the 
monotonocity of  the sequence {t,}, we obtain 

2p 
q < t~ <,N q -t 

l + x / l + 4 p ' q  

wherefrom inequality (21) is obtained. 
On the basis of  the results concerning the total-step methods for finding simple zeros 

of a polynomial, presented in Refs [13] (TSN for k = 1) and [15] (TSN and TSH for k = 2), 
one obtains 

and 

U ( T S N ) = ( k + I , 0 , 2 )  ( k = l , 2 )  

U (TSH) = (3, 0, 3). 

According to this and Theorem 1, we have the following assertion. 

Theorem 3 

The convergence order is equal to k + 3 (k = 1,2) for algorithm TSN (12) and 6 for 
algorithm TSH (14). 

Using the results concerning the single-step methods for finding simple zeros of a 
polynomial, given in Refs [14] (SS for k = 1 and k = 2), [13] (SSN for k = I) and [15] (SSN 
and SSH for k = 2), we find 

U ( S S ) = ( k + I , I ,  1) ( k = l , 2 )  

U ( S S N ) = ( k + I , 1 , 2 )  ( k = l , 2 )  
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and 

U (SSH) = (3, 1, 3). 

On the basis of this and Theorem 1, Theorem 4 follows. 

Theorem 4 
The R-order of convergence of the single-step methods SS, SSN and SSH [algorithms 

(11), (13) and (15), respectively] is given by 

OR(SS, r) i> k + 1 + t, (k = 1, 2), 

OR(SSN, r) I > k + I + x ,  ( k = l , 2 )  

and 

O~(SSH, r)/> 3 + Yv, 

where t ,  x, and y, are the unique positive roots of the equations 

t v - t - k - l = O  (k = 1,2), 

x ' - x . 2 ~ - t - ( k + l ) . 2  v- I=0  ( k = 1 , 2 )  

and 

yV-y'3V-t-3" =0, 

respectively. 

The values of the lower bounds of the R-order of convergence in the case of the 
single-step methods [algorithms (11), (13) (for k = 1, 2) and (15) (for k = 2)] for v = 2(1) 10 
are displayed in Table 1. These values (for v > 2) have been determined solving the 
equations of the form (18). Note that, sometimes, in determining the lower bound of the 
R-order of convergence (given by the spectral radius) it is more suitable to use a method 
for finding the dominant eigenvalue of the matrix, such as the power method, instead of 
a procedure for finding the dominant zero of the corresponding characteristic polynomial. 
In the case of equation (18) we know the interval which contains the wanted dominant 
zero (see Theorem 2) and that the characteristic polynomial is monotonic over the 
mentioned interval [q, q + 2p/(l + ~/1 + 4p/q)][namely, y'(t) = vt '-Z - q,-i > 0for t > q]. 

The acceleration of convergence of the single-step methods [algorithms (11), (13) and 
(15)], compared with the corresponding total-step methods [algorithms (3), (12) and (14)], 
is greater if the number of different zeros of a polynomial v is smaller (Theorem 2). This 
acceleration is attained without additional calculations; moreover, the single-step methods 
require less computer storage (because the calculated approximations immediately take the 
positions of the former ones). 

6. NUMERICAL RESULTS 

In practice, it is suitable to use a three-stage globally convergent composite algorithm 
[4] consisting of: 

(1) Find an inclusion region of the complex plane which contains all the zeros 
of a polynomial (see, for example, [26-33]). 

Table I 

V 

Method 2 3 4 5 6 7 8 9 I0 

SS(ll), k = I 4.000 3.521 3.353 3.267 3.215 3.180 3.154 3.135 3.121 
SS(ll), k 12 5.303 4.672 4.453 4.341 4.274 4.229 4.196 4.172 4.153 
SSN(13), k =~ I 5.236 4.6.19 4.441 4.335 4.269 4.226 4.194 4.170 4.152 
SSN (13), k *~ 2 6.646 5.862 5.585 5 . 4 4 3  5 . 3 5 7  5 . 2 9 9  5 . 2 5 7  5 . 2 2 5  5.200 
SSH (15), k ~ 2 7.854 6 . 9 7 4  6 . 6 6 2  6 . 5 0 2  6.404 6.338 6.291 6.255 6.227 
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(2) App ly  a slowly convergent search algorithm to ob ta in  s tar t ing approxi-  
ma t i ons  to the zeros and calculate their multiplicit ies.  The multiplici t ies o f  
these approximations can be estimated by [34] 

1 
/ / i  = 

lira 1 - f t ~ ) j  
~i ~ r i  

(See also [35, 36].) 

(3) Improve these approximations by applying a rapidly convergent iterative 
method, for example, by using any of the algorithms (11)-(15), to any 
required accuracy. 

In order to test the presented iterative schemes, a Fortran routine was realized on a 
HONEYWELL 66 system in double-precision arithmetic (about 18 significant decimal 
digits). In realizing the TSN, SSN, TSH and SSH methods with Newton's and Halley's 
corrections, before calculating new approximations z~ "+t) the values fi(z! ")) and g(zl ")) 
(m = 0, 1 . . . .  ) were calculated. The same values are used for calculating Newton's 
correction 

N ( z l , . ) )  = u, f t  (z~ ")) (for k = 1 and  k = 2), 

Ostrowski's function 

f~(z~ ")) = f l ( z ~ ' ) ) [ f l ( z l  ml) - g(z~"')] (for  k = 2) 

and Halley's correction 

[ ]-' H(z~") = 2 g(zl ")) - I + f~(z~ ")) (for k = 2). 

Thus, the proposed iterative methods with Newton's and Halley's correction terms require 
slightly more numerical operations in relation to the basic methods, algorithms (4) and 
(5). Taking into account the significantly increased order of convergence, it is obvious that 
the proposed methods have a greater efficiency. 

TS 
(5) 

T a b l e  2 

i ,a,{:l ~' } J , -  1--'?} 
0.999999853800923892 
0.999999826741999847 

-0.999999859207295616 
3.000000527270300803 

2.000000112716998844 
-2.000000351383949125 
- 8 . 1 8  x 10 -7 
- 3 . 4 8  x I0 -s  

1 0.999999939617346251 1.999999964305993363 
SS 2 1.000000861310650873 -2.000000509862992614 

(111 3 -0.999999999709498985 1.35 x 10 -9 
4 3.000000000000030662 7.16 x 10 -14 

T S N  
(12) 

SSN 
(131 

T S H  
(14) 

0.999999455077856744 
1.000000018147137107 

-0.999999974528732211 
3.000000722708680682 

0.999999894885117145 
0.999999994177457521 

-1,000000000007845003 
2,999999999999997525 

1.000000000098386276 
1.000000000450329186 

-0.999999999986166747 
3.000000000368704406 

1.000000000032764666 
1.000000000000674921 

- 1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 2 2  
3.000000000000000383 

S S H  
(15) 

2.000000212961094747 
-2.000000068835695135 

3.43 × 10 -s  
- 9 . 5 8  x 10 - s  

2.000000042747320793 
-2.000000000709903145 

3.82 x 1 0 - "  
- 6 . 5 8  x l0 - ~  

1.999999999890580897 
- 2.000000000521585396 
- 2 . 9 3  x 10 -Iz 
- 6 . 9 2  x 10 - t °  

2.000000000002146278 
- 1.999999999997025086 

2.74 x | 0  -Is  
- 2 . 0 1  x I0 -~6 
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In order to illustrate numerical ly  the efficiency o f  the modif ied methods ,  the algorithms 
TS(5 ) ,  S S ( I 1 ) ,  T S N ( 1 2 ) ,  S S N ( 1 3 ) ,  T S H ( 1 4 )  and S S H ( 1 5 )  o f  square root  type were 
applied for the determinat ion o f  zeros  o f  the po lynomia l  

P ( z )  = z 9 - 7z s + 20z 7 - 28z ~ - 18z 5 + 110z 4 - 92z  3 + 44z 2 + 345z + 225. 

The exact  zeros  o f  this po lynomia l  are rj = I + 2i, r~ = 1 - 2i, r3 -- - 1 and r4 = 3, with the 
multiplicities/~t -- 2 , / ~  = 2,/~3 = 3 and/~4 = 2. As  initial approx imat ions  to these zeros  the 
fo l lowing c o m p l e x  numbers  were taken: 

zt °) = 1.8 + 2.7i, z~ °) = 1.8 - 2.7i, z t  °) = - 0 . 3  - 0.8i, z~ °) = 2.3 - 0.7i. 

In spite o f  crude initial approximat ions  

(min lz l  ° ) -  ril ~ 1), 
i 

the modif ied m e t h o d s  demonstrate  very fast convergence.  Numerica l  results, obtained in 
the second iteration, are given in Table 2. 
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