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Abstract—Applying Newton's and Halley's corrections, some modified methods of higher order
for the simultaneous approximation of multiple zeros of a polynomial are derived. Further
acceleration of convergence of these methods is performed by approximating all zeros in a serial
fashion using the new approximations as they become available. Faster convergence is attained
without additional calculations. Lower bounds of the R-order of convergence for the serial
(single-step) methods are given.

1. INTRODUCTION

Iterative methods for the simultaneous determination of multiple zeros of a polynomial,
most frequently developed as modifications of the known methods for simple zeros, have
been investigated rarely in the literature. A classical Weierstrass result [1] was applied in
Refs [2,3] for determining multiple polynomial zeros r,,...,r,, when the order of
multiplicity of these zeros yy, . . ., 4, is known. The corresponding methods have quadratic
convergence, but their efficiency is low because besides the evaluation of the values of
polynomial P, they require additional evaluation of the values of the derivatives
P’,...,P* Y where
} =max g.

The iterative formulas of Weierstrass’ type have been also studied in Refs [4-6]. These
formulas are considerably simpler than the previously mentioned ones, but a requirement
for the extraction of the y;th root of a complex number in determining an approximation
to the zero r; of the multiplicity y; leads to the problem of choice of the appropriate value
of a root (among y, values).

The iterative methods developed using the logarithmic derivatives of a polynomial [7-9],
are more suitable for the simultaneous determination of multiple zeros of a polynomial.
Some of them have been considered in Refs [4, 6, 9].

Over the last decade, a lot of attention has been paid to formulating the iterative
methods for the simultaneous inclusion of complex zeros of a polynomial using circular
arithmetic. Some results, presented in Refs [9-12], related to multiple polynomial zeros,
have been used for deriving the simultaneous methods for multiple zeros in ordinary
(‘point’) arithmetic.

In this paper some modifications of the known simultaneous methods of high order,
which provide the acceleration of convergence of the basic methods using Newton’s and
Halley’s corrections and the Gauss~Seidel approach, are presented. The new formulas are
analyzed using the results given in Refs [13~15].

2. BASIC METHODS
Consider a monic polynomial P of degree n > 3,

P@)=z"+a, 2" '+ +az+a=[[-r)% (geC)
jal

951
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with real or complex zeros ry, ..., r, having the order of multiplicity u,, .. ., g, respectively,
where y, +---+u,=n (v > 1). Let z,, ..., z, be distinct reasonably good approximations
to these zeros, and 7, be the next approximation to r;, obtained by using some iterative
scheme. Let us define the rational function z — f,(z) by

—(__Uk—l‘dk——l P/(Z) B
‘M”—w—n!w“<PcJ (k=1,2..).
It is easy to show that
f@)=Y wz ~r)™ (M
j=1
For z =z, in equation (1), we find
ik

r=z- () - ©)

[ﬁ:(zi) - z wiz:i— ’j)—k}

i ‘

The symbol * in equation (2) denotes that the ‘appropriate’ (among k-values) kth root
of a complex number has to be chosen. Setting r:= z, and r;:= z; (j # i) in equation (2),
we obtain the total-step iterative processes (TS) of root type for the simultaneous
determination of muitiple polynomial zeros [9]:

()"

5=2z— - — (i=1...,v). 3)
[ﬁc(zi) - jzl ui(zi— Zj)—k:].’
j#i
From a practical point of view, the iterative formulas
f=z— F (i=1,...,v), @)
fiz) - jzl ui(zi— Zj)_l
i
and
fimzm W =1 ©
[fZ(zi) - j; w(zi— zj)_z]_
J#i

obtained from equation (3) for k =1 and k =2, have the greatest importance. The
functions f; and f; in the above formulas are given by

P(2) P'(z2)*~P(z)P"(2)

f@ =50 ad Al@)=—"500

Iterative method (4) has a convergence order equal to 3 and can be obtained from the
iterative interval method introduced by Gargantini [10] (see also Ref. [4]). Let us note that,
if all zeros are simple, then formula (4) defines the iterative method which is often called
Ehrlich’s method [16], although this formula appeared earlier in papers by Maehly [8] and
Borsch-Supan [17] (see also Refs [7, 18)).

Iterative method (5) can be obtained from the interval method for multiple zeros,
presented in Ref. [11]. The convergence order of this method is 4. The symbol  in formula
(5) denotes that one of two values of the square root has to be chosen. A criterion for
the choice of appropriate values of the square root can be established following Gargantini

[11].
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3. SELECTION OF THE VALUES OF THE ROOT

Introducing the notations

&=|z;—rl], €= maxeg,
1€igy

d=min (|z;~ z| —¢)
i

isj

and

Qi=ulfa(z) ~ Z l‘j(zi“ ’j)_Z] i=1,...,v),
T
and considering the identity (2) for £ = 2, we observe that, if all roots but r, are known,
then the unknown zero r, is equal to one of two values of

z,— w/Q". (6)

A criterion for the selection of the appropriate value of the square root is given in the
following lemma.

Lemma |

If d > (n — 1)¢, then the value of the square root to be chosen in expression (6) is that
which satisfies

1fi(z) — Q] s"%”

Proof. We first prove that P’(z)) # Ofori=1,...,v. Using equation (1) for k = 1 and
the inequalities d > (n — 1) ¢ and |z, — r;| > d, we obtain

P'(z) : -1 R 1
N = | m—] = (Z. — p. P =T — izy—r
1] ' oy | |5 M) ‘ wlz =™ = Lz~
i
B on—p du—(n—u)e
== - = ,
¢ 4 a0
wherefrom it follows that P’(z) # O fori=1,...,v.

Denoting the value of Q) equal to u,(z,— r,)~! with {g{"}"%; the other value of Q7 is,
obviously, {¢P}2 = —{g}'2 Since P’(z;)) # 0 and |z, — r;l 2 d, we find

v M n - i
Vi@@) - {qg)}l/zl = Z ;lj(z,-—rj)'l < Z #jlzi - rjl g T'u
Gai Tai
For the other value, {g®}'? = —{q{"}'?, we have
iz) = (= (g} = lzlui(zi —-r) '+ Z w(zi— "j)‘l’
T
a4 v a2 on—y 2ud—(n—p)e
22z —r| " = lzi— |~ 2 —— = .
plzi=rl ™ = iz =) > 21 "

jhi
To prove Lemma 1, it is sufficient to show that the inequality
2_#_:' n—pg n—u

p Y
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holds. Using the inequality d > (n — 1) ¢, we find

2 - 3 - - - —
2, n—p  2un-=1H n-1_ (n—=1 _n—y
— = - =(2u, — 1 >—

¢ 4~ d g~ d
Let w!" and w® be the values of the square root of Q, in the (practical) case when the
zeros r; on the r.h.s. of equation (2) are substituted by their approximations. According
to Lemma 1, the selection of the “proper’ value of the square root, wi" or w®, is reduced

to the choice of the value which minimizes the expression
| fi(z)—w? (A e{1.2]).

Note that, if all zeros of polynomial P are real, then the criterion established by Lemma
1 gives the choice of sign of (real value) P (z,) P'(z)).
Finally, we note that the iterative method (5) is a modification of the square root method

. 1

T @) :
with cubic convergence. This method was analyzed in detail by Ostrowski [19], and is often
called Ostrowski’s method. Accordingly, the function f3(z) will be called Ostrowski's
function in the following.

4. MODIFIED METHODS

Let u be the multiplicity of the zero r of P. By means of

£ =2 and 5=
P(z) P(z)
we define
£ @) =£@fi(2)—g(2)] (Ostrowski's function),
N(@)= ——f—(— (Newton'’s correction) (N
and [
H(z)= Z[g (=) — <l + i—)fl (z)}‘I (Halley’s correction). (8)

We recall that the correction terms (7) and (8) appear in the iterative formulas
?=z,+N(z) (Schréders[20] modifications of Newton’s method for multiple
Zeros) 9
and

? =z,4+ H(z;) (modification of Halley's method, introduced by Hansen and
Patrick [21] for multiple zeros), (10)

with the convergence orders 2 and 3, respectively. We note that the order of multiplicity
in the iterative formulas (9) and (10) takes the values p,, ..., u,.

Setting r;: = Z; in equation (2) and taking some approximations of r; on the r.h.s. of the
identity (2) (for kK = 1 and k = 2), some modified iterative methods for the simultaneous
determination of multiple complex zeros of a polynomial can be obtained. The con-
vergence order of these methods is higher compared to that of the basic methods and is
attained without additional calculations.

(1) Taking r;:= (j <i) and r;:= z;(j > i) in equation (2) (for k=1 and
k =2), we get the single-step method (SS):

1k
L E=cz— (1) (i=1,...,v;k=12).

[j;c(:i) - Z /»‘;('-'i - fj)_k - Z ﬂ,(-’"i - -"/)_kl

j<i i>t ([1)
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(2) Putting r:= z;+ N(z;) (i # j) in equation (2), where N (z;) is Newton's
correction given by equation (7), we obtain the total-step method with
Newton's correction (TSN):

(#i)”k

{/k(zi) - Z ﬂj[zi - N(Zj)]—k}

j#i

fi=z— = =1, vk=1,2). (12)

(3) The iterative process (12) can be accelerated by approximating all zeros in
a serial fashion, i.e. using new approximations as soon as they become
available (the so-called Gauss-Seidel approach). In this way, substituting
ri=2{(j <i), ;= z;+ N(z;) (j > i) in equation (2), we derive the single-
step method with Newton’s correction (SSN):

=z ()" o
{f;:(zi) - Z iz, — fj)_k - Z l‘j[zf —Z;— N(Zj)]_k}
j<i j>i .
(i=1,...,v;k=12). (13)

(4) As for the TSN method, we can apply Halley’s correction (8) for multiple
zeros. Taking ri:= z;+ H(z) (j # i) in equation (2) for k =2, we obtain
the total-step method with Halley’s correction (TSH):

2=z \/;
{.fZ(zi) - Z Ilj[zi —Z;= H(Zj)]_z}

Jhi

m (=1...,v). (14)

(5) Finally, setting r:= £,(j <i), r;= z;+ H(z;) (j > i) in equation (2) for
k =2, we obtain the single-step method with Halley’s correction (SSH):

Vi (=1,...,v).

172
{IZ(ZI) - Z .uj(zi - z;j)_2 - z #j[zi -z — H(zj)]—z}
j<i J>i . (15)

Note that an application of Halley’s correction in the basic methods (4) decreases the
efficiency of the modified method. Namely, to evaluate H (z)) it is necessary to evaluate
the second derivative of the polynomial, which is not required for the basic method (8).
Therefore, Halley’s correction has been used only in the case of the square root method
(5), where the functions f;(z) and the correction H (z) are evaluated using the same
functions fi(z) and g (z).

f,«=z,-—

5. CONVERGENCE ANALYSIS OF MODIFIED METHODS

In this section we will consider the convergence order of the modified iterative schemes,
formulated in Section 4. For the single-step methods, where new approximations are used
immediately they become available, the definition of the R-order of convergence [22] is
applied. The R-order of convergence of the iterative process IP with the limit point
r=[r...r,JT, where r, ..., r, are the zeros of a polynomial, will be denoted by O(IP, r).

Let ™ be a multiple of |z —r,| (i=1,...,v), where m =0, 1, ... is the iteration
index. The following relations can be derived for a class of iterative simultaneous methods
which includes the algorithms (11)—(15):

u§m+|) S

1
— uf-’"’(aZu}"‘*"+Zu}'””> (i=1,...,v;p,qeN). (16)

j<i j>i

For brevity, we introduce the ordered triplet

U(IP)=(P,1,‘1) (p,QEN;aG{O,l})
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as a characteristics of the relations (16) for the iterative process IP. The components p and
g of U (IP) are equal to the exponents of u{™ and u{™, respectively. We observe that x =0
in the case of a TS method and « =1 for an SS method.

Theorem 1

Assume that the starting approximations z{”, .. ., 2,9 are chosen sufficiently close to the
zeros ry, ..., r, so that

U< u=maxu®<1. an
1gigy

Then, for the iterative process IP with U (IP) =(p, a, g) we have
O(IP,r)=p+4q if a =0 (total-step methods),
Ox(IP,r)2p +t, ifa=1 (single-step methods),

where ¢, is the unique positive root of the equation

t'—tg ' = pg~'=0. (18)
Proof. Taking into consideration the condition (17), from the inequalities (16) we find
that the sequences {u{™} (i =1,...,v) converge to 0 when m — + co. Hence, z{” - r,

when m — + oo, which means that the iterative processes, characterized by relations (16)
and (17), are convergent.
For the total-step methods (a« = 0), from relations (16) we obtain

1
uﬁ"‘“’sn—_—TuE”')’Zu}”"" (i=1,...,v) 19
j#i
Let u{™ = ci™ u{™ < c;u{™, where c; is a postive constant independent on the iteration index
m. From inequalities (19) it follows that

ux(m+ 1) < diugm)ﬂﬂl’

where
1
d=— Y9
i n—1 j;i (C/x)

Thus, the order of convergence of the total-step methods IP, with U(IP) =(p,0, q), is
ptq.

Following Alefeled and Herezberger [23, 24], it can be shown from relations (16) and
(17) that

(m+1)

umth L us i=1,...,vym=0,1,...).

The vectors s = [s{™ ... s]" are successively computed by

S0 = A (p,q)s™ (m=0,1,...) (20)
starting with s® =[1 ... 1]". The matrix A,(p, g) in equation (20) is given by
(P q |
P 9
P 9
Alp,9)= S (p,q eN).

p g 00 ... 0
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The characteristic polynomial of the matrix A,(p, ¢) is

v()=0A-p) -G -p)g " —pg~"
Substituting ¢ =4 — p, we obtain

yt)=v(t+p)=t'—1g""'~pg"".

It is easy to see that the graph of the function y,(r)= =t¢" and the straight line
y,(t)=tq"~' +pq'~"' intersect only at one point for ¢ >0. Since y(q)= —pg'~' <0,
y(p+q)=(p +q)—2pq""' — q" >0, we conclude that the intersecting point belongs to
the interval (g, p + ¢). Therefore, the equation

t'—1g""" —pg''=0

has the unique positive root ¢, > q. The corresponding (positive) eigenvalue of the matrix
A,(p,q) is p +¢t,. The matrix A,(p, q) is nonnegative and its directed graph is strongly
connected [25, p. 20], i.e. A,(p, ¢) is irreducible. By the Perron—Frobenius theorem [25, p.
30] it follows that A, (p, ¢) has a positive eigenvalue equal to its spectral radius p [A, (p, ¢)].
According to the analysis presented in Ref. [23, pp. 240-241] it can be shown that the lower
bound of the R-order of convergence of the SS method IP, for which the inequalities (16)
and (17) are valid, is given by the spectral radius p[A,(p, q)]. Therefore, for the SS
methods IP with U(p, 1, q), we have

O:(IP, )2 p[A,(p, D] =p +1,,
where ¢, is the unique positive root of the equation
t'—tg"" ' —pg~'=0.

The following theorem gives a narrower interval of the lower bound of the R-order of
convergence compared to (¢, p +¢) and the dependence of this bound on the number of
different zeros v.

Theorem 2

The lower bound of the R-order of convergence of the iterative method IP with
U(p, 1, q) is higher as the number of different zeros of a polynomial v becomes smaller,
and is bounded by

2p
=
1+ [1+2
q
Proof. Since p [A,(p, q)] = p + t,, where ¢, is the unique positive zero of the polynomial

yO)=t'—19"" ' —pg'!, (22)

it is sufficient to prove that the sequence {r,}(v =2, 3, ...) of the zeros of polynomial (22)
is monotonically decreasing and that’

p+a=p[A(p. N <p[A(P. D<p[A(p, =P +q + D

2

g<t < +—=L ;
1+ 1+2

q

holds for each v > 2.
Equation (18) can be rearranged in the form

/v
x—(x+§) o, 23)

where x =t/q. Let

pl/v
a(v,x)=x~-|x+~-} .
e=x=(+5)
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Denote by x, the zero of the function a(v,x) in the case when v is fixed. Since
g<t<p+gqandt =gqx, it follows | <x, <1+ p/q. For fixed v, we have

d 1
—a(,x)=1——————>0,

d I-1v
x v(x +8>
q

which means that x — a (v, x), for fixed v, is a monotonically increasing function for x > I.
Further, since

d 1 iy
——-a(y,x)=—2(x+[—)> ln<x +£>>0 (for fixed x > 1),
dy y q g

we conclude that
a(v+1l,x)>a(v,x) forallx>1 and v=23,.... (24)

According to the monotonicity of the function x ~ a (v, x) (v is fixed) and inequality
(24), it follows that
X, <x, (v=2,3...),

wherefrom
ta<t, (v=2,3,...).

Thus, the sequence {t,} is monotonically decreasing. The upper bound of this sequence is
the positive solution of equation ¢’ —tg — pg =0, i.e.

_atValtag_
2

—.
1+ J1+22
q

5]

From equation (23) we have
1
lnxv=—ln(x,+£) -0 whenv - 4+ 0,
v q

which means that x, — 1 and ¢, = gx, - ¢ when v — + 2. Taking into consideration the
monotonocity of the sequence {t,}, we obtain

2
q<tv<q+—’——?_—_’

4
i+ 1+2
q

wherefrom inequality (21) is obtained.

On the basis of the results concerning the total-step methods for finding simple zeros
of a polynomial, presented in Refs [13] (TSN for k = 1) and {15] (TSN and TSH for k = 2),
one obtains

UTSN)=(k+1,0,2) (k=1,2)
and
U(TSH)= (3,0, 3).

According to this and Theorem 1, we have the following assertion.

Theorem 3

The convergence order is equal to k + 3 (k = 1, 2) for algorithm TSN (12) and 6 for
algorithm TSH (14).

Using the results concerning the single-step methods for finding simple zeros of a
polynomial, given in Refs [14] (SS for k =1 and & = 2), [13] (SSN for k = 1) and [15] (SSN
and SSH for k£ = 2), we find

USS)=k+111) (k=12)
USSN)=(k+1,1,2) (k=1,2)
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and

U(SSH) =(3, 1, 3).
On the basis of this and Theorem 1, Theorem 4 follows.
Theorem 4

The R-order of convergence of the single-step methods SS, SSN and SSH [algorithms

(11), (13) and (15), respectively] is given by
OS85, ) 2k+1+1, (k=1,2),
O:SSN,nz2k+1+x, (k=12
and
OR(SSH,r) 23 +y,,
where ¢,, x, and y, are the unique positive roots of the equations
'—t—k-1=0 (k=12),
X' =x2'—k+1)27'=0 (k=12
and
yv__y,3v—l _3v___0,
respectively.

The values of the lower bounds of the R-order of convergence in the case of the
single-step methods [algorithms (11), (13) (for k = 1, 2) and (15) (for k = 2)} for v =2(1)10
are displayed in Table 1. These values (for v >2) have been determined solving the
equations of the form (18). Note that, sometimes, in determining the lower bound of the
R-order of convergence (given by the spectral radius) it is more suitable to use a method
for finding the dominant eigenvalue of the matrix, such as the power method, instead of
a procedure for finding the dominant zero of the corresponding characteristic polynomial.

In the case of equation (18) we know the interval which contains the wanted dominant
zero (see Theorem 2) and that the characteristic polynomial is monotonic over the
mentionedinterval(gq, ¢ + 2p/(1 + /1 + 4p/q)}[namely, y’(t) = vt*~' — g'~' > Ofor t > q].

The acceleration of convergence of the single-step methods [algorithms (11), (13) and
(15)), compared with the corresponding total-step methods [algorithms (3), (12) and (14)],
is greater if the number of different zeros of a polynomial v is smaller (Theorem 2). This
acceleration is attained without additional calculations; moreover, the single-step methods
require less computer storage (because the calculated approximations immediately take the
positions of the former ones).

6. NUMERICAL RESULTS

In practice, it is suitable to use a three-stage globally convergent composite algorithm
[4] consisting of:

(1) Find an inclusion region of the complex plane which contains all the zeros
of a polynomial (see, for example, [26-33]).

Table 1
v
Method 2 3 4 s 6 7 8 9 10
SS(11), k=1 4.000 3.521 3.353 3.267 3.218 3.180 3.154 3135 3121
SS(11), k =2 5.303 4.672 4453 4341 4274 4229 4196 4172 4153
SSN(13), k=1 5.236 4.649 4.441 4335 4269 4226 4.194 4170 4152
SSN(13), k =2 6.646 5.862 5.585 5.443 5.357 5.299 5.257 5225 5.200

SSH (15), k =2 7854 6974 6.662  6.502 6404  6.338 6.291 6.255 6.227
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(2) Apply a slowly convergent search algorithm to obtain starting approxi-
mations to the zeros and calculate their multiplicities. The multiplicities of
these approximations can be estimated by {34]

1
T g(@)]
:lil_r}'}i[ —f?;:)-]
(See also [35, 36}.)

(3) Improve these approximations by applying a rapidly convergent iterative
method, for example, by using any of the algorithms (11)~(15), to any
required accuracy.

H;

In order to test the presented iterative schemes, a Fortran routine was realized on a
HONEYWELL 66 system in double-precision arithmetic (about 18 significant decimal
digits). In realizing the TSN, SSN, TSH and SSH methods with Newton’s and Halley’s
corrections, before calculating new approximations z{"*" the values f,(z™) and g (z{™)
(m=0,1,...) were calculated. The same values are used for calculating Newton's
correction

NEM = - (for k =1 and k =2),

K
5iz™)
Ostrowski’s function

L) =L EMET) —g ™) (for k =2)

and Halley’s correction

H(z{ = Z[g (2) — (1 + i)f.(ﬁ"")]—l (For k =2).

Thus, the proposed iterative methods with Newton’s and Halley’s correction terms require
slightly more numerical operations in relation to the basic methods, algorithms (4) and
(5). Taking into account the significantly increased order of convergence, it is obvious that
the proposed methods have a greater efficiency.

Table 2

{ 3«{2&2)} fm{.’(,zl}

1 0.999999853800923892 2.000000112716998844
TS 2 0.999999826741999847 —2.000000351383949125
5) 3 —0.999999859207295616 ~8.18 x 1077

4 3.000000527270300803 —3.48 x 1078

1 0.999999939617346251 1.999999964305993363
SS 2 1.000000861310650873 —2.000000509862992614
(an 3 —0.999999999709498985 1.35x107°

4 3.000000000000030662 7.16 x 107

1 0.999999455077856744 2.000000212961094747
TSN 2 1.000000018147137107 —2.000000068835695135
(12) 3 —-0.999999974528732211 343 x107°

4 3.000000722708680682 —9.58 x 10°¢

1 0.999999894885117145 2.000000042747320793
SSN 2 0.999999994177457521 —2.000000000709903145
(13) 3 —1.000000000007845003 3.82x 107"

4 2.999999999999997525 —6.58 x 10713

| 1.000000000098386276 1.999999999890580897
TSH 2 1.000000000450325186 — 2.000000000521585396
14) 3 —0.999999999986166747 —293x10°"

4 3.000000000368704406 —6.92x 107"

1 1.000000000032764666 2.000000000002146278
SSH 2 1.00000000000067492 1 — 1.999999999997025086
(15) 3 —~1.000000000000001322 274 x 10718

4 3,000000000000000383 —201x 107"
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In order to illustrate numerically the efficiency of the modified methods, the algorithms
TS (5), SS(11), TSN (12), SSN(13), TSH(14) and SSH (15) of square root type were
applied for the determination of zeros of the polynomial

P(z)=2"—T7z8+2027 — 282° — 182° + 110z —- 92z° + 4422 + 345z + 225.

The exact zeros of this polynomial are r, =1+ 2i,r,=1—2i,r, = — | and r, = 3, with the
multiplicities y, =2, y, =2, p#; =3 and yu, = 2. As initial approximations to these zeros the
following complex numbers were taken:

20 =184+27z0=18~27iz0=—-03-08,2:0=23-0.7.
In spite of crude initial approximations
(min[z® —r| = 1),

the modified methods demonstrate very fast convergence. Numerical results, obtained in
the second iteration, are given in Table 2.
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