AN EXTREMAL PROBLEM FOR POLYNOMIALS WITH NONNEGATIVE COEFFICIENTS. II

Gradimir V. Milovanović and Radosav Ž. Đorđević

Abstract. Let W_n be the set of all algebraic polynomials of exact degree n, whose coefficients are all nonnegative. For the norm in $L^2[0, \infty)$ with Freud's weight function, the extremal problem (1. 2) is considered.

1. Introduction

In a previous paper G. V. Milovanović found a complete solution of the following problem of A. K. Varma [2]:

Let W_n be the set of all algebraic polynomials of exact degree n, all coefficients of which nonnegative, i.e.,

(1.1)
$$W_n = \left\{ P_n \mid P_n(x) = \sum_{k=0}^n a_k x^k, \ a_k \ge 0 \ (k = 0, 1, \dots, n-1), \ a_n > 0 \right\}$$

and let $||f||^2 = (f, f)$, where

$$(f, g) = \int_{0}^{\infty} w(x) f(x) g(x) dx$$
 $(f, g \in L^{2}[0, \infty)),$

with generalized Laguerre weight function $w(x) = x^{\alpha} e^{-x}$ ($\alpha > -1$). Determine the best constant in the inequality

$$||P_n'||^2 \le C_n(\alpha) ||P_n||^2 \qquad (P_n \in W_n),$$

i.e.,

(1.2)
$$C_n(\alpha) = \sup_{P_n \in W_n} \frac{||P_n'||^2}{||P_n||^2}.$$

Namely, Milovanović [1] proved the following result:

Received December 8, 1985.

Theorem A. The best constant $C_n(\alpha)$ defined in (1.2) is

$$C_n(\alpha) = \begin{cases} \frac{1}{(2+\alpha)(1+\alpha)} & (-1 < \alpha \leq \alpha_n), \\ \frac{n^2}{(2n+\alpha)(2n+\alpha-1)} & (\alpha_n \leq \alpha < +\infty), \end{cases}$$

where

$$\alpha_n = \frac{1}{2(n+1)} \left((17 n^2 + 2 n + 1)^{1/2} - 3 n + 1 \right).$$

From Theorem A we can see:

- (a) $C_n(\alpha_n 0) = C_n(\alpha_n + 0)$;
- (b) $C_{n+1}(\alpha) \ge C_n(\alpha)$;
- (c) The sequence (α_n) is decreasing.

Remark 1. The statement of Theorem A holds if W_n is the set of all algebraic polynomials $P(\not\equiv 0)$ of degree at most n (not only of exact degree n), with nonnegative coefficients.

In this note we consider the extremal problem (1.2) with Freud's weight function

(1.3)
$$w(x) = x^{\alpha} e^{-x^{s}} \quad (\alpha > -1, \ s > 0)$$

on $[0, \infty)$. The corresponding best constant we will denote by $C_n(\alpha; s)$.

2. Extremal problem with Freud's weight

Let the set W_n be defined by (1.1) and the weight function $x \mapsto w(x)$ by (1.3) The subset of W_n for which $a_0 = 0$ (i.e. $P_n(0) = 0$) we denote by W_n^0 . By a simple application of integration by parts we can prove:

Lemma 1. If $P \in W_n^0$, then for the inner products

$$J_n(\alpha; s) = (P_n', P_n') = \int_0^\infty x^\alpha e^{-xs} P_n(x)^2 dx,$$

$$I_{n,i}(\alpha; s) = (P_n, P_n^{(i)}) = \int_0^\infty x^\alpha e^{-xs} P_n(x) P_n^{(i)}(x) dx \quad (i = 0, 1, 2)$$

the following recurrence relations hold

$$2 I_{n,1}(\alpha; s) = s I_{n,0}(\alpha + s - 1; s) - \alpha I_{n,0}(\alpha - 1; s) \quad (\alpha > -2),$$

$$I_{n,2}(\alpha; s) = s I_{n,1}(\alpha + s - 1; s) - \alpha I_{n,1}(\alpha - 1; s) - J_n(\alpha; s) \quad (\alpha > -1).$$

In [1] Milovanović proved an interesting inequality for $P_n \in W_n$. Namely, for every $x \ge 0$ the inequality

$$x(P_n'(x)^2 - P_n(x)P_n''(x)) \le P_n'(x)P_n(x)$$

holds.

From this inequality and Lemma 1 we obtain:

Lemma 2. If $P_n \in W_n^0$, then for $\alpha > -1$ and s > 0

$$J_n(\alpha; s) \leq \frac{1}{4} \{ s^2 I_{n,0}(\alpha + 2s - 2; s) + s (2 - 2\alpha - s) I_{n,0}(\alpha + s - 2; s) + (\alpha - 1)^2 I_{n,0}(\alpha - 2; s) \}.$$

Since the supremum in (1.2) attained for some $P_n \in W_n^0$ (see [1]), we will consider only such polynomials, i.e., $P_n(x) = \sum_{k=1}^n a_k x^k$ ($a_n > 0$ and other $a_k \ge 0$). Then

$$P_n(x)^2 = \sum_{k=2}^{2n} b_k x^k$$
 $(b_{2n} > 0 \text{ and other } b_k \ge 0)$

and

(2.1)
$$||P_n||^2 = I_{n,0}(\alpha; s) = \frac{1}{s} \sum_{k=2}^{2n} b_k \Gamma\left(\frac{\alpha+k+1}{s}\right),$$

where Γ is the gamma function.

Using the same method as in the paper [1] we find

(2.2)
$$||P_n'||^2 = J_n(\alpha; s) = (P_n', P_n') \leq \frac{1}{s} \sum_{k=2}^{2n} H_k(\alpha; s) b_k \Gamma\left(\frac{\alpha+k+1}{s}\right),$$

where

(2.3)
$$H_{k}(\alpha; k) = \frac{k^{2}}{4} \cdot \frac{\Gamma\left(\frac{\alpha+k-1}{s}\right)}{\frac{\alpha+k+1}{s}}.$$

According to (2.1) and (2.2) we have

$$||P_n'||^2 \leq \left(\max_{2\leq k\leq 2n} H_k(\alpha;s)\right)||P_n||^2,$$

and then

$$C_n(\alpha; s) \leq \max_{2 \leq k \leq 2n} H_k(\alpha; s).$$

The case s = 1 is solved in [1].

For s=2 we get a simple result:

Theorem 1. The best constant $C_n(\alpha; 2)$ is given by

$$C_n(\alpha; 2) = \begin{cases} \frac{2}{\alpha+1}, & -1 < \alpha \leq -\frac{n-1}{n+1}, \\ \frac{2n^2}{2n+\alpha-1}, & -\frac{n-1}{n+1} \leq \alpha < +\infty. \end{cases}$$

Proof. In this case, (2.3) reduces to $H_k(\alpha; 2) = \frac{k^2}{2(\alpha + k - 1)}$. Determining the maximum of $f(x) = \frac{x^2}{x + \alpha - 1}$ on the interval [2, 2n], we find that

$$\max_{2 \leq k \leq 2n} H_k(\alpha; 2) = \begin{cases} H_2(\alpha; 2) & \text{if } -1 < \alpha \leq \alpha_n, \\ H_{2n}(\alpha; 2) & \text{if } \alpha_n \leq \alpha < +\infty, \end{cases}$$

where $\alpha_n = -\frac{n-1}{n+1}$.

Similarly as in the paper [1] we show that $C_n(\alpha; 2) = \max_{\substack{2 \le k \le 2n \\ k \le 2n}} H_k(\alpha; 2)$, The polynomial $x \mapsto x^n$ is an extremal polynomial for $\alpha \ge \alpha_n$. If $-1 < \alpha \le \alpha_n$, there exists a sequence of polynomials, for example, $p_{n,k}(x) = x^n + kx$, $k = 1, \frac{1}{2}, \ldots$, for which $\lim_{k \to \infty} \frac{||p'_{n,k}||^2}{||p_{n,k}||^2} = C_n(\alpha; 2)$.

Remark 2. The statement of Theorem 1 holds if W_n is a set as in Remark 1. In that case, if $-1 < \alpha \le \alpha_n$, we can see that $x \mapsto \lambda x (\lambda > 0)$ is an extremal polynomial.

From Theorem 1 we obtain the following inequality

$$\int_{0}^{\infty} e^{-t^{2}} P_{n}'(t)^{2} dt \leq \frac{2 n^{2}}{2 n-1} \int_{0}^{\infty} e^{-t^{2}} P(t)^{2} dt$$

for each $P_n \in W_n$.

The case when s is an arbitrary positive number is more complicated. We state the following conjecture:

Conjecture. Let $s \ge 1$ and let $\alpha_n(>-1)$ be the unique root of the equation

$$\frac{\Gamma\left(\frac{\alpha+1}{s}\right)}{\Gamma\left(\frac{\alpha+3}{s}\right)} = n^2 \frac{\Gamma\left(\frac{\alpha+2n-1}{s}\right)}{\Gamma\left(\frac{\alpha+2n+1}{s}\right)}.$$

The best constant $C_n(\alpha; s)$ is given by

$$C_n(\alpha; s) = \begin{cases} H_2(\alpha; s), & -1 < \alpha \leq \alpha_n, \\ H_{2n}(\alpha; s), & \alpha_n \leq \alpha < +\infty. \end{cases}$$

At the end we give more one result:

Theorem 2. If $\alpha > 1$ and s > 0 we have

$$||P_n'||_{\alpha} \leq n ||P_n||_{\alpha-2} \qquad (P_n \in W_n),$$

where
$$||f||_{\alpha} = \left(\int_{0}^{\infty} x^{\alpha} e^{-xs} f(x)^{2} dx\right)^{1/2}$$
.

This result follows immediately from (2.1), (2.2), and (2.3).

REFERENCES

- 1. G. V. MILOVANOVIĆ: An extremal problem for polynomials with nonnegative coefficients. Proc. Amer. Math. Soc. 94 (1985), 423—426.
- 2. A. K. VARMA: Derivatives of polynomials with positive coefficients. Proc. Amer. Math. Soc. 83 (1981), 107—112.

Faculty of Electronic Engineering Department of Mathematics, P. O. Box 73 University of Niš 18000 Niš, Yugoslavia

EKSTREMALNI PROBLEM ZA POLINOME SA NENEGATIVNIM KOEFICIJENTIMA. II

Gradimir V. Milovanović i Radosav Ž. Đorđević

Neka je W_n skup svih algebarskih polinoma egzaktnog stepena n čiji su koeficijenti nenegativni. U radu se razmatra ekstremalni problem (1.2) za normu u L^2 [0, ∞) sa Freudovom težinom.