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AN EXTREMAL PROBLEM FOR POLYNOMIALS WITH
NONNEGATIVE COEFFICIENTS. II

Gradimir V. Milovanovi¢ and Radosav Z. Dordevié

Abstract. Let W,, be the set of all algebraic polynomials of exact degree », whose
coefficients are all nonnegative, For the norm in L? [0, c0) with Freud’s weight function,
the extremal problem (1. 2) is considered.

1. Introduction

In a previous paper G. V. Milovanovi¢ found a complete solution
of the following problem of A. K. Varma [2]:

Let W, be the set of all algebraic polynomials of exact degree », all
coefficients of which nonnegative, i.e.,

(1.1) W,,={1>,,yp,,(x)= S a.x% 4,20 (k=0,1,...,n-1), a,,>0}
k=0

and let ||f||*=(f, f), where

o= wEfxegEdx  (f g=L2[0, ),
J |

with generalized Laguerre weight function w(x)=x%*e"* (> —1).
Determine the best constant in the inequality

1217 = C.@ || P, P (P,EW,),

Le.,

1.2 C o oup MBI
(12 ()= SO R

Namély, Milovanovi¢ [1] proved the following result:
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Theorem A. The best constant C,(«) defined in (1.2) is
1

L (-l<a<a,),
QR+a) (1 +a)
Cn(a)=
- (%S + 00),
Qntw) Cnta—1)
where
= 17n2+2 Dz -3 1).
=TT ((17r*+2n+1) n-+1)

From Theorem A we can see:
(@) C,(x,—0)=C, (e, +0);
® Co(@=C,(0);

(c) The sequence (,) is decreasing.

Remark 1. The statement of Theorem A holds if W, is the set of all
algebraic polynomials P (3£0) of degree at most » (not only of exact degree n),
with nonnegative coefficients.

In this note we consider the extremal problem (1.2) with Freud’s weight
function

(1.3) wx)=x*e=* (a>—1, §>0)

on [0, o0). The corresponding best constant we will denote by C,{(«; ).

2. Extremal problem with Freud’s weight

Let the set W, be defined by (1.1) and the weight function xi— w{x)
by (1.3) The subset of W, for which a,=0 (i.e. P,(0)=0) we denote by W °.

By a simple application of integration by parts we can prove:

Lemma 1. If PEW,?, then for the inner products

J, (e 8)=(P,), P)= f Xt P, (x)*dx,
0

1, 8)=(Py )= [x2e=®p (x) P,O(x)dx (i=0, 1, 2)
0

the following recurrence relations hold
21, (5 8)=sT o (et s—1;8)—al (@~ 1;5) (x> -2),
L (o 8)=sL,, (c+s—1; ) ~ol,, (@a=1;8) =], (55 (@>-D.

In [1] Milovanovi¢ proved an interesting inequality for P,EW,. Namely,
for every x=0 the inequality

x(P, (x> =P, (x) P, (X)) =P, (x) P,(x)
holds. ’
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From this inequality and Lemma 1 we obtain:
Lemma 2. If P,cW,° then for o> —1 and s>0
LA@SﬁE%{ﬁL“(a+2s—2;@z o
+M2—2amﬂhm@+w—2bﬂ+@—iYL&@—2;@}

Since the supremum in (1.2) attained for some P,EW," (see [1]), we

will consider only such polynomials, i.e., P,(x)= > a x* (a,>0 and other
k=1
a;, =0). Then

2n
P,(x)=7 b x* (b;,>0 and other 5, 20)
k=2

and

1 2n
@.1) |22 JP= Lo (5 9)== 5 6T
$ k=2

a+k+1
)

where I is the gamma function.
Using the same method as in the paper [1] we find

2n

\22) |‘Pn,”2=Jn (0(; S)=(P,,’, Pn')§l_ z Hk(OC; s)bkr(“'f-k-i-l),

S k=2
where

a+k—1

r( )
23) H (it 7
“ E 4 a+k+1)'

§

According to (2.1) and (2.2) we have
| P [ = ( max Hy (5 9)|| Py |,
25kS2n

and then
C,(; )< max H(u; s).
25k=2n
The case s=1 is solved in [1].
For s=2 we get a simple result:

Theorem 1. The best constant C,(«; 2) is given by

2 —
—, —1<ot_:§—n~——1—,
a+1 n+1

C,(x; 2)=

2n? —
—n’ *u§m<+w‘
2n+a—1 - on+1
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2
Proof. In this case, (2.3) reduces to H(x; 2)=2—(—f-k—1). Determining
u —

- on the interval [2, 2], we find that
X+oa—1 .

the maximum of f(x)=

max H, (x; 2)={H2 (¢;2) if —l<aza,

25 kS 20 H, (;2) if a,Sa<<+c0,
where «,= =l
n+1
Similarly as in the paper [1] we show that C,(«; 2)= max H,(«; 2),

2SkS2n
The polynomial x x" is an extremal polynomial for «za, If —1<a=Za,

there exists a sequence of polynomials, for example, p, . (x)=x"+ kx,
k=152, ..., for which lim 12kl _c (4 2).

ko || Pa, ke |2

Remark 2. The statement of Theorem 1 holds if W, is a set as in
Remark 1. In that case, if —1l<a<wa, we can see that x+> Ax(A>0) is an
extremal polynomial.

From Theorem 1 we obtain the following inequality

o]

f e~ P (1) dr < 5
0

2 n?

1 f e— P (1) dt
0

for each P,cW,.

The case when s is an arbitrary positive number is more complicated.
We state the following conjecture:

Conjecture, Let s=1 and let «,(> —1) be the unique root of the equation

o+ 1 a+2n—1
P( ) P( )
s s
= pn2

F(oc+3) F(a+2n+l)
s . s

The best constant C,(«; s) is given by

; —l<ag
O
H, (¢;8), o,<a<+ 0.

At the end we give more one result:

Theorem 2. If a>1 and s>0 we have
[P e 0| Pollace (PaEW,),

where || f || = (f X% e=* f(x)? dx)llz.

0
This result follows immediately from (2.1), (2.2), and (2.3).
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EKSTREMALNI PROBLEM ZA POLINOME SA NENEGATIVNIM
KOEFICIJENTIMA. II

Gradimir V. Milovanovi¢ i Radosav Z. Dordevi¢

Neka je W, skup svih algebarskih polinoma egzaktnog stepena # €iji su koeficijenti
nenegativni. U radu se razmatra ekstremalni problem (1.2) za normu u L? [0, o) sa Freudo-
vom teZinom.



