A GENERALIZATION OF A RESULT OF A. MEIR FOR NON-DECREASING SEQUENCES

G.V. MILOVANOVIĆ AND I.Ž. MILOVANOVIĆ

1. In [3], the following result is given.

THEOREM A. Let $0 \leq p_1 \leq p_2 \leq \cdots \leq p_n$ and $0 = a_0 \leq a_1 \leq \cdots \leq a_n$, satisfying $a_i - a_{i-1} \leq p_i$ $(i = 1, 2, \dots, n)$. If $r \geq 1$ and $s + 1 \geq 2(r + 1)$, then

$$(1.1) \quad \left((s+1)\sum_{i=1}^{n-1}a_i^s\frac{p_i+p_{i+1}}{2}\right)^{1/(s+1)} \leq \left((r+1)\sum_{i=1}^{n-1}a_i^r\frac{p_i+p_{i+1}}{2}\right)^{1/(r+1)}$$

In this paper we shall prove an inequality which is stronger than inequality (1.1). Also, we show a generalization of Theorem A.

THEOREM 1. Let $0 \leq p_1 \leq p_2 \leq \cdots \leq p_n$ and $0 = a_0 \leq a_1 \leq \cdots \leq a_n$, satisfying $a_i - a_{i-1} \leq p_i$ $(i = 1, 2, \dots, n)$. If $r \geq 1$ and $s + 1 \geq 2$ (r + 1), then

(1.2)
$$(s+1)\sum_{i=1}^{n-1} a_i^s \frac{p_i + p_{i+1}}{2} + \frac{(s+1)(s-r)}{8} \sum_{i=1}^{n-1} (p_{i+1}^2 - p_i^2) a_i^{s-1}$$
$$\leq \left((r+1)\sum_{i=1}^{n-1} a_i^r \frac{p_i + p_{i+1}}{2} \right)^{(s+1)/(r+1)}.$$

2. PROOF. Since $x \mapsto x^r$ $(r \ge 1)$ is a convex function on $[0, \infty)$, the inequality

$$\sum_{i=1}^{j} \int_{a_{i-1}}^{a_i} x^r dx \leq \sum_{i=1}^{j} (a_i - a_{i-1}) \frac{a_i^r + a_{i-1}^r}{2} \quad (1 \leq j \leq n),$$

holds, wherefrom, according to the condition $a_i - a_{i-1} \leq p_i$, we obtain

(2.1)
$$\frac{1}{r+1} a_j^{r+1} \leq \sum_{i=1}^{j} p_i \frac{a_i^r + a_{i-1}^r}{2}.$$

For
$$q_j = \sum_{i=1}^{j} a_{10}^r \frac{p_i + p_{i+1}}{2}$$
, the inequality (2.1) becomes
$$\frac{1}{r+1} a_j^{r+1} \le q_j - \frac{1}{2} p_{j+1} a_j^r = q_{j-1} + \frac{1}{2} p_j a_j^r,$$

Received by the editors on July 23, 1984.

Copyright © 1986 Rocky Mountain Mathematics Consortium

i.e.,

(2.2)
$$a_j^{r+1} \leq (r+1) c_j,$$

where $c_j = q_j - p_{j+1} a_j^r/2 = q_{j-1} + p_j a_j^r/2$. If we take k = (s + 1)/(r + 1), the inequality (2.2) becomes

(2.3)
$$a_i^{s-r} \leq (r+1)^{k-1} c_i^{k-1}.$$

Note that $q_{j-1} \leq c_j \leq q_j$ (j = 1, ..., n). Using a generalization of Hadamard's integral inequality for convex functions, which is proved in [2], we find that the inequality

$$c_{j}^{k-1} + (k-1) c_{j}^{k-2} \left(\frac{q_{j} + q_{j-1}}{2} - c_{j} \right) \leq \frac{q_{j}^{k} - q_{j-1}^{k}}{k(q_{j} - q_{j-1})},$$

i.e.,

$$k \frac{p_j + p_{j+1}}{2} a_j^r c_j^{k-1} + k (k-1) \frac{p_{j+1}^2 - p_j^2}{8} a_j^{2r} c_j^{k-2} \leq q_j^k - q_{j-1}^k$$

is valid. Whence, after summing for j = 1, ..., n - 1 and using (2.2) and (2.3), we obtain the inequality (1.2).

Since

$$(s+1)(s-r)\sum_{i=1}^{n-1}(p_{i+1}^2-p_i^2)a_i^{s-1}\geq 0,$$

we conclude that the inequality (1.2) is stronger than inequality (1.1).

For $p_1 = \cdots = p_n = 1$, the inequality (1.2) is reduce to the inequality proved in [1].

3. Similary, as in Theorem 1 (also, see [4]), the following result can be proved.

THEOREM 2. Let f and g be differentiable functions on $[0, \infty)$ satisfying f(0) = f'(0) = g(0) = g'(0) = 0. Suppose that f and g are convex and increasing on $[0, \infty)$. Set h(x) = g(f(x)). Then for any finite sequences (a_i) , (p_i) such that $0 = a_0 \leq a_1 \leq \cdots \leq a_n$ and $0 \leq p_1 \leq \cdots \leq p_n$, which satisfy $a_i - a_{i-1} \leq p_i(i = 1, \ldots, n)$, we have

(3.1)
$$h^{-1}\left(\sum_{i=1}^{n-1} \frac{p_i + p_{i+1}}{2} h(a_i)\right) \leq f^{-1}\left(\sum_{i=1}^{n-1} \frac{p_i + p_{i+1}}{2} f(a_i)\right).$$

COROLLARY. For $h(x) = x^{s+1}$ and $f(x) = x^{r+1}$ the Meir's result is obtained from the inequality (3.1).

EXAMPLE. Functions $f(x) = x^2$ and $g(x) = x^3e^x$ satisfy the conditions of the above theorem. This shows that potential functions are not the only ones which satisfy the conditions of the Theorem 2.

238

References

1. M.S. Klamkin and D.J. Newman, Inequalities and identities for sums and integrals, Amer. Math. Monthly 83 (1976), 26-30.

2. I.B. Lacković and M.S. Stanković, On Hadamard's integral inequality for convex functions, Univ. Beograd. Publ. Elektrotehn. Fak., Ser. Mat. Fiz. No. 412- No. 460 (1973), 89-92.

3. A. Meir, An inequality for non-decreasing sequences, Rocky Mountain J. Math. **11** (1981), 577-579.

4. I.Ž. Milovanović, A generalization of an inequality of A. Meir, Univ. Beograd. Publ. Elektrotehn. Fak., Ser. Mat. Fiz. No. 678 – No. 715 (1980), 54–55.

Faculty of Electronic Engineering, Department of Mathematics, P.O.Box 73 University of Niš, 18000 Niš, Yugoslavia