A GENERALIZATION OF A RESULT OF A. MEIR FOR NON-DECREASING SEQUENCES

G.v. MILOVANOVIĆ AND I.ž. MILOVANOVIĆ

1. In [3], the following result is given.

THEOREM A. Let $0 \leqq p_{1} \leqq p_{2} \leqq \cdots \leqq p_{n}$ and $0=a_{0} \leqq a_{1} \leqq \cdots$ $\leqq a_{n}$, satisfying $a_{i}-a_{i-1} \leqq p_{i}(i=1,2, \ldots, n)$. If $r \geqq 1$ and $\mathrm{s}+1 \geqq$ $2(r+1)$, then

$$
\begin{equation*}
\left((s+1) \sum_{i=1}^{n-1} a_{i}^{s} \frac{p_{i}+p_{i+1}}{2}\right)^{1 /(s+1)} \leqq\left((r+1) \sum_{i=1}^{n-1} a_{i}^{r} \frac{p_{i}+p_{i+1}}{2}\right)^{1 /(r+1)} \tag{1.1}
\end{equation*}
$$

In this paper we shall prove an inequality which is stronger than inequality (1.1). Also, we show a generalization of Theorem A.

THEOREM 1. Let $0 \leqq p_{1} \leqq p_{2} \leqq \cdots \leqq p_{n}$ and $0=a_{0} \leqq a_{1} \leqq \cdots \leqq a_{n}$, satisfying $a_{i}-a_{i-1} \leqq p_{i}(i=1,2, \ldots, n)$. If $r \geqq 1$ and $s+1 \geqq 2(r+1)$, then

$$
\begin{gather*}
(s+1) \sum_{i=1}^{n-1} a_{i}^{s} \frac{p_{i}+p_{i+1}}{2}+\frac{(s+1)(s-r)}{8} \sum_{i=1}^{n-1}\left(p_{i+1}^{2}-p_{i}^{2}\right) a_{i}^{s-1} \\
\leqq\left((r+1) \sum_{i=1}^{n-1} a_{i}^{r} \frac{p_{i}+p_{i+1}}{2}\right)^{(s+1) /(r+1)} \tag{1.2}
\end{gather*}
$$

2. Proof. Since $x \mapsto x^{r}(r \geqq 1)$ is a convex function on $[0, \infty)$, the inequality

$$
\sum_{i=1}^{j} \int_{a_{i-1}}^{a_{i}} x^{r} d x \leqq \sum_{i=1}^{j}\left(a_{i}-a_{i-1}\right) \frac{a_{i}^{r}+a_{i-1}^{r}}{2} \quad(1 \leqq j \leqq n)
$$

holds, wherefrom, according to the condition $a_{i}-a_{i-1} \leqq p_{i}$, we obtain

$$
\begin{equation*}
\frac{1}{r+1} a_{j}^{r+1} \leqq \sum_{i=1}^{j} p_{i} \frac{a_{i}^{r}+a_{i-1}^{r}}{2} . \tag{2.1}
\end{equation*}
$$

For $q_{j}=\sum_{i=1}^{j} a_{10}^{r} \frac{p_{i}+p_{i+1}}{2}$, the inequality (2.1) becomes

$$
\frac{1}{r+1} a_{j}^{r+1} \leqq q_{j}-\frac{1}{2} p_{j+1} a_{j}^{r}=q_{j-1}+\frac{1}{2} p_{j} a_{j}^{r}
$$

i.e.,

$$
\begin{equation*}
a_{j}^{r+1} \leqq(r+1) c_{j}, \tag{2.2}
\end{equation*}
$$

where $c_{j}=q_{j}-p_{j+1} a_{j}^{r} / 2=q_{j-1}+p_{j} a_{j}^{r} / 2$.
If we take $k=(s+1) /(r+1)$, the inequality (2.2) becomes

$$
\begin{equation*}
a_{j}^{s-r} \leqq(r+1)^{k-1} c_{j}^{k-1} \tag{2.3}
\end{equation*}
$$

Note that $q_{j-1} \leqq c_{j} \leqq q_{j}(j=1, \ldots, n)$. Using a generalization of Hadamard's integral inequality for convex functions, which is proved in [2], we find that the inequality

$$
c_{j}^{k-1}+(k-1) c_{j}^{k-2}\left(\frac{q_{j}+q_{j-1}}{2}-c_{j}\right) \leqq \frac{q_{j}^{k}-q_{j-1}^{k}}{k\left(q_{j}-q_{j-1}\right)},
$$

i.e.,

$$
k \frac{p_{j}+p_{j+1}}{2} a_{j}^{r} c_{j}^{k-1}+k(k-1) \frac{p_{j+1}^{2}-p_{j}^{2}}{8} a_{j}^{2 r} c_{j}^{k-2} \leqq q_{j}^{k}-q_{j-1}^{k}
$$

is valid. Whence, after summing for $j=1, \ldots, n-1$ and using (2.2) and (2.3), we obtain the inequality (1.2).

Since

$$
(s+1)(s-r) \sum_{i=1}^{n-1}\left(p_{i+1}^{2}-p_{i}^{2}\right) a_{i}^{s-1} \geqq 0
$$

we conclude that the inequality (1.2) is stronger than inequality (1.1).
For $p_{1}=\cdots=p_{n}=1$, the inequality (1.2) is reduce to the inequality proved in [1].
3. Similary, as in Theorem 1 (also, see [4]), the following result can be proved.

Theorem 2. Let f and g be differentiable functions on $[0, \infty)$ satisfying $f(0)=f^{\prime}(0)=g(0)=g^{\prime}(0)=0$. Suppose that f and g are convex and increasing on $[0, \infty)$. Set $h(x)=g(f(x))$. Then for any finite sequences $\left(a_{i}\right)$, $\left(p_{i}\right)$ such that $0=a_{0} \leqq a_{1} \leqq \cdots \leqq a_{n}$ and $0 \leqq p_{1} \leqq \cdots \leqq p_{n}$, which satisfy $a_{i}-a_{i-1} \leqq p_{i}(i=1, \ldots, n)$, we have

$$
\begin{equation*}
h^{-1}\left(\sum_{i=1}^{n-1} \frac{p_{i}+p_{i+1}}{2} h\left(a_{i}\right)\right) \leqq f^{-1}\left(\sum_{i=1}^{n-1} \frac{p_{i}+p_{i+1}}{2} f\left(a_{i}\right)\right) . \tag{3.1}
\end{equation*}
$$

Corollary. For $h(x)=x^{s+1}$ and $f(x)=x^{r+1}$ the Meir's result is obtained from the inequality (3.1).

Example. Functions $f(x)=x^{2}$ and $g(x)=x^{3} e^{x}$ satisfy the conditions of the above theorem. This shows that potential functions are not the only ones which satisfy the conditions of the Theorem 2.

References

1. M.S. Klamkin and D.J. Newman, Inequalities and identities for sums and integrals, Amer. Math. Monthly 83 (1976), 26-30.
2. I.B. Lacković and M.S. Stanković, On Hadamard's integral inequality for convex functions, Univ. Beograd. Publ. Elektrotehn. Fak., Ser. Mat. Fiz. No. 412- No. 460 (1973), 89-92.
3. A. Meir, An inequality for non-decreasing sequences, Rocky Mountain J. Math. 11 (1981), 577-579.
4. I.Ž. Milovanović, A generalization of an inequality of A. Meir, Univ. Beograd. Publ. Elektrotehn. Fak., Ser. Mat. Fiz. No. 678 - No. 715 (1980), 54-55.

Faculty of Electronic Engineering, Department of Mathematics, P. O. Box 73 University of Niš, 18000 Niš, Yugoslavia

