RANK FACTORIZATION AND
MOORE-PENROSE INVERSE

GRADIMIR V. MILOVANOVIGC AND PREDRAG S. STANIMIROVIC

ABSTRACT. In this paper we develop a few representations of the Moore-
Penrose inverse, based on full-rank factorizations of matrices. These rep-
resentations we divide into the two different classes: methods which arise
from the known block decompositions and determinantal representation. In
particular cases we obtain several known results.

1. INTRODUCTION

The set of m x n complex matrices of rank r is denoted by C"*"™ = {X €
Cm™*m : rank(X) = r}. With Al" and A| we denote the first r columns of
A and the first r rows of A, respectively. The identity matrix of the order k
is denoted by I, and O denotes the zero block of an appropriate dimensions.

We use the following useful expression for the Moore-Penrose generalized
inverse AT, based on the full-rank factorization A = PQ of A [1-2]:

Al = Q1P = Q7(QQ") ! (P*P) T P = Q1 (P AQT) T P,

We restate main known block decompositions [7], [16-18]. For a given
matrix A € C"*™ there exist regular matrices R, G, permutation matrices
E, F and unitary matrices U, V, such that:
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(T)) RAG = {0} 8} — N, (Th) RAG = [g 8] — N,
(Ty) RAF = {0} g] — N, (T)) EAG = [é{ 8] — N,
(T5) UAG = {0} 8] — N, (Ty) RAV = [{0 g} — N,
(Ty) UAV = :g g} — N, (Ty) UAF = [g g] N,
(Ty) EAV = IB; 8} = N,

(Tyo) FEAF = [ji jﬂ = Ny, where rank(A;;)=rank(A).

(Th1) Transformation of similarity for square matrices [11]:

-1 __ * p—1 __ IT K *D—1 __ Tl T2
RAR = RAFF*R _[@ ©FR =lo ol

The block form (T%g) can be expressed in two different ways:

| A AT
(Toa)  EAF = [SAH SANT
T =A1An, S=A3A7 (see [8));

_ A A _ An Aiz .
(TIOb) FAF = |:A21 A22:| - |:A21 A21A1_11A12:| (See [9])

] , where the multipliers S and T satisfy

Block representations of the Moore-Penrose inverse is investigated in [8],
[11], [15-19]. In [16], [18] the results are obtained by solving the equations
(1)—(4). In [15], [8] the corresponding representations are obtained using the
block decompositions (T1¢,) and (T1op) and implied full-rank factorizations.

Also, in [19] is introduced block representation of the Moore-Penrose in-
verse, based on AT = A*TA*, where T € A*AA*{1}.

Block decomposition (7771) is investigated in [11], but only for square
matrices and the group inverse.

The notion determinantal representation of the Moore-Penrose inverse of
A means representation of elements of AT in terms of minors of A. Deter-
minantal representation of the Moore-Penrose inverse is examined in [1-2],
[4-6], [12-14]. For the sake of completeness, we restate here several nota-
tions and the main result. For an m x n matrix A let @ = {aq,...,q;}
and 5 ={f1,...,0-} besubsets of {1,... ,m} and {1,... ,n}, respectively.
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Then A <gi g;) = | A3 | denotes the minor of A determined by the rows
indexed by o and the columns indexed by 3, and Aj represents the corre-
sponding submatrix. Also, the algebraic complement of Ag is defined by

a a1 ... Op—1 1« +1 - Qp + a1 ... Op—1 Qp4] -.. O
daij |Ag |:Ai7(51 B:A J B:+1 Br) =(=1)rriA </31 o Ba—1 Bat1 - Br) :

Adjoint matrix of a square matrix B is denoted by adj(B), and its deter-
minant by |B].

Determinantal representation of full rank matrices is introuced in [1], and
for full-rank matrices in [4-6]. In [12-14] is introduced an elegant derivation
for determinantal representation of the Moore-Penrose inverse, using a full-
rank factorization and known results for full-rank matrices. Main result of
these papers is:

Proposition 1.1. The (i,j)th element of the Moore-Penrose inverse G =
(9i;) of A € C"*™ is given by
—a, O
S A4y
gii = a:an;B:ie[—}‘ A ‘ (9aji B
- _
’ IEHIFH
v,0

In this paper we investigate two different representations of the Moore-
Penrose inverse. The first class of representations is a continuation of the
papers [8] and [15]. In other words, from the presented block factorizations of
matrices find corresponding full-rank decompositions A = P, and then ap-
ply AT = Q*(P*AQ*)~'P*. In the second representation, A is represented
in terms of minors of the matrix A. In this paper we describe an elegant
proof of the well-known determinantal representation of the Moore-Penrose
inverse. Main advantages of described block representations are their simply
derivation and computation and possibility of natural generalization. Deter-
minantal representation of the Moore-Penrose inverse can be implemented
only for small dimensions of matrices (n < 10).

2. BLOCK REPRESENTATION

Theorem 2.1. The Moore-Penrose inverse of a given matriz A € C**"
can be represented as follows, where block representations (G;) correspond to
the block decompositions (1), i € {1,...,9,10a,10b,11}:

(G1) Af=(c,)" ((R) 4 (G*ﬂr)*)f1 (R,
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Q
N
|
B)
g
/N
=
W
N—
h
Q
=
=
/N
=
mﬂ
N—

(Ge) At=VI((R") Av|r)’1 (1),

(Gy) Af =VI"(B*U,AVI") " B*U,,

@ a=r[E] (var[E]) v,

(Go) AT =VI"([B~, K*]EAV"")_l[B*, K*|E,
-1
Ir * * IT * *
(Croe) AT:F[T*KAH[IT, S]EAF[T*D A4 (L. 5°1E

=F [1{] (I + TT*) Y AL (L + 5*S) ™' [I,, S*]E,

1
A7 * 0\ * * Aj * \— * *
(o) AT=F |40 (@)t Anlmar 4 )) wan)an, aE

Ay
(G11) At=R* [(T;{TTQ)*} <(R1’T1>*AR* [(T;IJTQ)*DYRNTJ .

Proof. (G1) Starting from (7}), we obtain
I, @}

A* * * \ T * * - * x
:F[ 11} (A1 A7+ A1 AT) T A (AT A + A5, Ao)) (AL, A3E

S e

which implies

PR m R, Q=[I, 0]G=GT.
Now, we get

A= Q (P AQ) T P = (G7,) ((R) Ae ™)) (R
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The other block decompositions can be obtained in a similar way.
(Gs) Block decomposition (75) implies

_ * Ir @ -1 _ * Ir —1
a=v[5 Olam v [5]in. o1,

which means
I,

pov[5

}:U*T, Q=1I, 0]G'=G".

(G7) It is easy to see that (77) implies

A=U [@ ©]V =U [@][Ir, 0] Vv*.

Thus,

PZW{}ZU“R Q=[I, OV =Vv",,

0)
which means
P* = B*U,, Qr =V,

(G10q) From (Tio,) we obtain

— % A11 AHT I Ir )
A=F |:SA11 SAllT:|F =F |:S:|A11[IT’ T]F,

which implies, for example, the following full rank factorization of A:

P=F [g]An, Q=I[I., T]F*.

Now,

1
at=r || (anin. sipar| |} anin, s1E

The proof can be completed using

I,

EAF:[S

}AH[L, T]. O

Remarks 2.1. (i) A convenient method for finding the matrices S, T and A7,
required in (7o) was introduced in [8], and it was based on the following
extended Gauss-Jordan transformation:
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Ay A T L[rr ALl
Ay Ass O 0O 0 -S|

(ii) In [3] it was used the following full-rank factorization of A, derived

from A = [AH A1y }
Aoy A21A1_11A12 ’

A _
P - |:A;1:| ) Q = [IT‘7 A111A12] .

3. DETERMINANTAL REPRESENTATION

In the following definition are generalized concepts of determinant, alge-
braic complement, adjoint matrix and determinantal representation of gen-
eralized inverses. (see also [14].)

Definition 3.1. Let A be m x n matrix of rank r.
(i) The generalized determinant of A, denoted by N,.(A), is equal to
Ne() = [ A3 [145 1]

(ii) Generalized algebraic complement of A corresponding to a;; is

—a O

Al = 3 Ay | — | AG .

Y a:an;B:ieB‘ ? ‘ daj; ?

(iii) Generalized adjoint matrix of A, denoted by adjf(A) is the matrix
whose elements are A}Lj.

For full-rank matrix A the following results can be proved:

Lemma 3.1. [14] If A is an m x n matriz of full-rank, then:

. [ [AAT], r=m
(A*adj(AA*)),., r=

i) Al = “

(i) 45 { (adj(A*A)A");, r=n.

(iii) Af = { AAA), r=m

(A*A)1A*, r=n.
A*adj(AA*), r=m

(iv) adjf(A) = { adj(A*A)A*, r=n.

Main properties of the generalized adjoint matrixz, generalized algebraic
complement and generalized determinant are investigated in [14].
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Lemma 3.2. [14] If A = PQ is a full-rank factorization of an m x n matriz
A of rank r, then

(i) adif(Q) - adj’(P) = adj'(A);
(ii) NT(Q) : NT(P) - NT(P) ) NT(Q) = NT‘(A);

From Lemma 3.1 and Lemma 3.2 we obtain an elegant proof for the
determinantal representation of the Moore-Penrose inverse.

Theorem 3.1. Let A be an m X n matriz of rank r, and A = PQ be its full-
rank factorization. The Moore-Penrose inverse of A posseses the followig
determinantal representation:

— 0

Ay | 5— 145
aJr a:onc;,B:iE,B‘ g ‘ 8aji g
Y > 145 |47 ]

v,0

Proof. Using A" = QTPT [3] and the results of Lemma 3.1 and Lemma 3.2,
we obtain:

Q" adj(QQ") adi(P*P)P* _
Q] [P

O

AT = QTP = Q*(QQ") ' (P*P)~'P" =

_ adit(Qadj!(P) _ adj’(4)
NAQN.(P) ~ N.(A)

4. EXAMPLES

Example 4.1. Block decomposition (77) can be obtained by applying trans-
formation (73) two times:

I, K
R1AFy = [@) @] = N3,

I, O
RyNTFy = [@ @} = N,

Then, the regular matrices R, G can be computed as follows:

Ny =N = FIN3RY = FIRiARRY = R=F]I'R,, G=FRI.

-1 1 3 5 7

For the matrix A = % (1) :% g 1% we obtain

-1 2 4 10 18
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0 1 0 O
_ 1 1 0 0
Rl — —1 -2 1 0 ) Fl - IS,
-2 -1 0 1
1 0 0 0 O
0 1 0 0 O
Ry = 2 -1 1 0 0], Fh=1
0O -5 0 1 O
-4 —-11 0 0 1
From R = Ry, G = RY we get
-1 1
—1l2 _ 1 0 -1 _ (1 0 -2 0 4
R =1 11) €C \2—<0 1 15 11)'
-1 2
Using formula (G7), we obtain
_ 169 _67_ 233 _ 137
6720 2240 6720 6720
1 __1 _ 1 1
128 128 128 128
_ 781 330 1037 653
Al = 13440 ~ 4480 13440 13440
5 __5 __5 _5_
128 128 128 128
197 151 709 59
13440 4480 13440 13440

-1 0 1 2
-1 1 0 -1
Example 4.2. For the matrix A = 8 _% _% _g we obtain
1 -1 0 1
1 0 -1 -2

1 -1
-1_ (-1 0 | -1 1 (-1 =2
An —(_1 1>7 S = 0o -1 |- T—(_l _3)[5]-
-1 0
Using (G10.) we obtain
5 _3 1 _1 3 5
34 17 34 34 17 34
4 13 5 5 13 4
At — 51 102 102 102 ~ 102 ~ 51
| . 5 1 _1 _ 5 _ .7
102 102 51 51 102 102
1 _ 1 3 _3 1 _1
17 34 34 34 34 17
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4 -1 1 2
-2 2 0 -1

Example 4.3. For the matrix A = 6 -3 1 3 | weobtain
-10 4 -2 -5
-1 0 0 0
_ | -1 1 0 0 _ (10 [ -1-2 .
E=1-1 11 0] Tl_((]l)’ T2—(_1_3>a F=1
2 -1 0 1

Then, the following results can be obtained:

—4 —6
S\ (=1 -1 0 1 . I, | 1 3
(rrm) =(6 1 1 1) = |:(T11T2)*]_ 1 -1
-2 -3
Finally, using (G11), we get

8 10 _2 _2

81 81 81 27

AT 79 16 _ 5

o 162 162 81 54

AT = 71 2 1

54 54 27 18

4 5 _ 1 _1

81 81 81 27

(1]
(2]
3]
(4]
(5]

(6]

(8]

[9]

(10]
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