RANK FACTORIZATION AND MOORE-PENROSE INVERSE

Gradimir V. Milovanović and Predrag S. Stanimirović

Abstract

In this paper we develop a few representations of the MoorePenrose inverse, based on full-rank factorizations of matrices. These representations we divide into the two different classes: methods which arise from the known block decompositions and determinantal representation. In particular cases we obtain several known results.

1. Introduction

The set of $m \times n$ complex matrices of rank r is denoted by $\mathbb{C}_{r}^{m \times n}=\{X \in$ $\left.\mathbb{C}^{m \times n}: \operatorname{rank}(X)=r\right\}$. With $A^{\mid r}$ and $A_{\left.\right|_{r}}$ we denote the first r columns of A and the first r rows of A, respectively. The identity matrix of the order k is denoted by I_{k}, and \mathbb{O} denotes the zero block of an appropriate dimensions.

We use the following useful expression for the Moore-Penrose generalized inverse A^{\dagger}, based on the full-rank factorization $A=P Q$ of A [1-2]:

$$
A^{\dagger}=Q^{\dagger} P^{\dagger}=Q^{*}\left(Q Q^{*}\right)^{-1}\left(P^{*} P\right)^{-1} P^{*}=Q^{*}\left(P^{*} A Q^{*}\right)^{-1} P^{*} .
$$

We restate main known block decompositions [7], [16-18]. For a given matrix $A \in \mathbb{C}_{r}^{m \times n}$ there exist regular matrices R, G, permutation matrices E, F and unitary matrices U, V, such that:

[^0]$\left(T_{1}\right) \quad R A G=\left[\begin{array}{cc}I_{r} & \mathbb{O} \\ \mathbb{O} & \mathbb{O}\end{array}\right]=N_{1}$,
(T_{2}) $\quad R A G=\left[\begin{array}{cc}B & \mathbb{O} \\ \mathbb{O} & \mathbb{O}\end{array}\right]=N_{2}$,
$\left(T_{3}\right) \quad R A F=\left[\begin{array}{ll}I_{r} & K \\ \mathbb{O} & \mathbb{O}\end{array}\right]=N_{3}$,
$\left(T_{4}\right) \quad E A G=\left[\begin{array}{ll}I_{r} & \mathbb{O} \\ K & \mathbb{O}\end{array}\right]=N_{4}$,
($\left.T_{5}\right) \quad U A G=\left[\begin{array}{ll}I_{r} & \mathbb{O} \\ \mathbb{O} & \mathbb{O}\end{array}\right]=N_{1}$,
$\left(T_{6}\right) \quad R A V=\left[\begin{array}{cc}I_{r} & \mathbb{O} \\ \mathbb{O} & \mathbb{O}\end{array}\right]=N_{1}$,
$\left(T_{7}\right) \quad U A V=\left[\begin{array}{ll}B & \mathbb{O} \\ \mathbb{O} & \mathbb{O}\end{array}\right]=N_{2}$,
$\left(T_{8}\right) \quad U A F=\left[\begin{array}{cc}B & K \\ \mathbb{O} & \mathbb{O}\end{array}\right]=N_{5}$,
$\left(T_{9}\right) \quad E A V=\left[\begin{array}{cc}B & \mathbb{O} \\ K & \mathbb{O}\end{array}\right]=N_{6}$,
$\left(T_{10}\right) \quad E A F=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]=N_{7}$, where $\operatorname{rank}\left(A_{11}\right)=\operatorname{rank}(A)$.
$\left(T_{11}\right) \quad$ Transformation of similarity for square matrices [11]:
$R A R^{-1}=R A F F^{*} R^{-1}=\left[\begin{array}{cc}I_{r} & K \\ \mathbb{O} & \mathbb{O}\end{array}\right] F^{*} R^{-1}=\left[\begin{array}{cc}T_{1} & T_{2} \\ \mathbb{O} & \mathbb{O}\end{array}\right]$.
The block form $\left(T_{10}\right)$ can be expressed in two different ways:
($T_{10 a}$) $\quad E A F=\left[\begin{array}{cc}A_{11} & A_{11} T \\ S A_{11} & S A_{11} T\end{array}\right]$, where the multipliers S and T satisfy $T=A_{11}^{-1} A_{12}, \quad S=A_{21} A_{11}^{-1}$ (see [8]);
($T_{10 b}$) $\quad E A F=\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]=\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{21} & A_{21} A_{11}^{-1} A_{12}\end{array}\right]$ (see [9]).
Block representations of the Moore-Penrose inverse is investigated in [8], [11], [15-19]. In [16], [18] the results are obtained by solving the equations (1)-(4). In [15], [8] the corresponding representations are obtained using the block decompositions ($T_{10 a}$) and ($T_{10 b}$) and implied full-rank factorizations.

Also, in [19] is introduced block representation of the Moore-Penrose inverse, based on $A^{\dagger}=A^{*} T A^{*}$, where $T \in A^{*} A A^{*}\{1\}$.

Block decomposition $\left(T_{11}\right)$ is investigated in [11], but only for square matrices and the group inverse.

The notion determinantal representation of the Moore-Penrose inverse of A means representation of elements of A^{\dagger} in terms of minors of A. Determinantal representation of the Moore-Penrose inverse is examined in [1-2], [4-6], [12-14]. For the sake of completeness, we restate here several notations and the main result. For an $m \times n$ matrix A let $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ and $\beta=\left\{\beta_{1}, \ldots, \beta_{r}\right\}$ be subsets of $\{1, \ldots, m\}$ and $\{1, \ldots, n\}$, respectively.

Then $A\left(\begin{array}{ccc}\alpha_{1} & \ldots & \alpha_{r} \\ \beta_{1} & \ldots & \beta_{r}\end{array}\right)=\left|A_{\beta}^{\alpha}\right|$ denotes the minor of A determined by the rows indexed by α and the columns indexed by β, and A_{β}^{α} represents the corresponding submatrix. Also, the algebraic complement of A_{β}^{α} is defined by

Adjoint matrix of a square matrix B is denoted by $\operatorname{adj}(B)$, and its determinant by $|B|$.

Determinantal representation of full rank matrices is introuced in [1], and for full-rank matrices in [4-6]. In [12-14] is introduced an elegant derivation for determinantal representation of the Moore-Penrose inverse, using a fullrank factorization and known results for full-rank matrices. Main result of these papers is:
Proposition 1.1. The (i, j) th element of the Moore-Penrose inverse $G=$ $\left(g_{i j}\right)$ of $A \in \mathbb{C}_{r}^{m \times n}$ is given by

$$
g_{i j}=\frac{\sum_{\alpha: j \in \alpha ; \beta: i \in \beta}\left|\bar{A}_{\beta}^{\alpha}\right| \frac{\partial}{\partial a_{j i}}\left|A_{\beta}^{\alpha}\right|}{\sum_{\gamma, \delta}\left|\bar{A}_{\delta}^{\gamma}\right|\left|A_{\delta}^{\gamma}\right|} .
$$

In this paper we investigate two different representations of the MoorePenrose inverse. The first class of representations is a continuation of the papers [8] and [15]. In other words, from the presented block factorizations of matrices find corresponding full-rank decompositions $A=P Q$, and then apply $A^{\dagger}=Q^{*}\left(P^{*} A Q^{*}\right)^{-1} P^{*}$. In the second representation, A^{\dagger} is represented in terms of minors of the matrix A. In this paper we describe an elegant proof of the well-known determinantal representation of the Moore-Penrose inverse. Main advantages of described block representations are their simply derivation and computation and possibility of natural generalization. Determinantal representation of the Moore-Penrose inverse can be implemented only for small dimensions of matrices $(n \leq 10)$.

2. Block representation

Theorem 2.1. The Moore-Penrose inverse of a given matrix $A \in \mathbb{C}_{r}^{m \times n}$ can be represented as follows, where block representations $\left(G_{i}\right)$ correspond to the block decompositions $\left(T_{i}\right), i \in\{1, \ldots, 9,10 a, 10 b, 11\}$:
$\left(G_{1}\right)$

$$
A^{\dagger}=\left(G^{-1}{ }_{\mid r}\right)^{*}\left(\left(R^{-1^{\mid r}}\right)^{*} A\left(G_{\mid r}^{-1}\right)^{*}\right)^{-1}\left(R^{-1^{\mid r}}\right)^{*}
$$

(G $\left.G_{2}\right) \quad A^{\dagger}=\left(G^{-1}{ }_{\mid r}\right)^{*}\left(\left(R^{-1^{\mid r}} B\right)^{*} A\left(G^{-1}{ }_{\mid r}\right)^{*}\right)^{-1}\left(R^{-1^{\mid r}} B\right)^{*}$,
(G3) $A^{\dagger}=F\left[\begin{array}{c}I_{r} \\ K^{*}\end{array}\right]\left(\left(R^{-1^{\mid r}}\right)^{*} A F\left[\begin{array}{c}I_{r} \\ K^{*}\end{array}\right]\right)^{-1}\left(R^{-1^{\mid r}}\right)^{*}$,
$\left(G_{4}\right) \quad A^{\dagger}=\left(G^{-1}{ }_{\mid r}\right)^{*}\left(\left[\begin{array}{ll}I_{r}, & K^{*}\end{array}\right] E A\left(G^{-1}{ }_{\mid r}\right)^{*}\right)^{-1}\left[I_{r}, \quad K^{*}\right] E$,
(G) $A^{\dagger}=\left(G^{-1}{ }_{\mid r}\right)^{*}\left(U_{\mid r} A\left(G^{-1}{ }_{\mid r}\right)^{*}\right)^{-1} U_{\mid r}$,
$\left(G_{6}\right) \quad A^{\dagger}=V^{\mid r}\left(\left(R^{-1^{\mid r}}\right)^{*} A V^{\mid r}\right)^{-1}\left(R^{-1^{\mid r}}\right)^{*}$,
(G7) $A^{\dagger}=V^{\mid r}\left(B^{*} U_{\mid r} A V^{\mid r}\right)^{-1} B^{*} U_{\mid r}$,
(G8) $A^{\dagger}=F\left[\begin{array}{l}B^{*} \\ K^{*}\end{array}\right]\left(U_{\mid r} A F\left[\begin{array}{l}B^{*} \\ K^{*}\end{array}\right]\right)^{-1} U_{\mid r}$,
$\left(G_{9}\right) \quad A^{\dagger}=V^{\mid r}\left(\left[B^{*}, K^{*}\right] E A V^{\mid r}\right)^{-1}\left[B^{*}, \quad K^{*}\right] E$,

$$
\begin{aligned}
\left(G_{10 a}\right) \quad A^{\dagger} & =F\left[\begin{array}{c}
I_{r} \\
T^{*}
\end{array}\right]\left(\begin{array}{ll}
\left.A_{11}^{*}\left[\begin{array}{ll}
I_{r}, & S^{*}
\end{array}\right] \text { EAF }\left[\begin{array}{c}
I_{r} \\
T^{*}
\end{array}\right]\right)^{-1} A_{11}^{*}\left[\begin{array}{ll}
I_{r}, & S^{*}
\end{array}\right] E \\
& =F\left[\begin{array}{c}
I_{r} \\
T^{*}
\end{array}\right]\left(I_{r}+T T^{*}\right)^{-1} A_{11}^{-1}\left(I_{r}+S^{*} S\right)^{-1}\left[I_{r},\right. \\
S^{*}
\end{array}\right] E
\end{aligned}
$$

$\left(G_{10 b}\right) A^{\dagger}=F\left[\begin{array}{l}A_{11}^{*} \\ A_{12}^{*}\end{array}\right]\left(\left(A_{11}^{*}\right)^{-1}\left[A_{11}^{*}, \quad A_{21}^{*}\right] E A F\left[\begin{array}{l}A_{11}^{*} \\ A_{12}^{*}\end{array}\right]\right)^{-1}\left(A_{11}^{*}\right)^{-1}\left[A_{11}^{*}, \quad A_{21}^{*}\right] E$ $=F\left[\begin{array}{c}A_{11}^{*} \\ A_{12}^{*}\end{array}\right]\left(A_{11} A_{11}^{*}+A_{12} A_{12}^{*}\right)^{-1} A_{11}\left(A_{11}^{*} A_{11}+A_{21}^{*} A_{21}\right)^{-1}\left[A_{11}^{*}, \quad A_{21}^{*}\right] E$,
$\left(G_{11}\right) \quad A^{\dagger}=R^{*}\left[\begin{array}{c}I_{r} \\ \left(T_{1}^{-1} T_{2}\right)^{*}\end{array}\right]\left(\left(R^{-1^{\mid r}} T_{1}\right)^{*} A R^{*}\left[\begin{array}{c}I_{r} \\ \left(T_{1}^{-1} T_{2}\right)^{*}\end{array}\right]\right)^{-1}\left(R^{-1^{\mid r}} T_{1}\right)^{*}$.
Proof. $\left(G_{1}\right) \quad$ Starting from $\left(T_{1}\right)$, we obtain

$$
A=R^{-1}\left[\begin{array}{cc}
I_{r} & \mathbb{O} \\
\mathbb{O} & \mathbb{O}
\end{array}\right] G^{-1}=R^{-1}\left[\begin{array}{l}
I_{r} \\
\mathbb{O}
\end{array}\right]\left[\begin{array}{ll}
I_{r}, & \mathbb{O}] G^{-1}, \text {, }, \text {. }
\end{array}\right.
$$

which implies

$$
P=R^{-1}\left[\begin{array}{c}
I_{r} \\
\mathbb{O}
\end{array}\right]=R^{-1^{\mid r}}, \quad Q=\left[\begin{array}{ll}
I_{r}, & \mathbb{O}
\end{array}\right] G^{-1}=G^{-1}{ }_{\mid r} .
$$

Now, we get

$$
A^{\dagger}=Q^{*}\left(P^{*} A Q^{*}\right)^{-1} P^{*}=\left(G_{\mid r}^{-1}\right)^{*}\left(\left(R^{-1^{\mid r}}\right)^{*} A\left(G_{\mid r}^{-1}\right)^{*}\right)^{-1}\left(R^{-1^{\mid r}}\right)^{*}
$$

The other block decompositions can be obtained in a similar way.
$\left(G_{5}\right) \quad$ Block decomposition (T_{5}) implies

$$
A=U^{*}\left[\begin{array}{cc}
I_{r} & \mathbb{O} \\
\mathbb{O} & \mathbb{O}
\end{array}\right] G^{-1}=U^{*}\left[\begin{array}{c}
I_{r} \\
\mathbb{O}
\end{array}\right]\left[\begin{array}{ll}
I_{r}, & \mathbb{O}
\end{array}\right] G^{-1},
$$

which means

$$
P=U^{*}\left[\begin{array}{c}
I_{r} \\
\mathbb{O}
\end{array}\right]=U^{\left.*\right|^{r}}, \quad Q=\left[\begin{array}{ll}
I_{r}, & \mathbb{O}
\end{array}\right] G^{-1}=G^{-1}{ }_{\mid r}
$$

$\left(G_{7}\right) \quad$ It is easy to see that $\left(T_{7}\right)$ implies

$$
A=U^{*}\left[\begin{array}{ll}
B & \mathbb{O} \\
\mathbb{O} & \mathbb{O}
\end{array}\right] V^{*}=U^{*}\left[\begin{array}{l}
B \\
\mathbb{O}
\end{array}\right]\left[\begin{array}{ll}
I_{r}, & \mathbb{O}] V^{*} .
\end{array}\right.
$$

Thus,

$$
P=U^{*}\left[\begin{array}{l}
B \\
\mathbb{O}
\end{array}\right]=U^{* / r} B, \left.\quad Q=\left[\begin{array}{ll}
I_{r}, & \mathbb{O}
\end{array}\right] V^{*}=V^{*} \right\rvert\, r,
$$

which means

$$
P^{*}=B^{*} U_{\mid r}, \quad Q^{*}=V^{\mid r} .
$$

$\left(G_{10 a}\right) \quad$ From $\left(T_{10 a}\right)$ we obtain

$$
A=E^{*}\left[\begin{array}{cc}
A_{11} & A_{11} T \\
S A_{11} & S A_{11} T
\end{array}\right] F^{*}=E^{*}\left[\begin{array}{c}
I_{r} \\
S
\end{array}\right] A_{11}\left[\begin{array}{ll}
I_{r}, & T] F^{*},
\end{array}\right.
$$

which implies, for example, the following full rank factorization of A :

$$
P=E^{*}\left[\begin{array}{c}
I_{r} \\
S
\end{array}\right] A_{11}, \quad Q=\left[\begin{array}{ll}
I_{r}, & T
\end{array}\right] F^{*} .
$$

Now,

$$
A^{\dagger}=F\left[\begin{array}{l}
I_{r}, \\
T^{*}
\end{array}\right]\left(\begin{array}{ll}
\left.A_{11}^{*}\left[\begin{array}{ll}
I_{r}, & S^{*}
\end{array}\right] \operatorname{EAF}\left[\begin{array}{l}
I_{r}, \\
T^{*}
\end{array}\right]\right)^{-1} A_{11}^{*}\left[\begin{array}{ll}
I_{r}, & S^{*}
\end{array}\right] E
\end{array}\right.
$$

The proof can be completed using

$$
E A F=\left[\begin{array}{c}
I_{r} \\
S
\end{array}\right] A_{11}\left[\begin{array}{ll}
I_{r}, & T
\end{array}\right]
$$

Remarks 2.1. (i) A convenient method for finding the matrices S, T and A_{11}^{-1}, required in ($T_{10 a}$) was introduced in [8], and it was based on the following extended Gauss-Jordan transformation:

$$
\left[\begin{array}{lll}
A_{11} & A_{12} & I \\
A_{21} & A_{22} & \mathbb{O}
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
I & T & A_{11}^{-1} \\
\mathbb{O} & \mathbb{O} & -S
\end{array}\right] .
$$

(ii) In [3] it was used the following full-rank factorization of A, derived from $A=\left[\begin{array}{cc}A_{11} & A_{12} \\ A_{21} & A_{21} A_{11}^{-1} A_{12}\end{array}\right]$:

$$
P=\left[\begin{array}{l}
A_{11} \\
A_{21}
\end{array}\right], \quad Q=\left[\begin{array}{ll}
I_{r}, & A_{11}^{-1} A_{12}
\end{array}\right]
$$

3. Determinantal representation

In the following definition are generalized concepts of determinant, algebraic complement, adjoint matrix and determinantal representation of generalized inverses. (see also [14].)
Definition 3.1. Let A be $m \times n$ matrix of rank r.
(i) The generalized determinant of A, denoted by $N_{r}(A)$, is equal to

$$
N_{r}(A)=\sum_{\alpha, \beta}\left|\bar{A}_{\beta}^{\alpha}\right|\left|A_{\beta}^{\alpha}\right|,
$$

(ii) Generalized algebraic complement of A corresponding to $a_{i j}$ is

$$
A_{i j}^{\dagger}=\sum_{\alpha: j \in \alpha ; \beta: i \in \beta}\left|\bar{A}_{\beta}^{\alpha}\right| \frac{\partial}{\partial a_{j i}}\left|A_{\beta}^{\alpha}\right| .
$$

(iii) Generalized adjoint matrix of A, denoted by $\operatorname{adj}^{\dagger}(A)$ is the matrix whose elements are $A_{i j}^{\dagger}$.

For full-rank matrix A the following results can be proved:
Lemma 3.1. [14] If A is an $m \times n$ matrix of full-rank, then:
(i) $N_{r}(A)= \begin{cases}\left|A A^{*}\right|, & r=m \\ \left|R^{*} A\right|, & r=n .\end{cases}$
(ii) $A_{i j}^{\dagger}= \begin{cases}\left(A^{*} \operatorname{adj}\left(A A^{*}\right)\right)_{i j}, & r=m \\ \left(\operatorname{adj}\left(A^{*} A\right) A^{*}\right)_{i j}, & r=n .\end{cases}$
(iii) $A^{\dagger}= \begin{cases}A^{*}\left(A A^{*}\right)^{-1}, & r=m \\ \left(A^{*} A\right)^{-1} A^{*}, & r=n .\end{cases}$
(iv) $\operatorname{adj}^{\dagger}(A)= \begin{cases}A^{*} \operatorname{adj}\left(A A^{*}\right), & r=m \\ \operatorname{adj}\left(A^{*} A\right) A^{*}, & r=n .\end{cases}$

Main properties of the generalized adjoint matrix, generalized algebraic complement and generalized determinant are investigated in [14].

Lemma 3.2. [14] If $A=P Q$ is a full-rank factorization of an $m \times n$ matrix A of rank r, then
(i) $\operatorname{adj}^{\dagger}(Q) \cdot \operatorname{adj}^{\dagger}(P)=\operatorname{adj}^{\dagger}(A)$;
(ii) $N_{r}(Q) \cdot N_{r}(P)=N_{r}(P) \cdot N_{r}(Q)=N_{r}(A)$;

From Lemma 3.1 and Lemma 3.2 we obtain an elegant proof for the determinantal representation of the Moore-Penrose inverse.

Theorem 3.1. Let A be an $m \times n$ matrix of rank r, and $A=P Q$ be its fullrank factorization. The Moore-Penrose inverse of A posseses the followig determinantal representation:

$$
a_{i j}^{\dagger}=\frac{\sum_{\alpha: j \in \alpha ; \beta: i \in \beta}\left|\bar{A}_{\beta}^{\alpha}\right| \frac{\partial}{\partial a_{j i}}\left|A_{\beta}^{\alpha}\right|}{\sum_{\gamma, \delta}\left|\bar{A}_{\delta}^{\gamma}\right|\left|A_{\delta}^{\gamma}\right|}
$$

Proof. Using $A^{\dagger}=Q^{\dagger} P^{\dagger}[3]$ and the results of Lemma 3.1 and Lemma 3.2, we obtain:

$$
\begin{aligned}
A^{\dagger} & =Q^{\dagger} P^{\dagger}=Q^{*}\left(Q Q^{*}\right)^{-1}\left(P^{*} P\right)^{-1} P^{*}=\frac{Q^{*} \operatorname{adj}\left(Q Q^{*}\right)}{\left|Q Q^{*}\right|} \frac{\operatorname{adj}\left(P^{*} P\right) P^{*}}{\left|P^{*} P\right|}= \\
& =\frac{\operatorname{adj}^{\dagger}(Q) \operatorname{adj}^{\dagger}(P)}{N_{r}(Q) N_{r}(P)}=\frac{\operatorname{adj}^{\dagger}(A)}{N_{r}(A)} .
\end{aligned}
$$

4. Examples

Example 4.1. Block decomposition $\left(T_{1}\right)$ can be obtained by applying transformation $\left(T_{3}\right)$ two times:

$$
\begin{gathered}
R_{1} A F_{1}=\left[\begin{array}{cc}
I_{r} & K \\
\mathbb{O} & \mathbb{O}
\end{array}\right]=N_{3}, \\
R_{2} N_{3}^{T} F_{2}=\left[\begin{array}{cc}
I_{r} & \mathbb{O} \\
\mathbb{O} & \mathbb{O}
\end{array}\right]=N_{1} .
\end{gathered}
$$

Then, the regular matrices R, G can be computed as follows:

$$
N_{1}=N_{1}^{T}=F_{2}^{T} N_{3} R_{2}^{T}=F_{2}^{T} R_{1} A F_{1} R_{2}^{T} \Rightarrow R=F_{2}^{T} R_{1}, \quad G=F_{1} R_{2}^{T}
$$

For the matrix $A=\left(\begin{array}{rrrrr}-1 & 1 & 3 & 5 & 7 \\ 1 & 0 & -2 & 0 & 4 \\ 1 & 1 & -1 & 5 & 15 \\ -1 & 2 & 4 & 10 & 18\end{array}\right)$ we obtain

$$
\begin{gathered}
R_{1}=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
-1 & -2 & 1 & 0 \\
-2 & -1 & 0 & 1
\end{array}\right), \quad F_{1}=I_{5} \\
R_{2}=\left(\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
2 & -1 & 1 & 0 & 0 \\
0 & -5 & 0 & 1 & 0 \\
-4 & -11 & 0 & 0 & 1
\end{array}\right), \quad F_{2}=I_{4}
\end{gathered}
$$

From $R=R_{1}, G=R_{2}^{T}$, we get

$$
R^{-1^{\mid 2}}=\left(\begin{array}{rr}
-1 & 1 \\
1 & 0 \\
1 & 1 \\
-1 & 2
\end{array}\right), \quad G^{-1}{ }_{\mid 2}=\left(\begin{array}{rrrrr}
1 & 0 & -2 & 0 & 4 \\
0 & 1 & 1 & 5 & 11
\end{array}\right)
$$

Using formula $\left(G_{1}\right)$, we obtain

$$
A^{\dagger}=\left(\begin{array}{rrrc}
-\frac{169}{6720} & \frac{67}{2240} & \frac{233}{6720} & -\frac{137}{6720} \\
\frac{1}{128} & -\frac{1}{128} & -\frac{1}{128} & \frac{1}{128} \\
\frac{781}{13440} & -\frac{330}{4480} & -\frac{1037}{13440} & \frac{653}{13440} \\
\frac{5}{128} & -\frac{5}{128} & -\frac{5}{128} & \frac{5}{128} \\
-\frac{197}{13440} & \frac{151}{4480} & \frac{709}{13440} & \frac{59}{13440}
\end{array}\right) .
$$

Example 4.2. For the matrix $A=\left(\begin{array}{rrrr}-1 & 0 & 1 & 2 \\ -1 & 1 & 0 & -1 \\ 0 & -1 & 1 & 3 \\ 0 & 1 & -1 & -3 \\ 1 & -1 & 0 & 1 \\ 1 & 0 & -1 & -2\end{array}\right)$ we obtain

$$
A_{11}^{-1}=\left(\begin{array}{ll}
-1 & 0 \\
-1 & 1
\end{array}\right), \quad S=\left(\begin{array}{rr}
1 & -1 \\
-1 & 1 \\
0 & -1 \\
-1 & 0
\end{array}\right), \quad T=\left(\begin{array}{ll}
-1 & -2 \\
-1 & -3
\end{array}\right)[5]
$$

Using $\left(G_{10 a}\right)$ we obtain

$$
A^{\dagger}=\left(\begin{array}{rrrrrr}
-\frac{5}{34} & -\frac{3}{17} & \frac{1}{34} & -\frac{1}{34} & \frac{3}{17} & \frac{5}{34} \\
\frac{4}{51} & \frac{13}{102} & -\frac{5}{102} & \frac{5}{102} & -\frac{13}{102} & -\frac{4}{51} \\
\frac{7}{102} & \frac{5}{102} & \frac{1}{51} & -\frac{1}{51} & -\frac{5}{102} & -\frac{7}{102} \\
\frac{1}{17} & -\frac{1}{34} & \frac{3}{34} & -\frac{3}{34} & \frac{1}{34} & -\frac{1}{17}
\end{array}\right) .
$$

Example 4.3. For the matrix $A=\left(\begin{array}{rrrr}4 & -1 & 1 & 2 \\ -2 & 2 & 0 & -1 \\ 6 & -3 & 1 & 3 \\ -10 & 4 & -2 & -5\end{array}\right)$ we obtain

$$
R=\left(\begin{array}{rrrr}
-1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 \\
2 & -1 & 0 & 1
\end{array}\right), \quad T_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad T_{2}=\left(\begin{array}{ll}
-1 & -2 \\
-1 & -3
\end{array}\right), \quad F=I_{4}
$$

Then, the following results can be obtained:

$$
\left(R^{-1^{\mid r}} T_{1}\right)^{*}=\left(\begin{array}{rrrr}
-1 & -1 & 0 & 1 \\
0 & 1 & -1 & 1
\end{array}\right), \quad R^{*}\left[\begin{array}{c}
I_{r} \\
\left(T_{1}^{-1} T_{2}\right)^{*}
\end{array}\right]=\left(\begin{array}{rr}
-4 & -6 \\
1 & 3 \\
-1 & -1 \\
-2 & -3
\end{array}\right)
$$

Finally, using $\left(G_{11}\right)$, we get

$$
A^{\dagger}=\left(\begin{array}{cccc}
\frac{8}{81} & \frac{10}{81} & -\frac{2}{81} & -\frac{2}{27} \\
\frac{47}{162} & \frac{79}{162} & -\frac{16}{81} & -\frac{5}{54} \\
\frac{7}{54} & \frac{11}{54} & -\frac{2}{27} & -\frac{1}{18} \\
\frac{4}{81} & \frac{5}{81} & -\frac{1}{81} & -\frac{1}{27}
\end{array}\right) .
$$

References

[1] Arghiriade, E. e Dragomir, A., Une nouvelle definition de l'inverse generalisee d'une matrice, Rendiconti dei Lincei, serir XIII Sc. fis. mat. e nat. 35 (1963), 158-165.
[2] Bapat, R.B.; Bhaskara, K.P.S. and Manjunatha Prasad, K., Generalized inverses over integral domains, Linear Algebra Appl. 140 (1990), 181-196.
[3] Ben-Israel, A. and Grevile, T.N.E., Generalized inverses: Theory and applications, Wiley-Interscience, New York, 1974.
[4] Gabriel, R., Das Verallgemeinerte Inverse einer Matrix ü ber einem beliebigen Körper - analytish betrachtet, J. Rewie Ansew Math. 244(V) (1968), 83-93.
[5] Gabriel, R., Extinderea complementilor algebrici generalizati la matrici oarecare, Studii si Cercetari Matematice 17 -Nr. 10 (1965), 1566-1581.
[6] Gabriel, R., Das allgemeine element des Verallgemeinerte Inverse von Moore-Penrose, Rev. Roum. Math. Pures Appl. 37 No 6 (1982), 689-702.
[7] Lancaster, P. and Tismenetsky, M., The Theory of Matrices with Applications, Academic Press, 1985.
[8] Noble, P., A methods for computing the generalized inverse of a matrix, SIAM J. Numer. Anal. 3 (1966), 582-584.
[9] Penrose, R., A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406-413.
[10] Penrose R., On best approximate solution of linear matrix equations, Proc. Cambridge Philos. Soc. 52 (1956), 17-19.
[11] Robert, P., On the Group inverse of a linear transformation, J. Math. Anal. Appl. 22 (1968), 658-669.
[12] Stanimirović, P. and Stanković, M., Generalized algebraic complement and MoorePenrose inverse, Filomat 8 (1994), 57-64.
[13] Stanimirović, P. and Stanković, M., Determinantal representation of weighted Moo-re-Penrose inverse, Matematički Vesnik 46 (1994), 41-50.
[14] Stanimirović, P. and Stanković, M., Determinantal representation of generalized inverses over integral domains, Filomat 9:3 (1995), 931-940.
[15] Tewarson, R.P., A direct method for generalized matrix inversion, SIAM J. Numer. Anal. 4 No 4 (1967), 499-507.
[16] Zielke, G., A survey of generalized matrix inverse, Banach Center Publication 13 (1984), 499-526.
[17] Zielke, G., Die Auflösung beliebiger linearer algebraisher Gleichungssysteme durch Blockzerlegung, Beiträge zur Numerischen Mathematik 8 (1980), 181-199.
[18] Zielke, G., Motivation und Darstellung von verallgemeinerten Matrixinversen, Beiträge zur Numerischen Mathematik 7 (1979), 177-218.
[19] Zlobec, S., An explicit form of the Moore-Penrose inverse of an arbitrary complex matrix, SIAM Rev. 12 (1970), 132-134.

Department of Mathematics, Faculty of Electronic Engineering, P.O.Box 73, Beogradska 14,18000 Niš

University of Niš, Faculty of Philosophy, Departement of Mathematics, Ćirila i Metodija 2, 18000 Niš

[^0]: 1991 Mathematics Subject Classification. 15A09, 15A24.

