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Abstract. In this paper we develop a few representations of the Moore-

Penrose inverse, based on full-rank factorizations of matrices. These rep-

resentations we divide into the two different classes: methods which arise

from the known block decompositions and determinantal representation. In

particular cases we obtain several known results.

1. Introduction

The set of m×n complex matrices of rank r is denoted by C
m×n
r = {X ∈

C
m×n : rank(X) = r}. With A|r and A|r we denote the first r columns of

A and the first r rows of A, respectively. The identity matrix of the order k
is denoted by Ik, and O denotes the zero block of an appropriate dimensions.

We use the following useful expression for the Moore-Penrose generalized
inverse A†, based on the full-rank factorization A = PQ of A [1-2]:

A† = Q†P † = Q∗(QQ∗)−1(P ∗P )−1P ∗ = Q∗(P ∗AQ∗)−1P ∗.

We restate main known block decompositions [7], [16-18]. For a given
matrix A ∈ C

m×n
r there exist regular matrices R, G, permutation matrices

E, F and unitary matrices U , V , such that:
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(T1) RAG =

[

Ir O

O O

]

= N1, (T2) RAG =

[

B O

O O

]

= N2,

(T3) RAF =

[

Ir K

O O

]

= N3, (T4) EAG =

[

Ir O

K O

]

= N4,

(T5) UAG =

[

Ir O

O O

]

= N1, (T6) RAV =

[

Ir O

O O

]

= N1,

(T7) UAV =

[

B O

O O

]

= N2, (T8) UAF =

[

B K

O O

]

= N5,

(T9) EAV =

[

B O

K O

]

= N6,

(T10) EAF =

[

A11 A12

A21 A22

]

= N7, where rank(A11)=rank(A).

(T11) Transformation of similarity for square matrices [11]:

RAR−1 = RAFF ∗R−1 =

[

Ir K

O O

]

F ∗R−1 =

[

T1 T2

O O

]

.

The block form (T10) can be expressed in two different ways:

(T10a) EAF =

[

A11 A11T

SA11 SA11T

]

, where the multipliers S and T satisfy

T = A−1
11 A12, S = A21A

−1
11 (see [8]);

(T10b) EAF =

[

A11 A12

A21 A22

]

=

[

A11 A12

A21 A21A
−1
11 A12

]

(see [9]).

Block representations of the Moore-Penrose inverse is investigated in [8],
[11], [15–19]. In [16], [18] the results are obtained by solving the equations
(1)–(4). In [15], [8] the corresponding representations are obtained using the
block decompositions (T10a) and (T10b) and implied full-rank factorizations.

Also, in [19] is introduced block representation of the Moore-Penrose in-
verse, based on A† = A∗TA∗, where T ∈ A∗AA∗{1}.

Block decomposition (T11) is investigated in [11], but only for square
matrices and the group inverse.

The notion determinantal representation of the Moore-Penrose inverse of
A means representation of elements of A† in terms of minors of A. Deter-
minantal representation of the Moore-Penrose inverse is examined in [1–2],
[4–6], [12–14]. For the sake of completeness, we restate here several nota-
tions and the main result. For an m × n matrix A let α = {α1, . . . , αr}
and β = {β1, . . . , βr} be subsets of {1, . . . ,m} and {1, . . . , n}, respectively.
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Then A
(

α1 ... αr

β1 ... βr

)

= |Aα
β | denotes the minor of A determined by the rows

indexed by α and the columns indexed by β, and Aα
β represents the corre-

sponding submatrix. Also, the algebraic complement of Aα
β is defined by

∂

∂aij
|Aα

β |=Aij

(

α1 ... αp−1 i αp+1 ... αr

β1 ... βq−1 j βq+1 ... βr

)

=(−1)p+qA
(

α1 ... αp−1 αp+1 ... αr

β1 ... βq−1 βq+1 ... βr

)

.

Adjoint matrix of a square matrix B is denoted by adj(B), and its deter-
minant by |B|.

Determinantal representation of full rank matrices is introuced in [1], and
for full-rank matrices in [4–6]. In [12–14] is introduced an elegant derivation
for determinantal representation of the Moore-Penrose inverse, using a full-
rank factorization and known results for full-rank matrices. Main result of
these papers is:

Proposition 1.1. The (i, j)th element of the Moore-Penrose inverse G =
(gij) of A ∈ C

m×n
r is given by

gij =

∑

α:j∈α ; β:i∈β

∣

∣A
α

β

∣

∣

∂

∂aji
|Aα

β |

∑

γ,δ

|A
γ

δ | |A
γ
δ |

.

In this paper we investigate two different representations of the Moore-
Penrose inverse. The first class of representations is a continuation of the
papers [8] and [15]. In other words, from the presented block factorizations of
matrices find corresponding full-rank decompositions A = PQ, and then ap-
ply A† = Q∗(P ∗AQ∗)−1P ∗. In the second representation, A† is represented
in terms of minors of the matrix A. In this paper we describe an elegant
proof of the well-known determinantal representation of the Moore-Penrose
inverse. Main advantages of described block representations are their simply
derivation and computation and possibility of natural generalization. Deter-
minantal representation of the Moore-Penrose inverse can be implemented
only for small dimensions of matrices (n ≤ 10).

2. Block representation

Theorem 2.1. The Moore-Penrose inverse of a given matrix A ∈ C
m×n
r

can be represented as follows, where block representations (Gi) correspond to

the block decompositions (Ti), i ∈ {1, . . . , 9, 10a, 10b, 11}:

(G1) A† =
(

G−1
|r

)∗
((

R−1|r
)∗

A
(

G−1
|r

)∗
)−1 (

R−1|r
)∗

,
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(G2) A† =
(

G−1
|r

)∗
((

R−1|rB
)∗

A
(

G−1
|r

)∗
)−1 (

R−1|rB
)∗

,

(G3) A† = F

[

Ir
K∗

](

(

R−1
|r
)∗

AF

[

Ir
K∗

])−1
(

R−1
|r
)∗

,

(G4) A† =
(

G−1
|r

)∗
(

[ Ir, K∗ ]EA
(

G−1
|r

)∗
)−1

[ Ir, K∗ ]E,

(G5) A† =
(

G−1
|r

)∗
(

U|rA
(

G−1
|r

)∗
)−1

U|r,

(G6) A† = V |r
((

R−1|r
)∗

AV |r
)−1 (

R−1|r
)∗

,

(G7) A† = V |r
(

B∗U|rAV
|r
)−1

B∗U|r,

(G8) A† = F

[

B∗

K∗

](

U|rAF

[

B∗

K∗

])−1

U|r,

(G9) A† = V |r
(

[B∗, K∗ ]EAV |r
)−1

[B∗, K∗ ]E,

(G10a) A† = F

[

Ir
T ∗

](

A∗
11 [ Ir, S∗ ]EAF

[

Ir
T ∗

])−1

A∗
11 [ Ir, S∗ ]E

= F

[

Ir
T ∗

]

(Ir + TT ∗)−1A−1
11 (Ir + S∗S)−1 [ Ir, S∗ ]E,

(G10b) A
†=F

[

A∗
11

A∗
12

](

(A∗
11)

−1
[A∗

11, A∗
21]EAF

[

A∗
11

A∗
12

])−1

(A∗
11)

−1[A∗
11, A∗

21]E

=F

[

A∗
11

A∗
12

]

(A11A
∗
11+A12A

∗
12)

−1
A11(A

∗
11A11+A∗

21A21)
−1
[A∗

11, A∗
21]E,

(G11) A†=R∗

[

Ir
(

T−1
1 T2

)∗

](

(

R−1|rT1

)∗

AR∗

[

Ir
(

T−1
1 T2

)∗

])−1
(

R−1|rT1

)∗

.

Proof. (G1) Starting from (T1), we obtain

A = R−1

[

Ir O

O O

]

G−1 = R−1

[

Ir
O

]

[ Ir, O ]G−1,

which implies

P = R−1

[

Ir
O

]

= R−1
|r

, Q = [ Ir, O ]G−1 = G−1
|r.

Now, we get

A† = Q∗ (P ∗AQ∗)−1
P ∗ =

(

G−1
|r

)∗
((

R−1
|r
)∗

A
(

G−1
|r

)∗
)−1 (

R−1
|r
)∗

.
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The other block decompositions can be obtained in a similar way.

(G5) Block decomposition (T5) implies

A = U∗

[

Ir O

O O

]

G−1 = U∗

[

Ir
O

]

[ Ir, O ]G−1,

which means

P = U∗

[

Ir
O

]

= U∗|r

, Q = [ Ir, O ]G−1 = G−1
|r.

(G7) It is easy to see that (T7) implies

A = U∗

[

B O

O O

]

V ∗ = U∗

[

B

O

]

[ Ir, O ]V ∗.

Thus,

P = U∗

[

B

O

]

= U∗|r

B, Q = [ Ir, O ]V ∗ = V ∗
|r,

which means

P ∗ = B∗U|r, Q∗ = V |r.

(G10a) From (T10a) we obtain

A = E∗

[

A11 A11T

SA11 SA11T

]

F ∗ = E∗

[

Ir
S

]

A11 [ Ir, T ]F ∗,

which implies, for example, the following full rank factorization of A:

P = E∗

[

Ir
S

]

A11, Q = [ Ir, T ]F ∗.

Now,

A† = F

[

Ir,

T ∗

](

A∗
11 [ Ir, S∗ ]EAF

[

Ir,

T ∗

])−1

A∗
11 [ Ir, S∗ ]E.

The proof can be completed using

EAF =

[

Ir
S

]

A11 [ Ir, T ] . �

Remarks 2.1. (i) A convenient method for finding the matrices S, T and A−1
11 ,

required in (T10a) was introduced in [8], and it was based on the following
extended Gauss-Jordan transformation:
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[

A11 A12 I

A21 A22 O

]

→

[

I T A−1
11

O O −S

]

.

(ii) In [3] it was used the following full-rank factorization of A, derived

from A =

[

A11 A12

A21 A21A
−1
11 A12

]

:

P =

[

A11

A21

]

, Q = [ Ir, A−1
11 A12 ] .

3. Determinantal representation

In the following definition are generalized concepts of determinant, alge-
braic complement , adjoint matrix and determinantal representation of gen-
eralized inverses. (see also [14].)

Definition 3.1. Let A be m× n matrix of rank r.

(i) The generalized determinant of A, denoted by Nr(A), is equal to

Nr(A) =
∑

α,β

∣

∣A
α

β

∣

∣ |Aα
β | ,

(ii) Generalized algebraic complement of A corresponding to aij is

A
†
ij =

∑

α:j∈α;β:i∈β

∣

∣A
α

β

∣

∣

∂

∂aji
|Aα

β | .

(iii) Generalized adjoint matrix of A, denoted by adj†(A) is the matrix

whose elements are A
†
ij .

For full-rank matrix A the following results can be proved:

Lemma 3.1. [14] If A is an m× n matrix of full-rank, then:

(i) Nr(A) =

{

|AA∗ | , r = m

|R∗A | , r = n.

(ii) A
†
ij =

{

(A∗ adj(AA∗))ij , r = m

( adj(A∗A)A∗)ij , r = n.

(iii) A† =

{

A∗(AA∗)−1, r = m

(A∗A)−1A∗, r = n.

(iv) adj†(A) =

{

A∗ adj(AA∗), r = m

adj(A∗A)A∗, r = n.

Main properties of the generalized adjoint matrix , generalized algebraic

complement and generalized determinant are investigated in [14].
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Lemma 3.2. [14] If A = PQ is a full-rank factorization of an m×n matrix

A of rank r, then

(i) adj†(Q) · adj†(P ) = adj†(A);

(ii) Nr(Q) ·Nr(P ) = Nr(P ) ·Nr(Q) = Nr(A);

From Lemma 3.1 and Lemma 3.2 we obtain an elegant proof for the
determinantal representation of the Moore-Penrose inverse.

Theorem 3.1. Let A be an m×n matrix of rank r, and A = PQ be its full-

rank factorization. The Moore-Penrose inverse of A posseses the followig

determinantal representation:

a
†
ij =

∑

α:j∈α ; β:i∈β

∣

∣A
α

β

∣

∣

∂

∂aji
|Aα

β |

∑

γ,δ

|A
γ

δ | |A
γ
δ |

.

Proof. Using A† = Q†P † [3] and the results of Lemma 3.1 and Lemma 3.2,
we obtain:

A† = Q†P † = Q∗(QQ∗)−1(P ∗P )−1P ∗ =
Q∗ adj(QQ∗)

|QQ∗ |

adj(P ∗P )P ∗

|P ∗P |
=

=
adj†(Q) adj†(P )

Nr(Q)Nr(P )
=

adj†(A)

Nr(A)
. �

4. Examples

Example 4.1. Block decomposition (T1) can be obtained by applying trans-
formation (T3) two times:

R1AF1 =

[

Ir K

O O

]

= N3,

R2N
T
3 F2 =

[

Ir O

O O

]

= N1.

Then, the regular matrices R, G can be computed as follows:

N1 = NT
1 = FT

2 N3R
T
2 = FT

2 R1AF1R
T
2 ⇒ R = FT

2 R1, G = F1R
T
2 .

For the matrix A =





−1 1 3 5 7
1 0 −2 0 4
1 1 −1 5 15

−1 2 4 10 18



 we obtain
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R1 =





0 1 0 0
1 1 0 0

−1 −2 1 0
−2 −1 0 1



 , F1 = I5,

R2 =







1 0 0 0 0
0 1 0 0 0
2 −1 1 0 0
0 −5 0 1 0

−4 −11 0 0 1






, F2 = I4.

From R = R1, G = RT
2 , we get

R−1|2 =





−1 1
1 0
1 1

−1 2



 , G−1
|2 =

(

1 0 −2 0 4
0 1 1 5 11

)

.

Using formula (G1), we obtain

A† =





















− 169
6720

67
2240

233
6720

− 137
6720

1
128

− 1
128

− 1
128

1
128

781
13440

− 330
4480

− 1037
13440

653
13440

5
128

− 5
128

− 5
128

5
128

− 197
13440

151
4480

709
13440

59
13440





















.

Example 4.2. For the matrix A =









−1 0 1 2
−1 1 0 −1
0 −1 1 3
0 1 −1 −3
1 −1 0 1
1 0 −1 −2









we obtain

A−1
11 =

(

−1 0
−1 1

)

, S =





1 −1
−1 1
0 −1

−1 0



 , T =
(

−1 −2
−1 −3

)

[5].

Using (G10a) we obtain

A† =















− 5
34

− 3
17

1
34

− 1
34

3
17

5
34

4
51

13
102

− 5
102

5
102

− 13
102

− 4
51

7
102

5
102

1
51

− 1
51

− 5
102

− 7
102

1
17

− 1
34

3
34

− 3
34

1
34

− 1
17















.
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Example 4.3. For the matrix A =





4 −1 1 2
−2 2 0 −1
6 −3 1 3

−10 4 −2 −5



 we obtain

R =





−1 0 0 0
−1 1 0 0
−1 1 1 0
2 −1 0 1



 , T1 =
(

1 0

0 1

)

, T2 =
(

−1 −2

−1 −3

)

, F = I4.

Then, the following results can be obtained:

(

R−1
|r
T1

)∗

=
(

−1 −1 0 1
0 1 −1 1

)

, R∗

[

Ir
(

T−1
1 T2

)∗

]

=





−4 −6
1 3

−1 −1
−2 −3



 .

Finally, using (G11), we get

A† =















8
81

10
81

− 2
81

− 2
27

47
162

79
162

− 16
81

− 5
54

7
54

11
54

− 2
27

− 1
18

4
81

5
81

− 1
81

− 1
27















.

References

[1] Arghiriade, E. e Dragomir, A., Une nouvelle definition de l’inverse generalisee d’une

matrice, Rendiconti dei Lincei, serir XIII Sc. fis. mat. e nat. 35 (1963), 158–165.

[2] Bapat, R.B.; Bhaskara, K.P.S. and Manjunatha Prasad, K., Generalized inverses

over integral domains, Linear Algebra Appl. 140 (1990), 181–196.

[3] Ben-Israel, A. and Grevile, T.N.E., Generalized inverses: Theory and applications,

Wiley-Interscience, New York, 1974.

[4] Gabriel, R., Das Verallgemeinerte Inverse einer Matrix ü ber einem beliebigen Kör-
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Ćirila i Metodija 2, 18000 Nǐs


