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A generalized Birkhoff–Young quadrature formula

GRADIMIR V. MILOVANOVIĆ and MILOLJUB ALBIJANIĆ

ABSTRACT. A generalized (4n+1)-point Birkhoff–Young quadrature of interpolatory type with the maximal
degree of precision for numerical integration of analytic functions is derived. An explicit form of the node
polynomial of such kind of quadratures is obtained. Special cases and an example are presented.

1. INTRODUCTION AND PRELIMINARIES

A quadrature formula for numerical integration of analytic functions in the complex
domain Ω =

{
z : |z − z0| ≤ r

}
, |h| ≤ r, over the line segment [z0 − h, z0 + h],

z0+h∫
z0−h

f(z)dz ≈ h

15

{
24f(z0) + 4

[
f(z0 + h) + f(z0 − h)

]
−
[
f(z0 + ih) + f(z0 − ih)

]}
,

was obtained by Birkhoff and Young [2]. This formula is exact for all algebraic polyno-
mials of degree at most five. Also, Young [22] proved that its error term can be estimated
by

|RBY5 (f)| ≤ |h|
7

1890
max
z∈S
|f (6)(z)|,

where S denotes the square with vertices z0 + ikh, k = 0, 1, 2, 3 (cf. [4, p. 136]). A similar
error estimate was obtained for the so-called extended Simpson rule, with nodes at the
points z0, z0 ± h, z0 ± 2h (cf. [18, p. 124]).

Without loss of generality, Lether [6] transformed the previous Birkhoff–Young fomula
from [z0 − h, z0 + h] to [−1, 1],

(1.1) I(f) =

∫ 1

−1
f(z)dz =

8

5
f(0) +

4

15

[
f(1) + f(−1)

]
− 1

15

[
f(i) + f(−i)

]
+R5(f),

and pointed out that the three point Gauss-Legendre quadrature which is also exact for
all polynomials of degree at most five, is more precise than (1.1), and therefore, he rec-
ommended it for numerical integration. However, Tošić [19] improved the quadrature
(1.1) in a simple way taking its nodes at the points ±r and ±ir, with r ∈ (0, 1), instead of
±1 and ±i, respectively, and derived an one-parametric family of quadrature rules in the
form

I(f) = 2

(
1− 1

5r4

)
f(0) +

(
1

6r2
+

1

10r4

)[
f(r) + f(−r)

]
+

(
− 1

6r2
+

1

10r4

)[
f(ir) + f(−ir)

]
+RT5 (f ; r).
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It is clear that for r = 1 it reduces to (1.1) and for r =
√

3/5 to the three point Gauss-
Legendre formula. Moreover, expanding the error-term RT5 (f ; r) in the form

RT5 (f ; r) =

(
− 2

3 · 6!
r4 +

2

7!

)
f (6)(0) +

(
− 2

5 · 8!
r4 +

2

9!

)
f (8)(0) + · · · ,

and putting r = 4
√

3/7 in order to vanish the first term, Tošić [19] obtained a five-point
formula of algebraic degree of precision seven, with the error-term

RMF
5 (f) = RT5 (f ; 4

√
3/7) ≈ 1.26 · 10−6f (8)(0).

Tošić’s formula was extended by Milovanović and D- ord-ević [16] to the following nine-
point quadrature rule of interpolatory type

I(f) = Af(0) +B
[
f(x1) + f(−x1)

]
+ C

[
f(ix1) + f(−ix1)

]
+D

[
f(x2) + f(−x2)

]
+ E

[
f(ix2) + f(−ix2)

]
+R9(f ;x1, x2),

with 0 < x1 < x2 < 1. Taking

x1 = x∗1 =
4

√
63− 4

√
114

143
and x2 = x∗2 =

4

√
63 + 4

√
114

143
,

this formula has the algebraic precision d = 13, with the error-term

R9(f ;x∗1, x
∗
2) ≈ 3.56 · 10−14f (14)(0).

This kind of quadrature formulae for analytic functions have been investigated in sev-
eral papers in different directions (cf. [1], [7], [8], [11], [12], [14]). These formulas can also
be used to integrate real harmonic functions (see [2]). In addition, we mention also that
Lyness and Moler [9], and later Tošić [20] and Tošić and ElBahi [21] developed formulae
for numerical differentiation of complex functions.

In this paper we consider a generalized N -point interpolatory quadrature formula for
numerical integration of analytic function

(1.2) I(f) :=

∫ 1

−1
f(z)dz = QN (f) +RN (f),

where N = 4n+ 1 (n ∈ N) and the corresponding quadrature sum QN (f) has the form

(1.3) QN (f) = A0f(0) +

n∑
k=1

{
Ak
[
f(xk) + f(−xk)

]
+Bk

[
f(ixk) + f(−ixk)

]}
,

with nodes at the zeros of a monic polynomial of degree N = 4n+ 1,

(1.4) ωN (z) = zpn(z4) = z

n∏
k=1

(z4 − rk), 0 < r1 < · · · < rn < 1,

i.e., xk = 4
√
rk, k = 1, . . . , n. RN (w; f) is the corresponding remainder term.

Notice that the (4n+ 1)-point interpolatory quadrature formula of the form (1.2)–(1.3)
has degree of precision at least 4n for any distribution of the nodes rk, k = 1, . . . , n, in
(1.4). Precisely, it is one degree more, i.e., 4n+ 1, because this formula is exact for all odd
functions.

Our aim is to develop quadrature formulas of type (1.2)–(1.3), with the maximal degree
of precision, for arbitrary n ∈ N. In this way, we will generalize results from [19] (n = 1)

and [16] (n = 2). The corresponding quadrature sums will be denoted by Q̂4n+1(f).
The paper is organized as follows. The existence and uniquenes of quadrature formula

Q̂4n+1(f), with the maximal degree of precision, as well as an explicit form of its node
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polynomial, in notation ω̂4n+1(z) = zp̂n(z4), are proved in Section 2. Numerical construc-
tion of weight coefficients and some error estimates are presented in Section 3. Finally, a
few special cases and a numerical example are presented in Section 4.

2. NUMERICAL CONSTRUCTION OF QUADRATURE FORMULAS

The following theorem gives a characterization of the quadrature formula (1.2) with a
maximal degree of precision.

Theorem 2.1. For each n ∈ N there exists the unique interpolatory quadrature formula Q̂4n+1(f)
of the form (1.3), with the maximal degree of precision dmax = 6n + 1. The nodes of such a
quadrature are zeros of the polynomial ω̂4n+1(z) = zp̂n(z4), where

(2.5) p̂n(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 (an = 1),

with coefficients which satisfy the following system of linear equations

(2.6)



1

3

1

7
. . .

1

4n− 1

1

5

1

9

1

4n+ 1
...

1

2n+ 1

1

2n+ 5

1

6n− 3





a0

a1

...

an−1


= −



1

4n+ 3

1

4n+ 5
...

1

6n+ 1


.

Proof. We start with quadrature sum (1.3), with N = 4n + 1 simple nodes at the points 0,
±xk, ±ixk, k = 1, . . . , n. Such a quadrature of interpolatory type is exact for polynomials
of degree at least 4n for any distribution of zeros rk, k = 1, . . . , n, in (1.4), as well as
for all odd polynomials of arbitary degree. Therefore, according to n free parameters
rk, k = 1, . . . , n, in (1.4), we should provide that this quadrature rule be exact for even
polynomials z2j , with 4n < 2j ≤ 6n, i.e., 2n < j ≤ 3n. As we will prove, this expectation
is possible, so that the maximal degree of precision will be dmax = 6n+ 1.

In the sequel we use the following notation x4k = rk, Ak + Bk = Ck, Ak − Bk = Dk,
k = 1, . . . , n, as well as

µ2j =
1

2

∫ 1

−1
z2jdz =

1

2j + 1
, j = 0, 1, . . . .

Suppose that the maximal degree of precision of our quadrature is dmax = 6n + 1, i.e.,
that this formula is exact for all monomials z2j , j = 0, 1, . . . , 3n. Thus,

2µ2j = A0δj,0 + 2

n∑
k=1

(
Ak + (−1)jBk

)
x2jk , j = 0, 1, . . . , 3n,

where δj,0 is Kronecker’s delta.
According to the previous introduced notations, this system of equations can be dev-

ided into three parts:

1◦ For j = 0

(2.7)
1

2
A0 +

n∑
k=1

Ck = 1;
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2◦ For odd j (= 2m− 1)

(2.8)
n∑
k=1

Dkx
4m−2
k = µ4m−2, m = 1, . . . ,

[
3n+ 1

2

]
;

3◦ For even j (= 2m)

(2.9)
n∑
k=1

Ckx
4m
k = µ4m, m = 1, . . . ,

[
3n

2

]
.

Notice that
[

3n+ 1

2

]
+

[
3n

2

]
= 3n. From systems of equations (2.8) and (2.9), using

certain transformations, we can eliminate Dk and Ck, respectively. In this way, from pre-

vious systems of equations we obtain
[
n+ 1

2

]
and

[n
2

]
equations, with only unknowns

aj , j = 1, . . . , n, respectively. Their number is exactly
[
n+ 1

2

]
+
[n

2

]
= n.

The elimination process from the system (2.8) can be described in the following way. If
we multiply the m-th equation by a0, the (m+ 1)-st by a1, . . ., and the (m+n)-th equation
by an (= 1), and then sum up the resulting equations, we get

a0

n∑
k=1

Dkx
4m−2
k + a1

n∑
k=1

Dkx
4m+2
k + · · ·+ an−1

n∑
k=1

Dkx
4m+4n−6
k

+

n∑
k=1

Dkx
4m+4n−2
k =

n∑
j=0

ajµ4m+4j−2,

i.e.,
n∑
k=1

Dkx
4m−2
k

(
a0 + a1x

4
k + · · ·+ an−1x

4(n−1)
k + x4nk

)
=

n∑
j=0

µ4m+4j−2aj .

Using (2.5), the last equation becomes

(2.10)
n∑
k=1

Dkx
4m−2
k p̂(rk) =

n∑
j=0

µ4m+4j−2aj

and it is possible for each m = 1, . . . ,

[
n+ 1

2

]
.

In a similar way, by equations from (2.9), we get
[n

2

]
equations of the form

(2.11)
n∑
k=1

Ckr
m
k p̂(rk) =

n∑
j=0

µ4m+4jaj

and it is possible for each m = 1, . . . ,
[n

2

]
.

Since p̂n(rk) = 0, k = 1, . . . , n, the systems of equations (2.10) and (2.11) give a complete

system of
[
n+ 1

2

]
+
[n

2

]
= n equations,

(2.12)



n∑
j=0

µ4m+4j−2aj = 0, m = 1, . . . ,

[
n+ 1

2

]
,

n∑
j=0

µ4m+4jaj = 0, m = 1, . . . ,
[n

2

]
.
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Since an+1 = 1, this system of linear equations can be represented in the following form
(by taking equations from both of the systems for m = 1, then for m = 2, etc.)

µ2a0 + µ6a1 + · · ·+ µ4n−2an−1 = −µ4n+2,

µ4a0 + µ8a1 + · · · + µ4nan−1 = −µ4n+4,

...

µ2na0 + µ2n+4a1 + · · ·+ µ6n−4an−1 = −µ6n,

The last equation is obtained from the first system in (2.12) or from the second one, if n
is odd or even, respectively. This system of equations is the one given in the assertion of
this theorem, i.e., (2.6).

The existence of the unique quadrature formula Q̂4n+1(f), with the maximal degree
of precision dmax = 6n + 1, is guaranteed if the determinant ∆n of the matrix in (2.6) is
different from zero. In order to evaluate this determinant, we use Cauchy’s formula (cf.
Muir [17, p. 345])

det

[
1

αk + βj

]n
k,j=1

=

∏n
k>j=1(αk − αj)(βk − βj)∏n

k,j=1(αk + βj)
,

with αk = 2k and βj = 4j − 3. Then, after some computation, we find that

∆n = 2n(5n−3)/2
n−1∏
j=0

(n+ 2j)!(
2j
j

) n∏
j=1

(4j − 3)!

(2n+ 4j − 3)!
.

Thus, since ∆n 6= 0 (precisely, ∆n > 0), we conclude that the quadrature formula
Q̂4n+1(f) uniquely exists for each n ∈ N. �

According to this theorem, the polynomial p̂n(z) is determined by the solution of the
system of equations (2.6). Its zeros rk, k = 1, . . . , n, define nodes in the quadrature (1.3) of
the maximal degree of precision.

The following theorem gives an explict form of the polynomial p̂n(z).

Theorem 2.2. The coefficients of the polynomial p̂n(z), defined by (2.5) in Theorem 2.1, are

(2.13) aj = (−1)n−j
(
n

j

) (
2j + 3

2

)
2n−2j(

n+ 2j + 3
2

)
2n−2j

, j = 0, 1, . . . , n,

where (s)j is the standard notation for Pochhammer’s symbol

(s)j = s(s+ 1) · · · (s+ j − 1) =
Γ(s+ j)

Γ(s)
(Γ is the gamma function).

Proof. According to Theorem 2.1, the system of equations (2.6) has the unique solution.
Therefore, it is enough to show that the coefficients from (2.13) satisfy this system (2.6).

Thus, we need to prove that
n−1∑
j=0

aj
2k + 4j + 1

= − 1

4n+ 2k + 1
, k = 1, . . . , n,

i.e.,

Sn(k) :=

n∑
j=0

(
n

j

)
(−1)n−j

2k + 4j + 1
·

(
2j + 3

2

)
2n−2j(

n+ 2j + 3
2

)
2n−2j

= 0, k = 1, . . . , n.
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Since (
2j + 3

2

)
2n−2j(

n+ 2j + 3
2

)
2n−2j

=
Γ
(
2n+ 3

2

)
Γ
(
3n+ 3

2

) · Γ (n+ 2j + 3
2

)
Γ
(
2j + 3

2

) =

(
2j + 3

2

)
n(

2n+ 3
2

)
n

,

we have

Sn(k) =
(−1)n

2
(
2n+ 3

2

)
n

n∑
j=0

(−1)j
(
n

j

) (
2j + 3

2

)
n

2j + k + 1
2

.

We also note that for 1 ≤ k ≤ n, 2j+ k+ 1
2 is a factor of

(
2j + 3

2

)
n

, so that the last quotient
is a polynomial in j of degree n− 1, i.e.,(

2j + 3
2

)
n

2j + k + 1
2

=

n−1∑
ν=0

γνj
ν ,

where the coefficients γν depend, in general, on n and k.
Finally, using the identity (see Gould [5, p. 2, Formula (1.13)])

n∑
j=0

(−1)j
(
n

j

)
jk =

{
0, 0 ≤ k < n,

(−1)nn!, k = n,

we conclude that Sn(k) = 0, 1 ≤ k ≤ n. �

3. WEIGHT COEFFICIENTS AND ERROR ESTIMATE

Let QN (f) be a N -point quadrature of interpolation type with simple (in general com-
plex) nodes zj ∈ Z,

QN (f) =
∑
zj∈Z

Wjf(zj).

It can be obtained by an integration of the Lagrange polynomial constructed on Z, i.e.,

LN (f ; z) =
∑
zj∈Z

ωN (z)

(z − zj)ω′N (zj)
f(zj),

where ωN (z) is the node polynomial. The corresponding weight coefficients can be ex-
pressed in the form

(3.14) Wj =
1

ω′N (zj)

∫ 1

−1

ωN (z)

z − zj
dz.

In our caseN = 4n+1 and the quadrature nodes belong to the setZ = {0,±xk,±ixk, k =
1, . . . , n}, so that

ω̂4n+1(z) = z p̂n(z4), ω̂ ′4n+1(z) = pn(z4) + 4z4 p̂ ′n(z4).

The following assertion can be easily proved.
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Theorem 3.3. The weight coefficients in the quadrature formula Q̂4n+1(f), with the maximal
degree of precision d = 6n+ 1, are given by

A0 =
1

p̂n(0)

∫ 1

−1
p̂n(z4)dz,

Ak =
1

4rkp̂
′
n(rk)

∫ 1

−1

z2p̂n(z4)

z2 −√rk
dz, k = 1, . . . , n,

Bk =
1

4rkp̂
′
n(rk)

∫ 1

−1

z2p̂n(z4)

z2 +
√
rk

dz, k = 1, . . . , n,

where p̂n(z) is given in Theorem 3.3.

The remainder in the quadrature formula Q̂4n+1(f) can be expressed in the form of
Taylor series at z = 0, where the leading term is given by

R4n+1(zdmax+1)

(dmax + 1)!
f (dmax+1)(0) =

R4n+1(z6n+2)

(6n+ 2)!
f (6n+2)(0).

The coefficients Gn = R4n+1(z6n+2) can be computed in an exact form, viz.

G1 =
16

315
, G2 =

512

165165
, G3 =

4096

22485645
, G4 =

524288

49628068875
,

G5 =
4194304

6887669463675
, G6 =

134217728

3836303358692805
,

G7 =
1073741824

535253444773400925
, G8 =

549755813888

4785728620301042601915
, etc.

For example, the leading terms in the remainder in the quadrature formula Q̂4n+1(f)

are 1.26× 10−6f (8)(0) (n = 1), 3.56× 10−14f (14)(0) (n = 2), 7.49× 10−23f (20)(0) (n = 3),
2.62× 10−32f (26)(0) (n = 4), etc.

4. SPECIAL CASES AND EXAMPLES

Using Theorem 2.2, we start this section by listing a few first node polynomials of the
sequence {p̂n(z)}:

p̂1(z) = z − 3

7
,

p̂2(z) = z2 − 126z

143
+

15

143
,

p̂3(z) = z3 − 429z2

323
+

693z

1615
− 7

323
,

p̂4(z) = z4 − 204z3

115
+

14586z2

15295
− 1716z

10925
+

9

2185
,

p̂5(z) = z5 − 1995z4

899
+

4522z3

2697
− 92378z2

186093
+

1001z

20677
− 77

103385
,

p̂6(z) = z6 − 690z5

259
+

32775z4

12617
− 3714500z3

3293037
+

20995z2

99789
− 442z

33263
+

13

99789
,

etc. The normalized polynomials p̂n(z)/p̂n(1) for n ≤ 5 are displayed in Fig. 1.
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FIGURE 1. Normalized polynomials z 7→ p̂n(z)/p̂n(1) on [0, 1] for n = 1(1)5

Remark 4.1. Notice that for the polynomial p̂n(z) with real zeros, the following inequality

d

dz

{
p̂ ′n(z)

p̂n(z)

}
=
p̂ ′′n(z)p̂n(z)− p̂ ′n(z)2

p̂n(z)2
= −

n∑
k=1

1

(z − rk)2
< 0

holds, which is known as Laguerre’s inequality (cf. [15, p. 100]). Therefore, the function
z 7→ p̂ ′n(z)/p̂n(z) is decreasing (see Fig. 2 for the case n = 4).

TABLE 1. Parameters of the quadrature formula Q̂4n+1(f) for n = 1(1)5

n xk Ak Bk

1 0. 1.06666666666666667
0.80910671157022121 0.48792087194199111 −2.1254205275324445(−2)

2 0. 0.75851851851851852
0.61375568697566816 0.44678904212712961 −1.3413735169030103(−2)
0.92724238665153225 0.18671643342768085 6.4900035496037478(−4)

3 0. 0.60014652014652015
0.96214281153608152 0.97175623744187170(−1) −3.2772235085563187(−5)
0.79992901662161506 0.22832660542564449 3.9045344595047195(−4)
0.49852034774285952 0.38317748454573029 −9.1106549996869349(−3)

4 0. 0.50208336325983385
0.42334528422173443 0.33411499384824446 −6.7950705650995491(−3)
0.69774446544252737 0.22326448882961959 2.2533204936394584(−4)
0.87794708961316891 0.13880277686091035 −1.8814858386783733(−5)
0.97687342877118281 0.59362507634352748(−1) 2.1045710783136424(−5)

5 0. 0.43470421061457476
0.37016907042014185 0.29688563312150241 −5.4002087637467265(−3)
0.61942822377595288 0.20956672392426616 1.4243077238979650(−4)
0.79736012613394691 0.14820497577754713 −9.5819114497697012(−6)
0.91786487159093112 0.93287220829481104(−1) 1.1646304758720715(−6)
0.98442790818375368 0.39969691753677868(−1) −1.5544143122579493(−7)

Parameters of the generalized quadrature formula Q̂4n+1(f), with the maximal degree
of precision d = 6n + 1, for n = 1(1)5 are presented in Table 1. Numbers in parenthesis
indicate the decimal exponents.
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-0.5 0.5 1.0 1.5

-40

-20

20

40

FIGURE 2. The function z 7→ p̂ ′n(z)/p̂n(z) for n = 4

Remark 4.2. In application of the quadrature formula Q̂4n+1(f) to integration of real func-
tions, it is sufficient to find the values of a function only at 3n + 1 points: 0, ±xk, ixk,
k = 1, . . . , n, regarding that the quadrature formula (1.3) can be represented in the form∫ 1

−1
f(x)dx ≈ A0f(0) +

n∑
k=1

{
Ak
[
f(xk) + f(−xk)

]
+ 2BkRef(ixk)

}
.

We note also another interesting fact. Namely, for the real functions of the form f(x) =
g(x4), the previous formula can be reduced to (n+ 1)-point quadrature formula

(4.15)
∫ 1

0

f(x)dx ≈ Kn+1(f) = C0f(0) +

n∑
k=1

Ckf(xk),

where C0 = 1
2A0 and Ck = Ak +Bk, k = 1, . . . , n.

Example 4.1. In order to illustrate an application of the formula (4.15) we consider the
following integral

I(f) =

∫ 1

0

cos(πx4)

1 + x8
dx = 0.6708434308004106666580 . . . .

Quadrature sums Kn+1(f) given by (4.15), as well as the relative errors

rn+1 =
∣∣∣Kn+1(f)− I(f)

I(f)

∣∣∣,
for n = 1(1)10 are presented in Table 2. In each entry in the second column of this table
the first digit in error is underlined.

This formula is comparable with Gaussian one. Namely, if we consider the (2n + 1)-
point Gauss-Legendre formula, with nodes at 0 and ±xk, k = 1, . . . , n, and apply this
symmetric rule to an even function, we have

(4.16)
∫ 1

−1
f(x)dx ≈ QGL2n+1 = 2

n∑
k=1

Akf(xk) +An+1f(0).

Therefore, I ≈ 1
2Q

GL
2n+1 (with n + 1 nodes) and we can compare these values with ones

obtained by (4.15). The relative errors, in this case, are denoted by rGL2n+1.
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TABLE 2. Quadrature sums Kn+1(f) and relative errors rn+1, for n = 1(1)10

n Kn+1(f) rn+1 rGL
2n+1 rGL

2n+2

1 0.62106 7.42(−2) 2.53(−2) 9.11(−2)
2 0.67984 1.34(−2) 1.85(−2) 8.45(−3)
3 0.67024 8.90(−4) 3.91(−3) 6.53(−5)
4 0.670889 6.80(−5) 4.10(−4) 6.44(−5)
5 0.6708398 5.41(−6) 2.84(−5) 1.03(−5)
6 0.670843678 3.69(−7) 1.17(−6) 1.15(−6)
7 0.6708434139 2.52(−8) 5.36(−8) 1.03(−7)
8 0.670843431866 1.59(−9) 2.01(−8) 7.06(−9)
9 0.6708434307368 9.48(−11) 2.97(−9) 2.49(−10)

10 0.67084343080398 5.32(−12) 3.23(−10) 2.30(−11)

Also, instead of (4.16), we can take the (2n + 2)-point Gauss-Legendre formula on
(−1, 1), with nodes at ±xk, k = 1, . . . , n+ 1,∫ 1

−1
f(x)dx ≈ QGL2n+2 = 2

n+1∑
k=1

Akf(xk),

and apply it to I . Then, I ≈ 1
2Q

GL
2n+2 (also with n+ 1 nodes), with the relative error rGL2n+2.

These relative errors in Gaussian sums are presented in the last two columns in Table 2.
As we can see, fomula (4.15) has certain advantages in view of accuracy compared to the
other two formulas, especially for larger value of n.

Construction of Gaussian quadratures was performed by the MATHEMATICA package
OrthogonalPolynomials (see [3] and [13]). This package is downloadable from the
web site http://www.mi.sanu.ac.rs/˜gvm/.
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