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ON MAXIMUM OF THE MODULUS OF KERNELS IN
GAUSS-TURÁN QUADRATURES WITH CHEBYSHEV

WEIGHTS: THE CASES S=1,2∗

Gradimir V. Milovanović, Miodrag M. Spalević
and Miroslav S. Pranić

Abstract. We study the kernels Kn,s(z) in the remainder terms Rn,s(f) of
Gauss-Turán quadrature formulae for analytic functions on elliptical contours
with foci at ±1, when the weight ω is Chebyshev weight function of the first and
third kind. It is shown that the modulus of the kernel attains its maximum on
the real axis ∀n ≥ n0, n0 = n0(ρ, s) in the case s = 1. Analogous results can be
performed in the case s = 2.

1. Introduction

We consider the Gauss-Turán quadrature formula with multiple nodes
∫ 1

−1
f(t)ω(t)dt =

n∑

ν=1

2s∑

i=0

Ai,νf
(i)(τν) + Rn,s(f) (n ∈ N; s ∈ N0),(1.1)

where ω is nonnegative and integrable function on interval (−1, 1), which
is exact for all algebraic polynomials of degree at most 2(s + 1)n − 1. The
nodes τν in (1.1) must be zeros of the s-orthogonal polynomials with re-
spect to the weight function ω(t). The s-orthogonal polynomials πn = πn,s

with respect to the weight function ω(t) are polynomials which satisfy the
following orthogonality conditions

∫ 1

−1
πn(t)2s+1tkω(t)dt = 0 , k = 0, 1, . . . , n− 1.
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Numerically stable methods for constructing nodes τν and coefficients
Ai,ν can be found in [1, 4, 6]. For more details on quadrature formulae with
multiple nodes see [2] and [3].

Let Γ be a simple closed curve in the complex plane surrounding the
interval [−1, 1] and let D be its interior. If integrand f is analytic on D and
continuous on D, then the remainder term Rn,s in (1.1) admits the contour
integral representation (see, for instance, [5] and reference therein)

Rn,s(f) =
1

2πi

∮

Γ

Kn,s(z)f(z)dz.(1.2)

The kernel is given by

Kn,s(z) =
ρn,s(z)

[πn,s(z)]2s+1
, z /∈ [−1, 1],

where

ρn,s(z) =
∫ 1

−1

[πn,s(t)]2s+1

z − t
ω(t)dt.

The modulus of the kernel is symmetric with respect to real axis, i.e.,
|Kn,s(z)| = |Kn,s(z)|. If the weight function in (1.1) is even the modulus of
the kernel is symmetric with respect to both axes, i.e., |Kn,s(−z)| = |Kn,s(z)|
(see [5, Lemma 2.1.]).

The integral representation (1.2) leads to the error estimate

|Rn,s| ≤ l(Γ)
2π

(
max
z∈Γ

Kn,s(z)
)(

max
z∈Γ

(f(z)
)

,

where l(Γ) denotes the length of the contour Γ. First maximum depends
only on the quadrature rule (i.e., on ω) and not on f .

2. The Maximum Modulus of the Kernel on Confocal Ellipses

In this section we take as contour Γ an ellipse Eρ with foci at points ±1
and a sum of semiaxes ρ > 1,

Eρ =
{

z ∈ C : z =
1
2

(
ρeiθ + ρ−1e−iθ

)
, 0 ≤ θ ≤ 2π

}
.

When ρ → 1 the ellipse shrinks to the interval [−1, 1], while with increasing
ρ it becomes more and more circle-like.
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We study the magnitude of |Kn,s(z)| on the contour Eρ for the generalized
Chebyshev weight functions of first and third kind, respectively, (cf. [5])

ω1(t) = (1− t2)−1/2 and ω3(t) =
(1 + t)1/2+s

(1− t)1/2
.

2.1. The weight function ω1(t) = (1 − t2)−1/2. Explicit representation
of the kernel K

(1)
n,s(z) on the ellipse Eρ for the weight function ω1(t) was given

by Milovanović and Spalević in [5], as well

∣∣∣K(1)
n,s(z)

∣∣∣ =
21−sπ

ρn

∣∣∣Z(1)
n,s(ρeiθ)

∣∣∣
(a2 − cos 2θ)1/2(a2n + cos 2nθ)1/2+s

, z ∈ Eρ,(2.1)

where
aj = aj(ρ) =

1
2

(
ρj + ρ−j

)
, j ∈ N,(2.2)

and

Z(1)
n,s

(
ρeiθ

)
=

s∑

k=0

(
2s + 1

s + k + 1

) (
ρeiθ

)−2nk
.(2.3)

The weight function ω1(t) is even, so we can take θ ∈ [0, π/2].
Using the representation (2.1) Milovanović and Spalević stated the fol-

lowing conjecture:

Conjecture 2.1. For each fixed ρ > 1 and s ∈ N0 there exists n0 = n0(ρ, s)
such that

max
z∈Eρ

∣∣∣K(1)
n,s(z)

∣∣∣ = K(1)
n,s

(
1
2
(ρ + ρ−1)

)

for each n ≥ n0.

Theorem 2.1. Conjecture 2.1 holds for s = 1.

Proof. Because (2.1) it is sufficiently to prove

(9 + 6ρ−2n cos 2nθ + ρ−4n)(a2 − 1)(a2n + 1)3

≤ (9 + 6ρ−2n + ρ−4n)(a2 − cos 2θ)(a2n + cos 2nθ)3,
(2.4)

for sufficiently large n (n ≥ n0(ρ)) and θ ∈ (0, π/2], where aj are given by
(2.2). Introducing half-angles, this is equivalent to

[(3 + ρ−2n)2 − 12ρ−2n sin2 nθ](a2 − 1)(a2n + 1)3

≤ (3 + ρ−2n)2[(a2 − 1) + 2 sin2 θ][(a2n + 1)3 − 6a2
2n sin2 nθ

−12a2n sin2 nθ cos2 nθ − 6 sin2 nθ + 12 sin4 nθ − 8 sin6 nθ].
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Now, it is sufficiently to prove

(a2n + 1)3 − sin2 nθ

sin2 nθ
(a2 − 1)(3a2

2n + 6a2n cos2 nθ

+3− 6 sin2 nθ + 4 sin4 nθ)− 2 sin2 nθ(3a2
2n

+6a2n cos2 nθ + 3− 6 sin2 nθ + 4 sin4 nθ) ≥ 0,

(2.5)

if n ≥ n0(ρ) and θ ∈ (0, π/2]. Since
∣∣∣∣
sinnθ

sin θ

∣∣∣∣ ≤ n, (a2 − 1) > 0,

and

(∀n ∈ N) 3a2
2n + 6a2n cos2 nθ + 3− 6 sin2 nθ + 4 sin4 nθ ≥ 0,

the left-hand side of (2.5) is larger or equal to

(a2n + 1)3 − n2(a2 − 1)(3a2
2n + 6a2n + 7)− 2(3a2

2n + 6a2n + 7) := F (n).

Using (2.2) we get

F (n) =
1
8

[
ρ6n − (3An2 + 6)ρ4n − (12An2 + 33)ρ2n

−(34An2 + 116)− (12An2 + 33)ρ−2n − (3An2 + 6)ρ−4n + ρ−6n
]
,

where A = (a2 − 1) = (ρ − ρ−1)2 = const. Since F (n) is continuous on R
and limn→+∞ = +∞, it follows that F (n) > 0, for all n > t, where t is the
largest zero of F (n). For n0 we can take [t] + 1. 2

We can use the function F (n) from the proof to estimate n0. Numerical
values of [t]+1 (t is the largest zero of F ) for some values of ρ are presented
in Table 1. The least possible values of n0 are also presented. We can see
that the least possible n0 is estimated by [t] + 1 very well.

Table 1
ρ [t] + 1 the l.p. n0 ρ [t] + 1 the l.p. n0

1.01 207 165 1.2 12 10
1.02 104 83 1.3 8 7
1.03 70 56 1.4 7 6
1.04 53 42 1.5 6 5
1.05 43 34 1.6 5 4
1.06 36 29 1.7 4 4
1.07 31 25 1.8 4 4
1.08 27 22 1.9 4 3
1.09 24 20 2 4 3
1.1 22 18 2.5 3 3
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Analogous results can be derived in the case s = 2, in a similar way. But
when s increases the derivation becomes drastically complex.
2.2. The weight function ω3(t) = (1+ t)1/2+s(1− t)−1/2. Explicit repre-
sentation of the kernel K

(3)
n,s(z) on the ellipse Eρ for the generalized Chebyshev

weight function of third kind ω3(t) was given by Milovanović and Spalević
in [5], as well

∣∣∣K(3)
n,s(z)

∣∣∣ =
21−sπ

ρn+1/2

(a1 + cos θ)
∣∣∣Z(3)

n,s(ρeiθ)
∣∣∣

(a2 − cos 2θ)1/2(a2n+1 + cos (2n + 1)θ)1/2+s
,(2.6)

where

Z(3)
n,s

(
ρeiθ

)
=

s∑

k=0

(
2s + 1

s + k + 1

) (
ρeiθ

)−(2n+1)k
.(2.7)

Using representation (2.6) in [5] was been stated the following conjecture:

Conjecture 2. For each fixed ρ > 1 and s ∈ N0 there exists n0 = n0(ρ, s)
such that

max
z∈Eρ

∣∣∣K(3)
n,s(z)

∣∣∣ = K(3)
n,s

(
1
2
(ρ + ρ−1)

)

for each n ≥ n0.

Theorem 2.2. The conjecture 2 holds for s = 1.

Proof. Because (2.6) it is sufficiently to prove

(9 + 6ρ−2n−1 cos (2n + 1)θ + ρ−4n−2)(a2 − 1)(a2n+1 + 1)3

≤ (9 + 6ρ−2n−1 + ρ−4n−2)(a2 − cos 2θ)(a2n+1 + cos (2n + 1)θ)3,
(2.8)

for enough large n (n ≥ n0(ρ)) and θ ∈ (0, π], where aj are given by (2.2).
Introducing the new variable k with n = (2k−1)/2 inequality (2.8) becomes
inequality (2.4), which holds ∀k, k > t, where t is the largest zero of the
function F (k) from the proof of Theorem 2.1. Furthermore, we can conclude
that inequality (2.8) holds for every n, such that n > (2t− 1)/2. For n0 we
can take [(2t− 1)/2] + 1. 2
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