EXTREMAL PROBLEMS FOR NONNEGATIVE POLYNOMIALS IN L^{r} NORM WITH GENERALIZED LAGUERRE WEIGHT

A. Guessab, G. V. Milovanović and O. Arino
Dedicated to Professor D. S. Mitrinović on the occasion of his 80 th birthday

Abstract

Let W_{n} be the set of all algebraic polynomials of exact degree n, whose coefficients are nonnegative. For the norm in $L^{r}[0,+\infty)$ with generalized Laguerre weight $w(t)=t^{\alpha} e^{-t}$ $(\alpha>-1)$, the extremal problem

$$
C_{n, r}^{(m)}(\alpha)=\sup _{P \in W_{n}}\left(\frac{\left\|P^{(m)}\right\|_{r}}{\|P\|_{r}}\right)^{r}
$$

is solved when $r \in \mathbb{N}$, which completes the results of Milovanović [6] for $r=2$ and $m=1$, and Guessab and Milovanović [2] for $r=3$ and $m=1$.

1. Introduction

E. Hille, G. Szegö and J. D. Tamarkin [3] extended the well-known result of A. A. Markov [5] to L^{r}-norm $(r \geq 1)$ on $(-1,1)$ by proving the following result:
Theorem 1.1. Let $r>1$ and let $P(t)$ be an arbitrary rational polynomial of degree n. Then

$$
\begin{equation*}
\left(\int_{-1}^{1}\left|P^{\prime}(t)\right|^{r} d t\right)^{1 / r} \leq A n^{2}\left(\int_{-1}^{1}|P(t)|^{r} d t\right)^{1 / r} \tag{1.1}
\end{equation*}
$$

where A is a positive constant which depends only on r, but not on P or on n.
This result was obtained also by N. Bari [1] using very different methods.
The factor n^{2} in (1.1) cannot be replaced by any function tending to infinity more slowly. Namely, for each n exist polynomials $P(t)$ of degree n such that the left side of (1.1) is $\leq B n^{2}$, where B is a constant of the same nature as A.

Under only a little restriction on the zeros of $P(z)$, M. A. Malik [4] found the following improvements of Theorem 1.1:

Theorem 1.2. Let $r>1$ and let $P(t)$ be an arbitrary rational polynomial of degree n. Let $P(z)$ have no zeros in the two circular regions

$$
|z \pm a|<1-a \quad(0 \leq a<1)
$$

then

$$
\left(\int_{-1}^{1}\left|P^{\prime}(t)\right|^{r} d t\right)^{1 / r} \leq B n^{1+1 / r}\left(\int_{-1}^{1}|P(t)|^{r} d t\right)^{1 / r}
$$

where B is a positive constant which depends only on r and a, but not on P or on n.

Instead of the set of all algebraic polynomials of degree n, in this paper we consider a restricted polynomial set. Namely, let W_{n} be the set of all algebraic polynomials of exact degree n, all coefficients of which are nonnegative, i.e.,

$$
W_{n}=\left\{P \mid P(t)=\sum_{k=0}^{n} a_{k} t^{k}, \quad a_{k} \geq 0(k=0,1, \ldots, n-1), a_{n}>0\right\}
$$

We denote by $W_{n}^{(m-1)}$ the subset of W_{n} for which $a_{0}=\cdots=a_{m-1}=0$ (i.e., $\left.P(0)=\cdots=P^{(m-1)}(0)=0\right)$.

Let $w(t)=t^{\alpha} e^{-t}(\alpha>-1)$ be a weight function on $[0,+\infty)$. For $P \in W_{n}$, we define $\|P\|_{r}=\left(\int_{0}^{\infty} w(t) P(t)^{r} d t\right)^{1 / r}, \quad r \geq 1$, and consider the following extremal problem:

Determine the best constant in the inequality

$$
\begin{equation*}
\left\|P^{(m)}\right\|_{r}^{r} \leq C_{n, r}^{(m)}\|P\|_{r}^{r}, \quad P \in W_{n}, \tag{1.2}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
C_{n, r}^{(m)}(\alpha)=\sup _{P \in W_{n}}\left(\frac{\left\|P^{(m)}\right\|_{r}}{\|P\|_{r}}\right)^{r} \tag{1.3}
\end{equation*}
$$

The case $r=2$ and $m=1$ has been recently investigated by A. K. Varma [10], [11] and G. V. Milovanović [6]. In [6] the following result was proved:
Theorem 1.3. The best constant $C_{n, 2}^{(1)}(\alpha)$ defined in (1.3) is

$$
C_{n, 2}^{(1)}(\alpha)= \begin{cases}\frac{1}{(2+\alpha)(1+\alpha)} & \left(-1<\alpha \leq \alpha_{n}\right) \\ \frac{n^{2}}{(2 n+\alpha)(2 n+\alpha-1)} & \left(\alpha_{n} \leq \alpha<+\infty\right)\end{cases}
$$

where

$$
\alpha_{n}=\frac{1}{2}(n+1)^{-1}\left(\left(17 n^{2}+2 n+1\right)^{1 / 2}-3 n+1\right)
$$

When $r=3$ and $m=1$, A. Guessab and G. V. Milovanović [2] obtained the following result:

Theorem 1.4. The best constant $C_{n, 3}^{(1)}(\alpha)$ defined in (1.3) is

$$
C_{n, 3}^{(1)}(\alpha)= \begin{cases}\frac{1}{(3+\alpha)(2+\alpha)(1+\alpha)} & \left(-1<\alpha \leq \alpha_{n}\right) \\ \frac{n^{3}}{(3 n+\alpha)(3 n+\alpha-1)(3 n+\alpha-2)} & \left(\alpha_{n} \leq \alpha<+\infty\right)\end{cases}
$$

where α_{n} is the unique positive root of the equation

$$
\left(n^{2}+n+1\right) \alpha^{3}+3\left(2 n^{2}+2 n-1\right) \alpha^{2}+\left(11 n^{2}-16 n+2\right) \alpha-3 n(7 n-2)=0
$$

An extremal problem for higher derivatives of nonnegative polynomials with respect to the same weight was investigated in [9]. A similar problem for Freud's weight function has been dealt with G. V. Milovanović and R. Ž. Djordjević [8]. A survey about extremal problems of Markov's type for algebraic polynomials is given in [7].

In this paper we consider the extremal problem (1.3) for $r \in \mathbb{N}$ and $m \leq n$. Firstly, we note that the supremum in our extremal problem (1.3) is attained for some $P \in W_{n}^{(m-1)}$. Indeed,

$$
\sup _{P \in W_{n}} \frac{\left\|P^{(m)}\right\|_{r}}{\|P\|_{r}}=\sup _{\substack{P \in W_{n}^{(m-1)} \\ a_{0}, \ldots, a_{m-1} \geq 0}} \frac{\left\|P^{(m)}\right\|_{r}}{\left\|P+Q_{m-1}\right\|_{r}}=\sup _{P \in W_{n}^{(m-1)}} \frac{\left\|P^{(m)}\right\|_{r}}{\|P\|_{r}}
$$

where $Q_{m-1}(t)=\sum_{k=0}^{m-1} a_{k} t^{k}\left(a_{k} \geq 0\right)$.
An auxiliary result, necessary in solving problem (1.3), is presented in §2. The central issue of the paper, the determination of the best constant in (1.2), is given in $\S 3$. Some corollaries and special cases of importance are included.

2. An auxiliary result

Lemma 2.1. Let $r \in \mathbb{N}$ and $m \leq n$. If $P(t)=\sum_{k=m}^{n} a_{k} t^{k} \in W_{n}^{(m-1)}$ then the equality

$$
\begin{equation*}
\left\|P^{(m)}\right\|_{r}^{r}=\sum_{k_{1}, \ldots, k_{r}=m}^{n} H_{r, \alpha}^{(m)}\left(k_{1}, \ldots, k_{r}\right)\left(\prod_{i=1}^{r} a_{k_{i}}\right) \Gamma\left(\alpha+k_{1}+\cdots+k_{r}+1\right) \tag{2.1}
\end{equation*}
$$

holds, where

$$
\begin{equation*}
H_{r, \alpha}^{(m)}\left(k_{1}, \ldots, k_{r}\right)=\frac{\prod_{i=1}^{r} k_{i}\left(k_{i}-1\right) \cdots\left(k_{i}-m+1\right)}{\prod_{i=0}^{m r-1}\left(\alpha+k_{1}+\cdots+k_{r}-i\right)}, \tag{2.2}
\end{equation*}
$$

A. Guessab, G. V. Milovanović and O. Arino

and Γ is the gamma function.
Proof. Let $P \in W_{n}^{(m-1)}$, i.e.,

$$
P(t)=\sum_{k=m}^{n} a_{k} t^{k}
$$

with $a_{k} \geq 0(k=m, \ldots, n-1)$ and $a_{n}>0$. Then

$$
\left(P^{(m)}(t)\right)^{r}=\sum_{k_{1}, \ldots, k_{r}=m}^{n} B_{m}\left(k_{1}, \ldots, k_{r}\right) t^{k_{1}+\cdots+k_{r}-m r}
$$

where

$$
\begin{equation*}
B_{m}\left(k_{1}, \ldots, k_{r}\right)=\prod_{i=1}^{r} a_{k_{i}} k_{i}\left(k_{i}-1\right) \cdots\left(k_{i}-m+1\right) \tag{2.3}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\left\|P^{(m)}\right\|_{r}^{r}=\sum_{k_{1}, \ldots, k_{r}=m}^{n} B_{m}\left(k_{1}, \ldots, k_{r}\right) \Gamma\left(\alpha+k_{1}+\cdots+k_{r}-m r+1\right) \tag{2.4}
\end{equation*}
$$

Since

$$
\begin{equation*}
\Gamma\left(\alpha+k_{1}+\cdots+k_{r}-m r+1\right)=\frac{\Gamma\left(\alpha+k_{1}+\cdots+k_{r}+1\right)}{\prod_{i=0}^{m r-1}\left(\alpha+k_{1}+\cdots+k_{r}-i\right)} \tag{2.5}
\end{equation*}
$$

from (2.3), (2.4) and (2.5) we obtain (2.1).

3. Main result

In this section we give the results related to problem (1.3).
Theorem 3.1. The best constant $C_{n, r}^{(m)}(\alpha)$ defined in (1.3) is

$$
C_{n, r}^{(m)}(\alpha)= \begin{cases}\frac{(m!)^{r}}{\prod_{i=1}^{m r}(i+\alpha)} & \left(-1<\alpha \leq \alpha_{n, r, m}\right), \tag{3.1}\\ \frac{\prod_{i=0}^{m-1}(n-i)^{r}}{\frac{m r-1}{m}} \quad & \left(\alpha_{n, r, m} \leq \alpha<+\infty\right), \\ \prod_{i=0}^{m-1}(r n+\alpha-i) & \end{cases}
$$

where $\alpha_{n, r, m}$ is the unique positive root of the equation

$$
\begin{equation*}
(m!)^{r} \prod_{i=0}^{m r-1}(r n+\alpha-i)=\prod_{i=1}^{m r}(i+\alpha) \prod_{i=0}^{m-1}(n-i)^{r} \tag{3.2}
\end{equation*}
$$

Proof. Let $P \in W_{n}^{(m-1)}$. Then from Lemma 1 we have

$$
\begin{equation*}
\left\|P^{(m)}\right\|_{r}^{r}=\sum_{k_{1}, \ldots, k_{r}=m}^{n} H_{r, \alpha}^{(m)}\left(k_{1}, \ldots, k_{r}\right)\left(\prod_{i=1}^{r} a_{k_{i}}\right) \Gamma\left(\alpha+k_{1}+\cdots+k_{r}+1\right) \tag{3.3}
\end{equation*}
$$

where $H_{r, \alpha}^{(m)}$ is given by (2.2). Since
$\prod_{i=1}^{r} k_{i}\left(k_{i}-1\right) \cdots\left(k_{i}-m+1\right) \leq \frac{1}{r^{m r}}\left(\sum_{i=1}^{r} k_{i}\right)^{r}\left(\sum_{i=1}^{r}\left(k_{i}-1\right)\right)^{r} \cdots\left(\sum_{i=1}^{r}\left(k_{i}-m+1\right)\right)^{r}$,
we find

$$
\begin{equation*}
H_{r, \alpha}^{(m)}\left(k_{1}, \ldots, k_{r}\right) \leq \frac{1}{r^{m r}} \prod_{j=0}^{m-1} K_{r, \alpha}^{(m, j)}\left(k_{1}, \ldots, k_{r}\right), \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{r, \alpha}^{(m, j)}\left(k_{1}, \ldots, k_{r}\right)=\frac{\left(\left(\sum_{\nu=1}^{r} k_{\nu}\right)-j r\right)^{r}}{\prod_{i=0}^{r-1}\left(\alpha+\left(\sum_{\nu=1}^{r} k_{\nu}\right)-j r-i\right)} . \tag{3.5}
\end{equation*}
$$

From (3.4) and (3.5) it folllows that

$$
\left\|P^{(m)}\right\|_{r}^{r} \leq \frac{1}{r^{m r}}\left(\prod_{j=0}^{m-1} \max _{k_{1}, \ldots, k_{r}} K_{r, \alpha}^{(m, j)}\left(k_{1}, \ldots, k_{r}\right)\right)\|P\|_{r}^{r}
$$

and so we have

$$
C_{n, r}^{(m)}(\alpha) \leq \frac{1}{r^{m r}}\left(\prod_{j=0}^{m-1} \max _{k_{1}, \ldots, k_{r}} K_{r, \alpha}^{(m, j)}\left(k_{1}, \ldots, k_{r}\right)\right)=L
$$

where

$$
L= \begin{cases}\frac{(m!)^{r}}{m r}(i+\alpha) & \text { if } \quad-1<\alpha \leq \alpha_{n, r, m} \\ \prod_{i=1}^{m-1}(n-i)^{r} & \text { if } \quad \alpha_{n, r, m} \leq \alpha<+\infty \\ \frac{\prod_{i=0}^{m-1}}{\prod_{i=0}^{m r-1}(r n+\alpha-i)} & \end{cases}
$$

and $\alpha_{n, r, m}$ is the unique positive root of the equation (3.2).
In order to prove that $C_{n, r}^{(m)}(\alpha)=L$, we consider $P(t)=t^{n}+\lambda t \quad(\lambda \leq 0)$ and set

$$
\Phi(\lambda)=\left\|P^{(m)}\right\|_{r}^{r} /\|P\|_{r}^{r}
$$

Since

$$
\Phi(0)=\frac{1}{r^{m r}}\left(\prod_{j=0}^{m-1} K_{r, \alpha}^{(m, j)}(n, \ldots, n)\right)
$$

and

$$
\lim _{\lambda \rightarrow+\infty} \Phi(\lambda)=\frac{1}{r^{m r}}\left(\prod_{j=0}^{m-1} K_{r, \alpha}^{(m, j)}(m, \ldots, m)\right)
$$

we see that $\tilde{P}(t)=t^{n}$ is an extremal polynomial for $\alpha \geq \alpha_{n, r, m}$. When $-1<$ $\alpha \leq \alpha_{n, r, m}$, there exists a sequence of polynomials, for example $p_{k}(t)=t^{n}+k t^{m}$, $k=1,2, \ldots$, for which

$$
\lim _{k \rightarrow+\infty}\left\|p_{k}^{(m)}\right\|_{r}^{r} /\left\|p_{k}\right\|_{r}^{r}=C_{n, r}^{(m)}(\alpha)
$$

Remark. The statement of our theorem holds if W_{n} is the set of all algebraic polynomials $P(\not \equiv 0)$ of degree at most n (not only of exact degree n), with nonnegative coefficients. In this case, for $-1<\alpha \leq \alpha_{n, r, m}$, we can see that $\tilde{P}(t)=\lambda t^{m}(\lambda>0)$ is an extremal polynomial.

In the limit case $n \rightarrow+\infty$, the equation (3.2) reduces to

$$
\prod_{i=1}^{m r}\left(\alpha_{\infty, r, m}+i\right)=r^{m r}(m!)^{r}
$$

The simplest case is $r=1$ and $m=1$. Then we have

$$
C_{n, 1}^{(1)}(\alpha)= \begin{cases}\frac{1}{\alpha+1} & (-1<\alpha \leq 0) \\ \frac{n}{\alpha+n} & (\alpha \geq 0)\end{cases}
$$

The case $\alpha=1, r=2$ and $m=1$ was considered by A. K. Varma [10]. Then

$$
C_{n, 2}^{(1)}(1)=\frac{n}{2(2 n+1)}
$$

Corollary 3.2. Let $\alpha>-1, m=1$ and $r=2$. Theorem 3.1 reduces to Theorem 1.3.

Corollary 3.3. Let $\alpha>-1, m=1$ and $r=3$. Theorem 3.1 reduces to Theorem 1.4.

REFERENCES

1. N. Bari: Generalizations of inequalities of S. N. Bernstein and A. A. Markov. Izv. Akad. Nauk SSSR Ser. Mat. 18(1954), 159-176 (Russian).
2. A. Guessab and G. V. Milovanović: An extremal problem for polynomials with nonnegative coefficients. IV. Math. Balkanica (to appear).
3. E. Hille, G. Szegö and J. D. Tamarkin: On some generalizations of a theorem of A. Markoff. Duke Math. J. 3(1937), 729-739.
4. M. A. Malik: On a theorem of Hille, Szegö, and Tamarkin. J. Math. Anal. Appl. 30(1970), 503-509.
5. A. A. Markov: On a problem of D. I. Mendeleev. Zap. Imp. Akad. Nauk, St. Petersburg 62(1889), 1-24 (Russian).
6. G. V. Milovanović: An extremal problem for polynomials with nonnegative coefficients. Proc. Amer. Math. Soc. 94(1985), 423-426.
7. G. V. Milovanović: Various extremal problems of Markov's type for algebraic polynomials. Facta Univ. Ser. Math. Inform. 2(1987), 7-28.
8. G. V. Milovanović and R. Ž. ĐorDević: An extremal problem for polynomials with nonnegative coefficients. II. Facta Univ. Ser. Math. Inform. 1(1986), 7-11.
9. G. V. Milovanović and I. Z̆. Milovanović: An extremal problem for polynomials with nonnegative coefficients. III. Constructive function theory '87 (Varna, 1987), Bulgar. Acad. Sci., Sofia, 1988, pp. 315-321.
10. A. K. Varma: Some inequalities of algebraic polynomials having real zeros. Proc. Amer. Math. Soc. 75(1979), 243-250.
11. A. K. Varma: Derivatives of polynomials with positive coefficients. Proc. Amer. Math. Soc. 83(1981), 107-112.

Departement de Mathématiques
Avenue de l'Université
F-64000 Pau, France

Faculty of Electronic Engineering
Department of Mathematics, P.O. Box 73
18000 Niš, Yugoslavia

Departement de Mathématiques
Avenue de l'Université
F-64000 Pau, France

EXTREMALNI PROBLEMI ZA NENEGATIVNE POLINOME U L^{r} NORMI SA GENERALISANOM LAGUERREOVOM TEŽINOM

A. Guessab, G. V. Milovanović i O. Arino

Neka je W_{n} skup svih algebarskih polinoma stepena n sa nennegativnim koeficijentima. Za normu u $L^{r}[0,+\infty)$ sa generalisanom Laguerre-ovom težinom $w(t)=t^{\alpha} e^{-t}(\alpha>-1)$, rešen je ekstremalni problem

$$
C_{n, r}^{(m)}(\alpha)=\sup _{P \in W_{n}}\left(\frac{\left\|P^{(m)}\right\|_{r}}{\|P\|_{r}}\right)^{r}
$$

kada $r \in \mathbb{N}$, što kompletira prethodne rezultate Milovanovića [6] za $r=2$ i $m=1$, i Guessab-a i Milovanovića za $r=3$ i $m=1$.

