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MOMENT–PRESERVING SPLINE APPROXIMATION
ON FINITE INTERVALS AND TURÁN QUADRATURES

Marco Frontini and Gradimir V. Milovanović

Abstract. We discuss the problem of approximating a function f on the interval [0, 1] by a

spline function of degree m and defect d, with n (variable) knots, matching as many of the
initial moments of f as possible. Additional constraints on the derivatives of the approximation

at one endpoint of [0, 1] may also be imposed. We analyse the case when the defect d is an

odd integer (d = 2s+ 1), and we show that, if the approximation exists, it can be represented
in terms of generalized Turán quadrature relative to a measure depending on f . The knots

are the zeros of the corresponding s-orthogonal polynomials (s ≥ 1). A numerical example is

included.

1. Introduction

Continuing previous works [4–5], Milovanović and Kovačević [6] have considered
the problem of approximating a spherically symmetric function f(r), r = ‖x‖, 0 ≤
r < ∞, in Rd, d ≥ 1, by a spline function of degree m ≥ 2 and defect d (1 ≤
d ≤ m), with n knots. Under suitable assumptions on f and d = 2s + 1, it was
shown that the problem as a unique solution if and only if certain generalized
Turán quadratures exist corresponding to a measure depending on f . Existence,
uniqueness and pointwise convergence of such approximation were analyzed.

In [1] Frontini, Gautschi and Milovanović considered the analogous of the problem
treated in [5] on an arbitrary finite interval. If the approximations exist, they can
be represented in terms of generalized Gauss-Lobatto and Gauss-Radau quadrature
formulas relative to appropriate measures depending on f . In this paper we discuss
the case of approximating a function f = f(t) on some given finite interval [a, b],
which can be standardized to [a, b] = [0, 1], by a spline function of degree m ≥ 2
and defect d (1 ≤ d ≤ m), with n knots. Under suitable assumptions on f and
d = 2s + 1 we will show that our problem has a unique solution if and only if
certain generalized Turán-Radau and Turán-Lobatto quadratures formulas exist
corresponding to measures depending on f . Existence, uniqueness and pointwise
convergence is assured if f is completely monotonic on [0, 1]. One simple numerical
example is included.
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2. Spline approximation on [0, 1]

A spline function of degree m ≥ 2 and defect d, with n (distinct) knots τ1, τ2,
. . . , τn in the interior of [0, 1], can be written in terms of truncated powers in the
form

(2.1) sn,m(t) = pm(t) +

n∑
ν=1

m∑
i=m−d+1

ai,ν(τν − t)i+,

where ai,ν are real numbers and pm(t) is a polynomial of degree ≤ m.

Similarly as in [1] we will consider two related problems:

Problem I. Determine sn,m in (2.1) such that

(2.2)

∫ 1

0

tjsn,m(t) dt =

∫ 1

0

tjf(t) dt, j = 0, 1, . . . , (d+ 1)n+m.

Problem I∗. Determine sn,m in (2.1) such that

(2.3) s(k)n,m(1) = p(k)m (1) = f (k)(1), k = 0, 1, . . . ,m,

and such that (2.2) holds for j = 0, 1, ..., (d+ 1)n− 1.

In this paper we will reduce our problems to the power-orthogonality (s-ort-
hogonality) and generalized Gauss-Turán quadratures by restricting the class of
functions f (see [6]).

In order to reduce our problems (2.2) and (2.3) to the power-orthogonality, we
have to put d = 2s+ 1, i.e., the defect of the spline function (2.1) should be odd.

Let

(2.4) φk =
(−1)k

m!
f (k)(1), bk =

(−1)k

m!
p(k)m (1), k = 0, 1, ...,m,

applying m + 1 integration by parts to the integrals in the moment equation (2.2)
we obtain (see [1])

m∑
k=0

bk
[
Dm−ktm+1+j

]
t=1

+

n∑
ν=1

m∑
i=m−2s

ai,ντ
j+i+1
ν

i!(m+ j + 1)!

m!(j + i+ 1)!

=
m∑
k=0

φk
[
Dm−ktm+1+j

]
t=1

+
(−1)m+1

m!

∫ 1

0

tm+1+jf (m+1)(t) dt,(2.5)

j = 0, 1, . . . , 2(s+ 1)n+m,

where D is the standard differentiation operator.
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For the second sum in (2.5) we may observe that

n∑
ν=1

m∑
i=m−2s

ai,ντ
j+i+1
ν

i!(m+ j + 1)!

m!(j + i+ 1)!
=

n∑
ν=1

m∑
i=m−2s

i!

m!
ai,ν

[
Dm−itm+j+1

]
t=τν

,

changing indices (k = m− i), the second sum on the right becomes

(2.6)

2s∑
k=0

(m− k)!

m!
am−k,ν

[
Dk(tm+1tj)

]
t=τν

,

hence defining the measure

(2.7) dλ(t) =
(−1)m+1

m!
f (m+1)(t) dt on [0, 1],

equations (2.5) may be rewrite

m∑
k=0

bk
[
Dm−ktm+1+j

]
t=1 +

n∑
ν=1

2s∑
k=0

(m− k)!

m!
am−k,ν

[
Dk(tm+1+j)

]
t=τν

=

m∑
k=0

φk
[
Dm−ktm+1+j

]
t=1

+

∫ 1

0

tm+1+j dλ(t),(2.8)

j = 0, 1, . . . , 2(s+ 1)n+m,

Now we can state the main result for Problem I:

Theorem 2.1. Let f ∈ Cm+1[0, 1]. There exists a unique spline function (2.1) on
[0, 1], with d = 2s + 1, satisfying (2.2) if and only if the measure dλ(t) in (2.7)
admits a generalized Gauss-Lobatto-Turán quadrature

(2.9)

∫ 1

0

g(t) dλ(t) =

m∑
k=0

[
αkg

(k)(0) + βkg
(k)(1)

]

+

n∑
ν=1

2s∑
i=0

ALi,νg
(i)(τ (n)ν ) +RLn,m(g; dλ),

where

(2.10) RLn,m(g; dλ) = 0 for all g ∈ P2(s+1)n+2m+1,

with distinct real zeros τ
(n)
ν , ν = 1, 2, . . . , n, all contained in the open interval (0, 1).

The spline function in (2.1) is given by

(2.11) τν = τ (n)ν , am−k,ν =
m!

(m− k)!
ALk,ν , ν = 1, 2, . . . , n; k = 0, 1, . . . , 2s,
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where τ
(n)
ν are the interior nodes of the generalized Gauss-Lobatto-Turán quadrature

formula and ALk,ν are the corresponding weights, while the polynomial pm(t) is given
by

(2.12) p(k)m (1) = f (k)(1) + (−1)km!βm−k, k = 0, 1, . . . ,m,

where βm−k is the coefficient of g(m−k)(1) in (2.9).

Proof. Putting g(t) = tm+1p(t), p ∈ P2(s+1)n+m, in (2.9) and noting (2.10) yields

m∑
k=0

βk
[
Dktm+1p(t)

]
t=1

+

n∑
ν=1

2s∑
i=0

ALi,ν
[
Dk(tm+1p(t)

]
t=τν

=

∫ 1

0

tm+1p(t) dλ(t), ∀p ∈ P2(s+1)n+m,

which is identical to (2.8), if we identify

bm−k−φm−k = βk, k = 0, 1, . . . ,m;

am−k,ν =
m!

(m− k)!
ALk,ν , ν = 1, 2, . . . , n; k = 0, 1, . . . , 2s. �

Remark. The case s = 0 of Theorem 2.1 has been obtained in [1].

If f is completely monotonic on [0, 1] then dλ(t) in (2.7) is a positive measure for
every m, then by virtue of the assumptions in Theorem 2.1 the generalized Gauss-

Lobatto-Turán quadrature formula exists uniquely, with n distinct real nodes τ
(n)
ν

in (0, 1).

The solution of Problem I∗ can be given in a similar way.

Theorem 2.2. Let f ∈ Cm+1[0, 1]. There exists a unique spline function on [0, 1],

s∗n,m(t) = p∗m(t)+

n∑
ν=1

m∑
i=m−2s

a∗i,ν(τ∗ν − t)i+,(2.13)

0 < τ∗ν < 1, τ∗ν 6= τ∗µ for ν 6= µ,

satisfying (2.3) and (2.2), for j = 0, 1, . . . , 2(s+ 1)n− 1, if and only if the measure
dλ(t) in (2.7) admits a generalized Gauss-Radau-Turán quadrature

(2.14)

∫ 1

0

g(t) dλ(t) =
m∑
k=0

α∗
kg

(k)(0) +
n∑
ν=1

2s∑
i=0

ARi,νg
(i)(τ (n)∗ν ) +RRn,m(g; dλ),

where
RRn,m(g; dλ) = 0 for all g ∈ P2(s+1)n+m,
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with distinct real zeros τ
(n)∗
ν , ν = 1, 2, . . . , n, all contained in the open interval

(0, 1). The knots τ∗ν in (2.13) are then precisely these zeros,

τ∗ν = τ (n)∗ν , ν = 1, . . . , n,(2.15)

and

a∗m−k,ν =
m!

(m− k)!
ARk,ν , ν = 1, 2, . . . , n; k = 0, 1, . . . , 2s,(2.16)

while the polynomial p∗m(t) is given by

(2.17) p∗m(t) =
m∑
k=0

f (k)(1)

k!
(t− 1)k.

3. Error analysis

Similarly as in [1], following [4], we can prove the following statement regarding
to the error of spline approximations:

Theorem 3.1. Define

ρx(t) = (t− x)m+ , 0 ≤ t ≤ 1.

Under conditions of Theorem 2.1 and Theorem 2.2, we have

(3.1) f(x)− sn,m(x) = RLn,m(ρx; dλ), 0 < x < 1,

and

(3.2) f(x)− s∗n,m(x) = RRn,m(ρx; dλ), 0 < x < 1,

respectively, where RLn,m(g; dλ) and RRn,m(g; dλ) are the remainder terms in the
corresponding Gauss-Turán formulas of Lobatto and Radau type.

Proof. We will prove (3.1). As in [1] we have

(3.3) f(x) =

m∑
k=0

f (k)(1)

k!
(x− 1)k +

∫ 1

0

ρx(t) dλ(t).

By (2.11)

(3.4) sn,m(x) =

m∑
k=0

p(k)(1)

k!
(x− 1)k +

n∑
ν=1

m∑
i=m−2s

m!

i!
ALm−i,ν(τν − x)i+
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and changing indices (k = m− i), the third sum on the right becomes

m∑
i=m−2s

m!

i!
ALm−i,ν(τν − x)i+ =

m∑
k=0

m!

(m− k)!
ALm−i,ν(τν − x)m−k

+

=

m∑
k=0

ALk,ν
[
Dkρx(t)

]
t=τν

.

Equation (3.4) may be rewrite

(3.5) sn,m(x) =

m∑
k=0

p(k)(1)

k!
(x− 1)k +

n∑
ν=1

m∑
k=0

ALk,ν
[
Dkρx(t)

]
t=τν

.

Subtracting (3.5) from (3.3) gives

f(x)− sn,m(x) =

∫ 1

0

ρx(t) dλ(t) +

m∑
k=0

1

k!

(
f (k)(1)− p(k)(1)

)
(x− 1)k

−
n∑
ν=1

m∑
k=0

ALk,ν
[
Dkρx(t)

]
t=τν

which, by virtue of (2.12) and (2.4), yields

f(x)− sn,m(x) =

∫ 1

0

ρx(t) dλ(t)−
m∑
k=0

m!

k!
βm−k(1− x)k

−
n∑
ν=1

m∑
k=0

ALk,ν
[
Dkρx(t)

]
t=τν

.

But

ρ(k)x (0) = 0, ρ(k)x (1) =
m!

(m− k)!
(1− x)m−k, k = 0, 1, . . . ,m,

so that

f(x)− sn,m(x) =

∫ 1

0

ρx(t) dλ(t)−
m∑
k=0

βm−kρ
(m−k)
x (1)

−
n∑
ν=1

m∑
k=0

ALk,ν
[
Dkρx(t)

]
t=τν

as claimed in (3.1).

The proof of (3.2) is entirely analogous to the proof of (3.1) and it will be omitted.
�
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4. Construction of spline approximation

In [7] one of us considered the generalized Gauss-Turán quadrature formula

(4.1)

∫
R
g(t) dσ(t) =

n∑
ν=1

2s∑
i=0

AGi,νg
(i)(τ (n)ν ) +RGn (g),

where dσ(t) is a nonnegative measure on the real line R, with compact or infinite
support, for which all moments µk =

∫
R t

k dσ(t), k = 0, 1, . . . , exist and are finite,
and µ0 > 0. The formula (4.1) is exact for all polynomials of degree at most
2(s+ 1)n− 1, i.e.,

RGn (g) = 0 for g ∈ P2(s+1)n−1.

The knots τ
(n)
ν (ν = 1, . . . , n) in (4.1) are zeros of a (monic) polynomial πn(t),

which minimizes the following integral∫
R
πn(t)2s+2 dσ(t),

where πn(t) = tn + an−1t
n−1 + · · · + a1t + a0. In the other words, the polynomial

πn satisfies the following generalized orthogonality conditions

(4.2)

∫
R
πn(t)2s+1tk dσ(t), k = 0, 1, . . . , n− 1.

This polynomial πn is known as s-orthogonal (or s-self associated) polynomial
with respect to the measure dσ(t). For s = 0, we have the standard case of orthog-
onal polynomials, and (4.1) then becomes well-known Gauss-Christoffel formula.

The “orthogonality condition” (4.1) can be interpreted as (see [7])∫
R
πs,nν (t)tk dµ(t) = 0, k = 0, 1, . . . , ν − 1,

where {πs,nν } is a sequence of standard monic polynomials orthogonal on R with
respect to the new measure dµ(t) = dµs,n(t) = (πs,nn (t))2sdσ(t). The polynomials
{πs,nν }, ν = 0, 1, . . . , are implicitly defined because the measure dµ(t) depends on
πs,nn (t)

(
= πn(t)

)
. Of course, we are interested only in πs,nn (t). A stable algorithm

for constructing such (s-orthogonal) polynomials is given in [7].

In order to use this algorithm in construction of spline functions (2.1) and (2.13)
we need two auxiliary results. These results give a conection between the general-
ized Gauss-Turán quadrature (4.1) and the corresponding formulas of Lobatto and
Radau type.
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Lemma 4.1. If the measure dλ(t) in (2.7) admits the generalized Gauss-Lobatto-

Turán quadrature (2.9), with distinct real zeros τν = τ
(n)
ν , ν = 1, . . . , n, all con-

tained in the open interval (0, 1), there exists then a generalized Gauss-Turán for-
mula

(4.3)

∫ 1

0

g(t) dσ(t) =

n∑
ν=1

2s∑
i=0

AGi,νg
(i)(τ (n)ν ) +RGn (g),

where dσ(t) = [t(1− t)]m+1dλ(t), the nodes τ
(n)
ν are the zeros of s-orthogonal poly-

nomial πn(·; dσ)), while the weights AGi,ν are expressible in terms of those in (2.9)
by

(4.4) AGi,ν =

2s∑
k=i

(
k

i

)[
Dk−i (t(1− t))m+1

]
t=τν

ALk,ν , i = 0, 1, . . . , 2s.

Proof. Let g(t) = (t(1− t))m+1
p(t), p ∈ P2(s+1)n−1 and τν = τ

(n)
ν . We have by

(2.9) ∫ 1

0

g(t) dλ(t) =

n∑
ν=1

2s∑
k=0

ALk,ν

[
Dk (t(1− t))m+1

p(t)
]
t=τν

,

and by (4.3) ∫ 1

0

p(t) dσ(t) =

n∑
ν=1

2s∑
i=0

AGi,ν
[
Dip(t)

]
t=τν

.

Thus, we obtain that

n∑
ν=1

2s∑
k=0

ALk,ν

[
Dk (t(1− t))m+1

p(t)
]
t=τν

=

n∑
ν=1

2s∑
i=0

AGi,ν
[
Dip(t)

]
t=τν

.

Appling the Leibnitz formula to k-th derivative in the second sum, we find

2s∑
k=0

ALk,ν

[
Dk (t(1− t))m+1

p(t)
]
t=τν

=

2s∑
k=0

ALk,ν

[
k∑
i=0

(
k

i

)
Dk−i (t(1− t))m+1

Dip(t)

]
t=τν

=

2s∑
i=0

(
2s∑
k=i

(
k

i

)[
Dk−i (t(1− t))m+1

]
t=τν

ALk,ν
[
Dip(t)

]
t=τν

)

=

2s∑
i=0

AGi,ν
[
Dip(t)

]
t=τν

,
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where

AGi,ν =

2s∑
k=i

(
k

i

)[
Dk−i (t(1− t))m+1

]
t=τν

ALk,ν , i = 0, 1, . . . , 2s. �

Similarly we can prove:

Lemma 4.2. If the measure dλ(t) in (2.7) admits the generalized Gauss-Radau-

Turán quadrature (2.14), with distinct real zeros τν = τ
(n)∗
ν , ν = 1, . . . , n, all con-

tained in the open interval (0, 1), there exists then a generalized Gauss-Turán for-

mula (4.3), where dσ(t) = dσ∗(t) = tm+1dλ(t), the nodes τ
(n)∗
ν are the zeros of

s-orthogonal polynomial πn(·; dσ∗), while the weights AGi,ν are expressible in terms
of those in (2.14) by

(4.5) AGi,ν =

2s∑
k=i

(
k

i

)[
Dk−itm+1

]
t=τν

ARk,ν , i = 0, 1, . . . , 2s.

Now, we can state a construction procedure of our spline approximations:

1◦ For a given t 7→ f(t) and (n,m, s), we find the measure dλ(t) and the corre-
sponding Jacobi matrix JN (dλ), where N = (s+ 1)n+ 2m+ 2 in the Lobatto case,
and N = (s+ 1)n+m+ 1 in the Radau case. The latter can be computed by the
discretized Stieltjes procedure (see [2, § 2.2]).

2◦ By repeated application of the algorithms in [3, § 4.1] corresponding to mul-
tiplication of a measure by t(1 − t) and t, from the above Jacobi matrices, we
generate the Jacobi matrices J(s+1)n(dσ) and J(s+1)n(dσ∗), respectively. Here,

dσ(t) = (t(1− t))m+1dλ(t) and dσ∗(t) = tm+1dλ(t).

3◦ Using the algorithm for the construction of s-orthogonal polynomials, given
in [7], we obtain the Jacobi matrix Jn(dµ), where dµ(t) = (πn(t))2sdσ(t), or dµ(t) =
(πn(t))2sdσ∗(t).

4◦ From Jn(dµ) we determine the Gaussian nodes τ
(n)
ν (resp. τ

(n)∗
ν in the Radau

case) and the corresponging weights AGi,ν (ν = 1, . . . , n; i = 0, 1, . . . , 2s).

5◦ From the triangular systems of linear equations (4.4) and (4.5), we find the
coefficients ALk,ν and ARk,ν , respectively.

6◦ Using (2.11) and (2.12), or (2.15), (2.16) and (2.17), we determine the spline
approximation sn,m(t), or s∗n,m(t), respectively.

5. Numerical example

We consider the spline approximations of the exponential function f(t) = e−ct,
0 ≤ t ≤ 1, where c > 0. All computations were done on the PC/AT in double
precision (machine precision ≈ 8.88× 10−16).
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In this example the function f is completely monotonic and the associated mea-
sure (2.7) is positive. Thus

dλ(t) =
cm+1

m!
e−ct dt on [0, 1].

In the discretized Stieltjes algorithm (Step 1◦ in the procedure given in the
previous section), we use Fejér quadrature rule as the modus of discretization.

We analyzed the cases when n ≤ 10, 2 ≤ m ≤ 5, s ≤ 2, c = 1, 2, 4. For example,
for n = m = 3, s = 1, c = 1, the parameters of the spline function in the Lobatto
case,

sn,m(t) =

m∑
k=0

γk(1− t)k +
n∑
ν=1

2s∑
i=m−2s

ai,ν(τν − t)i+,

are given in Table 5.1 (to 10 decimals only, to save space). Numbers in parenthe-
sis idicate decimal exponents. The last row of this table contains the coefficients
γ0, γ1, . . . , γm.

TABLE 5.1

The coefficients of spline function sn,m(t), for n = m = 3, s = 1, c = 1

ν τν a1,ν a2,ν a3,ν
1 1.939368619(−1) 3.448547172(−2) 5.226278048(−4) 3.456311754(−4)

2 4.880999986(−1) 3.217255538(−2) −4.235816948(−4) 4.941612712(−4)
3 7.907411411(−1) 2.039617915(−2) −6.985434349(−4) 2.256692493(−4)

γk 3.678793085(−1) 3.678989078(−1) 1.833595896(−1) 6.681611249(−2)

Table 5.2 shows the accuracy of the spline approximation sn,m (Lobatto case),
i.e.,

en,m = max
0≤t≤1

|sn,m(t)− e−ct|,

for n = 1, 3, 5, 10, m = 2, 3, 4, 5, s = 1, and c = 1, 2, 4.

TABLE 5.2

Accuracy of the spline approximation sn,m

c n m = 2 m = 3 m = 4 m = 5

1 1 2.1(−3) 4.8(−5) 6.9(−7) 1.9(−8)

3 3.2(−4) 4.5(−6) 3.9(−8) 6.7(−10)
5 1.0(−4) 1.1(−6) 7.1(−9) 9.2(−11)

10 1.9(−5) 1.2(−7) 4.9(−10) 4.2(−12)

2 1 1.1(−2) 4.7(−4) 1.4(−5) 7.5(−7)

3 1.7(−3) 4.5(−5) 8.1(−7) 2.6(−8)
5 5.3(−4) 1.1(−5) 1.5(−7) 3.6(−9)

10 1.0(−4) 1.2(−6) 1.9(−8) 1.7(−10)

4 1 4.3(−2) 3.0(−3) 2.1(−4) 2.5(−5)

3 6.0(−3) 2.8(−4) 1.1(−5) 6.5(−7)

5 2.4(−3) 8.7(−5) 2.0(−6) 9.8(−8)
10 4.5(−4) 9.9(−6) 1.5(−7) 4.8(−9)
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The corresponding errors in Radau case,

e∗n,m = max
0≤t≤1

|s∗n,m(t)− e−ct|

are given in Table 5.3.

TABLE 5.3

Accuracy of the spline approximation s∗n,m

c n m = 2 m = 3 m = 4 m = 5

1 1 3.8(−3) 1.7(−4) 1.7(−5) 1.5(−6)

3 4.5(−4) 8.5(−6) 1.2(−7) 3.4(−9)
5 1.4(−4) 1.8(−6) 1.8(−8) 2.9(−10)

10 2.3(−5) 1.7(−7) 8.2(−10) 7.9(−12)

2 1 1.8(−2) 1.8(−3) 3.3(−4) 5.8(−5)

3 2.4(−3) 9.4(−5) 2.5(−6) 1.4(−7)
5 7.6(−4) 2.0(−5) 3.3(−7) 1.2(−8)

10 1.2(−4) 1.8(−6) 1.6(−8) 3.3(−10)

4 1 6.2(−2) 1.3(−2) 4.4(−3) 1.4(−3)

3 1.1(−2) 7.7(−4) 3.8(−5) 3.9(−6)
5 3.4(−3) 1.5(−4) 5.1(−6) 3.3(−7)

10 5.0(−4) 1.4(−5) 2.6(−7) 9.7(−9)

We can see that the approximation error is more easily reduced by increasing m
rather than n. Also, the spline sn,m is only slightly more accurate than the spline
s∗n,m.
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SPLAJN APROKSIMACIJE NA KONAČNIM INTERVALIMA

KOJE OČUVAVAJU MOMENTE I TURÁNOVE KVADRATURE

Marco Frontini and Gradimir V. Milovanović

Razmatra se problem aproksimacije funkcije f na konačnom intervalu [0, 1] po-
moću splajn funkcije reda m i defekta d, sa n (promenljivih) čvorova, zadržavajući
pritom što je mogućno vǐse početnih momenata funkcije f . Dodatna ograničenja
na izvode u jednoj od krajnjih tačaka intervala [0, 1] takod̄e se mogu nametnuti. U
radu se analizira slučaj kada je defekt d neparan broj (d = 2s + 1), i pokazuje se
da u slučaju kada aproksimacija egzistira, tada se ona može reprezentovati pomoću
parametara generalisane Turánove kvadrature u odnosu na meru koja zavisi od f .
Čvorovi splajna su nule odgovarajućih s-ortogonalnih polinoma (s ≥ 1). Kao ilus-
tracija aproksimacionog postupka uključen je jedan numerički primer.


