MOMENT–PRESERVING SPLINE APPROXIMATION ON FINITE INTERVALS AND TURÁN QUADRATURES

Marco Frontini and Gradimir V. Milovanović

Abstract. We discuss the problem of approximating a function f on the interval [0,1] by a spline function of degree m and defect d, with n (variable) knots, matching as many of the initial moments of f as possible. Additional constraints on the derivatives of the approximation at one endpoint of [0,1] may also be imposed. We analyse the case when the defect d is an odd integer (d = 2s + 1), and we show that, if the approximation exists, it can be represented in terms of generalized Turán quadrature relative to a measure depending on f. The knots are the zeros of the corresponding s-orthogonal polynomials $(s \ge 1)$. A numerical example is included.

1. Introduction

Continuing previous works [4–5], Milovanović and Kovačević [6] have considered the problem of approximating a spherically symmetric function f(r), r = ||x||, $0 \le r < \infty$, in \mathbb{R}^d , $d \ge 1$, by a spline function of degree $m \ge 2$ and defect d $(1 \le d \le m)$, with n knots. Under suitable assumptions on f and d = 2s + 1, it was shown that the problem as a unique solution if and only if certain generalized Turán quadratures exist corresponding to a measure depending on f. Existence, uniqueness and pointwise convergence of such approximation were analyzed.

In [1] Frontini, Gautschi and Milovanović considered the analogous of the problem treated in [5] on an arbitrary finite interval. If the approximations exist, they can be represented in terms of generalized Gauss-Lobatto and Gauss-Radau quadrature formulas relative to appropriate measures depending on f. In this paper we discuss the case of approximating a function f = f(t) on some given finite interval [a, b], which can be standardized to [a, b] = [0, 1], by a spline function of degree $m \ge 2$ and defect d $(1 \le d \le m)$, with n knots. Under suitable assumptions on f and d = 2s + 1 we will show that our problem has a unique solution if and only if certain generalized Turán-Radau and Turán-Lobatto quadratures formulas exist corresponding to measures depending on f. Existence, uniqueness and pointwise convergence is assured if f is completely monotonic on [0, 1]. One simple numerical example is included.

Received April 15, 1989.

¹⁹⁹¹ Mathematics Subject Classification. Primary 41A15, 65D32; Secondary 33A65.

M. Frontini and G. V. Milovanović

2. Spline approximation on [0,1]

A spline function of degree $m \ge 2$ and defect d, with n (distinct) knots $\tau_1, \tau_2, \ldots, \tau_n$ in the interior of [0, 1], can be written in terms of truncated powers in the form

(2.1)
$$s_{n,m}(t) = p_m(t) + \sum_{\nu=1}^n \sum_{i=m-d+1}^m a_{i,\nu}(\tau_\nu - t)^i_+,$$

where $a_{i,\nu}$ are real numbers and $p_m(t)$ is a polynomial of degree $\leq m$.

Similarly as in [1] we will consider two related problems:

Problem I. Determine $s_{n,m}$ in (2.1) such that

(2.2)
$$\int_0^1 t^j s_{n,m}(t) \, dt = \int_0^1 t^j f(t) \, dt, \qquad j = 0, 1, \dots, (d+1)n + m.$$

Problem I^* . Determine $s_{n,m}$ in (2.1) such that

(2.3)
$$s_{n,m}^{(k)}(1) = p_m^{(k)}(1) = f^{(k)}(1), \qquad k = 0, 1, \dots, m,$$

and such that (2.2) holds for j = 0, 1, ..., (d+1)n - 1.

In this paper we will reduce our problems to the power-orthogonality (s-orthogonality) and generalized Gauss-Turán quadratures by restricting the class of functions f (see [6]).

In order to reduce our problems (2.2) and (2.3) to the power-orthogonality, we have to put d = 2s + 1, i.e., the defect of the spline function (2.1) should be odd.

Let

(2.4)
$$\phi_k = \frac{(-1)^k}{m!} f^{(k)}(1), \quad b_k = \frac{(-1)^k}{m!} p_m^{(k)}(1), \quad k = 0, 1, ..., m_k$$

applying m + 1 integration by parts to the integrals in the moment equation (2.2) we obtain (see [1])

(2.5)
$$\sum_{k=0}^{m} b_k \left[D^{m-k} t^{m+1+j} \right]_{t=1} + \sum_{\nu=1}^{n} \sum_{i=m-2s}^{m} a_{i,\nu} \tau_{\nu}^{j+i+1} \frac{i!(m+j+1)!}{m!(j+i+1)!}$$
$$= \sum_{k=0}^{m} \phi_k \left[D^{m-k} t^{m+1+j} \right]_{t=1} + \frac{(-1)^{m+1}}{m!} \int_0^1 t^{m+1+j} f^{(m+1)}(t) \, dt,$$
$$j = 0, 1, \dots, 2(s+1)n + m,$$

where D is the standard differentiation operator.

For the second sum in (2.5) we may observe that

$$\sum_{\nu=1}^{n} \sum_{i=m-2s}^{m} a_{i,\nu} \tau_{\nu}^{j+i+1} \frac{i!(m+j+1)!}{m!(j+i+1)!} = \sum_{\nu=1}^{n} \sum_{i=m-2s}^{m} \frac{i!}{m!} a_{i,\nu} \left[D^{m-i} t^{m+j+1} \right]_{t=\tau_{\nu}},$$

changing indices (k = m - i), the second sum on the right becomes

(2.6)
$$\sum_{k=0}^{2s} \frac{(m-k)!}{m!} a_{m-k,\nu} \left[D^k(t^{m+1}t^j) \right]_{t=\tau_{\nu}},$$

hence defining the measure

(2.7)
$$d\lambda(t) = \frac{(-1)^{m+1}}{m!} f^{(m+1)}(t) dt \quad \text{on} \quad [0,1],$$

equations (2.5) may be rewrite

(2.8)

$$\sum_{k=0}^{m} b_k \left[D^{m-k} t^{m+1+j} \right]_{t=1} + \sum_{\nu=1}^{n} \sum_{k=0}^{2s} \frac{(m-k)!}{m!} a_{m-k,\nu} \left[D^k (t^{m+1+j}) \right]_{t=\tau_{\nu}}$$

$$= \sum_{k=0}^{m} \phi_k \left[D^{m-k} t^{m+1+j} \right]_{t=1} + \int_0^1 t^{m+1+j} d\lambda(t),$$

$$j = 0, 1, \dots, 2(s+1)n + m,$$

Now we can state the main result for Problem I:

Theorem 2.1. Let $f \in C^{m+1}[0,1]$. There exists a unique spline function (2.1) on [0,1], with d = 2s + 1, satisfying (2.2) if and only if the measure $d\lambda(t)$ in (2.7) admits a generalized Gauss-Lobatto-Turán quadrature

(2.9)
$$\int_{0}^{1} g(t) d\lambda(t) = \sum_{k=0}^{m} \left[\alpha_{k} g^{(k)}(0) + \beta_{k} g^{(k)}(1) \right] + \sum_{\nu=1}^{n} \sum_{i=0}^{2s} A_{i,\nu}^{L} g^{(i)}(\tau_{\nu}^{(n)}) + R_{n,m}^{L}(g; d\lambda),$$

where

(2.10)
$$R_{n,m}^L(g;d\lambda) = 0 \quad \text{for all} \quad g \in \mathcal{P}_{2(s+1)n+2m+1},$$

with distinct real zeros $\tau_{\nu}^{(n)}$, $\nu = 1, 2, ..., n$, all contained in the open interval (0, 1). The spline function in (2.1) is given by

(2.11)
$$\tau_{\nu} = \tau_{\nu}^{(n)}, \quad a_{m-k,\nu} = \frac{m!}{(m-k)!} A_{k,\nu}^L, \quad \nu = 1, 2, \dots, n; \ k = 0, 1, \dots, 2s,$$

where $\tau_{\nu}^{(n)}$ are the interior nodes of the generalized Gauss-Lobatto-Turán quadrature formula and $A_{k,\nu}^L$ are the corresponding weights, while the polynomial $p_m(t)$ is given by

(2.12)
$$p_m^{(k)}(1) = f^{(k)}(1) + (-1)^k m! \beta_{m-k}, \quad k = 0, 1, \dots, m,$$

where β_{m-k} is the coefficient of $g^{(m-k)}(1)$ in (2.9).

Proof. Putting $g(t) = t^{m+1}p(t), p \in \mathcal{P}_{2(s+1)n+m}$, in (2.9) and noting (2.10) yields

$$\sum_{k=0}^{m} \beta_k \left[D^k t^{m+1} p(t) \right]_{t=1} + \sum_{\nu=1}^{n} \sum_{i=0}^{2s} A^L_{i,\nu} \left[D^k (t^{m+1} p(t)) \right]_{t=\tau_{\nu}}$$
$$= \int_0^1 t^{m+1} p(t) \, d\lambda(t), \quad \forall p \in \mathcal{P}_{2(s+1)n+m}$$

which is identical to (2.8), if we identify

$$b_{m-k} - \phi_{m-k} = \beta_k, \qquad k = 0, 1, \dots, m;$$

$$a_{m-k,\nu} = \frac{m!}{(m-k)!} A_{k,\nu}^L, \quad \nu = 1, 2, \dots, n; \ k = 0, 1, \dots, 2s. \quad \Box$$

Remark. The case s = 0 of Theorem 2.1 has been obtained in [1].

If f is completely monotonic on [0, 1] then $d\lambda(t)$ in (2.7) is a positive measure for every m, then by virtue of the assumptions in Theorem 2.1 the generalized Gauss-Lobatto-Turán quadrature formula exists uniquely, with n distinct real nodes $\tau_{\nu}^{(n)}$ in (0, 1).

The solution of *Problem* I^* can be given in a similar way.

Theorem 2.2. Let $f \in C^{m+1}[0,1]$. There exists a unique spline function on [0,1],

(2.13)
$$s_{n,m}^{*}(t) = p_{m}^{*}(t) + \sum_{\nu=1}^{n} \sum_{i=m-2s}^{m} a_{i,\nu}^{*}(\tau_{\nu}^{*} - t)_{+}^{i},$$
$$0 < \tau_{\nu}^{*} < 1, \ \tau_{\nu}^{*} \neq \tau_{\mu}^{*} \ for \ \nu \neq \mu,$$

satisfying (2.3) and (2.2), for j = 0, 1, ..., 2(s+1)n - 1, if and only if the measure $d\lambda(t)$ in (2.7) admits a generalized Gauss-Radau-Turán quadrature

(2.14)
$$\int_0^1 g(t) \, d\lambda(t) = \sum_{k=0}^m \alpha_k^* g^{(k)}(0) + \sum_{\nu=1}^n \sum_{i=0}^{2s} A_{i,\nu}^R g^{(i)}(\tau_\nu^{(n)*}) + R_{n,m}^R(g; d\lambda),$$

where

$$R_{n,m}^R(g;d\lambda) = 0$$
 for all $g \in \mathcal{P}_{2(s+1)n+m}$

with distinct real zeros $\tau_{\nu}^{(n)*}$, $\nu = 1, 2, ..., n$, all contained in the open interval (0, 1). The knots τ_{ν}^* in (2.13) are then precisely these zeros,

(2.15)
$$\tau_{\nu}^* = \tau_{\nu}^{(n)*}, \quad \nu = 1, \dots, n,$$

and

(2.16)
$$a_{m-k,\nu}^* = \frac{m!}{(m-k)!} A_{k,\nu}^R, \quad \nu = 1, 2, \dots, n; \ k = 0, 1, \dots, 2s,$$

while the polynomial $p_m^*(t)$ is given by

(2.17)
$$p_m^*(t) = \sum_{k=0}^m \frac{f^{(k)}(1)}{k!} (t-1)^k.$$

3. Error analysis

Similarly as in [1], following [4], we can prove the following statement regarding to the error of spline approximations:

Theorem 3.1. Define

$$\rho_x(t) = (t - x)_+^m, \qquad 0 \le t \le 1,$$

Under conditions of Theorem 2.1 and Theorem 2.2, we have

(3.1)
$$f(x) - s_{n,m}(x) = R_{n,m}^L(\rho_x; d\lambda), \qquad 0 < x < 1,$$

and

(3.2)
$$f(x) - s_{n,m}^*(x) = R_{n,m}^R(\rho_x; d\lambda), \qquad 0 < x < 1,$$

respectively, where $R_{n,m}^L(g; d\lambda)$ and $R_{n,m}^R(g; d\lambda)$ are the remainder terms in the corresponding Gauss-Turán formulas of Lobatto and Radau type.

Proof. We will prove (3.1). As in [1] we have

(3.3)
$$f(x) = \sum_{k=0}^{m} \frac{f^{(k)}(1)}{k!} (x-1)^k + \int_0^1 \rho_x(t) \, d\lambda(t).$$

By (2.11)

(3.4)
$$s_{n,m}(x) = \sum_{k=0}^{m} \frac{p^{(k)}(1)}{k!} (x-1)^k + \sum_{\nu=1}^{n} \sum_{i=m-2s}^{m} \frac{m!}{i!} A^L_{m-i,\nu} (\tau_{\nu} - x)^i_+$$

and changing indices (k = m - i), the third sum on the right becomes

$$\sum_{i=m-2s}^{m} \frac{m!}{i!} A_{m-i,\nu}^{L} (\tau_{\nu} - x)_{+}^{i} = \sum_{k=0}^{m} \frac{m!}{(m-k)!} A_{m-i,\nu}^{L} (\tau_{\nu} - x)_{+}^{m-k}$$
$$= \sum_{k=0}^{m} A_{k,\nu}^{L} \left[D^{k} \rho_{x}(t) \right]_{t=\tau_{\nu}}.$$

Equation (3.4) may be rewrite

(3.5)
$$s_{n,m}(x) = \sum_{k=0}^{m} \frac{p^{(k)}(1)}{k!} (x-1)^k + \sum_{\nu=1}^{n} \sum_{k=0}^{m} A_{k,\nu}^L \left[D^k \rho_x(t) \right]_{t=\tau_{\nu}}.$$

Subtracting (3.5) from (3.3) gives

$$f(x) - s_{n,m}(x) = \int_0^1 \rho_x(t) \, d\lambda(t) + \sum_{k=0}^m \frac{1}{k!} \left(f^{(k)}(1) - p^{(k)}(1) \right) (x-1)^k$$
$$- \sum_{\nu=1}^n \sum_{k=0}^m A^L_{k,\nu} \left[D^k \rho_x(t) \right]_{t=\tau_\nu}$$

which, by virtue of (2.12) and (2.4), yields

$$f(x) - s_{n,m}(x) = \int_0^1 \rho_x(t) \, d\lambda(t) - \sum_{k=0}^m \frac{m!}{k!} \beta_{m-k} (1-x)^k - \sum_{\nu=1}^n \sum_{k=0}^m A_{k,\nu}^L \left[D^k \rho_x(t) \right]_{t=\tau_\nu}.$$

But

$$\rho_x^{(k)}(0) = 0, \quad \rho_x^{(k)}(1) = \frac{m!}{(m-k)!} (1-x)^{m-k}, \quad k = 0, 1, \dots, m,$$

so that

$$f(x) - s_{n,m}(x) = \int_0^1 \rho_x(t) \, d\lambda(t) - \sum_{k=0}^m \beta_{m-k} \rho_x^{(m-k)}(1) - \sum_{\nu=1}^n \sum_{k=0}^m A_{k,\nu}^L \left[D^k \rho_x(t) \right]_{t=\tau_\nu}$$

as claimed in (3.1).

The proof of (3.2) is entirely analogous to the proof of (3.1) and it will be omitted. \Box

Moment–preserving spline approximation ...

4. Construction of spline approximation

In [7] one of us considered the generalized Gauss-Turán quadrature formula

(4.1)
$$\int_{\mathbb{R}} g(t) \, d\sigma(t) = \sum_{\nu=1}^{n} \sum_{i=0}^{2s} A_{i,\nu}^{G} g^{(i)}(\tau_{\nu}^{(n)}) + R_{n}^{G}(g),$$

where $d\sigma(t)$ is a nonnegative measure on the real line \mathbb{R} , with compact or infinite support, for which all moments $\mu_k = \int_{\mathbb{R}} t^k d\sigma(t)$, $k = 0, 1, \ldots$, exist and are finite, and $\mu_0 > 0$. The formula (4.1) is exact for all polynomials of degree at most 2(s+1)n-1, i.e.,

$$R_n^G(g) = 0$$
 for $g \in \mathcal{P}_{2(s+1)n-1}$.

The knots $\tau_{\nu}^{(n)}$ ($\nu = 1, ..., n$) in (4.1) are zeros of a (monic) polynomial $\pi_n(t)$, which minimizes the following integral

$$\int_{\mathbb{R}} \pi_n(t)^{2s+2} \, d\sigma(t).$$

where $\pi_n(t) = t^n + a_{n-1}t^{n-1} + \cdots + a_1t + a_0$. In the other words, the polynomial π_n satisfies the following generalized orthogonality conditions

(4.2)
$$\int_{\mathbb{R}} \pi_n(t)^{2s+1} t^k \, d\sigma(t), \qquad k = 0, 1, \dots, n-1.$$

This polynomial π_n is known as s-orthogonal (or s-self associated) polynomial with respect to the measure $d\sigma(t)$. For s = 0, we have the standard case of orthogonal polynomials, and (4.1) then becomes well-known Gauss-Christoffel formula.

The "orthogonality condition" (4.1) can be interpreted as (see [7])

$$\int_{\mathbb{R}} \pi_{\nu}^{s,n}(t) t^k \, d\mu(t) = 0, \qquad k = 0, 1, \dots, \nu - 1,$$

where $\{\pi_{\nu}^{s,n}\}$ is a sequence of standard monic polynomials orthogonal on \mathbb{R} with respect to the new measure $d\mu(t) = d\mu^{s,n}(t) = (\pi_n^{s,n}(t))^{2s} d\sigma(t)$. The polynomials $\{\pi_{\nu}^{s,n}\}, \nu = 0, 1, \ldots$, are implicitly defined because the measure $d\mu(t)$ depends on $\pi_n^{s,n}(t) (= \pi_n(t))$. Of course, we are interested only in $\pi_n^{s,n}(t)$. A stable algorithm for constructing such (s-orthogonal) polynomials is given in [7].

In order to use this algorithm in construction of spline functions (2.1) and (2.13) we need two auxiliary results. These results give a conection between the generalized Gauss-Turán quadrature (4.1) and the corresponding formulas of Lobatto and Radau type. **Lemma 4.1.** If the measure $d\lambda(t)$ in (2.7) admits the generalized Gauss-Lobatto-Turán quadrature (2.9), with distinct real zeros $\tau_{\nu} = \tau_{\nu}^{(n)}$, $\nu = 1, \ldots, n$, all contained in the open interval (0,1), there exists then a generalized Gauss-Turán formula

(4.3)
$$\int_0^1 g(t) \, d\sigma(t) = \sum_{\nu=1}^n \sum_{i=0}^{2s} A^G_{i,\nu} g^{(i)}(\tau^{(n)}_\nu) + R^G_n(g),$$

where $d\sigma(t) = [t(1-t)]^{m+1} d\lambda(t)$, the nodes $\tau_{\nu}^{(n)}$ are the zeros of s-orthogonal polynomial $\pi_n(\cdot; d\sigma)$), while the weights $A_{i,\nu}^G$ are expressible in terms of those in (2.9) by

(4.4)
$$A_{i,\nu}^{G} = \sum_{k=i}^{2s} \binom{k}{i} \left[D^{k-i} \left(t(1-t) \right)^{m+1} \right]_{t=\tau_{\nu}} A_{k,\nu}^{L}, \qquad i = 0, 1, \dots, 2s.$$

Proof. Let $g(t) = (t(1-t))^{m+1} p(t), \ p \in \mathcal{P}_{2(s+1)n-1}$ and $\tau_{\nu} = \tau_{\nu}^{(n)}$. We have by (2.9)

$$\int_0^1 g(t) \, d\lambda(t) = \sum_{\nu=1}^n \sum_{k=0}^{2s} A_{k,\nu}^L \left[D^k \left(t(1-t) \right)^{m+1} p(t) \right]_{t=\tau_\nu}$$

and by (4.3)

1

$$\int_{0}^{1} p(t) \, d\sigma(t) = \sum_{\nu=1}^{n} \sum_{i=0}^{2s} A_{i,\nu}^{G} \left[D^{i} p(t) \right]_{t=\tau_{\nu}}$$

Thus, we obtain that

$$\sum_{\nu=1}^{n} \sum_{k=0}^{2s} A_{k,\nu}^{L} \left[D^{k} \left(t(1-t) \right)^{m+1} p(t) \right]_{t=\tau_{\nu}} = \sum_{\nu=1}^{n} \sum_{i=0}^{2s} A_{i,\nu}^{G} \left[D^{i} p(t) \right]_{t=\tau_{\nu}}.$$

Appling the Leibnitz formula to k-th derivative in the second sum, we find

$$\begin{split} \sum_{k=0}^{2s} A_{k,\nu}^{L} \left[D^{k} \left(t(1-t) \right)^{m+1} p(t) \right]_{t=\tau_{\nu}} \\ &= \sum_{k=0}^{2s} A_{k,\nu}^{L} \left[\sum_{i=0}^{k} \binom{k}{i} D^{k-i} \left(t(1-t) \right)^{m+1} D^{i} p(t) \right]_{t=\tau_{\nu}} \\ &= \sum_{i=0}^{2s} \left(\sum_{k=i}^{2s} \binom{k}{i} \left[D^{k-i} \left(t(1-t) \right)^{m+1} \right]_{t=\tau_{\nu}} A_{k,\nu}^{L} \left[D^{i} p(t) \right]_{t=\tau_{\nu}} \right) \\ &= \sum_{i=0}^{2s} A_{i,\nu}^{G} \left[D^{i} p(t) \right]_{t=\tau_{\nu}}, \end{split}$$

52

where

$$A_{i,\nu}^{G} = \sum_{k=i}^{2s} \binom{k}{i} \left[D^{k-i} \left(t(1-t) \right)^{m+1} \right]_{t=\tau_{\nu}} A_{k,\nu}^{L}, \quad i = 0, 1, \dots, 2s. \quad \Box$$

Similarly we can prove:

Lemma 4.2. If the measure $d\lambda(t)$ in (2.7) admits the generalized Gauss-Radau-Turán quadrature (2.14), with distinct real zeros $\tau_{\nu} = \tau_{\nu}^{(n)*}$, $\nu = 1, \ldots, n$, all contained in the open interval (0,1), there exists then a generalized Gauss-Turán formula (4.3), where $d\sigma(t) = d\sigma^*(t) = t^{m+1}d\lambda(t)$, the nodes $\tau_{\nu}^{(n)*}$ are the zeros of s-orthogonal polynomial $\pi_n(\cdot; d\sigma^*)$, while the weights $A_{i,\nu}^G$ are expressible in terms of those in (2.14) by

(4.5)
$$A_{i,\nu}^G = \sum_{k=i}^{2s} \binom{k}{i} \left[D^{k-i} t^{m+1} \right]_{t=\tau_{\nu}} A_{k,\nu}^R, \qquad i = 0, 1, \dots, 2s.$$

Now, we can state a construction procedure of our spline approximations:

1° For a given $t \mapsto f(t)$ and (n, m, s), we find the measure $d\lambda(t)$ and the corresponding Jacobi matrix $J_N(d\lambda)$, where N = (s+1)n + 2m + 2 in the Lobatto case, and N = (s+1)n + m + 1 in the Radau case. The latter can be computed by the discretized Stieltjes procedure (see [2, § 2.2]).

2° By repeated application of the algorithms in [3, §4.1] corresponding to multiplication of a measure by t(1-t) and t, from the above Jacobi matrices, we generate the Jacobi matrices $J_{(s+1)n}(d\sigma)$ and $J_{(s+1)n}(d\sigma^*)$, respectively. Here, $d\sigma(t) = (t(1-t))^{m+1} d\lambda(t)$ and $d\sigma^*(t) = t^{m+1} d\lambda(t)$.

3° Using the algorithm for the construction of s-orthogonal polynomials, given in [7], we obtain the Jacobi matrix $J_n(d\mu)$, where $d\mu(t) = (\pi_n(t))^{2s} d\sigma(t)$, or $d\mu(t) = (\pi_n(t))^{2s} d\sigma^*(t)$.

4° From $J_n(d\mu)$ we determine the Gaussian nodes $\tau_{\nu}^{(n)}$ (resp. $\tau_{\nu}^{(n)*}$ in the Radau case) and the corresponding weights $A_{i,\nu}^G$ ($\nu = 1, \ldots, n; i = 0, 1, \ldots, 2s$).

5° From the triangular systems of linear equations (4.4) and (4.5), we find the coefficients $A_{k,\nu}^L$ and $A_{k,\nu}^R$, respectively.

6° Using (2.11) and (2.12), or (2.15), (2.16) and (2.17), we determine the spline approximation $s_{n,m}(t)$, or $s_{n,m}^*(t)$, respectively.

5. Numerical example

We consider the spline approximations of the exponential function $f(t) = e^{-ct}$, $0 \le t \le 1$, where c > 0. All computations were done on the PC/AT in double precision (machine precision $\approx 8.88 \times 10^{-16}$).

In this example the function f is completely monotonic and the associated measure (2.7) is positive. Thus

$$d\lambda(t) = \frac{c^{m+1}}{m!} e^{-ct} dt$$
 on $[0,1].$

In the discretized Stieltjes algorithm (Step 1° in the procedure given in the previous section), we use Fejér quadrature rule as the modus of discretization.

We analyzed the cases when $n \le 10, 2 \le m \le 5, s \le 2, c = 1, 2, 4$. For example, for n = m = 3, s = 1, c = 1, the parameters of the spline function in the Lobatto case,

$$s_{n,m}(t) = \sum_{k=0}^{m} \gamma_k (1-t)^k + \sum_{\nu=1}^{n} \sum_{i=m-2s}^{2s} a_{i,\nu} (\tau_{\nu} - t)^i_+,$$

are given in Table 5.1 (to 10 decimals only, to save space). Numbers in parenthesis idicate decimal exponents. The last row of this table contains the coefficients $\gamma_0, \gamma_1, \ldots, \gamma_m$.

TABLE 5.1 The coefficients of spline function $s_{n,m}(t)$, for n = m = 3, s = 1, c = 1

ν	$ au_{ u}$	$a_{1, u}$	$a_{2, u}$	$a_{3, u}$
1	1.939368619(-1)	3.448547172(-2)	5.226278048(-4)	3.456311754(-4)
2	4.880999986(-1)	3.217255538(-2)	-4.235816948(-4)	4.941612712(-4)
3	7.907411411(-1)	2.039617915(-2)	-6.985434349(-4)	2.256692493(-4)
γ_k	3.678793085(-1)	3.678989078(-1)	1.833595896(-1)	6.681611249(-2)

Table 5.2 shows the accuracy of the spline approximation $s_{n,m}$ (Lobatto case), i.e.,

$$e_{n,m} = \max_{0 \le t \le 1} |s_{n,m}(t) - e^{-ct}|,$$

for n = 1, 3, 5, 10, m = 2, 3, 4, 5, s = 1, and c = 1, 2, 4.

TABLE 5.2 Accuracy of the spline approximation $s_{n,m}$								
c	n	m = 2	m = 3	m = 4	m = 5			
1	1	2.1(-3)	4.8(-5)	6.9(-7)	1.9(-8)			
	3	3.2(-4)	4.5(-6)	3.9(-8)	6.7(-10)			
	5	1.0(-4)	1.1(-6)	7.1(-9)	9.2(-11)			
	10	1.9(-5)	1.2(-7)	4.9(-10)	4.2(-12)			
2	1	1.1(-2)	4.7(-4)	1.4(-5)	7.5(-7)			
	3	1.7(-3)	4.5(-5)	8.1(-7)	2.6(-8)			
	5	5.3(-4)	1.1(-5)	1.5(-7)	3.6(-9)			
	10	1.0(-4)	1.2(-6)	1.9(-8)	1.7(-10)			
4	1	4.3(-2)	3.0(-3)	2.1(-4)	2.5(-5)			
	3	6.0(-3)	2.8(-4)	1.1(-5)	6.5(-7)			
	5	2.4(-3)	8.7(-5)	2.0(-6)	9.8(-8)			
	10	4.5(-4)	9.9(-6)	1.5(-7)	4.8(-9)			

54

The corresponding errors in Radau case,

$$e_{n,m}^* = \max_{0 \le t \le 1} |s_{n,m}^*(t) - e^{-ct}|$$

TABLE 5.3

are given in Table 5.3.

Accuracy of the spline approximation $s_{n,m}^*$							
c	n	m=2	m = 3	m = 4	m = 5		
1	1	3.8(-3)	1.7(-4)	1.7(-5)	1.5(-6)		
	3	4.5(-4)	8.5(-6)	1.2(-7)	3.4(-9)		
	5	1.4(-4)	1.8(-6)	1.8(-8)	2.9(-10)		
	10	2.3(-5)	1.7(-7)	8.2(-10)	7.9(-12)		
2	1	1.8(-2)	1.8(-3)	3.3(-4)	5.8(-5)		
	3	2.4(-3)	9.4(-5)	2.5(-6)	1.4(-7)		
	5	7.6(-4)	2.0(-5)	3.3(-7)	1.2(-8)		
	10	1.2(-4)	1.8(-6)	1.6(-8)	3.3(-10)		
4	1	6.2(-2)	1.3(-2)	4.4(-3)	1.4(-3)		
	3	1.1(-2)	7.7(-4)	3.8(-5)	3.9(-6)		
	5	3.4(-3)	1.5(-4)	5.1(-6)	3.3(-7)		
	10	5.0(-4)	1.4(-5)	2.6(-7)	9.7(-9)		

We can see that the approximation error is more easily reduced by increasing mrather than n. Also, the spline $s_{n,m}$ is only slightly more accurate than the spline $s_{n,m}^*$.

REFERENCES

- 1. M. FRONTINI, W. GAUTSCHI and G. V. MILOVANOVIĆ: Moment-preserving spline approximation on finite intervals. Numer. Math. 50(1987), 503–518.
- 2. W. GAUTSCHI: On generating orthogonal polynomials. SIAM J. Sci. Statist. Comput. **3**(1982), 289–317.
- 3. W. GAUTSCHI: An algorithmic implementation of the generalized Christoffel theorem. In: Numerische Integration. Internat. Ser. Numer. Math., vol. 57, pp. 89–106, (Hämmerlin, G., ed.), Basel: Birkhäuser 1982.
- 4. W. GAUTSCHI: Discrete approximations to spherically symmetric distributions. Numer. Math. 44(1984), 53–60.
- 5. W. GAUTSCHI and G. V. MILOVANOVIĆ: Spline approximations to spherically symmetric distributions. Numer. Math. 49(1986), 111-121.
- 6. G. V. MILOVANOVIC and M. A. KOVAČEVIĆ: Moment-preserving spline approximation and Turán quadratures. In: Numerical Mathematics (Singapore, 1988). Internat. Ser. Numer. Math., vol. 86, pp. 357-365, (Agarwal, R. P., Chow, Y. M., Wilson, S. J., eds.), Basel: Birkhäuser 1988.

M. Frontini and G. V. Milovanović

 G. V. MILOVANOVIĆ: Construction of s-orthogonal polynomials and Turán quadrature formulae. In: Numerical Methods and Approximation Theory III (Niš, 1987), pp. 311-328, (Milovanović, G. V. ed.), Univ. Niš, Niš, 1988.

Dipartimento di Matematica Politecnico di Milano Piazza Leonardo da Vinci, 32 I – 20133 Milano, Italy

Faculty of Electronic Engineering Department of Mathematics P. O. Box 73, 18000 Niš, Yugoslavia

SPLAJN APROKSIMACIJE NA KONAČNIM INTERVALIMA KOJE OČUVAVAJU MOMENTE I TURÁNOVE KVADRATURE

Marco Frontini and Gradimir V. Milovanović

Razmatra se problem aproksimacije funkcije f na konačnom intervalu [0, 1] pomoću splajn funkcije reda m i defekta d, sa n (promenljivih) čvorova, zadržavajući pritom što je mogućno više početnih momenata funkcije f. Dodatna ograničenja na izvode u jednoj od krajnjih tačaka intervala [0, 1] takođe se mogu nametnuti. U radu se analizira slučaj kada je defekt d neparan broj (d = 2s + 1), i pokazuje se da u slučaju kada aproksimacija egzistira, tada se ona može reprezentovati pomoću parametara generalisane Turánove kvadrature u odnosu na meru koja zavisi od f. Čvorovi splajna su nule odgovarajućih s-ortogonalnih polinoma ($s \ge 1$). Kao ilustracija aproksimacionog postupka uključen je jedan numerički primer.

56