MOMENT-PRESERVING SPLINE APPROXIMATION ON FINITE INTERVALS AND TURÁN QUADRATURES

Marco Frontini and Gradimir V. Milovanović

Abstract

We discuss the problem of approximating a function f on the interval $[0,1]$ by a spline function of degree m and defect d, with n (variable) knots, matching as many of the initial moments of f as possible. Additional constraints on the derivatives of the approximation at one endpoint of $[0,1]$ may also be imposed. We analyse the case when the defect d is an odd integer $(d=2 s+1)$, and we show that, if the approximation exists, it can be represented in terms of generalized Turán quadrature relative to a measure depending on f. The knots are the zeros of the corresponding s-orthogonal polynomials $(s \geq 1)$. A numerical example is included.

1. Introduction

Continuing previous works [4-5], Milovanović and Kovačević [6] have considered the problem of approximating a spherically symmetric function $f(r), r=\|x\|, 0 \leq$ $r<\infty$, in $\mathbb{R}^{d}, d \geq 1$, by a spline function of degree $m \geq 2$ and defect $d(1 \leq$ $d \leq m$), with n knots. Under suitable assumptions on f and $d=2 s+1$, it was shown that the problem as a unique solution if and only if certain generalized Turán quadratures exist corresponding to a measure depending on f. Existence, uniqueness and pointwise convergence of such approximation were analyzed.

In [1] Frontini, Gautschi and Milovanović considered the analogous of the problem treated in [5] on an arbitrary finite interval. If the approximations exist, they can be represented in terms of generalized Gauss-Lobatto and Gauss-Radau quadrature formulas relative to appropriate measures depending on f. In this paper we discuss the case of approximating a function $f=f(t)$ on some given finite interval $[a, b]$, which can be standardized to $[a, b]=[0,1]$, by a spline function of degree $m \geq 2$ and defect $d(1 \leq d \leq m)$, with n knots. Under suitable assumptions on f and $d=2 s+1$ we will show that our problem has a unique solution if and only if certain generalized Turán-Radau and Turán-Lobatto quadratures formulas exist corresponding to measures depending on f. Existence, uniqueness and pointwise convergence is assured if f is completely monotonic on $[0,1]$. One simple numerical example is included.

[^0]
2. Spline approximation on $[0,1]$

A spline function of degree $m \geq 2$ and defect d, with n (distinct) knots τ_{1}, τ_{2}, \ldots, τ_{n} in the interior of $[0,1]$, can be written in terms of truncated powers in the form

$$
\begin{equation*}
s_{n, m}(t)=p_{m}(t)+\sum_{\nu=1}^{n} \sum_{i=m-d+1}^{m} a_{i, \nu}\left(\tau_{\nu}-t\right)_{+}^{i}, \tag{2.1}
\end{equation*}
$$

where $a_{i, \nu}$ are real numbers and $p_{m}(t)$ is a polynomial of degree $\leq m$.
Similarly as in [1] we will consider two related problems:
Problem I. Determine $s_{n, m}$ in (2.1) such that

$$
\begin{equation*}
\int_{0}^{1} t^{j} s_{n, m}(t) d t=\int_{0}^{1} t^{j} f(t) d t, \quad j=0,1, \ldots,(d+1) n+m . \tag{2.2}
\end{equation*}
$$

Problem I ${ }^{*}$. Determine $s_{n, m}$ in (2.1) such that

$$
\begin{equation*}
s_{n, m}^{(k)}(1)=p_{m}^{(k)}(1)=f^{(k)}(1), \quad k=0,1, \ldots, m, \tag{2.3}
\end{equation*}
$$

and such that (2.2) holds for $j=0,1, \ldots,(d+1) n-1$.
In this paper we will reduce our problems to the power-orthogonality (s-orthogonality) and generalized Gauss-Turán quadratures by restricting the class of functions f (see [6]).

In order to reduce our problems (2.2) and (2.3) to the power-orthogonality, we have to put $d=2 s+1$, i.e., the defect of the spline function (2.1) should be odd.

Let

$$
\begin{equation*}
\phi_{k}=\frac{(-1)^{k}}{m!} f^{(k)}(1), \quad b_{k}=\frac{(-1)^{k}}{m!} p_{m}^{(k)}(1), \quad k=0,1, \ldots, m, \tag{2.4}
\end{equation*}
$$

applying $m+1$ integration by parts to the integrals in the moment equation (2.2) we obtain (see [1])

$$
\begin{array}{r}
\sum_{k=0}^{m} b_{k}\left[D^{m-k} t^{m+1+j}\right]_{t=1}+\sum_{\nu=1}^{n} \sum_{i=m-2 s}^{m} a_{i, \nu} \tau_{\nu}^{j+i+1} \frac{i!(m+j+1)!}{m!(j+i+1)!} \\
=\sum_{k=0}^{m} \phi_{k}\left[D^{m-k} t^{m+1+j}\right]_{t=1}+\frac{(-1)^{m+1}}{m!} \int_{0}^{1} t^{m+1+j} f^{(m+1)}(t) d t \tag{2.5}\\
j=0,1, \ldots, 2(s+1) n+m,
\end{array}
$$

where D is the standard differentiation operator.

For the second sum in (2.5) we may observe that

$$
\sum_{\nu=1}^{n} \sum_{i=m-2 s}^{m} a_{i, \nu} \tau_{\nu}^{j+i+1} \frac{i!(m+j+1)!}{m!(j+i+1)!}=\sum_{\nu=1}^{n} \sum_{i=m-2 s}^{m} \frac{i!}{m!} a_{i, \nu}\left[D^{m-i} t^{m+j+1}\right]_{t=\tau_{\nu}},
$$

changing indices $(k=m-i)$, the second sum on the right becomes

$$
\begin{equation*}
\sum_{k=0}^{2 s} \frac{(m-k)!}{m!} a_{m-k, \nu}\left[D^{k}\left(t^{m+1} t^{j}\right)\right]_{t=\tau_{\nu}} \tag{2.6}
\end{equation*}
$$

hence defining the measure

$$
\begin{equation*}
d \lambda(t)=\frac{(-1)^{m+1}}{m!} f^{(m+1)}(t) d t \quad \text { on } \quad[0,1] \tag{2.7}
\end{equation*}
$$

equations (2.5) may be rewrite

$$
\begin{array}{r}
\sum_{k=0}^{m} b_{k}\left[D^{m-k} t^{m+1+j}\right]_{t=1}+\sum_{\nu=1}^{n} \sum_{k=0}^{2 s} \frac{(m-k)!}{m!} a_{m-k, \nu}\left[D^{k}\left(t^{m+1+j}\right)\right]_{t=\tau_{\nu}} \\
=\sum_{k=0}^{m} \phi_{k}\left[D^{m-k} t^{m+1+j}\right]_{t=1}+\int_{0}^{1} t^{m+1+j} d \lambda(t) \tag{2.8}\\
j=0,1, \ldots, 2(s+1) n+m,
\end{array}
$$

Now we can state the main result for Problem I:
Theorem 2.1. Let $f \in C^{m+1}[0,1]$. There exists a unique spline function (2.1) on $[0,1]$, with $d=2 s+1$, satisfying (2.2) if and only if the measure $d \lambda(t)$ in (2.7) admits a generalized Gauss-Lobatto-Turán quadrature

$$
\begin{align*}
\int_{0}^{1} g(t) d \lambda(t)=\sum_{k=0}^{m}[& \left.\alpha_{k} g^{(k)}(0)+\beta_{k} g^{(k)}(1)\right] \tag{2.9}\\
& +\sum_{\nu=1}^{n} \sum_{i=0}^{2 s} A_{i, \nu}^{L} g^{(i)}\left(\tau_{\nu}^{(n)}\right)+R_{n, m}^{L}(g ; d \lambda),
\end{align*}
$$

where

$$
\begin{equation*}
R_{n, m}^{L}(g ; d \lambda)=0 \quad \text { for all } \quad g \in \mathcal{P}_{2(s+1) n+2 m+1}, \tag{2.10}
\end{equation*}
$$

with distinct real zeros $\tau_{\nu}^{(n)}, \nu=1,2, \ldots, n$, all contained in the open interval $(0,1)$. The spline function in (2.1) is given by

$$
\begin{equation*}
\tau_{\nu}=\tau_{\nu}^{(n)}, \quad a_{m-k, \nu}=\frac{m!}{(m-k)!} A_{k, \nu}^{L}, \quad \nu=1,2, \ldots, n ; k=0,1, \ldots, 2 s, \tag{2.11}
\end{equation*}
$$

where $\tau_{\nu}^{(n)}$ are the interior nodes of the generalized Gauss-Lobatto-Turán quadrature formula and $A_{k, \nu}^{L}$ are the corresponding weights, while the polynomial $p_{m}(t)$ is given by

$$
\begin{equation*}
p_{m}^{(k)}(1)=f^{(k)}(1)+(-1)^{k} m!\beta_{m-k}, \quad k=0,1, \ldots, m \tag{2.12}
\end{equation*}
$$

where β_{m-k} is the coefficient of $g^{(m-k)}(1)$ in (2.9).
Proof. Putting $g(t)=t^{m+1} p(t), p \in \mathcal{P}_{2(s+1) n+m}$, in (2.9) and noting (2.10) yields

$$
\begin{aligned}
\sum_{k=0}^{m} \beta_{k}\left[D^{k} t^{m+1} p(t)\right]_{t=1} & +\sum_{\nu=1}^{n} \sum_{i=0}^{2 s} A_{i, \nu}^{L}\left[D^{k}\left(t^{m+1} p(t)\right]_{t=\tau_{\nu}}\right. \\
& =\int_{0}^{1} t^{m+1} p(t) d \lambda(t), \quad \forall p \in \mathcal{P}_{2(s+1) n+m}
\end{aligned}
$$

which is identical to (2.8), if we identify

$$
\begin{aligned}
& b_{m-k}-\phi_{m-k}=\beta_{k}, \quad k=0,1, \ldots, m \\
& a_{m-k, \nu}=\frac{m!}{(m-k)!} A_{k, \nu}^{L}, \quad \nu=1,2, \ldots, n ; k=0,1, \ldots, 2 s
\end{aligned}
$$

Remark. The case $s=0$ of Theorem 2.1 has been obtained in [1].
If f is completely monotonic on $[0,1]$ then $d \lambda(t)$ in (2.7) is a positive measure for every m, then by virtue of the assumptions in Theorem 2.1 the generalized Gauss-Lobatto-Turán quadrature formula exists uniquely, with n distinct real nodes $\tau_{\nu}^{(n)}$ in $(0,1)$.

The solution of Problem I^{*} can be given in a similar way.
Theorem 2.2. Let $f \in C^{m+1}[0,1]$. There exists a unique spline function on $[0,1]$,

$$
\begin{align*}
& s_{n, m}^{*}(t)=p_{m}^{*}(t)+\sum_{\nu=1}^{n} \sum_{i=m-2 s}^{m} a_{i, \nu}^{*}\left(\tau_{\nu}^{*}-t\right)_{+}^{i} \tag{2.13}\\
& 0<\tau_{\nu}^{*}<1, \tau_{\nu}^{*} \neq \tau_{\mu}^{*} \text { for } \nu \neq \mu
\end{align*}
$$

satisfying (2.3) and (2.2), for $j=0,1, \ldots, 2(s+1) n-1$, if and only if the measure $d \lambda(t)$ in (2.7) admits a generalized Gauss-Radau-Turán quadrature

$$
\begin{equation*}
\int_{0}^{1} g(t) d \lambda(t)=\sum_{k=0}^{m} \alpha_{k}^{*} g^{(k)}(0)+\sum_{\nu=1}^{n} \sum_{i=0}^{2 s} A_{i, \nu}^{R} g^{(i)}\left(\tau_{\nu}^{(n) *}\right)+R_{n, m}^{R}(g ; d \lambda) \tag{2.14}
\end{equation*}
$$

where

$$
R_{n, m}^{R}(g ; d \lambda)=0 \quad \text { for all } \quad g \in \mathcal{P}_{2(s+1) n+m}
$$

with distinct real zeros $\tau_{\nu}^{(n) *}, \nu=1,2, \ldots, n$, all contained in the open interval $(0,1)$. The knots τ_{ν}^{*} in (2.13) are then precisely these zeros,

$$
\begin{equation*}
\tau_{\nu}^{*}=\tau_{\nu}^{(n) *}, \quad \nu=1, \ldots, n \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{m-k, \nu}^{*}=\frac{m!}{(m-k)!} A_{k, \nu}^{R}, \quad \nu=1,2, \ldots, n ; k=0,1, \ldots, 2 s, \tag{2.16}
\end{equation*}
$$

while the polynomial $p_{m}^{*}(t)$ is given by

$$
\begin{equation*}
p_{m}^{*}(t)=\sum_{k=0}^{m} \frac{f^{(k)}(1)}{k!}(t-1)^{k} . \tag{2.17}
\end{equation*}
$$

3. Error analysis

Similarly as in [1], following [4], we can prove the following statement regarding to the error of spline approximations:
Theorem 3.1. Define

$$
\rho_{x}(t)=(t-x)_{+}^{m}, \quad 0 \leq t \leq 1 .
$$

Under conditions of Theorem 2.1 and Theorem 2.2, we have

$$
\begin{equation*}
f(x)-s_{n, m}(x)=R_{n, m}^{L}\left(\rho_{x} ; d \lambda\right), \quad 0<x<1, \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x)-s_{n, m}^{*}(x)=R_{n, m}^{R}\left(\rho_{x} ; d \lambda\right), \quad 0<x<1, \tag{3.2}
\end{equation*}
$$

respectively, where $R_{n, m}^{L}(g ; d \lambda)$ and $R_{n, m}^{R}(g ; d \lambda)$ are the remainder terms in the corresponding Gauss-Turán formulas of Lobatto and Radau type.

Proof. We will prove (3.1). As in [1] we have

$$
\begin{equation*}
f(x)=\sum_{k=0}^{m} \frac{f^{(k)}(1)}{k!}(x-1)^{k}+\int_{0}^{1} \rho_{x}(t) d \lambda(t) . \tag{3.3}
\end{equation*}
$$

By (2.11)

$$
\begin{equation*}
s_{n, m}(x)=\sum_{k=0}^{m} \frac{p^{(k)}(1)}{k!}(x-1)^{k}+\sum_{\nu=1}^{n} \sum_{i=m-2 s}^{m} \frac{m!}{i!} A_{m-i, \nu}^{L}\left(\tau_{\nu}-x\right)_{+}^{i} \tag{3.4}
\end{equation*}
$$

and changing indices $(k=m-i)$, the third sum on the right becomes

$$
\begin{aligned}
\sum_{i=m-2 s}^{m} \frac{m!}{i!} A_{m-i, \nu}^{L}\left(\tau_{\nu}-x\right)_{+}^{i} & =\sum_{k=0}^{m} \frac{m!}{(m-k)!} A_{m-i, \nu}^{L}\left(\tau_{\nu}-x\right)_{+}^{m-k} \\
& =\sum_{k=0}^{m} A_{k, \nu}^{L}\left[D^{k} \rho_{x}(t)\right]_{t=\tau_{\nu}}
\end{aligned}
$$

Equation (3.4) may be rewrite

$$
\begin{equation*}
s_{n, m}(x)=\sum_{k=0}^{m} \frac{p^{(k)}(1)}{k!}(x-1)^{k}+\sum_{\nu=1}^{n} \sum_{k=0}^{m} A_{k, \nu}^{L}\left[D^{k} \rho_{x}(t)\right]_{t=\tau_{\nu}} . \tag{3.5}
\end{equation*}
$$

Subtracting (3.5) from (3.3) gives

$$
\begin{aligned}
f(x)-s_{n, m}(x)=\int_{0}^{1} \rho_{x}(t) d \lambda(t) & +\sum_{k=0}^{m} \frac{1}{k!}\left(f^{(k)}(1)-p^{(k)}(1)\right)(x-1)^{k} \\
& -\sum_{\nu=1}^{n} \sum_{k=0}^{m} A_{k, \nu}^{L}\left[D^{k} \rho_{x}(t)\right]_{t=\tau_{\nu}}
\end{aligned}
$$

which, by virtue of (2.12) and (2.4), yields

$$
\begin{aligned}
f(x)-s_{n, m}(x)=\int_{0}^{1} \rho_{x}(t) d \lambda(t) & -\sum_{k=0}^{m} \frac{m!}{k!} \beta_{m-k}(1-x)^{k} \\
& -\sum_{\nu=1}^{n} \sum_{k=0}^{m} A_{k, \nu}^{L}\left[D^{k} \rho_{x}(t)\right]_{t=\tau_{\nu}}
\end{aligned}
$$

But

$$
\rho_{x}^{(k)}(0)=0, \quad \rho_{x}^{(k)}(1)=\frac{m!}{(m-k)!}(1-x)^{m-k}, \quad k=0,1, \ldots, m
$$

so that

$$
\begin{aligned}
f(x)-s_{n, m}(x)=\int_{0}^{1} \rho_{x}(t) d \lambda(t) & -\sum_{k=0}^{m} \beta_{m-k} \rho_{x}^{(m-k)}(1) \\
& -\sum_{\nu=1}^{n} \sum_{k=0}^{m} A_{k, \nu}^{L}\left[D^{k} \rho_{x}(t)\right]_{t=\tau_{\nu}}
\end{aligned}
$$

as claimed in (3.1).
The proof of (3.2) is entirely analogous to the proof of (3.1) and it will be omitted.

4. Construction of spline approximation

In [7] one of us considered the generalized Gauss-Turán quadrature formula

$$
\begin{equation*}
\int_{\mathbb{R}} g(t) d \sigma(t)=\sum_{\nu=1}^{n} \sum_{i=0}^{2 s} A_{i, \nu}^{G} g^{(i)}\left(\tau_{\nu}^{(n)}\right)+R_{n}^{G}(g), \tag{4.1}
\end{equation*}
$$

where $d \sigma(t)$ is a nonnegative measure on the real line \mathbb{R}, with compact or infinite support, for which all moments $\mu_{k}=\int_{\mathbb{R}} t^{k} d \sigma(t), k=0,1, \ldots$, exist and are finite, and $\mu_{0}>0$. The formula (4.1) is exact for all polynomials of degree at most $2(s+1) n-1$, i.e.,

$$
R_{n}^{G}(g)=0 \quad \text { for } \quad g \in \mathcal{P}_{2(s+1) n-1} .
$$

The knots $\tau_{\nu}^{(n)}(\nu=1, \ldots, n)$ in (4.1) are zeros of a (monic) polynomial $\pi_{n}(t)$, which minimizes the following integral

$$
\int_{\mathbb{R}} \pi_{n}(t)^{2 s+2} d \sigma(t)
$$

where $\pi_{n}(t)=t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}$. In the other words, the polynomial π_{n} satisfies the following generalized orthogonality conditions

$$
\begin{equation*}
\int_{\mathbb{R}} \pi_{n}(t)^{2 s+1} t^{k} d \sigma(t), \quad k=0,1, \ldots, n-1 \tag{4.2}
\end{equation*}
$$

This polynomial π_{n} is known as s-orthogonal (or s-self associated) polynomial with respect to the measure $d \sigma(t)$. For $s=0$, we have the standard case of orthogonal polynomials, and (4.1) then becomes well-known Gauss-Christoffel formula.

The "orthogonality condition" (4.1) can be interpreted as (see [7])

$$
\int_{\mathbb{R}} \pi_{\nu}^{s, n}(t) t^{k} d \mu(t)=0, \quad k=0,1, \ldots, \nu-1,
$$

where $\left\{\pi_{\nu}^{s, n}\right\}$ is a sequence of standard monic polynomials orthogonal on \mathbb{R} with respect to the new measure $d \mu(t)=d \mu^{s, n}(t)=\left(\pi_{n}^{s, n}(t)\right)^{2 s} d \sigma(t)$. The polynomials $\left\{\pi_{\nu, n}^{s, n}\right\}, \nu=0,1, \ldots$, are implicitly defined because the measure $d \mu(t)$ depends on $\pi_{n}^{s, n}(t)\left(=\pi_{n}(t)\right)$. Of course, we are interested only in $\pi_{n}^{s, n}(t)$. A stable algorithm for constructing such (s-orthogonal) polynomials is given in [7].

In order to use this algorithm in construction of spline functions (2.1) and (2.13) we need two auxiliary results. These results give a conection between the generalized Gauss-Turán quadrature (4.1) and the corresponding formulas of Lobatto and Radau type.

Lemma 4.1. If the measure $d \lambda(t)$ in (2.7) admits the generalized Gauss-LobattoTurán quadrature (2.9), with distinct real zeros $\tau_{\nu}=\tau_{\nu}^{(n)}, \nu=1, \ldots, n$, all contained in the open interval $(0,1)$, there exists then a generalized Gauss-Turán formula

$$
\begin{equation*}
\int_{0}^{1} g(t) d \sigma(t)=\sum_{\nu=1}^{n} \sum_{i=0}^{2 s} A_{i, \nu}^{G} g^{(i)}\left(\tau_{\nu}^{(n)}\right)+R_{n}^{G}(g) \tag{4.3}
\end{equation*}
$$

where $d \sigma(t)=[t(1-t)]^{m+1} d \lambda(t)$, the nodes $\tau_{\nu}^{(n)}$ are the zeros of s-orthogonal polynomial $\pi_{n}(\cdot ; d \sigma)$), while the weights $A_{i, \nu}^{G}$ are expressible in terms of those in (2.9) by

$$
\begin{equation*}
A_{i, \nu}^{G}=\sum_{k=i}^{2 s}\binom{k}{i}\left[D^{k-i}(t(1-t))^{m+1}\right]_{t=\tau_{\nu}} A_{k, \nu}^{L}, \quad i=0,1, \ldots, 2 s \tag{4.4}
\end{equation*}
$$

Proof. Let $g(t)=(t(1-t))^{m+1} p(t), p \in \mathcal{P}_{2(s+1) n-1}$ and $\tau_{\nu}=\tau_{\nu}^{(n)}$. We have by (2.9)

$$
\int_{0}^{1} g(t) d \lambda(t)=\sum_{\nu=1}^{n} \sum_{k=0}^{2 s} A_{k, \nu}^{L}\left[D^{k}(t(1-t))^{m+1} p(t)\right]_{t=\tau_{\nu}}
$$

and by (4.3)

$$
\int_{0}^{1} p(t) d \sigma(t)=\sum_{\nu=1}^{n} \sum_{i=0}^{2 s} A_{i, \nu}^{G}\left[D^{i} p(t)\right]_{t=\tau_{\nu}}
$$

Thus, we obtain that

$$
\sum_{\nu=1}^{n} \sum_{k=0}^{2 s} A_{k, \nu}^{L}\left[D^{k}(t(1-t))^{m+1} p(t)\right]_{t=\tau_{\nu}}=\sum_{\nu=1}^{n} \sum_{i=0}^{2 s} A_{i, \nu}^{G}\left[D^{i} p(t)\right]_{t=\tau_{\nu}}
$$

Appling the Leibnitz formula to k-th derivative in the second sum, we find

$$
\begin{aligned}
\sum_{k=0}^{2 s} A_{k, \nu}^{L} & {\left[D^{k}(t(1-t))^{m+1} p(t)\right]_{t=\tau_{\nu}} } \\
& =\sum_{k=0}^{2 s} A_{k, \nu}^{L}\left[\sum_{i=0}^{k}\binom{k}{i} D^{k-i}(t(1-t))^{m+1} D^{i} p(t)\right]_{t=\tau_{\nu}} \\
& =\sum_{i=0}^{2 s}\left(\sum_{k=i}^{2 s}\binom{k}{i}\left[D^{k-i}(t(1-t))^{m+1}\right]_{t=\tau_{\nu}} A_{k, \nu}^{L}\left[D^{i} p(t)\right]_{t=\tau_{\nu}}\right) \\
& =\sum_{i=0}^{2 s} A_{i, \nu}^{G}\left[D^{i} p(t)\right]_{t=\tau_{\nu}},
\end{aligned}
$$

where

$$
A_{i, \nu}^{G}=\sum_{k=i}^{2 s}\binom{k}{i}\left[D^{k-i}(t(1-t))^{m+1}\right]_{t=\tau_{\nu}} A_{k, \nu}^{L}, \quad i=0,1, \ldots, 2 s
$$

Similarly we can prove:
Lemma 4.2. If the measure $d \lambda(t)$ in (2.7) admits the generalized Gauss-RadauTurán quadrature (2.14), with distinct real zeros $\tau_{\nu}=\tau_{\nu}^{(n) *}, \nu=1, \ldots, n$, all contained in the open interval $(0,1)$, there exists then a generalized Gauss-Turán formula (4.3), where $d \sigma(t)=d \sigma^{*}(t)=t^{m+1} d \lambda(t)$, the nodes $\tau_{\nu}^{(n) *}$ are the zeros of s-orthogonal polynomial $\pi_{n}\left(\cdot ; d \sigma^{*}\right)$, while the weights $A_{i, \nu}^{G}$ are expressible in terms of those in (2.14) by

$$
\begin{equation*}
A_{i, \nu}^{G}=\sum_{k=i}^{2 s}\binom{k}{i}\left[D^{k-i} t^{m+1}\right]_{t=\tau_{\nu}} A_{k, \nu}^{R}, \quad i=0,1, \ldots, 2 s \tag{4.5}
\end{equation*}
$$

Now, we can state a construction procedure of our spline approximations:
1° For a given $t \mapsto f(t)$ and (n, m, s), we find the measure $d \lambda(t)$ and the corresponding Jacobi matrix $J_{N}(d \lambda)$, where $N=(s+1) n+2 m+2$ in the Lobatto case, and $N=(s+1) n+m+1$ in the Radau case. The latter can be computed by the discretized Stieltjes procedure (see [2, § 2.2]).
2° By repeated application of the algorithms in [3, §4.1] corresponding to multiplication of a measure by $t(1-t)$ and t, from the above Jacobi matrices, we generate the Jacobi matrices $J_{(s+1) n}(d \sigma)$ and $J_{(s+1) n}\left(d \sigma^{*}\right)$, respectively. Here, $d \sigma(t)=(t(1-t))^{m+1} d \lambda(t)$ and $d \sigma^{*}(t)=t^{m+1} d \lambda(t)$.
3° Using the algorithm for the construction of s-orthogonal polynomials, given in [7], we obtain the Jacobi matrix $J_{n}(d \mu)$, where $d \mu(t)=\left(\pi_{n}(t)\right)^{2 s} d \sigma(t)$, or $d \mu(t)=$ $\left(\pi_{n}(t)\right)^{2 s} d \sigma^{*}(t)$.
4° From $J_{n}(d \mu)$ we determine the Gaussian nodes $\tau_{\nu}^{(n)}$ (resp. $\tau_{\nu}^{(n) *}$ in the Radau case) and the corresponging weights $A_{i, \nu}^{G}(\nu=1, \ldots, n ; i=0,1, \ldots, 2 s)$.
5° From the triangular systems of linear equations (4.4) and (4.5), we find the coefficients $A_{k, \nu}^{L}$ and $A_{k, \nu}^{R}$, respectively.
6° Using (2.11) and (2.12), or (2.15), (2.16) and (2.17), we determine the spline approximation $s_{n, m}(t)$, or $s_{n, m}^{*}(t)$, respectively.

5. Numerical example

We consider the spline approximations of the exponential function $f(t)=e^{-c t}$, $0 \leq t \leq 1$, where $c>0$. All computations were done on the $\mathrm{PC} / \mathrm{AT}$ in double precision (machine precision $\approx 8.88 \times 10^{-16}$).

In this example the function f is completely monotonic and the associated measure (2.7) is positive. Thus

$$
d \lambda(t)=\frac{c^{m+1}}{m!} e^{-c t} d t \quad \text { on } \quad[0,1]
$$

In the discretized Stieltjes algorithm (Step 1° in the procedure given in the previous section), we use Fejér quadrature rule as the modus of discretization.

We analyzed the cases when $n \leq 10,2 \leq m \leq 5, s \leq 2, c=1,2,4$. For example, for $n=m=3, s=1, c=1$, the parameters of the spline function in the Lobatto case,

$$
s_{n, m}(t)=\sum_{k=0}^{m} \gamma_{k}(1-t)^{k}+\sum_{\nu=1}^{n} \sum_{i=m-2 s}^{2 s} a_{i, \nu}\left(\tau_{\nu}-t\right)_{+}^{i}
$$

are given in Table 5.1 (to 10 decimals only, to save space). Numbers in parenthesis idicate decimal exponents. The last row of this table contains the coefficients $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{m}$.

TABLE 5.1
The coefficients of spline function $s_{n, m}(t)$, for $n=m=3, s=1, c=1$

ν	τ_{ν}	$a_{1, \nu}$	$a_{2, \nu}$	$a_{3, \nu}$
1	$1.939368619(-1)$	$3.448547172(-2)$	$5.226278048(-4)$	$3.456311754(-4)$
2	$4.880999986(-1)$	$3.217255538(-2)$	$-4.235816948(-4)$	$4.941612712(-4)$
3	$7.907411411(-1)$	$2.039617915(-2)$	$-6.985434349(-4)$	$2.256692493(-4)$
γ_{k}	$3.678793085(-1)$	$3.678989078(-1)$	$1.833595896(-1)$	$6.681611249(-2)$

Table 5.2 shows the accuracy of the spline approximation $s_{n, m}$ (Lobatto case), i.e.,

$$
e_{n, m}=\max _{0 \leq t \leq 1}\left|s_{n, m}(t)-e^{-c t}\right|
$$

for $n=1,3,5,10, m=2,3,4,5, s=1$, and $c=1,2,4$.
Table 5.2
Accuracy of the spline approximation $s_{n, m}$

c	n	$m=2$	$m=3$	$m=4$	$m=5$
1	1	$2.1(-3)$	$4.8(-5)$	$6.9(-7)$	$1.9(-8)$
	3	$3.2(-4)$	$4.5(-6)$	$3.9(-8)$	$6.7(-10)$
	5	$1.0(-4)$	$1.1(-6)$	$7.1(-9)$	$9.2(-11)$
	10	$1.9(-5)$	$1.2(-7)$	$4.9(-10)$	$4.2(-12)$
2	1	$1.1(-2)$	$4.7(-4)$	$1.4(-5)$	$7.5(-7)$
	3	$1.7(-3)$	$4.5(-5)$	$8.1(-7)$	$2.6(-8)$
	5	$5.3(-4)$	$1.1(-5)$	$1.5(-7)$	$3.6(-9)$
	10	$1.0(-4)$	$1.2(-6)$	$1.9(-8)$	$1.7(-10)$
4	1	$4.3(-2)$	$3.0(-3)$	$2.1(-4)$	$2.5(-5)$
	3	$6.0(-3)$	$2.8(-4)$	$1.1(-5)$	$6.5(-7)$
	5	$2.4(-3)$	$8.7(-5)$	$2.0(-6)$	$9.8(-8)$
	10	$4.5(-4)$	$9.9(-6)$	$1.5(-7)$	$4.8(-9)$

The corresponding errors in Radau case,

$$
e_{n, m}^{*}=\max _{0 \leq t \leq 1}\left|s_{n, m}^{*}(t)-e^{-c t}\right|
$$

are given in Table 5.3.

TABLE 5.3
Accuracy of the spline approximation $s_{n, m}^{*}$

c	n	$m=2$	$m=3$	$m=4$	$m=5$
1	1	$3.8(-3)$	$1.7(-4)$	$1.7(-5)$	$1.5(-6)$
	3	$4.5(-4)$	$8.5(-6)$	$1.2(-7)$	$3.4(-9)$
	5	$1.4(-4)$	$1.8(-6)$	$1.8(-8)$	$2.9(-10)$
	10	$2.3(-5)$	$1.7(-7)$	$8.2(-10)$	$7.9(-12)$
2	1	$1.8(-2)$	$1.8(-3)$	$3.3(-4)$	$5.8(-5)$
	3	$2.4(-3)$	$9.4(-5)$	$2.5(-6)$	$1.4(-7)$
	5	$7.6(-4)$	$2.0(-5)$	$3.3(-7)$	$1.2(-8)$
	10	$1.2(-4)$	$1.8(-6)$	$1.6(-8)$	$3.3(-10)$
4	1	$6.2(-2)$	$1.3(-2)$	$4.4(-3)$	$1.4(-3)$
	3	$1.1(-2)$	$7.7(-4)$	$3.8(-5)$	$3.9(-6)$
	5	$3.4(-3)$	$1.5(-4)$	$5.1(-6)$	$3.3(-7)$
	10	$5.0(-4)$	$1.4(-5)$	$2.6(-7)$	$9.7(-9)$

We can see that the approximation error is more easily reduced by increasing m rather than n. Also, the spline $s_{n, m}$ is only slightly more accurate than the spline $s_{n, m}^{*}$.

REFERENCES

1. M. Frontini, W. Gautschi and G. V. Milovanović: Moment-preserving spline approximation on finite intervals. Numer. Math. 50(1987), 503-518.
2. W. Gautschi: On generating orthogonal polynomials. SIAM J. Sci. Statist. Comput. 3(1982), 289-317.
3. W. Gautschi: An algorithmic implementation of the generalized Christoffel theorem. In: Numerische Integration. Internat. Ser. Numer. Math., vol. 57, pp. 89-106, (Hämmerlin, G., ed.), Basel: Birkhäuser 1982.
4. W. Gautschi: Discrete approximations to spherically symmetric distributions. Numer. Math. 44(1984), 53-60.
5. W. Gautschi and G. V. Milovanović: Spline approximations to spherically symmetric distributions. Numer. Math. 49(1986), 111-121.
6. G. V. Milovanovic and M. A. Kovačević: Moment-preserving spline approximation and Turán quadratures. In: Numerical Mathematics (Singapore, 1988). Internat. Ser. Numer. Math., vol. 86, pp. 357-365, (Agarwal, R. P., Chow, Y. M., Wilson, S. J., eds.), Basel: Birkhäuser 1988.
7. G. V. Milovanović: Construction of s-orthogonal polynomials and Turán quadrature formulae. In: Numerical Methods and Approximation Theory III (Niš, 1987), pp. 311-328, (Milovanović, G. V. ed.), Univ. Niš, Niš, 1988.

Dipartimento di Matematica
Politecnico di Milano
Piazza Leonardo da Vinci, 32
I - 20133 Milano, Italy
Faculty of Electronic Engineering
Department of Mathematics
P. O. Box 73, 18000 Niš, Yugoslavia

SPLAJN APROKSIMACIJE NA KONAČNIM INTERVALIMA KOJE OČUVAVAJU MOMENTE I TURÁNOVE KVADRATURE

Marco Frontini and Gradimir V. Milovanović

Razmatra se problem aproksimacije funkcije f na konačnom intervalu $[0,1]$ pomoću splajn funkcije reda m i defekta d, sa n (promenljivih) čvorova, zadržavajući pritom što je mogućno više početnih momenata funkcije f. Dodatna ograničenja na izvode u jednoj od krajnjih tačaka intervala $[0,1]$ takođe se mogu nametnuti. U radu se analizira slučaj kada je defekt d neparan $\operatorname{broj}(d=2 s+1)$, i pokazuje se da u slučaju kada aproksimacija egzistira, tada se ona može reprezentovati pomoću parametara generalisane Turánove kvadrature u odnosu na meru koja zavisi od f. Čvorovi splajna su nule odgovarajućih s-ortogonalnih polinoma $(s \geq 1)$. Kao ilustracija aproksimacionog postupka uključen je jedan numerički primer.

[^0]: Received April 15, 1989.
 1991 Mathematics Subject Classification. Primary 41A15, 65D32; Secondary 33A65.

