
FACTA UNIVERSITATIS (NIŠ)
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ON SOME PROPERTIES
OF HUMBERT’S POLYNOMIALS, II

Gradimir V. Milovanović and Gospava B. D̄ord̄ević

Abstract. In our previous paper [5], we defined and considered a class of Hum-
bert’s polynomials, which generalizes the well-known class of Gegenbauer’s poly-
nomials. Our interest here is in further investigation of this class of polynomials
including a distribution of zeros. An conjecture about that is stated.

1. Introduction

In [5] we considered the polynomials {pλ
n,m}∞n=0 defined by the generating

function

Gλ
m(x, t) = (1− 2xt + tm)−λ =

∞∑
n=0

pλ
n,m(x)tn,

where m ∈ N and λ > −1/2. Note that

pλ
n,1(x) =

(λ)n

n!
(2x− 1)n (Horadam polynomials [3]),

pλ
n,2(x) = Cλ

n(x) (Gegenbauer polynomials [1]),

pλ
n,3(x) = pλ

n+1(x) (Horadam–Pethe polynomials [4]),

where (λ)0 = 1, (λ)n = λ(λ + 1) · · · (λ + n− 1), λ = 1, 2, . . . . The explicit
form of the polynomials pλ

n,m(x) is

(1.1) pλ
n,m(x) =

[n/m]∑

k=0

(−1)k (λ)n−(m−1)k

k!(n−mk)!
(2x)n−mk.
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In this note we introduce a class of polynomials {Q(m,q,λ)
N (t)}∞N=0 which

satisfy an (m + 1)-term recurrence relation (Section 2). Some special cases
are considered in Section 3, and certain numerical investigations regarding
the distribution of zeros of such polynomials are given in Section 4.

2. Polynomials Q
(m,q,λ)
N (t)

Let n = mN + q, where N = [n/m] and 0 ≤ q ≤ m − 1. Starting from
(1.1), we have

pλ
n,m(x) =

N∑

k=0

(−1)k (λ)mN+q−(m−1)k

k!(mN + q −mk)!
(2x)mN+q−mk

= (2x)qQ
(m,q,λ)
N (t),

where t = (2x)m and

(2.1) Q
(m,q,λ)
N (t) =

N∑

k=0

(−1)k (λ)mN+q−(m−1)k

k!(mN + q −mk)!
tN−k.

The polynomials Q
(m,q,λ)
N (t) depend of three parameters: λ > −1/2, m ∈

N, and q ∈ {0, 1, . . . ,m− 1}.
Using the recurrence relation for the polynomials pλ

n,m(x) ([5])

npλ
n,m(x) = (λ + n− 1)2xpλ

n−1,m(x)− (n + m(λ− 1))pλ
n−m,m(x),

where n ≥ m ≥ 1, we obtain:

Theorem 2.1. The polynomials Q
(m,q,λ)
N (t) (λ > −1/2) satisfy the following

recurrence relations:
For 1 ≤ q ≤ m− 1,

(2.2) (mN + q)Q(m,q,λ)
N (t) = (λ + mN + q − 1)Q(m,q−1,λ)

N (t)

− (mN + q + m(λ− 1))Q(m,q,λ)
N−1 (t),

and, for q = 0,

(2.3) mNQ
(m,0,λ)
N (t) = (λ + mN − 1)tQ(m,m−1,λ)

N−1 (t)

−m(N + λ− 1)Q(m,0,λ)
N−1 (t).

Since Dpλ
n+k,m(x) = 2k(λ)kpλ+k

n,m (x) (see [5, Theorem 1]), where D is the
differentiation operator, we can prove the following results:
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Theorem 2.2. The polynomials Q
(m,q,λ)
N (t) (λ > −1/2) satisfy the following

recurrence relations:
For 0 ≤ q ≤ m− 2,

(q + 1)Q(m,q+1,λ)
N (t) + mtDQ

(m,q+1,λ)
N (t) = λQ

(m,q,λ+1)
N (t),

and, for q = m− 1,

mDQ
(m,0,λ)
N+1 (t) = λQ

(m,m−1,λ+1)
N (t).

Theorem 2.3. The polynomials Q
(m,q,λ)
N (t) (λ > −1/2; m ≥ 3) satisfy the

following recurrence relations:
For 0 ≤ q ≤ m− 3,

(q + 1)(q + 2)Q(m,q+2,λ)
N (t) + m(m + q + 1)tDQ

(m,q+2,λ)
N (t)

+ m2t2D2Q
(m,q+2,λ)
N (t) = (λ)2Q

(m,q,λ+2)
N (t),

and

m(m− 1)DQ
(m,0,λ)
N+1 (t) + m2tD2Q

(m,0,λ)
N+1 (t) = (λ)2Q

(m,m−2,λ+2)
N (t),

m2DQ
(m,1,λ)
N+1 (t) + m2tQ

(m,1,λ)
N+1 (t) = (λ)2Q

(m,m−1,λ+2)
N (t),

for q = m− 2 and q = m− 1, respectively.

It is interesting to find a recurrence relation for the polynomials t 7→
Q

(m,q,λ)
N (t), where the parameters m, q, λ are fixed.
At first we prove the following lemmas:

Lemma 2.4. The polynomials Q
(m,q,λ)
N (t) (λ > −1/2) satisfy a recurrence

relation of the form

(2.4)
q+1∑

i=0

A
(q+1)
i,N,q Q

(m,q,λ)
N+1−i(t) = tQ

(m,m−1,λ)
N (t) (q = 0, 1, . . . , m− 1),

where

A
(1)
0,N,0 =

m(N + 1)
λ + m(N + 1)− 1

, A
(1)
1,N,0 =

m(N + λ)
λ + m(N + 1)− 1

.
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For q = 1, . . . , m− 1, the coefficients A
(q+1)
i,N,q can be obtained by using the

following procedure

(2.5)

A
(q+1)
0,N,q =

A
(q)
0,N,q−1

α
(q)
N+1

, A
(q+1)
q+1,N,q =

A
(q)
q,N,q−1

α
(q)
N+1−q

β
(q)
N+1−q,

A
(q+1)
i,N,q =

A
(q)
i,N,q−1

α
(q)
N+1−i

+
A

(q)
i−1,N,q−1

α
(q)
N+2−i

β
(q)
N+2−i (i = 1, . . . , q),

where

(2.6) α
(q)
k =

λ + mk + q − 1
mk + q

, β
(q)
k =

m(k + λ− 1) + q

mk + q
.

Proof. Using (2.3), for N : = N + 1, we obtain

m(N + 1)

λ + m(N + 1)− 1
Q

(m,0,λ)
N+1 (t) +

m(N + λ)

λ + m(N + 1)− 1
Q

(m,0,λ)
N (t) = tQ

(m,m−1,λ)
N ,

which represents (2.4) for q = 0.
Suppose now that (2.4) holds for some q, i.e.,

q∑

i=0

A
(q)
i,N,q−1Q

(m,q−1,λ)
N+1−i (t) = tQ

(m,m−1,λ)
N (t).

Using (2.2), i.e.,

Q
(m,q−1,λ)
k (t) =

1

α
(q)
k

(
Q

(m,q,λ)
k (t) + β

(q)
k Q

(m,q,λ)
k−1

)
,

where α
(q)
k and β

(q)
k are given by (2.6), we obtain (2.4), where the coefficients

A
(q+1)
i,N,q are expressed by (2.5). ¤

Lemma 2.5. The polynomials Q
(m,q,λ)
N (t) (λ > −1/2) satisfy a recurrence

relation of the form

(2.7)
s∑

i=0

A
(s)
i,N,qQ

(m,q,λ)
N+1−i(t) = B

(s)
N,qtQ

(m,m−s+q,λ)
N (t),
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where s is an integer such that q + 1 ≤ s ≤ m. The coefficients B
(s)
N,q and

A
(s)
i,N,q (i = 0, 1, . . . , s) depend on the parameters m and λ. Precisely, they

can be obtained

B
(s+1)
N,q = B

(s)
N,qα

(m−s+q)
N , A

(s+1)
0,N,q = A

(s)
0,N,q,

(2.8) A
(s+1)
i,N,q = A

(s)
i,N,q +

B
(s)
N,q

B
(s)
N−1,q

β
(m−s+q)
N A

(s)
i−1,N−1,q, (i = 1, . . . , s),

A
(s+1)
s+1,N,q =

B
(s)
N,q

B
(s)
N−1,q

β
(m−s+q)
N A

(s)
s,N−1,q,

with starting values given by Lemma 2.4 and B
(q+1)
N,q = 1.

Proof. The proof of the relation (2.7) can be given by induction.
For s = q + 1, the relation (2.7) is equivalent to (2.4).
Using (2.2), i.e.,

Q
(m,q,λ)
N (t) = α

(q)
N Q

(m,q−1,λ)
N (t)− β

(q)
N Q

(m,q,λ)
N−1 (t),

for q: = m− s + q, we have

s∑

i=0

A
(s)
i,N,qQ

(m,q,λ)
N+1−i(t) = B

(s)
N,qα

(m−s+q)
N tQ

(m,m−s+q−1,λ)
N (t)

− β
(m−s+q)
N tQ

(m,m−s+q,λ)
N−1 (t).

Applying again (2.7), for N : = N − 1, we eliminate the second term on the
right side in the last equality. Thus, we obtain

s+1∑

i=0

A
(s+1)
i,N,q Q

(m,q,λ)
N+1−i(t) = B

(s+1)
N,q tQ

(m,m−(s+1)+q,λ)
N (t),

where the coefficients A
(s+1)
i,N,q and B

(s+1)
N,q are given recursively by (2.8). ¤

Theorem 2.6. The polynomials Q
(m,q,λ)
N (t) (λ > −1/2) satisfy the (m+1)-

term recurrence relation

(2.9)
m∑

i=0

Ai,N,qQ
(m,q,λ)
N+1−i(t) = BN,qtQ

(m,q,λ)
N (t),
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where the coefficients BN,q and Ai,N,q (i = 0, 1, . . . ,m) depend on the pa-
rameters m and λ. Furthermore,

BN,q = B
(m)
N,q , Ai,N,q = A

(m)
i,N,q (i = 0, 1, . . . ,m),

where B
(m)
N,q and A

(m)
i,N,q are given by Lemma 2.5.

Proof. For s = m, (2.7) reduces to (2.9). ¤

3. Special Cases

In this section we consider two Chebyshev cases: λ = 1 and λ = 0.
Case λ = 1. This is the simplest case. The recurence relations (2.2) and

(2.3) reduce to

Q
(m,q,1)
N (t) = Q

(m,q−1,1)
N (t)−Q

(m,q,1)
N−1 (t) (1 ≤ q ≤ m− 1)

and
Q

(m,0,1)
N (t) = tQ

(m,m−1,1)
N−1 (t)−Q

(m,0,1)
N−1 (t),

respectively. Then we have the following corollary of Theorem 2.4.

Corollary 3.1. The polynomials Q
(m,q,1)
N (t) (0 ≤ q ≤ m − 1) satisfy the

following recurrence relation

m∑

i=0

(
m

i

)
Q

(m,q,1)
N+1−i(t) = tQ

(m,q,1)
N (t).

Case λ = 0. In this case we introduce the polynomials Q
(m,q,0)
N (t) in the

following way

Q
(m,q,0)
N (t) = lim

λ→0

Q
(m,q,λ)
N (t)

λ
.

Then we have:

Corollary 3.2. The polynomials Q
(m,q,0)
N (t) (0 ≤ q ≤ m − 1) satisfy the

following recurrence relation

m∑

i=0

(
m(N + 1− i) + q

)(m

i

)
Q

(m,q,0)
N+1−i(t) = (mN − q)tQ(m,q,0)

N (t).
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4. Distribution of Zeros

According to the explicit representation of polynomials Q
(m,q,λ)
N (t) (λ >

−1/2), given by (2.1), we have:

Proposition 4.1. The polynomials Q
(m,q,λ)
N (t) (λ > −1/2) have no negative

real zeros.

Numerical experiments for N ≤ 15 and m ≤ 8 suggested us to state the
following conjecture:

Conjecture 4.2. The all zeros of Q
(m,q,λ)
N (t) (λ > −1/2) are real, simple,

and they lie in (0, 2m).

Remark. According to the equality pλ
n,m(x) = (2x)qQ

(m,q,λ)
N (t), where t =

(2x)m, n = mN + q, N = [n/m] and q ∈ {0, 1, . . . , m − 1}, we conclude that

each zero τk (k = 1, . . . , N) of the polynomial Q
(m,q,λ)
N (t) generates m zeros

ξk,ν (ν = 1, . . . , m) of the initial polynomial pλ
n,m(x), where

ξk,ν =
1

2
m
√

τkei(ν−1)π/m (ν = 1, . . . , m),

where i =
√−1.

Example. Zeros of the polynomial Q
(6,1,1/2)
5 (t) are:

τ1 ≈ 0.0252818422, τ2 ≈ 0.9626748835, τ3 ≈ 4.2829477870,

τ4 ≈ 9.3779321447, τ5 ≈ 13.7192997676.

We see that τk ∈ (0, 26) (k = 1, . . . , 5).

Thus, the zeros of the polynomial p
1/2
31,6 are:

ξ1,ν ≈ 0.2708765796 ei(ν−1)π/6, ξ2,ν ≈ 0.4968400664 ei(ν−1)π/6,

ξ3,ν ≈ 0.6371775529 ei(ν−1)π/6, ξ4,ν ≈ 0.7260856472 ei(ν−1)π/6,

ξ5,ν ≈ 0.7736157957 ei(ν−1)π/6,

where ν = 1, . . . , 6, and a simple zero in origin ξ0 = 0.
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30 G. V. Milovanović and G. B. D̄ord̄ević
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O NEKIM OSOBINAMA HUMBERTOVIH POLINOMA, II

Gradimir V. Milovanović i Gospava B. D̄ord̄ević

U našem prethodnom radu [5] definisana je i razmatrana klasa Humbertovih
polinoma koji generalǐsu dobro poznatu klasu Gegenbauerovih polinoma. Predmet
ovog rada su dalja istraživanja ove klase polinoma uključujući i distribuciju nula o
čemu je postavljenja i jedna hipoteza.


