SOME CONSIDERATION ABOUT GEGENBAUER AND HUMBERT POLYNOMIALS*

G. V. Milovanović and S. D. Marinković

Abstract

Expanding the Gegenbauer polynomial $C_{n}^{\lambda}(x)$ in powers of λ, coefficients of that expansion are the polynomials $g_{j, n}(x), j=1, \ldots, n$. In this paper we give some explicit expressions for $g_{j, n}(x)$, as well as a linear nonhomogenous differential equation of the second order, satisfying by these polynomials. Also, we consider the similar problems for the Humbert polynomials $p_{n, m}^{\lambda}(x)$.

1. Introduction

Investigating the Gegenbauer polynomials, S. Wrigge [3] used an unusual approach. Namely, the Gegenbauer polynomial $C_{n}^{\lambda}(x)$ is considered as a function of the parameter $\lambda>-1 / 2$, i.e., it is presented as

$$
\begin{equation*}
C_{n}^{\lambda}(x)=\sum_{j=1}^{n} g_{j, n}(x) \lambda^{j} \tag{1.1}
\end{equation*}
$$

where $g_{j, n}(x), j=1,2, \ldots, n$ are polynomials of degree n. Thus,

$$
\begin{aligned}
& C_{1}^{\lambda}(x)=2 x \lambda \\
& C_{2}^{\lambda}(x)=2 x^{2} \lambda^{2}+\left(2 x^{2}-1\right) \lambda \\
& C_{3}^{\lambda}(x)=\frac{4}{3} x^{3} \lambda^{3}+\left(4 x^{3}-2 x\right) \lambda^{2}+\left(\frac{8}{3} x^{3}-2 x\right) \lambda, \quad \text { etc. }
\end{aligned}
$$

The polynomials $g_{j, n}(x), j=1,2, \ldots, n$ can be expressed in the form

$$
\begin{equation*}
g_{j, n}(x)=(-1)^{n-j} \sum_{k=0}^{M_{n}(j)} \frac{S_{n-k}^{(j)}}{k!(n-2 k)!}(2 x)^{n-2 k} \tag{1.2}
\end{equation*}
$$

[^0]where $M_{n}(j)=\min ([n / 2], n-j)$ and $S_{n}^{(j)}$ are the Stirling's numbers of the first kind defined by
$$
x^{(n)}=x(x-1) \cdots(x-n+1)=\sum_{j=1}^{n} S_{n}^{(j)} x^{j}
$$

From (1.2) immediately follows

$$
\begin{equation*}
g_{1, n}(x)=\frac{2}{n} T_{n}(x) \tag{1.3}
\end{equation*}
$$

where $T_{n}(x)$ is the Chebyshev polynomial of the first kind. Starting from the generating function for the polynomials $C_{n}^{\lambda}(x)$ it can be proved that

$$
\begin{equation*}
g_{2, n}(x)=2 \sum_{j=1}^{n-1} \frac{1}{j} T_{j}(x) \frac{1}{n-j} T_{n-j}(x) \tag{1.4}
\end{equation*}
$$

For the polynomials $g_{j, n}(x)$, beside (1.1), Wrigge [3] found the generating functions

$$
\begin{equation*}
(-1)^{j} \frac{\log ^{j}\left(1-2 x t+t^{2}\right)}{j!}=\sum_{n=j}^{+\infty} g_{j, n}(x) t^{n} \tag{1.5}
\end{equation*}
$$

As a generalization of the Gegenbauer polynomials we mention the class of the Humbert's polynomials, which are defined by the generating function

$$
\left(1-2 x t+t^{m}\right)^{-\lambda}=\sum_{k=0}^{+\infty} p_{n, m}^{\lambda}(x) t^{n}
$$

where $m \in \mathbb{N}$ and $\lambda>-1 / 2$. The special cases of the Humbert polynomials are the Gegenbauer polynomials $C_{n}^{\lambda}(x)$ for $m=2$, and the Horadam-Pethe polynomials $p_{n+1}^{\lambda}(x)$ for $m=3$ (see [1-2]).

In this paper we give some explicit expressions for $g_{j, n}(x)$, which are different from (1.2), as well as a differential equation satisfying by these polynomials. Furthermore, we consider the analogous problems with Humbert polynomials $p_{n, m}^{\lambda}(x)$ given by

$$
p_{n, m}^{\lambda}(x)=\sum_{j=1}^{n} h_{j, n}^{m}(x) \lambda^{j}
$$

2. Some Representations of $g_{i, n}(x)$

Starting from the generating function (1.5) for the polynomials $g_{j, n}(x)$ and the generating function Chebyshev's polynomials (see [3]),
we find

$$
-\frac{1}{2} \log \left(1-2 x t+t^{2}\right)=\sum_{n=1}^{+\infty} \frac{T_{n}(x)}{n} t^{n},
$$

$$
\log ^{j}\left(1-2 x t+t^{2}\right)=(-1)^{j} 2^{j} \sum_{n=j}^{+\infty} \sum_{\substack{i_{1}+\cdots+i_{j}=n \\ i_{k} \geq 1}}\left(\frac{T_{i_{1}}(x)}{i_{1}} \cdots \frac{T_{i_{j}}(x)}{i_{j}}\right) t^{n},
$$

i.e.,

$$
\begin{equation*}
g_{j, n}(x)=\frac{2^{j}}{j!} \sum_{\substack{i_{1}+\cdots+i_{j}=n \\ i_{k} \geq 1}}\left(\frac{T_{i_{1}}(x)}{i_{1}} \cdots \frac{T_{i_{j}}(x)}{i_{j}}\right) . \tag{2.1}
\end{equation*}
$$

It is easy to see that (2.1) reduces to (1.3) and (1.4) for $j=1$ and $j=2$, respectively.
Theorem 2.1. Let $\sigma_{i}^{(k)}, 1 \leq i \leq n-1$, be the elementary symmetric functions of $1, \ldots, k-1, k+1, \ldots, n$ and $\sigma_{0}^{(k)} \equiv 1$. Then

$$
\begin{equation*}
g_{j, n}(x)=\frac{(-1)^{j}}{n!} \sum_{k=1}^{n}(-1)^{k}\binom{n}{k} \sigma_{n-j}^{(k)} C_{n}^{k}(x) . \tag{2.2}
\end{equation*}
$$

Proof. Starting with the Lagrange interpolation formula for $\lambda \mapsto C_{n}^{\lambda}(x) / \lambda$, with nodes $\lambda=k, k=1,2, \ldots, n$, we have

$$
\frac{C_{n}^{\lambda}(x)}{\lambda}=\sum_{k=1}^{n} \frac{C_{n}^{k}(x)}{k} \frac{\omega(\lambda)}{(\lambda-k) \omega^{\prime}(k)},
$$

where $\omega(\lambda)=(\lambda-1)(\lambda-2) \cdots(\lambda-n)$ and $\omega^{\prime}(k)=(-1)^{n-k}\binom{n}{k}^{-1} n!/ k$.
Since

$$
\frac{\omega(\lambda)}{\lambda-k}=\lambda^{n-1}-\sigma_{1}^{(k)} \lambda^{n-2}+\cdots+(-1)^{n-1} \sigma_{n-1}^{(k)},
$$

where $\sigma_{i}^{(k)}, 1 \leq i \leq n-1$, are the elementary symmetric functions of $1, \ldots, k-1, k+1, \ldots, n$. Then

$$
C_{n}^{\lambda}(x)=\frac{1}{n!} \sum_{j=1}^{n}(-1)^{n-j} \lambda^{j} \sum_{k=1}^{n}\binom{n}{k}(-1)^{n-k} \sigma_{n-j}^{(k)} C_{n}^{k}(x),
$$

wherefrom we obtain (2.2).
Using (1.3) and (2.2), for $j=1$, we can prove the following result:

Corollary 2.2. We have

$$
T_{n}(x)=-\frac{n}{2} \sum_{k=1}^{n}(-1)^{k}\binom{n}{k} \frac{C_{n}^{k}(x)}{k}
$$

Since $D^{m} T_{n}(x)=2^{m-1}(m-1)!n C_{n-m}^{m}(x), n \geq m$, formula (2.2) can be represented in terms of Chebyshev polynomials and their derivatives,

$$
g_{j, n}(x)=\frac{(-1)^{j}}{n!} \sum_{k=1}^{n}(-1)^{k}\binom{n}{k} \frac{\sigma_{n-j}^{(k)}}{2^{k-1}(k-1)!(n+k)} T_{n+k}^{(k)}(x)
$$

A similar formula in terms of Legendre polynomials can be also given. Taking the nodes $\lambda=k+1 / 2, k=0,1, \ldots, n$, in the Lagrange interpolation formula for $\lambda \mapsto C_{n}^{\lambda}(x)$ we find

$$
\begin{equation*}
C_{n}^{\lambda}(x)=\frac{(-1)^{n}}{n!} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} C_{n}^{k+1 / 2}(x) \frac{\omega(\lambda)}{\lambda-k-1 / 2} \tag{2.3}
\end{equation*}
$$

where

$$
\omega(\lambda)=\left(\lambda-\frac{1}{2}\right)\left(\lambda-\frac{3}{2}\right) \cdots\left(\lambda-n-\frac{1}{2}\right)
$$

Let

$$
\begin{equation*}
\frac{\omega(\lambda)}{\lambda-k-1 / 2}=\sum_{j=0}^{n}(-1)^{n-j} F_{n-j}^{(k)} \lambda^{j}, \quad F_{0}^{(k)}=1 \tag{2.4}
\end{equation*}
$$

Since

$$
C_{n}^{k+1 / 2}(x)=\frac{(2 k)!!}{(2 k)!} P_{n+k}^{(k)}(x)
$$

where $P_{m}(x)=C_{m}^{1 / 2}(x)$ is the Legendre polynomial, then from (2.3) follows

$$
C_{n}^{\lambda}(x)=\frac{1}{n!} \sum_{j=1}^{n} \sum_{k=0}^{n}(-1)^{k-j}\binom{n}{k} \frac{(2 k)!!}{(2 k)!} F_{n-j}^{(k)} P_{n+k}^{(k)}(x) \lambda^{j}
$$

wherefrom we obtain the following representation:
Theorem 2.3. If the numbers $F_{0}^{(k)}, F_{1}^{(k)}, \ldots, F_{n}^{(k)}$ are defined as in (2.4), then

$$
g_{j, n}(x)=\sum_{k=0}^{n}(-1)^{k-j} \frac{2^{k}}{(n-k)!(2 k)!} F_{n-j}^{(k)} P_{n+k}^{(k)}(x)
$$

We note that $g_{0, n}(x)=0$. Therefore,

$$
\sum_{k=0}^{n}(-1)^{k-j} \frac{2^{k}}{(n-k)!(2 k+1)!} P_{n+k}^{(k)}(x)=0
$$

3. Difference and Differential Relations

Starting from the well-known recurrence relations for the Gegenbauer polynomials $C_{n}^{\lambda}(x)$ and using (1.1), Wrigge [3] proved the following relations:

$$
\begin{align*}
D g_{j, n-1}(x)= & x D g_{j, n}(x)-n g_{j, n}(x) \\
D g_{k, n}(x)= & 2 \sum_{j=k-1}^{n-1}\binom{j}{k-1} g_{j, n-1}(x) \tag{3.1}\\
(n+1) g_{j, n+1}(x)= & 2 n x g_{j, n}(x)+2 x g_{j-1, n}(x) \\
& -(n-1) g_{j, n-1}(x)-2 g_{j-1, n-1}(x) .
\end{align*}
$$

Since

$$
C_{n}^{\lambda}(1)=\binom{n+2 \lambda-1}{n}=\frac{2^{n}}{n!} \prod_{i=0}^{n-1}\left(\lambda+\frac{i}{2}\right)
$$

we can conclude that

$$
\begin{equation*}
g_{1, n}(1)=\frac{2}{n} \quad \text { and } \quad g_{2, n}(1)=\frac{4}{n} \sum_{k=1}^{n-1} \frac{1}{k} \tag{3.2}
\end{equation*}
$$

Using the Gebenbauer differential equation and expansion (1.1), as well as the first equality in (3.1) it can be proved that the polynomial $g_{j, n}(x)$ satisfies the nonhomogenous differential equation

$$
\begin{equation*}
\left(1-x^{2}\right) y^{\prime \prime}-x y+n^{2} y=2 D g_{j-1, n-1}(x) \tag{3.3}
\end{equation*}
$$

For $j=1$ this equation becomes the Chebyshev differential equation with the general solution

$$
y=c_{1, n} T_{n}(x)+c_{2, n} \sqrt{1-x^{2}} S_{n-1}(x),
$$

where $c_{1, n}$ and $c_{2, n}$ are constants, and $S_{m}(x)$ is the Chebyshev polynomial of the second kind. The polynomial solution for which $y(1)=2 / n$ is given by $y=g_{1, n}(x)=2 T_{n}(x) / n$.

For $j=2$, equation (3.3) takes the form

$$
\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=4 S_{n-2}(x),
$$

wherefrom, we obtain

$$
y=d_{1, n} T_{n}(x)++d_{2, n} \sqrt{1-x^{2}} S_{n-2}(x)+\frac{2}{n} \sum_{k=1}^{n-1} \frac{1}{k} T_{|n-2 k|}(x),
$$

where $d_{1, n}$ and $d_{2, n}$ are arbitrary constants. It is easy to see that

$$
y=g_{2, n}(x)=\frac{2}{n} \sum_{k=1}^{n-1} \frac{1}{k}\left(T_{n}(x)+T_{|n-2 k|}(x)\right)
$$

is a polynomial solution satisfying (3.2).

4. Humbert Polynomials

The polynomials $\left\{p_{n, m}^{\lambda}\right\}_{n=0}^{\infty}$ were defined by the generating function (see [1])

$$
G_{m}^{\lambda}(x, t)=\left(1-2 x t+t^{m}\right)^{-\lambda}=\sum_{n=0}^{\infty} p_{n, m}^{\lambda}(x) t^{n},
$$

where $m \in \mathbb{N}$ and $\lambda>-1 / 2$. They can be expressed in the following explicit form

$$
\begin{equation*}
p_{n, m}^{\lambda}(x)=\sum_{k=0}^{[n / m]}(-1)^{k} \frac{(\lambda)_{n-(m-1) k}}{k!(n-m k)!}(2 x)^{n-m k} \tag{4.1}
\end{equation*}
$$

Following Wrigge [3] we consider $p_{n, m}^{\lambda}(x)$ in the form

$$
\begin{equation*}
p_{n, m}^{\lambda}(x)=\sum_{j=1}^{n} h_{j, n}(x) \lambda^{j} \tag{4.2}
\end{equation*}
$$

Starting from (4.1) and (4.2), we can obtain an explicit expression for the polynomials $h_{j, n}(x), j=1, \ldots, n$. Namely,

$$
\begin{equation*}
h_{j, n}(x)=(-1)^{n-j} \sum_{k=0}^{M_{n}(j)}(-1)^{m k} \frac{S_{n-(m-1) k}^{(j)}}{k!(n-m k)!}(2 x)^{n-m k}, \tag{4.3}
\end{equation*}
$$

where $M_{n}(j)=\min ([n / m],[(n-j) /(m-1)])$.
Expanding $\lambda \mapsto G_{m}^{\lambda}(x, t)$ in powers of λ and using (4.2) we get

$$
\begin{equation*}
\frac{(-1)^{j}}{j!} \log ^{j}\left(1-2 x t+t^{m}\right)=\sum_{n=j}^{+\infty} h_{j, n}(x) t^{n} . \tag{4.4}
\end{equation*}
$$

If we define

$$
p_{n, m}^{0}(x)=\lim _{\lambda \rightarrow 0} \frac{p_{n, m}^{\lambda}(x)}{\lambda},
$$

then using (4.2) we have that $p_{n, m}^{0}(x)=h_{1, n}(x)$. Therefore, (4.4) for $j=1$ becomes

$$
\begin{equation*}
-\log \left(1-2 x t+t^{m}\right)=\sum_{n=1}^{+\infty} p_{n, m}^{0}(x) t^{n} \tag{4.5}
\end{equation*}
$$

Now, combining (4.4) and (4.5) we find another expression for $h_{j, n}(x)$. Namely,

$$
h_{j, n}(x)=\frac{1}{j!} \sum_{\substack{i_{1}+\cdots+i_{j}=n \\ i_{k} \geq 1}} p_{i_{1}, m}^{0}(x) \cdots p_{i_{j}, m}^{0}(x) .
$$

Using the similar method as in Section 2, we can prove some representations of $h_{j, n}(x)$ which are different from (4.3).

Theorem 4.1. Let $\sigma_{i}^{(k)}, 1 \leq i \leq n-1$, be the elementary symmetric functions of $1, \ldots, k-1, k+1, \ldots, n$ and $\sigma_{0}^{(k)} \equiv 1$. Then

$$
h_{j, n}(x)=\frac{(-1)^{j}}{n!} \sum_{k=1}^{n}(-1)^{k}\binom{n}{k} \sigma_{n-j}^{(k)} p_{n, m}^{k}(x)
$$

Theorem 4.2. If the numbers $F_{0}^{(k)}, F_{1}^{(k)}, \ldots, F_{n}^{(k)}$ are defined as in (2.4), then

$$
h_{j, n}(x)=\frac{(-1)^{j}}{n!} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k} F_{n-j}^{(k)} p_{n, m}^{k+1 / 2}(x)
$$

Several recurrence relations for the polynomials $p_{n, m}^{\lambda}(x)$ can be found in [1-2].

REFERENCES

1. G. V. Milovanović and G. Djordjević: On some properties of Humbert's polynomials. Fibonacci Quart. 25 (1987), 356-360.
2. G. V. Milovanović and G. ĐorĐević: On some properties of Humbert's polynomials, II. Facta Univ. Ser. Math. Inform. 6 (1991), 23-30.
3. S. Wrigge: On the Gegenbauer polynomials $C_{n}^{\lambda}(x)$ considered as a function of the index λ. Private Communication, 1983.

University of Niš
Faculty of Electronic Engineering
Department of Mathematics, P. O. Box 73
18000 Niš, Yugoslavia

NEKA RAZMATRANJA OKO GEGENBAUEROVIH I HUMBERTOVIH POLINOMA

G. V. Milovanović i S. D. Marinković

Razvijajući Gegenbauerove polinome $C_{n}^{\lambda}(x)$ po stepenima od λ dobijamo polinome $g_{j, n}(x), j=1, \ldots, n$, kao koeficijente tog razvoja. U radu dajemo neke eksplicitne izraze za $g_{j, n}(x)$, kao i jednu nehomogenu linearnu diferencijalnu jednačinu drugog reda koju ovi polinomi zadovoljavaju. Takođe, razmatramo i slične probleme za Humbertove polinome $p_{n, m}^{\lambda}(x)$.

[^0]: Received February 17, 1992.
 1991 Mathematics Subject Classification. Primary 33C45, 33C55.
 *This work was supported in part by the Science Fund of Serbia under grant 0401F.

