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SOME CONSIDERATION ABOUT
GEGENBAUER AND HUMBERT POLYNOMIALS*

G. V. Milovanovi¢ and S. D. Marinkovié

Abstract. Expanding the Gegenbauer polynomial Cf{ (z) in powers of A, coeffi-
cients of that expansion are the polynomials g; ,,(x), j = 1,... ,n. In this paper
we give some explicit expressions for g; ,(z), as well as a linear nonhomogenous
differential equation of the second order, satisfying by these polynomials. Also,
we consider the similar problems for the Humbert polynomials p;\l,m(l’).

1. Introduction

Investigating the Gegenbauer polynomials, S. Wrigge [3] used an unusual
approach. Namely, the Gegenbauer polynomial C(z) is considered as a
function of the parameter A > —1/2, i.e., it is presented as

(1.1) CANz) = Zgj,n(xw,

where g; n(2), j =1,2,... ,n are polynomials of degree n. Thus,

4 8
C(x) = §x3)\3 + (42® — 22)\% + <§x3 - 23:))\, etc.
The polynomials g; ,(x), j =1,2,...,n can be expressed in the form

M) )

(1.2) Gim(x) = (=1)"7 > k!i—'(%)n—%’
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where M,,(j) = min([n/2],n — j) and S are the Stirling’s numbers of the
first kind defined by

™ :x(x—l)---(x—n—i—l):ZSflj)xj.
j=1

From (1.2) immediately follows

(1.3 g1a(®) = Ta(e),

where T,,(x) is the Chebyshev polynomial of the first kind. Starting from
the generating function for the polynomials C;) () it can be proved that

(1.4) on () :22—:;@(@«) L 1 @)

n—1>

For the polynomials g; (), beside (1.1), Wrigge [3] found the generating
functions

+oo
= gjn(x)t".

n=j

(1.5) (_Djlogj(l —j?a;t—i—ﬂ)

As a generalization of the Gegenbauer polynomials we mention the class
of the Humbert’s polynomials, which are defined by the generating function

+o0
(1 =2t +t™) " => "ph . (@)t",
k=0

where m € N and A > —1/2. The special cases of the Humbert polynomials
are the Gegenbauer polynomials C(x) for m = 2, and the Horadam-Pethe
polynomials p2+1($) for m = 3 (see [1-2]).

In this paper we give some explicit expressions for g; ,,(x), which are dif-
ferent from (1.2), as well as a differential equation satisfying by these poly-
nomials. Furthermore, we consider the analogous problems with Humbert
polynomials pj, ,, () given by

P (@) = D B ()N
j=1
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2. Some Representations of g; ,(x)

Starting from the generating function (1.5) for the polynomials g; ,(x)
and the generating function Chebyshev’s polynomials (see [3]),

+o0
1 T,
—3 log(1 — 22t + t*) = Z ﬂt",

n
we find n=1

T T,
log’ (1 — 2zt + %) = J2JZ > ( 1(2)

Ll (z) "
11 ’ij ’
N=F gy 4tij=n

i >1
ie.,
21 Ti(x) Ty (x)
J ’ 11 15
11+t =n
ip>1

It is easy to see that (2.1) reduces to (1.3) and (1.4) for j = 1 and j = 2,
respectively.

Theorem 2.1. Let agk), 1<i<n-—1, be the elementary symmetric func-
tions of 1,... ,k—1,k+1,...,n andaék) =1. Then

(22 inle) = S S0 (1)ol cbo)

n!
k=1

Proof. Starting with the Lagrange interpolation formula for A +— C(z)/),
with nodes A=k, k=1,2,... ,n, we have

CMa) _ = Cha)  w())
where w(A) = (A= 1)(A=2) - (A —n) and (k) = (=1)"*(}) n'/k
Since

A

w(A) R I O

A—k
where a(k), 1 < ¢ < n—1, are the elementary symmetric functions of
1,...,k—1,k+1,... ,n. Then

n —i i n n n— k
Cha) = 52(—1) WY () -0l k)
T =1 k=1

wherefrom we obtain (2.2). O
Using (1.3) and (2.2), for j = 1, we can prove the following result:
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s (i)

k=1

Since D™T,,(x) = 2™~ Y(m — 1)InC™ . (x), n > m, formula (2.2) can be
represented in terms of Chebyshev polynomials and their derivatives,

() = — .
9im nl k 2’“*1(k: ).(n Y k) ntk
A similar formula in terms of Legendre polynomials can be also given.
Taking the nodes A = k+1/2, k=0,1,... ,n, in the Lagrange interpolation
formula for A — C)\ () we find

ey aQw=SlY e @ CrIerl/z(x))\—u;:()—\)l/Q’

Corollary 2.2. We have

n!
k=0
where ) 3 )
o =(A-5)(A=5) (A -n-3)

Let
(2.4) LG R S (1) IFER N M -1

A—k-1/2 neit 0

Since (21
iy k
C]n€+1/2(x) = (2]{:)' P?EJr)k(x) )

where P, (z) = Cpny »/ ?(z) is the Legendre polynomial, then from (2.3) follows

R k) k) :
n IZZ ( ) 2]{2) Fn—jpn+k(x))‘j7

7=1k=0

wherefrom we obtain the following representation:

Theorem 2.3. If the numbers Fék),Fl(k), ... ,Fék) are defined as in (2.4),
then

(£) = D e F P, (),
gjn\T) = (n—k) (2]6‘)‘ n—j- n+k

k=0
We note that gg,(x) = 0. Therefore,
—1 k—j P( )

k=0

= 0.
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3. Difference and Differential Relations

Starting from the well-known recurrence relations for the Gegenbauer
polynomials C}(z) and using (1.1), Wrigge [3] proved the following relations:

Dgjn-1(x) = 2Dgjn(x) — ngjn(z),

(3.1) Do) =2 X (7 Josnala)

j=k—1
(n+1)gjnt1(z) = 2n2g)n(x) + 229 1,0()
Since —(n=1)gjn-1(7) = 2gj-1,n-1(x).
n—1 .
A\ _(n+ 22 —1 B ﬁ i
Cn(l)—< N =] ()\+2),

we can conclude that

9 421
(3.2) g1n(l) = o and g2,(1) = " kz P

=1
Using the Gebenbauer differential equation and expansion (1.1), as well
as the first equality in (3.1) it can be proved that the polynomial g; ,(z)
satisfies the nonhomogenous differential equation
(3.3) (1—a®)y" — 2y +n*y = 2Dgj 1 n1(x).
For j = 1 this equation becomes the Chebyshev differential equation with
the general solution

Yy = Cl,nTn(x) + C2nV 1— a2 Sn—l(x),

where ¢1,, and ¢z, are constants, and Sy, (z) is the Chebyshev polynomial
of the second kind. The polynomial solution for which y(1) = 2/n is given

by y = g1.n(z) = 2T}, (x)/n.
For j = 2, equation (3.3) takes the form
(1 —2?)y" — zy' +n’y = 45, _o(x),

wherefrom, we obtain

n—1
2 1
y=dinTn(x) + +don V1 — 22 S, o(z) + - E %,‘T\n72k\(m)7
k=1

where d; ,, and dy ,, are arbitrary constants. It is easy to see that

n—1

v = gonla) = > % (Tn(@) + Tin—2t ()

n
k=1
is a polynomial solution satisfying (3.2).
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4. Humbert Polynomials

The polynomials {pi\L,m}'pomO:O were defined by the generating function (see

[1])
G (x,t) = (1 — 2at 4+ ™)~ an ()",

where m € N and A > —1/2. They can be expressed in the following explicit
form

(4.1 D) = 3 (1 Dmtm g
. n,m — k‘(n ) .

Following Wrigge [3] we consider p, ,,, () in the form

(42) pn m Z h‘] n

Starting from (4.1) and (4.2), we can obtain an explicit expression for the
polynomials hj ,(z), j =1,...,n. Namely,

My, (5) S(j)( D
4. n(z) = (=) _1ymk __n=(m=Dk 5 yn—mk
(48)  hanle) = (C1" 3 ™ g e

where My, (j) = min([n/m], [(n = j)/(m = 1)]).
Expanding A +— G2 (z,t) in powers of A and using (4.2) we get

4.4 ﬂl I(1—2 my =N "p. n
(4.4) i og’(1 =2zt + ™) = hj ()t
If we define \ (@)
0 T pn,m Z
pn,m(x) - )1\11% )\ )

then using (4.2) we have that p , (x) = h1n(z). Therefore, (4.4) for j =1
becomes

+oo
(4.5) —log(1 — 2t +t™) =Y p) ()"

Now, combining (4.4) and (4.5) we find another expression for h;,(x).
Namely,

hin(@) = 7 Yo D) ) ().

i >1

Using the similar method as in Section 2, we can prove some representa-
tions of h; ,,(«) which are different from (4.3).
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Theorem 4.1. Let ai(k), 1<i<n—1, be the elementary symmetric func-
tions of 1,... . k—1,k+1,...,n andaék) =1. Then

hy(z) = Y Z(_l)k@) o® gk (@),

n!
k=1

Theorem 4.2. If the numbers Fo(k),Fl(k), .. ,FT(Lk) are defined as in (2.4),

then '
1) & n
inle) = S0t () it o)
k=0

Several recurrence relations for the polynomials p), () can be found in
[1-2].
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NEKA RAZMATRANJA OKO GEGENBAUEROVIH
I HUMBERTOVIH POLINOMA

G. V. Milovanovié¢ i S. D. Marinkovié

Razvijajuéi Gegenbauerove polinome C’{l\ (z) po stepenima od A\ dobijamo poli-
nome gj (), j =1,... ,n, kao koeficijente tog razvoja. U radu dajemo neke eks-
plicitne izraze za g; ,, (2), kao i jednu nehomogenu linearnu diferencijalnu jednacinu
drugog reda koju ovi polinomi zadovoljavaju. Takode, razmatramo i slicne prob-
leme za Humbertove polinome pﬁym(x).



